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Abstract

Representations and embeddings of graph data have been essential in many domains
of research. The principal benefit of learning such representations is that the pre-
trained model can be fine-tuned on smaller datasets where data or labels are scarce.
Existing models, however, are domain specific; for example a model trained on
molecular graphs is fine-tuned on other molecular graphs. This means that in
many application cases the choice of pre-trained model can be arbitrary, and novel
domains may lack an appropriate pre-trained model. This is of particular issue
where data is scarce, precluding traditional supervised methods.
In this work we use adversarial contrastive learning to present FOTOM, a model pre-
trained on many graph domains. We train the model only on topologies but include
node labels in evaluation. We evaluate the efficacy of its learnt representations on
various downstream tasks. Against baseline models pre-trained on single domains,
as well as un-trained models and non-transferred models, we show that performance
is equal or better using our single model. This includes when node labels are used
in evaluation, where performance is consistently superior to single-domain or
non-pre-trained models.

1 Introduction

Graphs, as a general form of relational data, are ubiquitous in almost all domains. Graphs themselves
are a challenging form of data to approach, as methods normally applied to continuous or categorical
data-types aren’t applicable, and the high dimensional nature of graphs makes sufficiently expressive
models difficult to develop. As such much work has been conducted on forming useful representations
of graphs which are more easily used by well explored methods. Khoshraftar et al. [18], Hamilton
et al. [12] and Chen et al. [4] provide surveys on graph representation learning in general. Cai et al.
[3] do the same for graph embedding (ie specifically vector representations). Besta et al. [1] provide a
survey on lossless graph compression and space-efficient representations. Alternatively, many works
are domain-specific, with for example Jiao et al. [15] reviewing graph representations intersection
with computer vision, Li et al. [21] doing the same for biomedicine and healthcare, and a more
specific example with Fasoulis et al. [9] providing a review of graph representation for proteomics.

Notably, to the best of our knowledge, there have been no models proposed that learn representations
for multiple domains of graphs. The current state-of-affairs is instead domain-specific. In this
work we present FOTOM (Foundational Topology Model), a single-model capable of representing
multiple domains of graphs simultaneously, trained through adversarial graph constrastive learning
[29]. FOTOM is a foundational graph model which can be fine-tuned on smaller datasets with
domain-specific node labels. FOTOM is available as a PyPI package1.

1https://pypi.org/project/fotom/

NeurIPS 2023 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2023).



Node labels are excluded during training to ensure that FOTOM learns generalised graph structures.
During evaluation we include node labels, and demonstrate that the multi-domain FOTOM model
out-performs both non-pretrained models and domain-specific models trained in the same manner.
Further, in an intriguing finding, we find that it out-performs the aforementioned models when node
labels are included under fine-tuning. This demonstrates that the updates and aggregations learnt by
FOTOM on generic topologies are easily transferred to tasks where node labels are essential features.

2 Related Work

Representation learning, in most cases, aims to compress data into a numeric vector z⃗. For non-tabular
data, for example images [30] and text [17], this allows more traditional statistical or ML methods to
be applied. This includes, as an example, semantic textual similarity on natural language data. On
images and text many approaches have been researched for forming useful representations. Earlier
approaches broadly consisted of supervised training on a given task, then using a hidden layer’s latent
space as representations. More recently the inherent order of such data, pixel-to-pixel or word-to-
word, allows fairly intuitive approaches such as “predict the missing chunk” tasks for representation
learning. Graph structures lack such inherent ordering, somewhat precluding missing-chunk style
pre-training tasks. As such unsupervised learning, with no downstream predictive task in the training
process, has become the de-facto area of reasearch.

Hamilton’s work provides a comprehensive summary of methods for Graph Representation Learning
(GRL) [11]. Traditional methods to encode graphs as vectors include graph statistics such as centrality
measures and clustering coefficients, but also kernel methods such as the Weisfeiler-Lehman (WL)
kernel [26]. Graph Neural Networks (GNNs) were introduced to address the limitations of traditional
methods to encode graphs by using the deep learning mechanisms to ‘self-learn’ important features
for a given graph. GNNs use a message-passing mechanism, much like how the WL-kernel operates.
GNNs are shown to be, at most, equally expressive. However they are differentiable, can handle
continuous node features, and are better suited for inductive tasks, making GNNs the current state-of-
the-art for learning to generalise to new or unseen graphs. The WL kernel is still relevant and is used
to test for isomorphism, by evaluating how many iterations of the WL-algorithm is used before two
graphs contain differing representations [11].

Unsupervised representation learning, as a pre-trained model, has been shown to be effective for
image data, but for graph data the results are less clear. Randomly initialised (untrained) GNNs,
which are used as graph-kernels, have been shown in some specific cases to be just as effective
as a pre-trained graph encoder [31]. Untrained neural networks have similarly been shown to be
effective encoders for many data structures, with careful encoder design essential to form more useful
representations.

2.1 Contrastive Learning

Contrastive learning aims to learn useful representations of input samples without the necessary
consideration of downstream tasks. We denote a set of real data X = {xi, xj , xk, . . .}. The most
common formulation, as proposed by Chen et al. [5], is fairly simple. For each input sample,
duplicate it and apply different augmentations to both, X̃ = {x′

i, x
′′
i , . . .}, keeping track of this

‘positive pair’ both derived from the same input sample. In the broadest formulations a pair of samples
{x′

i, x
′
j} where i ̸= j is a ‘negative pair’. The encoder produces an embedding for each, denoted

H̃ = Ĥ(X̃) = {h′
i, h

′′
i , . . .}, then then cosine similarity between them is Li = (h′

i · h′′
i )/(|h′

i| · |h′′
i |).

This is, in its simplest form, the loss function being optimised. Chen et al. [5] achieve SOTA
performance with minimal training data using representations from images with this approach after
fine-tuning.

2.1.1 Graph Contrastive Learning

Multiple studies exist for graph contrastive learning [6, 10, 13, 14, 20, 35, 37]. These only consider
applying transfer learning for downstream tasks on the same domain of data, for example pre-training
and transfer only on molecular graphs. To the best of the authors’ knowledge, there have not been
any previous studies exploring pre-trained multi-domain graph embeddings. Previous authors have
argued, but not shown, that an ImageNet equivalent for graphs is not feasible [27].
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Graph contrastive learning (GCL) takes the following stages: encoder-function selection, augmenta-
tion strategy, negative-sample selection, and contrastive learning loss [37, 35, 34]. Comparisons of
different GNN architectures as encoders find that the Graph Isomorphism Network (GIN) consistently
produces the most useful representations [14, 37]. It has been shown that the quality of augmentations
is critical for GCL, and simple Bernoulli-based augmentations do not produce the most effective
representations [37, 35]. Many works have addressed improving Bernoulli-based augmentations
by considering graph properties [36, 28, 38, 29]. Zhang et al. [36] and Subramonian [28] consider
important motifs for chemical-data graphs and find that dropping non-essential edges improves
representation learning.

Many of these works find that having fixed-parameter augmentations, for example a set random
probability of dropping each edge, leads to highly volatile performance as said parameter varies. As
an example, taking a molecule, dropping a single edge can fundamentally alter chemical properties.
This leads to a very narrow band of edge-dropping probabilities that yield good results. Too high
a probability and the resulting augmented molecule can be altered to be drastically different to the
source molecule, and too low and the augmentations are effectively impotent. On our multi-domain
task this is even more of an issue, as graphs should cover greatly varied sizes and densities, so a
single fixed parameter is highly unlikely to suffice.

2.1.2 Adversarial Graph Contrastive Learning

An intuitive and potentially more flexible idea we use here is that of learnt augmentations, specifically
as proposed by Suresh et al. [29]. Their ADversarial-Graph Contrastive Learning (AD-GCL) method
trains both an encoder and a ‘view-learner’, the latter of which learns to drop edges selectively, aiming
to reduce mutual information between the augmented graph and its original source graph.

AD-GCL comprises of two models: an encoder fΘ and a view-learner TΦ(G) where Θ,Φ represent
learnt parameters. The first term of their objective function minimizes the mutual information
between the encoding of the true graph and its augmentation from the view learner. The second term
λreg regularises the view learner, penalising linearly with the proportion of edges dropped during
augmentation. This encourages meaningful augmentations through the trade-off between mutual
information and the proportion of dropped edges. The ability to learn augmentations (“views”)
specific to each domain simultaneously is vital for FOTOM.

3 Method

This work focuses only on labelled graph topologies, meaning a graph set is composed of a
node-set V : {v1, v2, ...} and the (un-weighted, un-directed) edges between those nodes E :
{(vi, vj), (vi, vk), ...}. As an effort to aid downstream transfer learning, we include the same “dummy”
node label on all nodes. Using the integer 1 here is essentially identical to passing no node labels.
These dummy labels can then be replaced with accurate node labels (eg. atom types) during fine-
tuning. As such the model we aim to produce should learn from generic and hopefully complex
graph topological structures. Such structures represent a significant portion of the information that
any GNN model must learn to represent, regardless of domain.

As such fine tuning FOTOM, instead of using a bespoke model for each domain, should alleviate
computational costs and potentially bolster performance in domains where data is scarce. During
early experimentation we included node labels from each dataset in the training data, but found that
as said numeric labels represent different information in each dataset, the model simply learnt from
node label distributions instead of graph characteristics.

3.1 Dataset

The aim of this work is to produce a model that has learnt useful representations of graphs in general,
not on a specific domain. We achieve this by constructing a dataset that as broadly as feasible covers
real-world graphs, although here we consider only topologies (ie. no node, graph or edge features,
including labels). Features beyond node labels are left as an area for future research. Constructing a
dataset of real-world graphs is itself a reasonable narrowing of scope, but as the possible space of
graphs at each number of nodes is so massive, constraining ourselves to a large and highly varied set
of graphs is a reasonable step. Such a dataset should contain graphs that present a large diversity of
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Table 1: Statistics for each of our datasets. If used for training, we denote these statistics averaged
across the training data. Otherwise we report statistics for their validation datasets.

Num. Graphs Num. Nodes Num. Edges Diameter Avg. Clustering
Training Only
molpcba 250000 25.7 ± 6.28 27.7 ± 7 13.5 ± 3.29 0.00128 ± 0.0115

Training/Evaluation
Twitch 50000 29.6 ± 11.1 86.6 ± 70.7 2± 0 0.549 ± 0.149
Facebook 50000 59.5 ± 20.7 206 ± 170 10.2 ± 6.39 0.429 ± 0.133
Cora 50000 59.3 ± 20.7 119± 56.6 10.1 ± 4.68 0.322 ± 0.0845
Roads 50000 59.5 ± 20.8 73.9 ± 28.2 16.4 ± 5.92 0.0559 ± 0.0426
Fly Brain 50000 59.5 ± 20.8 146± 99.6 8.8 ± 3.49 0.237 ± 0.0875

Evaluation Only
molesol 113 17.7 ± 6.4 19.4 ± 7.24 8.24 ± 3.1 0.00136 ± 0.0101
molclintox 148 32.7 ± 18.7 35.6 ± 19.6 14.3 ± 6.81 0.00522 ± 0.0187
molfreesolv 64 12± 4.45 12.7 ± 5.15 5.98 ± 2.01 0± 0
mollipo 420 27.3 ± 8.48 30± 9.24 13.9 ± 4.16 0.00469 ± 0.021
Trees 5000 19.6 ± 6.96 18.6 ± 6.96 10.1 ± 3.11 0± 0
Random 5000 29.3 ± 10.7 111± 82.1 3.88 ± 1.16 0.227 ± 0.0998
Community 5000 48± 0 323± 26.2 3± 0.0346 0.408 ± 0.0256

multi-node patterns. Our approach is simple: include graphs from many domains, and assume that
there is adequate coverage of the multi-node patterns that occur in real-world graphs. This assumption
is evaluated through unseen-domain downstream tasks. The same approach has essentially been taken
in the domains of text [2] and images [23], where enormous numbers of data samples are scraped
from the web for generative pre-training, with the implicit assumptions that a) this dataset adequately
covers the relevant space, and b) a single model can learn such a broad space.

The datasets we use are described in aggregate measurements in Table 1. molpcba [14] A dataset of
437,929 small molecules selected from MoleculeNet [33]. molesol, molclintox, molfreesolv, mollipo
[14] Smaller datasets sampled from MoleculeNet, with single-target classification or regression
downstream tasks. Facebook [24] A single graph of page-page connections on Facebook. Originally
22,470 nodes and 171,002 edges. Downstream task set to be predicting average clustering. Twitch
[25] Ego networks from the streaming platform Twitch. Ego networks have one central “hub” node,
which shares an edge with all other nodes. This dataset has a downstream binary classification
task. Cora [22] A much used citation graph. 2,810 nodes and 7,981 edges. Downstream task
set to be predicting the number of 4-cycles in the graph normalised by graph size. Roads [19]
The road network of Pennsylvania. Junctions are nodes, of which there are 1,088,092, with edges
roads between them, of which there are 1,541,898. Downstream task set to be predicting graph
diameter normalised by graph size. Fly Brain [32] The full neural connectome of a fruit fly larvae.
Each node is a neuron, of which there are 3,016. Each edge is a synapse between neurons, but as
the multi-graph is dense at originally 548,000 edges, we only include an edge between neurons
if there are more than two synapses between neurons. Downstream task set to be predicting the
number of 5-cycles in the graph normalised by graph size. Trees Trees, of a randomly sampled
maximum depth, and a randomly fixed probability of branching at each level. Downstream tasks
is predicting depth. Random Random Erdos-Renyi (ER) graphs [8], with a number of nodes and
edge probability randomly sampled. These could represent noise during training, but predicting
edge probabilities from embeddings represents a useful bare-minimum downstream task during
validation and testing. Community Small ER subgraphs, with a set intra-subgraph edge probability,
and a random inter-subgraph connection probability. Like our Random dataset, this is employed for
downstream validation with the inter-subgraph connectivity as target.

As the Facebook, Cora, Roads and Fly Brain datasets consist of a single graph, we employ Exploration
Sampling With Replacement [7] to construct datasets of many smaller graphs. We use a randomly
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Figure 1: A UMAP embedding of encodings from each model, as well as an untrained model. The
untrained and Chem models are noticeably more fragmented than the Social and All models. In turn
the Social model is more fragmented than the All model. In the All model embedding, molecules are
all in the same region, furthest from the Twitch Ego networks, with the Cora and Facebook Page-Page
data “filling the gap”.

selected exploration sampler2 for each sample, which in turn samples a random number of nodes in
the range 24 ≤ |V | ≤ 96 from the source graph. The use of a selection of exploration samplers should
further ensure that a large variety of graphs and topological features are included in the datasets.

Taking downstream task on each validation set where available, we simply sum their relevant scores
(MSE and 1− AUROC) as a crude monitor for the model’s representational abilities. Taking 50,000
samples for each training set and 5,000 for the validation sets, we conduct a limited Bayesian
hyperparameter sweep. The heuristic used is a simple summing of evaluation scores on each dataset
weighted by the number of samples in that dataset. Taking these hyper-parameters we fit an AD-GCL
model on the large dataset (‘All’, i.e. all domains), a second only on molecules (‘Chem’), and a third
only on non-molecular graphs (‘Social’). We train each model for 100 epochs with a batch size of
512. We present a UMAP embedding of encodings of the validation datasets for an untrained model,
and the trained models, in Figure 1. Figure 6 shows the same for PCA projections in the Appendix.

On the combined encodings of the validation sets we compute R2 correlation coefficients between
the first five principal components (PCA) and common graph-level metrics. High correlations, or the

2Metropolis Hasting Random Walk, Diffusion and Forest Fire samplers, from https:
//little-ball-of-fur.readthedocs.io/en/latest/
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lack thereof, should give some indication of how embedding components represent different graph
characteristics. The metrics we use are as follows: Num. Nodes the number of nodes in a graph,
Num. Edges the number of edges in a graph, Density the proportion of possible edges that exist,
Diameter the diameter across the largest connected component of the graph, Avg. Degree average
edges per node, Avg. Clust. the average proportion of triangles for a node that are complete. The
results are presented, along with each component’s explained variance, in Table 2, and visualised in
the Supplemental material in Figure 3. The explained variance ratio is the proportion of the original
data’s total variance expressed by the PCA component.

4 Experiments

Table 2: PCA components, fit on the embeddings of the test set, and their most correlated graph-level
metric, for each of the trained models. Underlined text indicates a strong correlation |R2| ≥ 0.66,
and bold text indicates moderate correlation 0.33 ≤ |R2| ≤ 0.66. We show up to the first five PCA
components, but include only three where explained variance values are minimal.

Variance
Ratio

Metric Correlations

Most R2 Second R2 Third R2

Untrained

PCA 0 9.96× 10−01 Num. Edges 0.219 Trans. 0.072 Density 0.063
PCA 1 3.52× 10−03 Num. Edges −0.555 Trans. −0.276 Density −0.243
PCA 2 1.13× 10−04 Num. Edges 0.390 Trans. 0.224 Density 0.210

Chem

PCA 0 9.97× 10−01 Num. Edges 0.223 Trans. 0.074 Density 0.065
PCA 1 2.60× 10−03 Num. Edges −0.514 Trans. −0.253 Density −0.225
PCA 2 1.14× 10−05 Num. Edges 0.132 Num. Nodes 0.051 Trans. 0.047

Social

PCA 0 9.99× 10−01 Num. Edges 0.127 Trans. 0.032 Density 0.032
PCA 1 9.92× 10−04 Num. Nodes 1.00 Num. Edges 0.528 Density −0.393
PCA 2 4.79× 10−08 Num. Edges 0.133 Density 0.070 Trans. 0.054

All

PCA 0 7.04× 10−01 Num. Nodes 0.999 Num. Edges 0.534 Density −0.388
PCA 1 1.94× 10−01 Num. Edges 0.805 Density 0.737 Diameter −0.554
PCA 2 4.23× 10−02 Avg. Clust. 0.309 Trans. 0.248 Num. Edges 0.235
PCA 3 2.43× 10−02 Diameter 0.500 Avg. Clust. −0.416 Transitivity −0.243
PCA 4 1.82× 10−02 Density −0.132 Trans. −0.108 Diameter −0.088

4.1 Transfer

Of course the most valid measurement of FOTOM will be how well it transfers to downstream tasks.
Graph level tasks, including during validation during training, can be conducted using the embeddings
z that during training are passed to the projection head g.

As previously mentioned during pre-training we replace all node labels with a dummy value (specif-
ically 1). In our evaluation of transfer learning, for each model and transfer process, we present
results for both with and without node labels in the fine-tuning data. We include a simple diagram
in Figure 5. This should indicate whether the transformations learnt by the encoder can be quickly
re-tooled for applications where node labels contain essential data. The assumption here would be
that FOTOM has learnt graph structures in-general, and that under transfer the further complexity of
node labels within this structure can be learnt more quickly.

4.1.1 Linear Transfer

The most simple transfer application is to take the set of encodings Z : {z1, z2, ...} and fit linear
models for the downstream tasks. For model fitting we take 95% splits of the validation dataset in
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Table 3: Scores for linear models applied to the encodings of each validation dataset, with and
without node labels. For the classification datasets (ogbg-molclintox and Twitch Egos) we report
AUROC, other datasets report RMSE. Some datasets, where results are very similar for each model,
are excluded. Bold text indicates a superior result. For clarity the results for a given dataset are scaled
by a constant factor.

Untrained Chem Social All Magnitude

molfreesolv 4.21 ± 4.13 3130 ± 5990 2.00 ± 0.869 1.01 ± 1.02 103

molesol 48.3 ± 90.2 817 ± 1150 48.1 ± 62.9 28.1 ± 38.1 100

mollipo 29.4 ± 17.9 14.9 ± 2.0 4.45 ± 0.62 5.33 ± 0.56 100

molclintox 0.487 ± 0.005 0.440 ± 0.007 0.500 ± 0.000 0.500 ± 0.000 100

Facebook 10.6 ± 1.7 10.7 ± 20 7.73 ± 1.87 4.44 ± 5 10−3

Twitch Egos 0.638 ± 0.012 0.610 ± 0.072 0.679 ± 0.002 0.694 ± 0.002 100

Roads 263 ± 0.5 256 ± 0.0 298 ± 0.3 2.85 ± 5 10−5

Trees 7.66 ± 0.16 2.85 ± 0.0 2.98 ± 0.03 2.56 ± 0.05 10−3

Community 4.36 ± 0.05 4.25 ± 0.00 12.0 ± 2 4.46 ± 0.07 10−5

Random 6.46 ± 0.7 3.27 ± 0.0 1.20 ± 0.2 3.38 ± 0.0 10−4

Untrained-Labels Chem-Labels Social-Labels All-Labels

molfreesolv 480 ± 172 (1.13± 0.64)× 106 90900 ± 83300 11000 ± 5600 100

molesol 29.4 ± 7.8 18.5 ± 7.3 531 ± 292 34.1 ± 33.0 100

mollipo 7.33 ± 1.37 7.25 ± 1.01 4.02 ± 0.92 5.01 ± 0.53 100

molclintox 0.511 ± 0.022 0.497 ± 0.001 0.428 ± 0.001 0.526 ± 0.060 100

Facebook 14.6 ± 11.1 10.8 ± 1.1 7.82 ± 1.9 4.43 ± 6 10−3

question, fit the linear model on the encodings produced by that subset, then evaluate on the whole
corresponding test-set. This allows us to produce error bounds. The results are shown in Table 3.

Here we see that on the majority of datasets the model trained on the whole dataset (“All”) out-
performs the others. The most significant out-performance is on the Roads dataset, where the All
model performs orders of magnitude better than the other models. Interestingly the untrained GIN
(Graph Isomorphism Network) significantly out-performs the other models on the molfreesolv dataset,
but only when node labels (here atom types) are included.

4.1.2 Full Transfer

A more complex transfer process, and in practise more likely than simply using linear models, is
fine-tuning on downstream tasks and datasets. To this end we replace the projection head with a
simple two-layer MLP, with a single output node. We then perform 10 fine-tuning runs on each
validation dataset, with and without node labels, for each pre-trained model. The results of this
transfer and fine-tuning are presented in Table 4, along with the corresponding results for the same
GIN architecture without pre-training.

The All model consistently out-performs the other models here on the majority of datasets. Most
significantly it does so on datasets that were shown under linear transfer (Section 4.1.1) to require
specific node-label representation, such as the mol* molecular datasets. This could indicate that the
representations learnt on generic, un-labelled topologies can usefully and quickly be transferred to
label-specific representations.

The standard deviation of the results on each dataset are far lower than those for the non-pretrained
model and the domain-specific pre-trained models. In Figures-(7a, 7b) we show validation loss on
the Facebook and Twitch datasets during fine-tuning for the All model and an un-pre-trained GIN
with the same architecture. Here the advantages of pre-training are clear: the pre-trained model has
consistently lower validation loss, seems to plateau later and at a lower loss, and has a far lower
deviation in that loss than the un-pre-trained GIN.
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Table 4: Scores for fine-tuning the complete model on each validation dataset, with (Model-labels)
and without (Model) node labels. For the classification datasets (ogbg-molclintox and Twitch Egos)
we report AUROC, other datasets report RMSE. Some datasets, where results are very similar for
each model, are excluded. Bold text indicates a superior result, including if error bounds overlap with
another model.

GIN Chem Social All
molfreesolv 4.78 ± 0.711 5.12 ± 0.591 4.08 ± 0.042 4.22 ± 0.022
molesol 1.96 ± 0.156 1.76 ± 0.123 1.86 ± 0.08 1.46 ± 0.062
mollipo 1.62 ± 0.322 1.58 ± 0.081 1.10 ± 0.008 1.13 ± 0.012
molclintox 0.527 ± 0.024 0.497 ± 0.002 0.433 ± 0.010 0.468 ± 0.051

Facebook 0.311 ± 0.065 1.17 ± 0.165 0.133 ± 0.003 0.134 ± 0.002
Twitch Egos 0.72 ± 0.006 0.689 ± 0.021 0.736 ± 0.005 0.79 ± 0.006
Roads 0.46 ± 0.073 0.571 ± 0.065 0.104 ± 0.001 0.103 ± 0.000
Trees 0.203 ± 0.012 0.242 ± 0.025 0.115 ± 0.000 0.117 ± 0.001
Community 0.743 ± 0.106 0.715 ± 0.130 0.016 ± 0.001 0.017 ± 0.000
Random 0.529 ± 0.228 0.589 ± 0.089 0.044 ± 0.000 0.044 ± 0.000

GIN-Labels Chem-Labels Social-Labels All-Labels

molfreesolv 3.71 ± 0.630 5.14 ± 0.568 4.00 ± 0.203 4.14 ± 0.155
molesol 1.62 ± 0.191 1.80 ± 0.085 1.63 ± 0.146 1.27 ± 0.107
mollipo 1.72 ± 0.311 1.59 ± 0.084 1.10 ± 0.016 1.11 ± 0.011
molclintox 0.511 ± 0.022 0.497 ± 0.001 0.428 ± 0.001 0.526 ± 0.060
Facebook 0.749 ± 0.250 1.19 ± 0.250 0.140 ± 0.008 0.134 ± 0.001

5 Discussion

Here we discuss first the efficacy of the FOTOM model presented here as a representation learner
without focusing on any downstream tasks. We then present and discuss the performance of, and
reasonable use cases for, the pre-trained FOTOM model. Finally we detail explicitly any significant
assumptions we have made and the potential risks to the validity of this work.

5.1 Dimensionality Collapse

(a) All Data (b) molpcba (c) Facebook

Figure 2: Logged singular values of the representation covariance space of pretrained models (as
from Jing et al. [16] on all data, molpcba, and unseen Facebook data.

We make a task-agnostic evaluation of the learnt representation by analysing the dimensionality
collapse as in [16]. As shown in Figure 7, FOTOM has far fewer collapsed dimensions in comparison
to single-domain pre-training and untrained encoders. This is shown across all data in Figure 2a,
molecular data as in Figure 2b, and for social network data as in Figure 2c. This finding highlights that
features learnt by FOTOM have greater dimensional coverage than pre-training on single domains;
to the best of our knowledge, this is the first record of an analysis in measuring the coverage for
multi-domain pre-trained graph representation. It is possible that the increase in coverage has a
relationship to the increase in performance as in Table 4, but this is a direction for future work.
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5.2 Performance & Use-Cases

We have shown that pre-training on multiple domains of topologies offers significant performance
improvements on downstream tasks under fine-tuning. In particular our results show that exposure to
a larger variety of graph structures actually benefits performance. In Table 4, assuming that the Chem
model has the least varied training data, then the Social model, then finally the All model, we can see
that performance increases along the same order.

This is significant, as the most intuitive assumption would be that exposing a molecular representation
learner to non-molecular graphs, which have possess very different multi-node patterns, would hinder
its performance. In other words we’d normally expect that this out-of-domain data would act as noise.
Instead the Social and All models out-perform the Chem model on every molecular dataset under
fine-tuning. The next natural assumption would be that by omitting node labels during training the
representations for molecules would lack essential information, hence the performance discrepancy
we see on these un-labelled validation sets. However this line of reasoning would conclude that
including node labels during fine-tuning (or supervised training of a non-pretrained model) would
likely lead to these domain-specific models out-performing all-domain models. Our results instead
show that performance is both superior and more consistent from our all-domain model on labelled
molecular graphs, with performance increasing compared to the same model on non-labelled graphs.

As such the reasonable use-cases for this pre-trained model are broad. This potential benefit is
two-fold. Firstly, pre-training and fine-tuning carries the normal decrease in expected training time.
Secondly, as shown by our results in this work, our pre-trained models offer actual performance
increase over simple supervised training. Our assumption is that the broad range of generic topological
features learnt by the FOTOM model provide a more robust foundation for training than simple
random initialisation, and hence the pre-trained models avoid overfitting to non-useful features better
than randomly initialised models. Guarantees and proofs on this point are left as an area for future
research.

5.3 Assumptions, Risks, Future Directions

The most significant assumption we made - that a model can learn representations that are useful on
multiple domains of downstream tasks - has been justified by our results above. However, in the full
scope of downstream tasks for graph data, this first exploratory work is still fairly limited. Firstly we
do not experiment with different graph augmentations (or “views”), instead employing only edge
dropping. Secondly our experiments are limited to a few set compositions of domains, in training a
50/50 split between molecular and non-molecular graphs for the full FOTOM model. The non-task-
specific evaluation of representation models is a challenging and open research problem. The same
challenge is compounded on the large and high-dimensional graph space, which in comparison to
other data structures both lacks intuitive human understanding and has a far smaller body of existing
research.

We anticipate that a variety of augmentations, paired with a more detailed study of how different
compositions of domain data influence representations, could bolster the expressivity of these
topology-pre-trained models. Lastly and most significantly the work here is limited to labelled and
un-labelled graphs, whereas most domains carry far more detailed features on nodes and edges. We
view this as the most critical area for future research.

6 Conclusion

We have presented a graph representation model FOTOM trained through adversarial contrastive
learning on a large, multi-domain dataset of unlabelled graphs. Under fine-tuning on diverse set of
downstream tasks we demonstrate that this model trains faster, reaches better performance, and has
more consistent performance than either non-pre-trained models or models pre-trained on domain
specific datasets. This includes transfer where node labels are included in the fine-tuning data, which
in itself is an important result worthy of further research. We envision that this model has broad
use-cases as a foundational model, and that future works can both improve efficacy and extend our
work to include node and edge features beyond labels.
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A Supplemental Material
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Figure 3: PCA components of the encodings of each model across the whole validation dataset,
scattered against the most correlated metrics, as in Table 2.
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Figure 4: Our evaluation process. V represents nodes, E edges, X node labels (where available and
if included) and y graph target values.

Figure 5: Our evaluation process for transfer learning. V represents nodes, E edges, X node labels
(where available and if included) and y graph target values.
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Figure 6: PCA projections of encodings from each model, as well as an untrained model. We scale
axes by percentiles - of - data - included as for all except the All model the projections have outliers
in the region 107.

(a) Facebook (b) Twitch Egos

Figure 7: Validation scores for fine-tuning on the Facebook and Twitch datasets. On the Facebook
dataset the task is average clustering prediction, and Twitch dataset carries its binary classification
task. We include the average scores and the best scores over the ten training runs on each dataset.
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Figure 8: Graphs from the community dataset
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Figure 9: Graphs from the CORA dataset [22]

17



Figure 10: Graphs from the Facebook dataset [24]
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Figure 11: Graphs from the ogbg-molclintox dataset [14]
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Figure 12: Graphs from the ogbg-molesol dataset [14]
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Figure 13: Graphs from the ogbg-molpcba dataset [14]
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Figure 14: Graphs from the random dataset
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Figure 15: Graphs from the roads dataset [19]
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Figure 16: Graphs from the twitch egos dataset [25]
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Figure 17: Graphs from the fruit fly brain dataset [32]
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Figure 18: Graphs from the molfreesolv dataset [14]
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Figure 19: Graphs from the trees dataset
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Figure 20: Graphs from the mollipo dataset [14]
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