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Abstract

The proliferation of large language models (LLMs) has led to the adoption of
Mixture-of-Experts (MoE) architectures that dynamically leverage specialized
subnetworks for improved efficiency and performance. Despite their benefits, MoE
models face significant challenges during inference, including inefficient memory
management and suboptimal batching, due to misaligned design choices between
the model architecture and the system policies. Furthermore, the conventional
approach of training MoEs from scratch is increasingly prohibitive in terms of
cost. In this paper, we propose a novel framework Read-ME that transforms
pre-trained dense LLMs into smaller MoE models (in contrast to “upcycling"
generalist MoEs), avoiding the high costs of ground-up training. Our approach
employs activation sparsity to extract experts. To compose experts, we examine
the widely-adopted layer-wise router design and show its redundancy, and thus we
introduce the pre-gating router decoupled from the MoE backbone that facilitates
system-friendly pre-computing and lookahead scheduling, enhancing expert-aware
batching and caching. Our codesign therefore addresses critical gaps on both the
algorithmic and system fronts, establishing a scalable and efficient alternative for
LLM inference in resource-constrained settings. Read-ME outperforms other
popular open-source dense models of similar scales, achieving improvements of up
to 10.1% on MMLU, and improving mean end-to-end latency up to 6.1%. Codes
are available at: https://github.com/VITA-Group/READ-ME.

1 Introduction

The success of Mixture-of-Experts (MoE) [1, 2] - such as recently exemplified by the Mixtral model
[3] in the era of large language models (LLMs) - lies in its remarkable ability to leverage the collective
expertise of specialized sub-networks, or "experts," each proficient in handling specific subsets or
aspects of the data. By dynamically routing data through these experts, MoE models effectively
capture complex patterns, adapt to diverse data distributions, and offer superior predictive accuracy
compared to traditional single-model approaches. In addition to performance promise, MoEs also
have a natural appeal for resource-limited devices due to their high sparsity, and therefore reduced
activated parameters per token, which can potentially save inference costs [4, 5, 6, 7].

However, MoE inference presents significant challenges for key system-level objectives:

• Memory Management: Although MoEs activate only a subnetwork during inference, expert
selection is determined on the fly by a layerwise router, complicating efficient prefetching.
This often forces reliance on naive prefetching algorithms. For example, prior work has
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Figure 1: Overview of Read-ME. This figure shows the refactoring of a pre-trained dense model (in yellow) into
two experts (in red and green). After refactoring, the model is deployed, and the serving timeline is depicted.
At time t = 0, multiple inference requests (each a sequence of tokens) are queued, with expert assignment for
each token undecided ("?") until processed by the router. Our router pre-gates tokens before inference, enabling
expert-aware batching. Tokens are routed to their respective experts and batched accordingly: at t = 0 for Expert
1 (red) and at t = 1 for Expert 2 (green). New tokens enter the queue at each time step, with routing computed
only for incoming tokens marked "?".

predicted the next expert using hidden states from the previous layer and applied an LRU
cache replacement for recently used experts [8]. While effective under certain conditions,
such strategies depend on assumptions about expert locality and token predictability, which
can become sub-optimal if those assumptions are violated (as shown in Table 4).

• Token Batching: Token batching techniques critical for efficient inference (e.g., [9]) are
poorly suited to MoE architectures, where each batch contains tokens invoking different
experts across layers, rendering batching strategies ineffective (§ 4.2).

Moreover, traditional MoEs are typically trained from scratch, which becomes prohibitively expensive
as model scales increase. To mitigate this, some approaches, such as “upcycling" [10], reuse pre-
trained dense LLMs to initialize experts in an MoE. While that efficiently scales MoEs by leveraging
smaller, pre-trained models, it does not address the inference-related challenges mentioned earlier.

In this work, we tackle the opposite challenge: how to create a smaller MoE model from larger
pre-trained models that enables resource-efficient inference while minimizing training costs? Despite
existing efforts [11, 12, 13, 14], this problem remains underexplored. Approaches like [11, 12, 13]
attempt MoE refactorization but still adopt systems-unfriendly layer-wise structures for inference.
Similarly, [14] focuses on dynamically selecting "important" neurons during pre-filling and pruning
others during generation, but this is limited to long-content generation and requires neuron importance
identification for each sequence.

To address both training and inference challenges, we introduce a holistic MoE framework dubbed
Read-ME. To minimize training costs, we “refactorize” a pre-trained dense LLM into specialized
experts through activation sparsity and optimize the routing policy (§ 3). For efficient inference,
we examine the redundancy of layer-wise routers (§ 2.1, § 2.2) and propose decoupling the router
from the MoE backbone (§ 2.3). This allows us to pre-gate all requests (token sequences) before
inference and apply lookahead scheduling based on the experts to which tokens will be dispatched.
Consequently, we propose an expert-aware batching algorithm (§ 4.2) and an optimal expert caching
strategy inspired by Belady’s offline caching algorithm [15] (§ 4.1).

Figure 1 illustrates our framework. Our key contributions are:

• We transform large pre-trained LLMs into Mixture-of-Experts (MoE) models with fewer
activated parameters and small additional training cost (1 billion tokens). Our approach
outperforms popular open-source models and compression techniques of similar scale on
downstream tasks like MMLU [16].

• We analyze the widely adopted layer-wise routers in existing MoEs and reveal design
redundancies. Current caching policies and batching algorithms are poorly suited to layer-
wise MoEs. We propose a novel pre-gating router, decoupled from the MoE backbone,
enabling better system-level optimization.
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• Our system achieves a 6.1% reduction in mean latency and a 10% improvement in tail
latency compared to state-of-the-art systems. Our caching algorithm is both provably and
empirically optimal, thanks to our algorithm-system co-design.

2 Pre-gating Sparse Mixture of Experts

In this section, we introduce our motivation and design of pre-gating MoE which enables system-level
acceleration by sharing and precomputing expert selection for each layer.

2.1 System Drawbacks of Conventional Sparse MoE Design

An Mixture-of-Expert (MoE) [1, 2, 17, 3] layer consists of a routing network G and a set of N expert
networks {F1, ..., FN}. In the forward pass, the routing network will first process input sequences
and generate the gating weights. Then a size-K subset of experts will be dynamically activated and
their outputs will be combined as final outputs according to the gating weights. In LLMs, MoE
is typically adopted in the Feed-Forward Networks (FFN) within each transformer block [1, 2, 3].
Suppose an LLM has L layers, the output of the l-th layer can be formulated as:

y =
N∑
i=1

I(|{j ∈ [N ] : G(l)(x)j ≥ G(l)(x)i}| ≤ K)G(l)(x)iF
(l)
i (x), (1)

where the superscripts indicate the layer indices, G(l), F (l) are point-wise functions operating on
tokens individually, and I(·) is the indicator function which filters experts with top-K gating weights.
For shorthand, we denote I(l)i = I(|{j ∈ [N ] : G(l)(x)j ≥ G(l)(x)i}| ≤ K).

As shown in Eq. 1, conventional MoEs assign a separate router to each layer. While this is commonly
used by open-source MoEs like Mixtral [3] and OpenMoE [18], we highlight its system inefficiency.
Layer-wise gating makes it difficult to predict which expert to load until runtime (§ 4.1), and
complicating request batching (§ 4.2). Specifically, layer-wise routers select the l-th layer expert
i : I(l)i = 1 based on the (l − 1)-th layer outputs, which prevents pre-scheduling and pre-loading of
data or model weights. This issue is especially problematic for billion-level parameter MoEs, where
experts are usually distributed across devices (GPUs and CPUs in a machine) or even machines;
in such situations, layer-wise selection accentuates high overheads of data I/O and communication
among servers in the critical path of inference.

2.2 Redundancy of Layer-wise Router

In this section, we demonstrate that layer-wise gating patterns are redundant in an MoE. In particular,
we empirically find that expert selections between two adjacent layers are highly correlated.
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Figure 2: (a) Visualization of transition matrix between the (l-1)-th layer and the l-th layer, where each
coordinate [{s, t}, {i, j}] represents P (S(l) = {i, j}|S(l−1) = {s, t}). The row-wise sparse pattern suggests
that the router decision becomes almost deterministic given the previous layer’s decision. (b) Mutual information
I(S(l);S(l−1)), which indicates the learned knowledge shared by two neighboring layers is high. (c) Overview
figure of router tuning and router distillation loss.

We use Mixtral-8×7B (N = 8,K = 2) [3] as a study case and analyze router decisions among
its layers. Define the random variable S(l) = {i ∈ [N ] : I(l)i = 1} as the pair of experts selected
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for each layer (|S(l)| = 2). We are interested in the conditional probability of S(l) between two
consecutive layers: P (S(l) = {i, j}|S(l−1) = {s, t}). The transition matrix of the last two layers
from Mixtral-8×7B is depicted in Figure 2 (a). The row-wise sparse pattern implies that the expert
selection is almost deterministic given the previous layer’ choices. For example, for tokens choosing
expert-3 and expert-5 in the 30th layer, over 70% will select expert-1 and expert-5 at the 31st layer.

To further validate this observation, we plot the mutual information between expert choices of every
two neighboring layers: I(S(l);S(l−1)). As reflected in the right sub-figure of Figure 2, knowing
expert pairs used in the last layer significantly reduces the uncertainty of the next layer. Thus, the
implicit knowledge learned by each router is extensively shared across layers.

2.3 Pre-Computed Routing Policy

The above observations suggest that among the many
(
N
K

)L
routing paths, only a few are used during

the inference. Therefore, layer-wise routing decisions are unnecessary for MoEs. Instead, we can
separate the routerfrom the MoE backbone and pre-compute the routing path all at once.

First of all, we assume the indices of experts handling one domain of tokens are aligned, i.e.
{F (1)

i , · · · , F (l)
i } always forms a routing path. We defer our approach to the construction of aligned

experts to §3. Next, we let a singleton network G generate gating weights for all layers. In particular,
we adopt one transformer block with causal attention as the model architecture of G. Gating weights
computed in this way not only leverage the states of the current token but also take the information
from the past tokens into consideration. Thus, tokens will have expert selections similar to the recent
tokens, which ensures cache-friendly inference (see more details in § 5.3).

Suppose the input sequence is (xt)t=1,··· ,T , the output for the t-th token at the l-th layer is:

yt =

N∑
i=1

I(|{j ∈ [N ] : G(x≤t)j ≥ G(x≤t)i}| ≤ K)G(x≤t)iF
(l)
i (xt), (2)

where x≤t = (x1, · · · ,xt) represents all the tokens before the t-th token. We note that G is
independent of layer index l. Despite a subtle change, it brings profound benefits to enable system-
level optimization. In brief, by separating the gating network from the transformer layers, expert
selection can be determined at the outset and used to schedule the data-loading procedure for each
layer. We defer more details on system co-design to §4.

3 Re-factoring Language Model with Pre-Gating MoE

In this section, we introduce the main technique to re-use a dense pre-trained model to construct
our pre-gating MoE proposed in §2. In short, our approach first initializes each expert by structured
pruning of a dense model on the corresponding data domains. Afterward, we instantiate a gating
network shared across layers and continue joint training of the router and experts.

Domain-Aware Expert Construction. We construct a set of small experts by pruning the dense
model with different data domains. To begin with, we point out that public language corpora often
contain metadata indicating the domain of each subset. For example, the training dataset of LLaMA
family [19] can be split into scientific articles [20], novels [21], and QAs [22], etc. We utilize this
metadata to group data entries in the training corpus into N sub-domains {D1, · · · ,DN}. Observing
that feature channels on each subset are sparsely activated [23], we compute the average magnitude
of a channel on each subset and keep top activated neurons to form the domain expert. Formally,
let the number of experts equal to the number of sub-domains, and assume the dense model is a
two-layer FFN with hidden size D: F0(x) = W 2σ(W 1x), then the i-th experts with hidden size d

are initialized as: Fi(x) = W 2M
⊤
i σ(M iW 1x),∀i ∈ [N ], in which M i is obtained by:

argmax
M∈{0,1}d×D

Ex∼Di∥MW 1x∥1 s.t. M1D = 1,M⊤1d ≤ 1, (3)

where M is constrained to be a selection matrix without replacement. The mask for each layer
is jointly optimized so that the resultant experts are aligned layerwise and dedicated to the same
data distribution. In our experiments, we set d ≈ D/2. In addition, we observe that a certain
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subset of channels is essential for all data, potentially due to the system prompt and the presence of
commonsense knowledge. Therefore, we isolate the corresponding neurons as the permanent expert,
which will be activated for all tokens, similar to previous designs [18, 24].

Continual Training Objective. After initializing experts via structured pruning, we perform joint
training of randomly initialized gating networks and expert subnetworks via causal language modeling.
In addition, we propose routing distillation loss to enhance the alignment between expert choice in
pre-gating MoE and the activation sparsity in the original dense model.

We illustrate the training of our router in Fig. 2 (c). Suppose the predicted token has embedding xt+1.
We feed xt+1 into the original dense model F0 and get a sparse selection matrix M0 that indicates
neurons with top 50% magnitude similar to Eq. 3. Then we penalize this loss function:

LRD = DKL

(
softmax(G(x≤t+1))∥softmax([∥M0M

⊤
1 ∥2F , · · · , ∥M0M

⊤
N∥2F ])

)
. (4)

Here, DKL(·∥·) represents Kullback–Leibler divergence. ∥(M0M
⊤
j ∥2F = 1⊤

d M0M
⊤
j 1d computes

the Hamming distance between two masks induced by M0,M j . We apply softmax to normalize
these scores as the estimated selection probability of each expert for predicted token xt+1.

4 Expert-aware Inference System

We demonstrate how our refactoring and pregating concepts enable a novel, high-performance, and
efficient MoE inference method. We address two key challenges in existing MoE models’ inference:
inadequate memory management and limited support for batched inference. Our problem setting is
broad, aiming to serve multiple requests using an MoE model, each comprising a sequence of tokens.
This differs from previous systems, which focused on optimizing performance for individual requests.

4.1 Pre-gating Optimized Expert Prefetching and Caching

MoE models promise reduced memory usage during inference by loading only the parameters
of required experts, skipping the rest. However, traditional layer-wise gating imposes significant
loading costs. Previous approaches, such as on-demand loading [25], prefetching [26], and expert
caching [8, 27], attempt to address this. However, on-demand loading adds overhead to the critical
inference path, and prefetching often loads unnecessary experts due to incomplete routing information,
leading to suboptimal memory usage and performance [28]. Additionally, caching strategies, based
on request characteristics like temporal locality or activation sparsity, have mostly been evaluated
in isolated single-request scenarios. In practice, expert caches are shared across multiple requests,
making cache policies relying on per-request traits suboptimal. A global view across all requests
is necessary for effective caching (see Table 4). Our work leverages pre-gating to develop more
informed prefetching and caching strategies, resulting in significant system-level improvements.

Fine-grained Prefetching. By design, our pre-gating MoE architecture enables us to prefetch the
exact expert layers needed for a token or a request, avoiding guesswork. To further hide the latency in
prefetching, we pipeline and thus overlap loading of experts and experts’ computation at layer-wise
granularity: specifically, while computing the ith layer’s forward path in the compute stream, we load
the i+ 1st layer’s experts in a separate loading stream.

Belady-inspired Caching. Prefetching can hide the loading latency of all but the first layer, which
incurs significant cost. To mitigate this, we need a cache that stores relevant initial layers, and we
argue that pre-gating enables an optimal caching strategy.

The classical Belady algorithm is known to be the optimal offline cache replacement algorithm,
replacing the object that will be accessed farthest in the future. While impractical in real-world
systems (due to unknown future accesses), our pre-gating architecture allows us to approximate it.
By decoupling the router from the backbone MoE, we can compute future expert references across
requests in advance, enabling near-optimal cache replacement.

Suppose that the cache at time step t− 1 is as follows: C(t− 1) = {e1, e2, ..., ek}, where the cache
is of size k and is filled with k experts e1...k. F (e, t) represents the next time after t when expert e
will be requested. Then, our policy chooses the expert eevict = argmaxe∈C(t−1)F (e, t) for eviction.
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Figure 3: Challenges of MoE serving in current serving systems and Read-ME’s batching pipeline.

4.2 Expert-aware Batching

Current serving systems heavily rely on batching to improve inference efficiency, but effective
batching for MoE models remains challenging. As shown in Figure 3 (a), each token in MoE models
may invoke a different set of experts per layer, leading to multiple expert activations for a batch
of requests. For example, in a toy model with 4 experts per layer and a batch of 3 tokens (one per
request), 2/3/3 experts would be activated across the layers. In the Mixtral8x7B model [3] applied to
the chatbot arena dataset [29], we observed an average activation of 7.63 out of 8 experts, even with
a modest batch size of 56.8.

The core challenge is that while each token requires computation from only one expert per layer, it
must wait for all other tokens in the batch to complete their expert computations in the same layer [30].
This bottleneck repeats at each layer, reducing the efficiency of batching. Ideally, a single loaded
expert would serve multiple tokens in a batch, but this is rarely achieved, affecting both performance
and efficiency. For example, we observe a linear increase in average per-token processing latency as
the number of unique experts per batch grows (see Figure 3 (b)).

In contrast, pre-gating enhances inference performance by enabling the delayed creation of an optimal
batch based on required experts. For a given set of tokens, we pre-gate each one and select a subset
for batching, depending on their identified expert requirements. The goal is to minimize the number
of unique experts across all layers while maximizing the number of tokens in the batch. Moreover, as
discussed in § 2.3, our expert selection remains consistent across layers—if a token is assigned to
Expert 1, it will be routed to Expert 1 in every layer. This approach, combined with our batching
strategy, ensures optimal efficiency. Algorithm 1 provides our batching pseudocode.

We note that in other MoEs, such batching isn’t feasible because, as shown in Figure 3, their expert
selection at each layer remains unknown until the request reaches the router. In Read-ME, experts are
determined first, which allows batches to be created and submitted to MoE layers efficiently.

5 Evaluation
Table 1: Details of router design. Fol-
lowing the standard Transformer archi-
tecture [31], the inserted router adds
only 18 million additional parameters.

# Layers 1
# Heads 4
Vocab size 32000
Embedding Dim. 512
Feature Dim. 512
MLP Intermediate Dim. 512
Activation Function SwiGLU [32]

Positional Embedding RoPE [33]
Normalization RMSNorm [34]

# Params 18.0 M

In this section, we start by describing the experimental details
in § 5.1. Then we validate the refactorization effectiveness on
downstream tasks in § 5.2. In § 5.3, we evaluate the effec-
tiveness of pre-gating and batching. § 5.4 analyzes memory
optimization techniques. In addition, we provide experimental
details in § 5.1, and more experimental results in §. A.

5.1 Experimental Details

Model and Dataset We perform the MoE refactorization
based on Llama2-7B-chat [19] model, a popular open-source
model pre-trained on 2 trillion tokens. The training cor-
pus [35] involves the data collected from 7 different resources:
Arxiv [20], Books [21], Common Crawl, C4 [36], Github,
Wikipedia [37], and StackExchange [22]. To generate experts, we collect 16 samples from each
data domain, with each sample consisting of 4096 consecutive tokens. During router tuning, we
use the subset of RedPajama dataet [35], with the same curation strategy. We present our detailed
router design in Table 1. We use the standard Transformer [31] architecture with a 1-layer, 4-head
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Algorithm 1 Read-ME Expert-aware Batching Algorithm (pseudocode)
Input NumExperts, ReqQueueByExpert, MaxTokenLen
Output ScheduledReq

1: for k ← 0 to NumExperts− 1 do
2: len_reqs_per_experts[k]← len(ReqQueByExpert[k])
3: end for
4: while true do
5: E ← argmax(len_reqs_per_experts)
6: if len_reqs_per_experts[E] < (MaxTokenLen− len(ScheduledReq)) then
7: ScheduledReq ← ScheduledReq ∪ReqQueueByExpert[k]
8: ReqQueueByExpert[E]←[ ]
9: len_reqs_per_experts[E]← 0

10: else if MaxTokenLen− len(ScheduledReq) ≥ 0 then
11: n_available←MaxTokenLen− len(ScheduledReq)
12: ScheduledReq ← ScheduledReq ∪ReqQueueByExpert[k][: n_available]
13: ReqQueueByExpert[E]← ReqQueueByExpert[k][n_available :]
14: len_reqs_per_experts[E]← len(ReqQueueByExpert[E])
15: break
16: else
17: break
18: end if
19: end while

design. The router is lightweight, consisting of 18 million additional parameters, and incurs negligible
computational overhead. We use 8 A100 GPUs with 80GB of memory for all tuning experiments.

Table 2: Hyper-parameter choice during the training.

Stage Router Tuning Expert Tuning

# Iteration per Round 100 200
# Rounds 8 8

Initial LR at Round 0 5e−4 5e−5

LR Decay within Round Cosine Cosine
LR Decay type across Rounds Exponential Exponential
LR Decay rate across Rounds 0.8 0.8
Weight Decay 0.01 0.01
Batch Size 64 128

Sequence Length 4096 4096
# Tokens per Round 26 M 105 M

# Tokens in Total 1.04 B

Continual-Tuning Details To co-optimize the
router and expert networks, we iteratively tune
each model component. Specifically, we first
optimized the router by LRD, as detailed in § 3,
for 100 steps. We use the batch size of 64 in this
router tuning stage. During this router tuning
stage, we freeze the expert weights and solely
tune the router weights. Then, during the ex-
pert tuning stage, we fix the router weights and
modify the expert weights via language model-
ing loss, for 200 steps, with a batch size of 128.
We set sequence length to 4096 for all stages,
following the choice in the pre-training stage of
Llama2 model [19]. This iterative training schedule is conducted 8 times. Detailed visualizations
of the training dynamics are provided in Section A.1. For each round, the router tuning and expert
tuning stages will cost 26 million and 105 million tokens, respectively. The whole continual-tuning
process merely uses 1.04 billion tokens, negligible compared to the pre-training cost (2 trillion
tokens). During each round of tuning, we use the cosine learning rate decay. At round 0, the initial
learning rates are 5e−4 for router tuning and 5e−5 for expert tuning. The initial learning rate decays
exponentially with a decay rate of 0.8 as the number of rounds increases.
Inference System Evaluation For our workload, we utilize the Chatbot Arena Conversation
Dataset [29] to generate inference requests and replay conversation traces. Our setup employs a
single A100 GPU with 80GB of memory. The implementation is built on top of DeepSpeed inference
engine [38]. We use normalized latency as our primary metric, defined as the end-to-end latency
divided by the generated token length, in line with previous works [9, 39, 38].

5.2 Downstream Task Evaluations

We first validate the refactorization effectiveness on downstream tasks, as shown in Table 3, comparing
it to other models of similar scales, including the open-source models that trained from scratch, and
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the dense models pruned from larger pre-trained LLMs. We achieve the best average performance,
outperforming all model variants from the Pythia [40] and Open-Llama-v2 [41] families, as well as
Sheared-Llama [42]. We use just 1 billion training tokens, considerably less than other models.

Table 3: Downstream task evaluation of our proposed method (Read-ME) compared to open-source models,
including dense models Pythia and Open-Llama-v2, the MoE model OpenMoE, and the compression method
Sheared-Llama. The evaluation includes zero-shot performance on WinoGrande, ARC-Easy, LogiQA, CoQA;
5-shot performance on MMLU; 10-shot on Hellaswag; and 25-shot on ARC-Challenge. The “#Param” column
presents in the form of (# Activated-Parameters - # Total-Parameters). Training cost is measured by the number
of tokens used. For compression methods like ours and Sheared-Llama, only tokens used for conversion are
counted, excluding Llama-2 pre-training costs.
Method #Param Cost MMLU Hell. Wino. ARC-E ARC-C LogiQA CoQA avg.

Sheared-Llama 2.7B 50B 26.4% 70.8% 67.0% 67.0% 41.2% 28.3% 71.7% 53.2%
Pythia 2.8B 300B 26.9% 60.8% 59.7% 64.4% 36.4% 27.7% 61.9% 48.3%
Open-Llama-v2 3.4B 1T 25.7% 67.6% 63.5% 66.5% 39.0% 28.1% 54.4% 49.3%
OpenMoE 2.1B-8B 1.1T 26.2% 45.5% 60.3% 64.1% 30.3% - - -
Read-ME 4.7B-17B 1B 38.9% 68.5% 67.7% 66.6% 42.3% 29.7% 74.8% 55.5%

Pythia 6.9B 300B 25.5% 67.1% 64.1% 67.3% 31.3% 25.3% 63.6% 49.2%
Open-Llama-v2 6.9B 1T 40.2% 66.7% 66.0% 63.0% 36.0% 27.6% 64.5% 52.0%
Llama-2 6.9B 2T 45.3% 78.6% 69.3% 76.4% 53.0% 31.0% 75.9% 61.4%

Read-ME

Pythia

Open-Llama

Llama2
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Figure 4: Evaluation of Read-MEon MMLU [16]
benchmark, compared to other open-source models and
compression techniques ( performance numbers are col-
lected from their respective papers.

In Fig. 4, we further provide a direct compari-
son with other compression methods, which con-
verts a large LLM to a small dense variant, on
MMLU [16] benchmarks. Besides open-source
models and Sheared-Llama [42] which are men-
tioned in the previous table, we additionally in-
clude recent compression techniques, including
LLM-Pruner [43], SliceGPT [44], LaCo [45],
and Compresso [46], as our baselines. Read-
MEachieves the best performance among the
models with the number of activation parameters
less than 5 billion, and shows comparable per-
formance with Open-Llama-v2-7B [41]. More
analysis is included in § A.2.

5.3 Pre-gating and Expert-aware Batching

Inference Latency Breakdown. We evaluate the impact of the auto-regressive router introduced by
our refactoring of the dense MoE on per-request inference latency. Unlike conventional layer-wise
routers, usually linear layers, our auto-regressive router comprises a multi-head attention layer and an
MLP layer (see § 2.3), potentially raising its computational cost.

Fig. 5 (left) illustrates the average per-token latency breakdown of a single isolated inference request
measured in OpenMoE [18] with conventional layerwise routers, our refactored model with pregating
router, and the original dense Llama2-7b model [19] we refactored. We find that the computational
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overhead of our auto-regressive router is minimal – its contribution of 0.4% is much less compared to
the router’s net contribution in other MoE models (3.95%). This is because we use a single router
unlike other models with gating for each MoE layer; also, our router design is compact with only
18M parameters (Table 1). Compared to the dense model, we achieve a net 19% reduction in latency
via refactoring the MLP to MoE.

Batched Inference. We now evaluate the efficacy of our expert-aware batching. Fig 5 (center)
shows the latency distribution and the 95-th percentile latency (p95) during batched inference. We
compare with two widely used techniques – Decoding-prioritized batching [38], and Prefill-prioritized
batching [39, 47]. These methods utilize distinct queues for decoding requests and prefill requests,
prioritizing batching of tokens from decoding and prefill requests, respectively.

Prioritizing either decoding or prefill requests yields comparable performance. In contrast, our
method of constructing batches based on activated experts enhances the mean latency by 5.0-6.1%
and reduces the p95 latency by 9.5-10.0% compared to these approaches.

The primary reason for this improvement is that our batching approach directly reduces the average
number of unique experts invoked per batch by leveraging pre-gated information. Specifically, for
decoding-prioritized and prefill-prioritized batching, the average number of unique experts per batch
was 5.08 and 5.21, respectively, whereas our method reduces this to 3.51.

We observed a significant performance impact as prefill requests invoke more experts per batch
compared to decoding requests. Prefill requests require tokens to be dispatched to different experts,
making it impractical to batch tokens by shared experts due to attention operations. As a result, a sub-
stantial number of experts are invoked for each batch, negatively affecting performance. Fortunately,
our auto-regressive router design improves temporal locality in prefill requests, often allowing tokens
within the same request to select the same or a small number of experts. We explore this locality in
greater detail in the following section.

High Temporal Locality. To analyze the locality, we measure the temporal distance of the tokens in
a sequence (Fig. 5 (c)). We define temporal distance as the distance between two tokens selecting
the same expert within a sequence [48]. Our result shows that our router leads to a smaller distance,
indicating a high degree of temporal locality. Specifically, out of 4096 tokens, 2921 tokens follow
the choice of the last token, compared to 850 tokens in Mixtral-8×7B. The locality is attributed to
the auto-regressive design of our router, where the router’s decision is based on the current and all
previous tokens. As a result, a given token is likely to have similar expert selections with its recent
predecessor tokens. However, note that this temporal locality appears only within the token sequence
of a single request and does not appear across different requests.

5.4 Memory-Efficient Inference
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Figure 6: Latency impact of prefetch-
ing: We measured end-to-end latency
on a synthetic workload generated by
replaying Chatbot Arena Dataset [29].
(Appendix 5.1)

We evaluate how well our approach can ensure good perfor-
mance while improving memory efficiency. In particular, we
constrain the expert cache capacity to k (that is, up to k experts
can reside in accelerator memory). In this setup, if a requested
expert is not in memory, it must be loaded from host mem-
ory, potentially increasing loading latency. As explained in
§ 4.1, this loading overhead can be mitigated with prefetching,
provided that we know which expert will be needed in Read-
ME. We compare the end-to-end latency of requests from the
prefetching our approach enables (Prefetching) versus not
leveraging prefetching (On-demand Loading) [25]. Figure 6
shows that for varying cache capacities, we consistently out-
perform On-demand Loading, with up to 30% better latency.

In addition to proactively loading experts into memory, our
approach also retains experts in a cache to further use memory optimally. Table 4 compares three
representative caching policies’ hit ratios across varying cache capacities, including the Belady-
inspired approach that our architecture enables. As noted earlier, our approach accommodates
multiple requests where each request has a token sequence, in contrast with prior works focusing on
a single request/token-sequence [8, 27].
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Cache Policy

Cache
Capacity Random LRU Belady

2 34.19% 33.90% 44.16%
3 50.14% 52.42% 61.82%
4 67.52% 66.95% 77.21%
5 82.91% 83.48% 88.03%

Table 4: Cache hit ratio measured in
batched inference setup.

When multiple requests share the expert cache, temporal local-
ity within a single request cannot be leveraged across requests,
limiting its effectiveness. This explains why LRU, which
works well in single-request scenarios, underperforms in our
setup. In contrast, our Belady-based algorithm excels at all
cache capacities by utilizing future expert information across
requests, thanks to the pre-gating router. When cache capacity
is constrained by system memory, latency can be significantly
reduced with an optimized cache policy. Our Belady approach
notably improves latency, particularly under limited cache
sizes, though we omit detailed results for brevity.

6 Related Work

MoE Refactorization. Recent “MoE-fication" methods [11, 12, 13, 49] optimize or group channels
using graph-based techniques but still rely on system-inefficient layer-wise routers. In contrast, we
are the first to identify the redundancy in layer-wise routers and propose a pre-gating router that
enables expert pre-fetching. Similar to [50, 14, 51], we leverage activation sparsity [23] to construct
experts, adaptively identifying important neurons and evicting less-important ones during inference.

Efficient Inference Serving. To deal with the limited memory in resource-constrained settings, prior
LLM inference works focused on optimizations such as offloading parameters to host memory [52,
53, 25], quantization [54, 55, 56], sparsity [57, 58] and MoE architectures [4, 59, 26]. However, while
token batching [9] has garnered significant attention for dense models [39, 47, 38, 60], it remains
problematic and underexplored in the context of MoE models.

Pre-gated MoE [28] is related to Read-MEas they too fine-tune a router to pre-gate using the ith
layer’s hidden states to compute the i + 1th layer’s routing; but they still maintain a layer-wise
architecture which constrains batching. SiDA-MoE [61] separates the router from the inference path.
However, tokens cannot be batched together because they do not share routing decisions across all
layers. In addition, the offline routing function of SiDA is an approximation that may incorrectly
guess expert selection, especially when the model scales. In contrast, Read-MEhas exact routing,
ensuring no performance drop during inference.

Mixtral-offloading [8] introduces speculation to “guess" routing decisions, resorting to costly on-
demand loading if speculation fails. Caching is commonly used [62, 52, 63, 53, 64], including in
MoE systems [8, 27], which typically focus on single requests. Prior caching methods are limited by
layer-wise routing and lack of foresight into future requests.

7 Conclusions and Limitations

We address the under-explored challenge of reusing a pre-trained LLM to create a smaller MoE
model that enables efficient inference with minimal training cost. By leveraging activation sparsity,
we construct specialized experts and integrate them via a router. Upon analyzing the layer-wise router
design used in all open-source MoEs, we identify its inefficiency and redundancy. To overcome
this, we propose a pre-gating router, decoupled from the MoE backbone, enabling system-level
optimizations that were previously unattainable.

Limitations. Our serving system is designed for a single accelerator, and extending it to distributed
serving remains a non-trivial task for future work. Our method has no negative societal impact, as it
uses publicly released data and model checkpoints. This work is foundational research and is not tied
to specific applications.
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[13] Mikołaj Piórczyński, Filip Szatkowski, Klaudia Bałazy, and Bartosz Wójcik. Exploiting
transformer activation sparsity with dynamic inference. arXiv preprint arXiv:2310.04361, 2023.

[14] Harry Dong, Beidi Chen, and Yuejie Chi. Prompt-prompted mixture of experts for efficient llm
generation. arXiv preprint arXiv:2404.01365, 2024.

[15] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM
Systems journal, 5(2):78–101, 1966.

[16] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

11



[17] Yihua Zhang, Ruisi Cai, Tianlong Chen, Guanhua Zhang, Huan Zhang, Pin-Yu Chen, Shiyu
Chang, Zhangyang Wang, and Sijia Liu. Robust mixture-of-expert training for convolutional
neural networks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 90–101, 2023.

[18] Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024.

[19] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[20] Colin B. Clement, Matthew Bierbaum, Kevin P. O’Keeffe, and Alexander A. Alemi. On the use
of arxiv as a dataset, 2019.

[21] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
2020.

[22] Stack Excahnge. Stack exchange data dump, 2024.

[23] Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi,
Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On emergence
of activation sparsity in transformers. arXiv preprint arXiv:2210.06313, 2022.

[24] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

[25] Accelerate — huggingface.co. https://huggingface.co/docs/accelerate/index. [Ac-
cessed 22-05-2024].

[26] Liang Shen, Zhihua Wu, WeiBao Gong, Hongxiang Hao, Yangfan Bai, HuaChao Wu, Xinxuan
Wu, Jiang Bian, Haoyi Xiong, Dianhai Yu, and Yanjun Ma. Se-moe: A scalable and efficient
mixture-of-experts distributed training and inference system, 2023.

[27] Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh Marina. Moe-infinity: Activation-aware
expert offloading for efficient moe serving, 2024.

[28] Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu Tang, Ting Cao, Mao
Yang, and Minsoo Rhu. Pre-gated moe: An algorithm-system co-design for fast and scalable
mixture-of-expert inference. arXiv preprint arXiv:2308.12066, 2023.

[29] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

[30] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[32] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

12

https://huggingface.co/docs/accelerate/index


[33] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[34] Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

[35] Together Computer. Redpajama: An open source recipe to reproduce llama training dataset,
2023.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv e-prints, 2019.

[37] Wikimedia Foundation. Wikimedia downloads.

[38] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, and Yuxiong He. Deepspeed-
inference: Enabling efficient inference of transformer models at unprecedented scale. In SC22:
International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–15, 2022.

[39] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[40] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

[41] Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023.

[42] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating
language model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

[43] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

[44] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns.
arXiv preprint arXiv:2401.15024, 2024.

[45] Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024.

[46] Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang. Compresso: Structured pruning with col-
laborative prompting learns compact large language models. arXiv preprint arXiv:2310.05015,
2023.

[47] Huggingface tgi inference engine. https://github.com/huggingface/
text-generation-inference. [Accessed 20-05-2024].

[48] Vidyadhar Phalke and Bhaskarpillai Gopinath. An inter-reference gap model for temporal
locality in program behavior. ACM SIGMETRICS Performance Evaluation Review, 23(1):291–
300, 1995.

[49] Haizhong Zheng, Xiaoyan Bai, Beidi Chen, Fan Lai, and Atul Prakash. Learn to be efficient:
Build structured sparsity in large language models. arXiv preprint arXiv:2402.06126, 2024.

[50] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivas-
tava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient
llms at inference time. In International Conference on Machine Learning, pages 22137–22176.
PMLR, 2023.

13

https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference


[51] Varun Yerram, Chong You, Srinadh Bhojanapalli, Sanjiv Kumar, Prateek Jain, Praneeth Netra-
palli, et al. Hire: High recall approximate top-k estimation for efficient llm inference. arXiv
preprint arXiv:2402.09360, 2024.

[52] Weihao Cui, Zhenhua Han, Lingji Ouyang, Yichuan Wang, Ningxin Zheng, Lingxiao Ma,
Yuqing Yang, Fan Yang, Jilong Xue, Lili Qiu, et al. Optimizing dynamic neural networks with
brainstorm. In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23), pages 797–815, 2023.

[53] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model
training. In USENIX Annual Technical Conference (USENIX ATC 21), pages 551–564, 2021.

[54] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

[55] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[56] Lin Zhao. Awrq: Activation-aware weight reformulation quantizer for large language models.

[57] Ajay Jaiswal, Shiwei Liu, Tianlong Chen, Zhangyang Wang, et al. The emergence of essential
sparsity in large pre-trained models: The weights that matter. Advances in Neural Information
Processing Systems, 36, 2024.

[58] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

[59] Zhixu Du, Shiyu Li, Yuhao Wu, Xiangyu Jiang, Jingwei Sun, Qilin Zheng, Yongkai Wu, Ang Li,
Hai "Helen" Li, and Yiran Chen. Sida-moe: Sparsity-inspired data-aware serving for efficient
and scalable large mixture-of-experts models, 2024.

[60] GitHub - NVIDIA/TensorRT-LLM: TensorRT-LLM provides users with an easy-to-use Python
API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-
the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also
contains components to create Python and C++ runtimes that execute those TensorRT engines.
— github.com. https://github.com/NVIDIA/TensorRT-LLM. [Accessed 20-05-2024].

[61] Zhixu Du, Shiyu Li, Yuhao Wu, Xiangyu Jiang, Jingwei Sun, Qilin Zheng, Yongkai Wu, Ang Li,
Hai "Helen" Li, and Yiran Chen. Sida-moe: Sparsity-inspired data-aware serving for efficient
and scalable large mixture-of-experts models, 2024.

[62] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong, Feng Lin, Junyu Wu, Yongsheng Li,
Haidong Rong, Pierre-Louis Aublin, et al. Ekko: A {Large-Scale} deep learning recommender
system with {Low-Latency} model update. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 821–839, 2022.

[63] Jaehoon Jung, Jinpyo Kim, and Jaejin Lee. Deepum: Tensor migration and prefetching in
unified memory. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2, pages 207–221, 2023.

[64] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li. Sentinel: Efficient
tensor migration and allocation on heterogeneous memory systems for deep learning. In 2021
IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages
598–611. IEEE, 2021.

[65] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

14

https://github.com/NVIDIA/TensorRT-LLM


A More Experimental Results

A.1 Training Dynamics
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Figure 7: Visualization on training dynamics.

As detailed in § 5.1, we iteratively tune the router and
experts for 8 rounds. We visualize the validation loss
during the first 4 rounds out of the total 8 rounds of
training. In Fig. 7, the router tuning stages are marked
in gray, while the expert tuning stages are marked in
orange. Two observations can be drawn from Fig-
ure 7: (1) The validation loss decreases during both
router tuning and expert tuning stages. (2) The val-
idation loss reduction from router tuning saturates
after two rounds, while the validation loss continues
to decrease during expert tuning.

A.2 MoE Achieves Better Efficiency-Accuracy Trade-off than Dense Models.

Prior compression-based works [42, 43, 44, 45, 46] focus on converting a large dense pre-trained
model into a smaller dense model. However, we argue that a smaller MoE model (i.e. the MoE model
with the smaller number of activation parameters) is a better target architecture. To ensure a fair
comparison, we (1) derive a small dense model with 4.7B parameters, matching the size of a single
expert network, using the same amount of data, and (2) fine-tune the obtained dense model for an
equivalent number of steps. As shown in Table 5, refactorizing the pre-trained model into an MoE
structure, rather than a smaller dense variant, leads to significant performance improvement. The
models are evaluated based on performance on the MMLU [16], and perplexity across seven data
domains included in RedPajama [35].

Table 5: We compare the Read-MEperformance with dense model, and report the MMLU performance and
perplexity on 7 data domains. By adopting an MoE as the target structure instead of dense model, our model
achieve significantly better overall performance.

Evaluation Arxiv Books C4 Common Crawl Github StackExchange Wikipedia MMLU

Dense 5.63 1.94 11.78 9.68 3.75 13.42 6.24 27.1%

Read-ME 4.18 1.31 10.57 7.72 2.39 12.52 3.94 38.9%

A.3 Read-ME Remains Effective without Prior Knowledge of the Training Domain

We additionally use the Mistral [65] model as the pre-trained dense model, and convert it to the MoE
structure, with the proposed method. The task is challenging because we do not have prior knowledge
on the Mistral original training data, and our experiment in Table 6 shows that our method remains
effective without the prior knowledge of the original training domain.

Table 6: Ablation study on Mistral [65] pre-trained model.

Method Pre-trained Fine-tune #Param MMLU Hell. Wino. ARC-E ARC-C LogiQA CoQA avg.Domain Domain

Read-ME-Llama-2 Red-pajama Red-pajama 4.7B-17B 38.9% 68.5% 67.7% 66.6% 42.3% 29.7% 74.8% 55.5%
Llama-2 Red-pajama - 6.9B 45.3% 78.6% 69.3% 76.4% 53.0% 31.0% 75.9% 61.4%

Read-ME-Mistral N/A Red-pajama 4.7B-17B 39.2% 79.1% 68.2% 77.1% 49.3% 30.9% 76.2% 60.0%
Mistral N/A - 6.9B 62.1% 84.5% 79.3% 82.7% 63.7% 33.5% 80.3% 69.4%

A.4 Computational Cost of Auto-regressive Router

For a detailed cost analysis of auto-regressive router that we introduced, we added: (1) FLOPs com-
parison, (2) latency, and (3) latency breakdown with a larger batch size (high-throughput scenarios) of
a Traditional Router (TR) and an Autoregressive Router (AR). To focus solely on the router’s impact
on latency, we controlled other variables (e.g., the number of activated parameters) to be the same.

Note that the computational cost of both the traditional router and the autoregressive router is
theoretically linear to batch size. Therefore, when the batch size is high (in high-throughput
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Table 7: Flops comparison between Traditional router and Auto-regressive router

Traditional Router Auto-regressive Router

Flops/sample 4.7 KFLOPs 3 KFLOPs

Table 8: Latency [ms] comparison between Traditional router and Auto-regressive router

bsz=5 bsz=5 bsz=10 bsz=10 bsz=20 bsz=20 bsz=30 bsz=30
TR AR TR AR TR AR TR AR

Router 1.76 0.61 1.80 0.61 1.78 0.61 1.93 0.61
Attention 18.13 18.18 18.28 18.13 18.49 18.36 19.59 19.66
Expert/MLP 22.43 21.75 24.59 22.53 24.97 22.99 30.17 28.31
Sum 42.31 40.55 44.67 41.27 45.23 41.96 51.69 48.59

Table 9: Latency breakdown comparison between Traditional router and Auto-regressive router
bsz=5 bsz=5 bsz=10 bsz=10 bsz=20 bsz=20 bsz=30 bsz=30
TR AR TR AR TR AR TR AR

Router 4.15% 1.50% 4.02% 1.48% 3.93% 1.46% 3.74% 1.26%
Attention 42.85% 44.85% 40.92% 43.92% 40.87% 43.75% 37.90% 40.47%
Expert/MLP 53.01% 53.65% 55.06% 54.59% 55.20% 54.80% 58.36% 58.27%
Sum 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

scenarios), the cost increases linearly. In both cases, the computation can be parallelized, so this
remains negligible in end-to-end latency even in high-throughput scenarios. In fact, we would like to
clarify that the bottleneck in high-throughput scenarios is actually the expert layers, as seen in Table 9
– Expert/MLP row. This issue can be addressed by the methods discussed in Section 4. Traditional
layerwise routers do not allow for efficient system design, which underscores the need for a careful
co-design of routers.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We explained the detailed claims in section 2-4 with proper observation figures
(Fig 2) and added supporting evaluations in Sec 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discussed the limitation of our method in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the detailed experimental information including model configura-
tions, hyper-parameters and inference system setup choices in Appendix Section B. Codes
will be publicly released.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use public datasets for both training and evaluation. Codes will be publicly
released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental settings and details from both training and evaluation
in Appendix Section B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in Figure 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include the type of compute resources we used for experiments in Appendix
Section B.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our method does not have negative societal impacts, as we use publicly
released data and model checkpoints. Our work is foundational research and is not tied to
specific applications.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Section 7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

21

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper/website/license of existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not Applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not Applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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