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ABSTRACT

Dynamic benchmarks interweave model fitting and data collection in an attempt to
mitigate the limitations of static benchmarks. In contrast to an extensive theoreti-
cal and empirical study of the static setting, the dynamic counterpart lags behind
due to limited empirical studies and no apparent theoretical foundation to date.
Responding to this deficit, we initiate a theoretical study of dynamic benchmark-
ing. We examine two realizations, one capturing current practice and the other
modeling more complex settings. In the first model, where data collection and
model fitting alternate sequentially, we prove that model performance improves
initially but can stall after only three rounds. Label noise arising from, for in-
stance, annotator disagreement leads to even stronger negative results. Our second
model generalizes the first to the case where data collection and model fitting have
a hierarchical dependency structure. We show that this design guarantees strictly
more progress than the first, albeit at a significant increase in complexity. We sup-
port our theoretical analysis by simulating dynamic benchmarks on two popular
datasets. These results illuminate the benefits and practical limitations of dynamic
benchmarking, providing both a theoretical foundation and a causal explanation
for observed bottlenecks in empirical work.

1 INTRODUCTION

In response to concerns around the limitations of static datasets as benchmarks, researchers have
proposed dynamic benchmarking—a setting where data collection and model building happen iter-
atively in tandem—as an alternative (Nie et al., 2020; Potts et al., 2021; Kiela et al., 2021; Ma et al.,
2021; Gehrmann et al., 2021). In dynamic benchmarking, model builders fit models against the
current dataset, while annotators contribute new data points selected to challenge previously built
models. In doing so, the hope is that the iterative process results in a more diverse set of test cases
that can help induce better model performance.

Though proponents argue “dynamic adversarial data collection, where annotators craft examples that
challenge continually improving models, holds promise as an approach for generating such diverse
training sets,” there is also a recognition that “the long-term benefits or drawbacks of adopting it as
a core dataset creation paradigm remain poorly understood.” (Wallace et al., 2022) A major concern
is that adversarial data collection proliferates idiosyncratic examples that do well in fooling models
but eliminate coverage of necessary yet easier test cases. This can, in turn, reduce dataset diversity
and limit external validity (Bowman & Dahl, 2021).

A growing line of theoretical and empirical research on static benchmarks has improved our under-
standing of the strengths and limitations of this setting. In contrast, similar research on dynamic
benchmarks has been limited. The high complexity and cost of studying live benchmarks impede
experimental work. A stronger theoretical foundation for dynamic benchmarks could help guide em-
pirical explorations of the vast design space, avoiding costly trial-and-error experiments. However
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there has been no apparent theory of dynamic benchmarking that could offer provable guarantees
about their performance and clarify how issues such as label noise interact with this setting.

1.1 OUR CONTRIBUTIONS

In this work, we initiate a theoretical study of dynamic benchmarks. We contribute a versatile
formal model of dynamic benchmarks that serve as the basis for our investigation. We start with a
fundamental question:

Question 1: Can we design dynamic benchmarks in such a way that models continue to improve as
the number of rounds of data collection grows?

We start from a theoretical model capturing existing implementations of dynamic benchmarking.
This model proceeds in multiple rounds interweaving data collection and model building sequen-
tially. In round t, model builders face a distribution Dt and are tasked with finding a classifier ht

that performs well on Dt. We assume that model fitting succeeds in minimizing risk up to a positive
classification error ϵ > 0. We further assume that annotators succeed in identifying the failure cases
of the current model ht, giving us access to the uniform distribution Dt over the error cases of the
model ht. We determine the new distribution Dt+1 by mixing Dt and Dt in some proportion.

We assume a starting distributionD0 on the instances of interest. We can think ofD0 as the distribu-
tion corresponding to standard data collection. Mirroring the motivation for dynamic benchmarking,
this distribution might assign little to no weight to important families of instances. In particular, an
error set of measure ϵ, which we assume we can achieve from the get-go, might contain many rel-
evant instances. The goal is therefore to converge to well below the ϵ-error level guaranteed by the
above assumption. We assume the distribution admits a perfect classifier so that process could, in
principle, converge to 0 error.

In this setting, we show that three rounds are guaranteed to converge to O(ϵ2) error. Unfortunately,
this is where it ends. In general, there is no reason to expect this dynamic benchmark to progress
below Ω(ϵ2) error. Put differently, there is no provable benefit to dynamic data collection beyond
three rounds. The cause of our negative result is a form of catastrophic forgetting that mirrors the
concerns quoted earlier. As the benchmark moves beyond three rounds, there is provably no way to
retain knowledge of instances correctly classified at earlier stages.

Furthermore, we show through experiments that this lower bound may also be encountered in prac-
tice, preventing dynamic benchmarks from progressing beyond a small number of rounds. In doing
so, we propose a concrete way to simulate the performance of a dynamic benchmark that may be of
independent interest in the empirical study of dynamic benchmarks.

There is yet another impediment to successful dynamic benchmarking: Above we considered the
case where the underlying learning problem is realizable, meaning that there exists a model that
achieves 0 error on the distribution. In practice, unrealizable settings where we have label noise
are commonplace. Unrealizability can result from, for instance, annotator disagreement where there
is an emerging line of work aiming to understand their impact on data diversity, label noise, and
model performance. We show that in this unrealizable setting, dynamic benchmarks concentrate on
mislabeled instances, losing their representativeness of the underlying distribution.

Though pessimistic, the above negative results may be inherent to the simple sequential design of
dynamic benchmarks currently used in practice. To further probe this issue, we ask:

Question 2: Are there more sophisticated dynamic benchmark designs that can guarantee
convergence below the error barrier of the standard setting?

We answer this question in the affirmative by considering a hierarchical model, which recursively
uses the above sequential setting as a building block. In this setting, the organizer of a benchmark
creates multiple instances of dynamic data collection and combines the outcomes in a particular way,
e.g., by ensembling the resulting models and feeding the output into a new instance. We study the
setting where the hierarchy has depth two and show that this setting guarantees convergence to error
O(ϵ3), providing a strict separation with the standard model. Despite the improved performance,
this depth-two setting significantly complicates the benchmarking process, and executing a design
with further depth may be prohibitive in practice.
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In search of alternative designs that can consistently improve the model’s performance, we study a
complementary design to dynamic benchmarks in Section A of Appendix. Instead of accumulating
adversarial examples in a dynamic benchmark, here the model-in-the-loop carries the information
by directly using new examples and becoming more complex throughout the process. We also make
a natural connection to boosting methods. Despite achieving zero risk theoretically, this alternative
has limited applicability due to either slow convergence or computational infeasibility.

In sum, our results indicate that current bottlenecks observed in empirical settings under the sequen-
tial model are inherent to the set-up. This can alert practitioners to the limitations of current practice
before many rounds of data are collected. Further, more complex designs such as the hierarchical
setting can result in improved performance but may suffer from the organizational complexity of
data collection. Combined, these results highlight stark tradeoffs in switching from static to dy-
namic settings and suggest that exploration of the design space for modeling dynamic benchmarks
can play an important role.

1.2 RELATED WORKS

For an introduction to datasets as benchmarks, see Chapter 8 in Hardt & Recht (2022). Concerns
around static benchmarks are summarized in recent works, including adaptivity (Dwork et al., 2015),
violation of sample independence in sequentially generated data (Shirali, 2022), and issues of anno-
tator disagreement (Pavlick & Kwiatkowski, 2019; Prabhakaran et al., 2021; Davani et al., 2022).

Numerous new benchmarks and benchmarking systems have recently been proposed that integrate
some aspects of dynamic data collection. Adversarial data collection continually adds challenging
examples found by annotators for an existing model (Dinan et al., 2019; Nie et al., 2020; Kiela et al.,
2021; Potts et al., 2021; Wallace et al., 2022). Empirical studies show this does not necessarily lead
to better performance or robustness (Kaushik et al., 2021; Wallace et al., 2022). A dynamic leader-
board periodically renews the test set (Zellers et al., 2021). In response to the fast growth of dynamic
benchmarking, various tools and platforms are also developed. For example, platforms for adversar-
ial data collection (Kiela et al., 2021), assistance of annotators to find challenging examples (Bartolo
et al., 2021), personalized benchmarking (Narayan et al., 2021), and automatic crowdsourcing of
leaderboard submissions (Khashabi et al., 2021). Adversarial filtering, which filters out examples
from a static dataset that are identified to be easy for a given model, is another related technique (Pa-
perno et al., 2016; Zellers et al., 2018; Le Bras et al., 2020). Such datasets are susceptible to being
biased (Phang et al., 2022) or saturate faster than static datasets (Taori et al., 2020). Le Bras et al.
(2020) include theoretical considerations on eliminating bias. The flurry of newly minted bench-
marks stands in stark contrast with the scarcity of theory on the topic. Our work was inspired by the
thought-provoking discussion of dynamic benchmarks by Bowman & Dahl (2021).

2 PROBLEM FORMULATION

Our primary goal in this work is to understand the population-level dynamics that a benchmark de-
sign induces. We are centrally interested in capturing what the iterative process of model building
and data collection converges to. Consequently, we ignore finite sample issues in our formulation
and focus on distributions rather than samples. We assume that model builders successfully mini-
mize risk approximately. While risk minimization may be computationally hard in the worst case,
this assumption reflects the empirical reality that machine learning practitioners seem to be able to
make consistent progress on fixed benchmarks. While we focus on population-level dynamics in the
design of benchmarks, we restrict ourselves to operations with standard finite sample counterparts.

A dynamic benchmark design can be represented as a directed acyclic graph where the nodes and
edges correspond to classifiers, distributions, and the operations defined below:

1. Model building: Given a distribution, find an approximate risk minimizer.

2. Data collection: Given a model, find a new distribution.

3. Model combination: Combine a set of models into a single model.

4. Data combination: Combine a set of distributions into a single distribution.
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Figure 1: Example of a path dynamic benchmark. Symbol A represents risk minimization, H
represents human data collection, and ⊕ shows distribution mixing.

We describe these operations in turn. First, we explain model building by defining the notion of risk
and risk minimization. The risk of a classifier h : X → Y on a distribution P supported on the data
universe X × Y with respect to the zero-one loss is defined as

RP(h) = E(x,y)∼P

[
1
{
h(x) ̸= y

}]
.

An ϵ-approximate risk minimizer A is an algorithm that takes a distribution P as input and returns a
classifier h : X → Y such that

RP(h) ≤ min
h∈H

RP(h) + ϵ ,

where H is a family of classifiers. In the benchmark setting, risk minimization is a collective effort
of numerous participants. The algorithm A represents these collective model-building efforts.

We abstract data collection as an operation that takes a classifier h and, for an underlying distribu-
tion D, returns a new distribution D. In the context of adversarial data collection, we assume that
annotators can find the conditional distribution over instances on which h errsD = D|h(x) ̸=y . This is
an idealized representation of data collection, that ignores numerous real-world issues. Nonetheless,
this idealized assumption will make our negative results even stronger.

Model combination happens via a weighted majority vote among multiple classifiers. Distribution
combination takes a mixture of multiple given distributions according to some proportions.

The final piece in our problem formulation is the ultimate success criterion for a benchmark design.
One natural goal of a dynamic benchmark is to output a classifier that minimizes risk on a fixed
underlying distribution D. We envision that this distribution represents all instances of interest.
There is a subtle aspect to this choice of a success criterion. If we already assume we have an
ϵ-approximate risk minimizer on D, why are we not done from the get-go? The reason is that the ϵ-
error term might cover instances crucially important for the success of a classifier in real tasks. After
all, a 95% accurate classifier can still perform poorly in practice if real-world instances concentrate
on a set of small measure in D. The goal is therefore to find classifiers achieving risk significantly
below the error level guaranteed by assumption. By asking for successively higher accuracy, we can
ensure that the benchmark continues to elicit better-performing models as time goes on.

Notation. We define error set of a classifier h as Eh = {(x, y) ∈ X × Y | h(x) ̸= y}. Note
that RP(h) = PrP(Eh). We drop P from PrP(·) when this is clear from the context. We say
a classification problem is realizable on distribution P if there is a classifier f ∈ H such that
RP(f) = 0. Here, H is the hypothesis class and f is called the true classifier. For realizable
problems, no uncertainty will be left over Y when x ∈ X is drawn, so we use P referring to
the distribution over X and define error sets as a subset of X . Let pP be the probability density
function associated with P . We say P is conditioned on E ⊆ X and denote it by P|E if for
any x ∈ X we have pP|E (x) = pP(x|E). For notational convenience, we sometimes use P(x)
in place of pP(x). The support supp(P) of a distribution P is the largest subset of X such that
P(x) > 0 for all x ∈ supp(P). Given probability distributions P1,P2, . . . ,PT , we denote the
mixture distribution with weights wt ≥ 0 such that

∑
t wt = 1 by mix(P1,P2, · · · ,PT ), where

pmix(x) =
∑T

t=1 wt Pt(x). For a set of classifiers h1, h2, . . . , hT , we denote the weighted majority
vote classifier by maj(h1, h2, · · · , hT ).

3 PATH DYNAMIC BENCHMARKS

The simplest case of a dynamic benchmark corresponds to the design of a directed path interleaving
model building and data collection as illustrated in Figure 1. This is the design most similar to
current proposals of dynamic benchmarks and adversarial data collection (Nie et al., 2020; Kiela
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et al., 2021). Starting from an initial distribution, at each round, a new classifier is obtained from
the latest distribution. The annotators are then asked to find the vulnerabilities of this model. This
new insight will be leveraged towards updating the latest distribution. We call this procedure path
dynamic benchmarking.

Path dynamic benchmarking: For an underlying distribution D with true classifier f , given
initial distribution D0 and an approximate risk minimizer A, at each round t:

1. ht = A(Dt)

2. Dt = D|ht(x)̸=f(x)

3. Dt+1 = mix(D0,D0,D1,D2, · · · ,Dt)

We first formalize the rationale behind path dynamic benchmarks. Ideally, given a perfect, i.e.
0-approximate, risk minimizer, every time the current classifier misclassifies some part of the under-
lying distribution, annotators reveal that part and the updated classifier will avoid repeated mistakes.
Since errors will not be repeated across the sequence, there can be a limited number of very bad
classifiers. The following simple lemma formalizes this intuition for a target error level α > 0.
Lemma 3.1. For any hypothesis classH, true classifier f ∈ H, perfect risk minimizerA, underlying
distribution D, and initial distribution D0 such that supp(D0) ⊆ supp(D), let (ht)

T−1
t=0 be any

sequence of classifiers obtained in a path dynamic benchmark with equally weighted mix(·). Then,
for any α > 0, there are at most 1

α classifiers of risk more than α. In other words, |{t < T |
RD(ht) > α}| ≤ 1

α .

See proof on page 15.

The lemma does not guarantee the latest classifier’s risk, but it is straightforward to see a random
selection of the classifiers after many rounds are accurate with high probability (see Corollary C.1).
A more effective way to construct an accurate classifier from the sequence of classifiers is to take
their majority vote. In this case, three rounds of model building suffice to find a perfect classifier.

Proposition 3.2. Under the conditions of Lemma 3.1, let (ht)
T−1
t=0 be any sequence of clas-

sifiers obtained in a path dynamic benchmark with uniform mixture weights. If T ≥ 3,
RD

(
maj(h0, h1, · · · , hT−1)

)
= 0.

Proof. From the proof of Lemma 3.1 we know Et ∩ supp(Dt) = 0. So, Et ∩ Et′ = 0 for every
t′ < t. The majority vote of hts will misclassify x if half or more of hts misclassify x. But no two
distinct hts make a common mistake. So, for three or more classifiers, the majority vote classifier is
always correct.

So far, path dynamic benchmarking seems to be a promising choice when a perfect risk minimizer is
available and the problem is realizable. The situation changes significantly when we go to approxi-
mate risk minimizers.

We first study a three-round path dynamic benchmark. We then show how results would generalize
for an arbitrary number of rounds. Our results apply to the case where the initial and underlying
distributions D0 do not need to be identical to the target distribution D. To measure the distance
between distributions with respect to a hypothesis class, we use the following notion.
Definition 3.3 (See Ben-David et al. (2010)). For a hypothesis class H and distributions P1 and
P2, theH∆H-distance between P1 and P2 is defined as

dH∆H(P1,P2) = sup
h,h′∈H

∣∣∣Ex∼P1 [1{h(x) ̸= h′(x)}]− Ex∼P2 [1{h(x) ̸= h′(x)}]
∣∣∣. (1)

The next theorem discusses how path dynamic benchmarking with three rounds performs in the case
of an ϵ-approximate risk minimizer.
Theorem 3.4. For any hypothesis class H, true classifier f ∈ H, underlying distribution D, initial
distributionD0 with supp(D0) ⊆ supp(D), and any ϵ-approximate risk minimizerA, let h0, h1, and
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h2 be the three classifiers obtained after three model building rounds in a path dynamic benchmark
with uniform mixture weights. Then, the risk of the majority vote classifier is bounded by

RD
(
maj(h0, h1, h2)

)
≤ O

(
ϵ2 + ϵdH∆H(D0,D)

)
. (2)

Note that for sufficiently similar D0 and D, i.e., dH∆H(D0,D) = O(ϵ), risk is bounded by O(ϵ2).

See proof on page 15.

The obtained O(ϵ2) error with only three rounds of model building is a significant improvement to
the O(ϵ) error that could be achieved with static benchmarks and an ϵ-approximate risk minimizer.
We then consider what happens if we continue dynamic benchmarking for many rounds.
Theorem 3.5. For any ϵ-approximate risk minimizer A with 1

ϵ ∈ N, hypothesis class H with
VCdim(H) ≥ 8

ϵ2 , and any path dynamic benchmark with L ≥ 3 rounds of model building and
arbitrary mixture weights, there exists an underlying distribution D such that for any true classi-
fier f ∈ H and initial distribution D0 with supp(D0) ⊆ supp(D), there exists a sequence (ht)

L−1
t=0

of classifiers consistent with path dynamic benchmark where the risk of their weighted majority vote
is lowerbounded by

RD
(
maj(h0, h1, · · · , hL−1)

)
≥ ϵ2

8
(3)

for any weighting of maj(·). Further, Theorem C.2 shows for any path dynamic benchmark, there
existsH with constant VC dimension such that a similar lower-bound holds.

See proof on page 16.

Theorem 3.5 shows that Ω(ϵ2) error serves as a lower bound in the approximate risk minimizer
setting for any path design (any mixture weighting and weighted majority). Then Theorem 3.4
shows three rounds of model building with uniform weights can achieve the lower bound, so it is
optimal, and continuing dynamic benchmarking for more rounds might not be helpful.

3.1 CHALLENGES IN NON-REALIZABLE SETTINGS

For many reasons, our problem may not be realizable. For example, a class of functions that is not
complex enough to explain the true model constitutes an unrealizable setting. Even for a complex
enough class, annotators might fail to label instances correctly. In a simplified model for unreal-
izable problems, we assign random labels to a small part of the distribution and let the rest of the
distribution be realizable. Formally, let X δ be the randomly labeled subset of X and X δ = X \ X δ

be the rest of the domain labeled with f . Since no classifier can do well on X δ , dynamic bench-
marks are prone to overrepresent X δ . This intuition is formalized in Theorem 3.6 where we show a
significant portion of Dt will be concentrated on X δ .
Theorem 3.6. For any hypothesis class H, true classifier f , ϵ-approximate risk minimizer A, and
any underlying distributionD such that δ-proportion ofD is labeled randomly and the rest is labeled
by f , if δ > ϵ, as long as t = O( δϵ ), at least Ω(1)-proportion ofDt obtained through a path dynamic
benchmark will be concentrated around the unrealizable instances, i.e., PrDt(x ∈ X δ) = Ω(1).

See proof on page 18.

As a direct consequence, classifiers trained on a path dynamic benchmark lose their sensitivity to
realizable instances and might show an unexpectedly bad performance on the rest of the distribution.

4 HIERARCHICAL DYNAMIC BENCHMARKS

Thus far, we have observed that given an ϵ-approximate risk minimizer, the smallest achievable risk
through path dynamic benchmarks is Ω(ϵ2). This observation evokes the idea of possibly achiev-
ing a squared risk by adding a new layer to the benchmarking routine, which calls path dynamic
benchmarking as a subroutine. Figure 2 shows such a structure with three steps. At each step, path
dynamic benchmarks are obtained starting from a mixture of the initial distribution and error distri-
butions of all previous steps. In the second layer, models found in different steps are aggregated. We
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Figure 2: Depth-2 width-3 hierarchical dynamic benchmark. Symbols as in Figure 1 with M repre-
senting majority vote.

call the dynamic benchmark of Figure 2 a depth-2 hierarchical dynamic benchmark. In an extended
form, a depth-k hierarchical dynamic benchmark can be designed by adding a new layer on top of
the models obtained from some depth-(k − 1) benchmarks.

Hierarchical dynamic benchmarking: For an underlying distribution D and true classifier f ,
given an initial distribution D0 and an approximate risk minimizer A, depth-k width-w hierar-
chical dynamic benchmarks are constructed recursively:

def. A(k)(D0):

1. h0 = A(k−1)(D0)

2. For t = 1, · · · , w − 1:
(a) Dt−1 = D|ht−1(x)̸=f(x)

(b) Dt = mix(D0,D0,D1, · · · ,Dt−1)

(c) ht = A(k−1)(Dt)

3. return maj(h0, h1, · · · , hw−1)

where A(0) = A.

Note that this setting does not mean that different steps of path dynamic benchmarking can be
done in isolation. Running two benchmarking tasks independently does not yield benefits since
humans in the loop might return similar vulnerabilities. In the depth-2 hierarchy of Figure 2, we have
bold-faced arrows corresponding to the sequence of steps that should be taken. So, any reasonable
dynamic benchmarking based on our model is a sequential process, and the name hierarchy is meant
to carry the intuition on how the aggregation of classifiers is happening.

Also note that A(k) calls annotators for wk rounds. Since no known empirical dynamic bench-
marking study has ever had more than 20 rounds (as studied in Wallace et al. (2022)), we limit
our analysis to a depth-2 width-3 structure (Figure 2). Here w ≥ 3 is the necessary and sufficient
number of rounds for path dynamic benchmarks to ensure O(ϵ2) risk when A is ϵ-approximate risk
minimizer and D0 is sufficiently similar to D.

The next theorem provides an upper bound on the risk of any classifier obtained through hierarchical
data dynamic benchmarks of Figure 2.
Theorem 4.1. For any hypothesis class H, true classifier f ∈ H, underlying distribution D, initial
distribution D0 with supp(D0) ⊆ supp(D), and any ϵ-approximate risk minimizer A, the risk of
any classifier obtained from a hierarchical dynamic benchmark with depth-2 and width-3 (Figure 2)
where mix(·) and maj(·) uniformly weight the inputs, is bounded by

RD(maj(g0, g1, g2)) ≤ O
(
ϵ3 + ϵ2dH∆H(D0,D)

)
. (4)

Note that for sufficiently similar D0 and D, i.e., dH∆H(D0,D) = O(ϵ), risk is bounded by O(ϵ3).

See proof on page 19.

The hope in adding a new layer to dynamic benchmarking was to obtain a squared risk of the previ-
ous layer’s risk. So, ideally, a depth-2 hierarchical dynamic benchmark could achieve O(ϵ4) error.
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But this is not the case; next, we show that the upper bound of Theorem 4.1 is tight up to a constant,
and the conjecture of squared risk per layer does not hold.
Theorem 4.2. For any ϵ-approximate risk minimizer A with 1

ϵ ∈ N, hypothesis class H with
VCdim(H) ≥ 2

ϵ3 , and any hierarchical dynamic benchmark with depth-2 and width-3 (Figure 2)
with arbitrary mixture and majority weights, there exists an underlying distribution D such that
for any true classifier f ∈ H and initial distribution D0 with supp(D0) ⊆ supp(D), there exists
classifiers consistent with hierarchical dynamic benchmark for which

RD
(
maj(g0, g1, g2)

)
≥ ϵ3

2
. (5)

Further, Theorem C.3 shows for any hierarchical dynamic benchmark, there exists H with constant
VC dimension such that a similar lower-bound holds.

See proof on page 20.

Combined, these results show that design structures that are more intricate than the current prac-
tice, as captured by the path dynamic benchmark, can yield improved results but also have strong
limitations and are challenging to implement in practice.

5 EXPERIMENTS

Theorem 3.5, provides an Ω(ϵ2) lower bound on the risk achievable with an ϵ-approximate risk
minimizer. The proof of this theorem is constructive, introducing a bad sequence of distributions
and classifiers consistent with the path design with Θ(ϵ2) error. But the theorem does not rule out
the existence of a good sequence achieving arbitrarily small risk. An important question is how
frequently bad sequences appear in practice, retaining the error above zero even after many rounds.

We study this question by simulating path dynamic benchmarks on two popular static benchmarks,
CIFAR-10 (Krizhevsky et al., 2009) and SNLI (Bowman et al., 2015). The details of the data and
models are reported in Section B.1 of Appendix. Our aim in these experiments is not to obtain a
state-of-the-art model. Instead, we want to study the effectiveness of path dynamic benchmarks in a
controlled experimental setting with light models. Our simulation design is similar for both datasets:

1. Train a base classifier on the whole dataset and fix it for the next steps.
2. Construct a new dataset from samples correctly classified by the base model and define the true

and initial distributions as a uniform (point mass) distribution over these samples. Note that in
this case empirical risk on samples weighted according to a point mass distribution is equivalent
to risk on that distribution. Since the base model correctly labels all selected samples, the problem
is also realizable.

3. Draw multiple rollouts of path dynamic benchmarks. A rollout from path dynamic benchmark
is a sequence of distributions and models obtained by alternatingly training a new classifier on
the weighted extracted dataset and up-weighting (down-weighting) the distribution over misclas-
sified (correctly classified) samples according to a mixture rule with uniform weights. Note that
the base model is fixed, and the randomness across rollouts solely comes from different initial-
izations of new classifiers and possible randomness in optimization methods.

There are two deviations from our theoretical study in this design: First, we studied binary classifi-
cation, but both CIFAR-10 and SNLI define multi-label problems. We believe our main arguments
hold for multi-label tasks as well. Second, although the problem is realizable, the solution is un-
likely to have zero risk as training a new classifier at each round of a rollout typically consists of
non-convex optimization. This is addressed in our theoretical framework as ϵ-approximate risk min-
imization. Our analysis requires a fixed ϵ across all rounds which approximately holds in practice.

Figure 3a shows results from 100 rollouts of path dynamic benchmarks simulated on CIFAR-10. At
each round, the value on the vertical axis shows the risk of the majority vote of all the classifiers
obtained in a rollout so far. The solid line is the average of the majority vote’s risk of all rollouts, and
the shaded area shows the standard deviation. There are a few observations: First, although zero risk
is attainable, path dynamic benchmarks fail to reach it. Second, the variance across rollouts is quite
consistent at each round. This shows a good rollout keeps being a good, and likewise with a bad
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Figure 3: Path dynamic benchmark is simulated. The base model is kept fixed for all rollouts. The
y-axis shows the risk of the majority vote of all classifiers obtained until that round.

rollout, so continuing dynamic benchmarking does not help. We further discuss why a rollout turns
out to be a good or bad one and how this is related to our theoretical negative example in Section B.2
of the Appendix.

Figure 3b shows the results from 50 rollouts of path dynamic benchmarks simulated on SNLI. A
similar observation regarding non-zero risk in limit can be made here. Compared to the image
classification task, path dynamic benchmarks in the NLI task show more fluctuation through rounds
which might be due to the harder nature of the problem or a more complex model.

Summarizing these observations, path dynamic benchmarks, no matter how long we run them for,
confront a lower bound even in simple realizable settings. This provides empirical evidence that
our negative results are not contrived, but point at what may be inherent limitations to dynamic
benchmarking.

6 DISCUSSION

The scientific foundation of traditional benchmarks is the holdout method, whereby we split the
dataset into a training and testing component. Although the machine learning community routinely
operates well outside the statistical guarantees of the holdout method, at least there is some cogniz-
able theoretical framework for static datasets as benchmarks. Moreover, more recent works have
found new support for static benchmarks (Blum & Hardt, 2015; Recht et al., 2019).

Dynamic benchmarks provide an intriguing proposal aimed at mitigating known issues with static
benchmarks. Platforms for dynamic benchmarks are already up and running. However, machine
learning theory has little to offer in the way of guiding the principled design of valid dynamic
benchmarks. Responding to this lack of theoretical foundations, we propose a formal model of
dynamic benchmarks that allows to combine model building and data collection steps in a flexible
manner. We focus on what we think is the first-order concern in the design of a benchmark: Does
the benchmark, in principle, induce the creation of better models?

While our results show a provable benefit to dynamic benchmarking, it is arguably more subtle than
hoped and comes at a significant increase in complexity. Our negative results are particularly con-
cerning given that we optimistically assume that both model builders and annotators have significant
competence. In practice, dynamic benchmarks likely face additional obstacles neglected by our ide-
alized assumptions. As a result, it is less clear to what extent our positive results have prescriptive
value. On the other hand, our positive results make it clear that the design space for dynamic bench-
marks is larger than currently utilized, thus pointing at a range of interesting open problems. Finally,
lowering risk or improving the accuracy of the induced models is the ultimate success criterion of
a benchmark, however, there are other concerns including the robustness of the models that can be
the topic of future works based on our proposed framework.
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Emezue, Varun Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yufang Hou, Yacine Jer-
nite, Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak,
Aman Madaan, Mounica Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Ma-
jumder, Pedro Henrique Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg,
Moin Nadeem, Shashi Narayan, Vitaly Nikolaev, Andre Niyongabo Rubungo, Salomey Osei,
Ankur Parikh, Laura Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Raunak, Juan Diego Ro-
driguez, Sashank Santhanam, João Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimo-
rina, Marco Antonio Sobrevilla Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi
Yang, Akhila Yerukola, and Jiawei Zhou. The GEM benchmark: Natural language generation,
its evaluation and metrics. In Proceedings of the 1st Workshop on Natural Language Generation,
Evaluation, and Metrics (GEM 2021), pp. 96–120, Online, August 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.gem-1.10. URL https://aclanthology.
org/2021.gem-1.10.

Moritz Hardt and Benjamin Recht. Patterns, predictions, and actions: Foundations of machine
learning. Princeton University Press, 2022.

Divyansh Kaushik, Douwe Kiela, Zachary C. Lipton, and Wen-tau Yih. On the efficacy of adver-
sarial data collection for question answering: Results from a large-scale randomized study. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 6618–6633, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.517. URL https://aclanthology.org/2021.acl-long.517.

10

https://arxiv.org/abs/2112.09062
https://aclanthology.org/D15-1075
https://www.aclweb.org/anthology/D19-1461
https://aclanthology.org/2021.gem-1.10
https://aclanthology.org/2021.gem-1.10
https://aclanthology.org/2021.acl-long.517


Published as a conference paper at ICLR 2023

Daniel Khashabi, Gabriel Stanovsky, Jonathan Bragg, Nicholas Lourie, Jungo Kasai, Yejin Choi,
Noah A Smith, and Daniel S Weld. Genie: A leaderboard for human-in-the-loop evaluation of
text generation. arXiv preprint arXiv:2101.06561, 2021.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebas-
tian Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and
Adina Williams. Dynabench: Rethinking benchmarking in NLP. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 4110–4124, Online, June 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.naacl-main.324. URL https://aclanthology.
org/2021.naacl-main.324.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew Peters,
Ashish Sabharwal, and Yejin Choi. Adversarial filters of dataset biases. In International Confer-
ence on Machine Learning, pp. 1078–1088. PMLR, 2020.

Zhiyi Ma, Kawin Ethayarajh, Tristan Thrush, Somya Jain, Ledell Wu, Robin Jia, Christopher Potts,
Adina Williams, and Douwe Kiela. Dynaboard: An evaluation-as-a-service platform for holistic
next-generation benchmarking. Advances in Neural Information Processing Systems, 34, 2021.

Avanika Narayan, Piero Molino, Karan Goel, Willie Neiswanger, and Christopher Re. Personal-
ized benchmarking with the ludwig benchmarking toolkit. In Thirty-fifth Conference on Neu-
ral Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL
https://openreview.net/forum?id=hwjnu6qW7E4.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial NLI: A new benchmark for natural language understanding. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Association for Computational
Linguistics, 2020.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA
dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1525–1534, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1144. URL https://aclanthology.org/P16-1144.

Ellie Pavlick and Tom Kwiatkowski. Inherent disagreements in human textual inferences. Transac-
tions of the Association for Computational Linguistics, 7:677–694, 2019.

Jason Phang, Angelica Chen, William Huang, and Samuel R. Bowman. Adversarially constructed
evaluation sets are more challenging, but may not be fair. In Proceedings of the First Workshop on
Dynamic Adversarial Data Collection, pp. 62–62, Seattle, WA, July 2022. Association for Com-
putational Linguistics. doi: 10.18653/v1/2022.dadc-1.8. URL https://aclanthology.
org/2022.dadc-1.8.

Christopher Potts, Zhengxuan Wu, Atticus Geiger, and Douwe Kiela. DynaSent: A dynamic
benchmark for sentiment analysis. In Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 2388–2404, Online, August 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.186. URL https:
//aclanthology.org/2021.acl-long.186.

Vinodkumar Prabhakaran, Aida Mostafazadeh Davani, and Mark Diaz. On releasing annotator-
level labels and information in datasets. In Proceedings of the Joint 15th Linguistic Annotation
Workshop (LAW) and 3rd Designing Meaning Representations (DMR) Workshop, pp. 133–138,
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.law-1.14. URL https://aclanthology.org/2021.law-1.14.

11

https://aclanthology.org/2021.naacl-main.324
https://aclanthology.org/2021.naacl-main.324
https://openreview.net/forum?id=hwjnu6qW7E4
https://aclanthology.org/P16-1144
https://aclanthology.org/2022.dadc-1.8
https://aclanthology.org/2022.dadc-1.8
https://aclanthology.org/2021.acl-long.186
https://aclanthology.org/2021.acl-long.186
https://aclanthology.org/2021.law-1.14


Published as a conference paper at ICLR 2023

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389–5400.
PMLR, 2019.

Robert E Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predic-
tions. Machine learning, 37(3):297–336, 1999.

Ali Shirali. Sequential nature of recommender systems disrupts the evaluation process. In Ad-
vances in Bias and Fairness in Information Retrieval: Third International Workshop, BIAS 2022,
Stavanger, Norway, April 10, 2022, Revised Selected Papers, pp. 21–34. Springer, 2022.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
Schmidt. Measuring robustness to natural distribution shifts in image classification. Advances
in Neural Information Processing Systems, 33:18583–18599, 2020.

Eric Wallace, Adina Williams, Robin Jia, and Douwe Kiela. Analyzing dynamic adversarial training
data in the limit. In Findings of the Association for Computational Linguistics: ACL 2022, pp.
202–217, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/
v1/2022.findings-acl.18. URL https://aclanthology.org/2022.findings-acl.
18.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A large-scale adversar-
ial dataset for grounded commonsense inference. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 93–104, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1009. URL
https://www.aclweb.org/anthology/D18-1009.

Rowan Zellers, Ari Holtzman, Elizabeth Clark, Lianhui Qin, Ali Farhadi, and Yejin Choi. TuringAd-
vice: A generative and dynamic evaluation of language use. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 4856–4880, Online, June 2021. Association for Computational Lin-
guistics. URL https://www.aclweb.org/anthology/2021.naacl-main.386.

A DYNAMIC GRADIENT-BASED UPDATE

The current practice of dynamic benchmarking aims at diversifying the benchmark by dynamically
adding new hard examples to it. The hope is to obtain better models from the benchmark every
time new samples are added. As we observed, despite the initial benefit this method has, there exist
arbitrarily long dynamic benchmarks with no significant improvement after the first few steps.

But if the ultimate goal is to obtain improved models, there is a more direct way to do it. Instead
of keeping all the adversarial feedback in the form of a dynamic benchmark, the model-in-the-loop
itself can carry all the information by becoming more and more complex throughout the process. In
other words, rather than updating the benchmark by adversarial examples, these examples can be
collected in a way that can be directly used to update the model. Dynamic adversarial feedback from
annotators is helpful here by providing fresh examples at each round that prevent overfitting. This
phenomenon is also close to the boosting technique in machine learning.

In this section, we discuss how directly updating the model using adversarial data can be formulated
within our framework and why they are not practical. Since we use gradient-based techniques
to update the model, we call these methods dynamic gradient-based updating. We first formally
introduce a vector notation for functions and distributions, which makes our arguments easier to
follow. Then we discuss how a classifier’s risk with respect to the zero-one loss would be represented
with this notation. In search of a classifier that minimizes this risk, we minimize surrogate convex
losses rather than directly optimizing for zero-one risk. Here we discuss two popular choices, to
be named hinge and exponential losses, and for each, discuss the corresponding method with its
strengths and limitations.
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Figure 4: Dynamic gradient-based update: hinge loss minimization.

Notation. Let h : X → {−1, 1} be a binary classifier defined on the finite set X . The vector
representation of h in X is h = (h(x))x∈X . Similarly, let P be a probability distribution over X .
The vector representation of P in X is P = (P(x))x∈X . The entrywise product of two vectors h1

and h2 is denoted by h1 ◦ h2. For an underlying distribution D and true classifier f , we can use
vector representations to write the risk with respect to the zero-one loss. Risk of a binary classifier h
on D is RD(h) = 1

2 ⟨1 − h ◦ f ,D⟩. For a general h : X → R, still we can define the risk with
respect to the zero-one loss as RD(h) = 1

2 ⟨1 − sign(h ◦ f),D⟩, where sign(·) is an entrywise
operator.

Upper-bounded risk. There are many ways to upper-bound RD(h). For example, for any entry-
wise function l(·) such that l(x) ≥ 1{x ≤ 0} = 1

2 −
1
2 sign(x) for all x ∈ R, the risk of h with

respect to the zero-one loss can be upper-bounded by

RD(h) ≤ Rl
D(h) = ⟨l(h ◦ f),D⟩. (6)

A.1 MINIMIZING HINGE LOSS

A popular function to upper-bound the zero-one risk is the hinge loss: l(x) = max(1 − x, 0).
Plugging l(·) into Equation 6 gives:

RD(h) ≤ Rhinge
D (h) = ⟨max(1− h ◦ f ,0),D⟩, (7)

where max(·) is element-wise maximization. Let g = ∇hR
hinge
D . Looking for an update of the

form h := h + ∆h to reduce Rhinge
D (h), any direction such that ⟨g,∆h⟩ < 0 will be a descent

direction and a small step size guarantees consistent decrease of Rhinge
D . As we will show in the

proof of Lemma A.1, directly applying gradient descent, i.e., ∆h = −η g, is not practical, as it
incorporates summation of a distribution and a classifier vector. Unlike classifiers which are known
for every point in the domain, in practice, distributions are limited to the available samples and this
summation is not implementable. Alternatively, let Eh = {x ∈ X | h(x)f(x) < 1} be the set of
margin errors of classifier h. We task annotators to return Dh = D|Eh

given h. Let h = A(Dh) be
the model built on the vulnerabilities of h. Next lemma shows h is a descent direction for the hinge
loss.
Lemma A.1. For any hypothesis class H, true classifier f ∈ H, current classifier h ∈ H,
ϵ-approximate risk minimizer A, and any underlying distribution D, the vector representation h

of the classifier h = A(D|h(x)f(x)<1) is a descent direction for Rhinge
D (h).

See proof on page 22.

This lemma lets us write the updating rule h := h+η Rhinge
D (h)h, depicted graphically in Figure 4.

Since gradient dominance condition holds for this update and hinge loss is 1-Lipschitz, h will con-
verge to f with the rate of O( |X |

t2 ). Although this method guarantees convergence, the dependence
on the domain size makes the bound useless for continuous or very large domains.

A.2 MINIMIZING EXPONENTIAL LOSS

Another candidate function to upper-bound the zero-one risk is the exponential loss: l(x) =
exp(−x). This leads to a similar analysis as the AdaBoost algorithm (Schapire & Singer, 1999).
Plugging l(·) into Equation 6 gives:

RD(h) ≤ Rexp
D (h) = ⟨exp(−h ◦ f),D⟩, (8)

where exp(·) is element-wise exponential function. Similar to the hinge loss minimization, we show
in the proof of Lemma A.2 that directly updating h with a gradient term is not implementable. So,

13



Published as a conference paper at ICLR 2023

we search in the hypothesis class for a classifier h̃ such that h̃ minimizes ⟨h̃, g⟩, where g = ∇hR
exp
D .

Next lemma finds such a classifier along with the optimal step size.

Lemma A.2. For any hypothesis class H, true classifier f ∈ H, current classifier h ∈ H,
ϵ-approximate risk minimizer A, and any underlying distribution D, h̃ = A(Dh) is the solu-
tion of minh̃∈H ⟨h̃, g⟩. Here Dh(x) ∝ D(x) exp(−h(x)f(x)) and g = ∇hR

exp
D . Further,

η = 1
2 log(

1
RDh

(h̃)
− 1) is the best step size for the update rule h := h+ η h̃.

See proof on page 23.

Let ht be the final classifier obtained after t updates according to the updating rule of Lemma A.2.
An analysis similar to the analysis of AdaBoost shows RD(ht) ≤ exp(− (1−2ϵ)2t

2 ). This method,
despite the exponential convergence rate, is not practical for two reasons. First, it is computationally
hard as reweighting a distribution requires the calculation of a normalization factor which is a sum
over the whole domain. Second, it requires sampling from D which might not be possible.

In summary, gradient-based updates guarantee convergence of the updated classifier to the true clas-
sifier; however, they either suffer from slow convergence or computational hardness.

B MORE ON EXPERIMENTS

We elaborate on the details of datasets, models, and further observations from the simulation of path
dynamic benchmarks in this section.

B.1 DATA AND MODELS

The CIFAR-10 dataset contains 60, 000 of 32 × 32 color images in 10 different classes, commonly
used as a static benchmark for image classification. We use a shallow feed-forward Convolutional
Neural Network (CNN) consisting of two convolution layers (with 32 and 64 filters), interleaved
with two max-pooling layers, followed by a dropout layer and a dense layer with 10 units at the
output, increasing total number of trainable parameters to 40k. We use the same architecture to train
a base model and train classifiers in drawing rollouts. The base classifier achieves 73% accuracy
after 30 epochs on the training data, reasonably above the chance level of about 10%.

The Stanford Natural Language Inference (SNLI) corpus (version 1.0) is a popular NLI benchmark
consisting of 570k human-written English sentence pairs manually labeled for balanced classifi-
cation with the labels entailment, contradiction, and neutral. We restrict our simulation to a 50k
random subset of this data. Our model is a slightly modified model of Bowman et al. (2015) where
words are represented with pre-trained 100d GloVe1 vectors, and two parallel Bidirectional Long
Short-Term Memory layers (BiLSTM) are used to extract sentence embeddings. The concatenated
embeddings are then fed into three more hidden dense layers (each has 128 units) before going to
the last dense layer with 3 units. The model has a total number of 120k trainable parameters, and the
base model achieved an accuracy of 68% on the training data and 61% on the test data, consistent
with the original study when the number of samples was limited.

B.2 FURTHER OBSERVATIONS

The observations we had in Section 5 raise another question: what makes a rollout a bad rollout?
Do bad rollouts share a common characteristic? We hypothesize the more similar a rollout to the
bad sequence constructed in the proof of Theorem 3.5, the worse its final risk. A unique feature of
the negative example in Theorem 3.5 is that initial classifiers in the sequence cleverly choose their
error sets to only overlap on a fixed part of the distribution, which will turn out to be the error set
of the majority. We define a score that captures this behavior without being directly related to the
accuracy of the final majority vote model. Let Em be the error set for the majority vote classifier
and Eht

be the error set of the round t classifier. Then for every pair of distinct rounds t1, t2 < T

of a rollout, define zt1,t2 =
|Eht1

∩Eht2
∩Em|

|Eht1
∩Eht2

| . We use zT = 1
T (T−1)

∑T−1
t1=0

∑T−1
t2=0,t2 ̸=t1

zt1,t2 to

1http://nlp.stanford.edu/data/glove.6B.zip
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Figure 5: Similarity to the theoretical negative example measured by zT can partially explain the
risk of the majority vote classifier of all rounds. The blue dashed line is the minimum squared error
fit.

quantify similarity of a rollout to the theoretical negative example. The proof of Theorem 3.5 shows
that as long as T ≤ 2

ϵ , the theoretical negative example gives zT = 1.

Figure 5a depicts the risk of the majority vote at the end of the rollout (round 25) vs. z4 score.
The correlation is positive and statistically significant (Pearson r = 0.46, p < 0.001). So, the more
similar a rollout to the theoretical bad example in terms of the defined score, the more likely it will be
a bad rollout. Interestingly, at round 4, the risk of the majority vote classifier can barely explain the
risk after 25 rounds (Pearson r = 0.18, p > 0.05). This shows our negative example construction
has not only introduced a worst-case example but might have identified an important characteristic
that naturally appears in dynamic benchmarks and limits their effectiveness.

Figure 5b also shows a significant positive correlation (Pearson r = 0.68, p < 0.001) between the
final risk of a rollout and its similarity to the theoretical negative example measured early at round 6.
At this round, the risk of the current majority vote classifier is barely informative about the risk after
20 rounds (Pearson r = −0.27, p > 0.05). Once more, it shows the negative example constructed
theoretically can explain the natural failure of dynamic benchmarking in different contexts.

C ADDITIONAL STATEMENTS AND PROOFS

Corollary C.1. Under conditions of Lemma 3.1, let ĥ be one of the hts selected uniformly at ran-
dom. For any δ > 0 and α > 0, if T ≥ 1

δα , with probability at least 1− δ, ĥ is α-accurate.

Proof. From Lemma 3.1, the probability that ĥ is α-bad is less than 1/α
T ≤ δ.

Proof of Lemma 3.1. As supp(D0) ⊆ supp(D), running the path dynamic benchmarking will pre-
serve supp(Dt) ⊆ supp(D) for any t. On the other hand, we know RD(f) = 0. So, we have
RDt(f) = 0. AsA is a perfect risk minimizer and f ∈ H, we should have RDt(ht) = 0. Therefore,
errors of ht should happen outside of supp(Dt):

Et ∩ supp(Dt) = 0, (9)

where Et is the error set of ht. Now assume t is one of the indices where ht is α-bad, i.e., PrD(Et) >
α. Then we have

Pr
D
(x ∈ supp(Dt+1)) = Pr

D
(x ∈ supp(Dt)) + Pr

D
(x ∈ Et) ≥ Pr

D
(x ∈ supp(Dt)) + α. (10)

This cannot happen more than 1
α times.
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Proof of Theorem 3.4. Starting from D0 where supp(D0) ⊆ supp(D), path dynamic benchmarks
will preserve supp(Dt) ⊆ supp(D) for any t. Since the problem is realizable and A is ϵ-
approximate risk minimizer, for any consistent ht we should have RDt

(ht) ≤ ϵ. The distribu-
tion Dt itself is a mixture of the initial and error distributions: Dt = mix(D0,D0, · · · ,Dt−1).
So, we can expand RDt

(·) as a linear combination of the risks under mixture components. Note
that the risk of ht under an error distribution Dt′ , where t′ < t, can equivalently be written as
RDt′

(ht) = PrD(Et|Et′). For t = 0, 1, 2 we have:

RD0(h0) ≤ ϵ

1

2
RD0

(h1) +
1

2
Pr
D
(Eh1

|Eh0
) ≤ ϵ

1

3
RD0

(h2) +
1

3
Pr
D
(Eh2

|Eh0
) +

1

3
Pr
D
(Eh2

|Eh1
) ≤ ϵ.

The above constraints impose RD0(ht) = PrD0(Et) ≤ (t + 1)ϵ and PrD(Et|Et′) ≤ (t + 1)ϵ.
However, to limit the joint error probability of two classifiers we need to bound PrD(Et):

Pr
D
(Et) = RD(h) ≤ RD0(h) + dH∆H(D0,D). (11)

Finally, by a union bound, the error probability of maj(h0, h1, h2) is less than the sum of all pairwise
joint error probabilities. Putting these all together:

RD
(
maj(h0, h1, h2)

)
≤ Pr

D
(Eh0 ∩ Eh1) + Pr

D
(Eh0 ∩ Eh2) + Pr

D
(Eh1 ∩ Eh2)

≤ 11ϵ2 + 8ϵdH∆H(D0,D). (12)

Proof of Theorem 3.5. For a given domain X , we define a new finite domain Xd ∈ X d such that
Xd can be shattered by H. For an arbitrary but fixed order on Xd, we can define equivalent vector
representations of functions and distributions in the new domain. Particularly, let h : X → {−1, 1}
be a binary classifier defined on X . The vector representation of h in Xd is h = (h(x))x∈Xd

∈
{−1, 1}d. Similarly, let P be a probability distribution over X . The vector representation of P in
Xd is P = (P(x))x∈Xd

∈ ∆(Xd). Throughout the proof, we use K to show a subset of Xd with
k elements. We also use P(K) as a shorthand for

∑
x∈K P(x). Throughout the proof we use interval

notation for discrete intervals. For example, [a, b) denotes {a, a + 1, . . . , b − 1}. Finally, h1 ◦ h2

denotes the entrywise product of h1 and h2.

The four allowed operations on classifiers and distributions have new interpretations in the new
domain:

1. Dt
A−→ ht: The fact that A is an ϵ-approximate risk minimizer imposes the following

constraint:

⟨ht ◦ f ,Dt⟩ =
∑

ht(x)f(x)=1

Dt(x)−
∑

ht(x)f(x)=−1

Dt(x) = 1− 2RDt
(ht) ≥ 1− 2ϵ. (13)

2. ht
H−→ Dt: Let Kt be the set of indices that ht and f disagree. Then, it is straightforward

to see
Dt =

1

D(Kt)
(D − ht ◦ f ◦D). (14)

3. (h0, h1, · · · , ht)
maj−−→ ĥ: This is equivalent to per dimension voting: ĥ(x) =

maj(h0(x), h1(x), · · · , ht(x)) for x ∈ Xd.

4. (D0,D0,D1, · · · ,Dt−1)
mix−−→ Dt: This is simply equivalent to the weighted sum of

Dt = wt,0D0 +
∑
t′<t

wt,t′Dt′ , (15)

where ws are the weights of the mixture components, summing up to 1.
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Note that in all of the operations ht and f have appeared only as ht ◦ f . Since Xd can be shattered
byH, without loss of generality, we assume f is all one and use ht instead of ht◦f in the following.

Next, we start from the initial distribution D0 as the input to the path dynamic benchmarks and find
the constraints imposed over variables throughout the process:

• D0
A−→ h0: In this case ⟨h0,D0⟩ = 1− 2D0(K0) and Equation 13 requires:

D0(K0) ≤ ϵ. (16)

• Dt
A−→ ht: For Dt defined in Equation 15, we have:

⟨ht,Dt⟩ = wt,0⟨ht,D0⟩+
∑
t′<t

wt,t′⟨ht,Dt′⟩, (17)

where ⟨ht,D0⟩ = 1− 2D0(K0) and

⟨ht,Dt′⟩ =
1

2D(Kt′)

(
⟨ht,D⟩ − ⟨ht ◦ ht′ ,D⟩

)
=

1

2D(Kt′)

(
1− 2D(Kt)−

(
1− 2D(Kt ∪ Kt′ −Kt ∩ Kt′)

))
= 1− D(Kt ∩ Kt′)

D(Kt′)
. (18)

Here we used D(Kt ∪ Kt′ − Kt ∩ Kt′) = D(Kt) + D(Kt′) − 2D(Kt ∩ Kt′). Plugging
⟨ht,Dt′⟩ into Equation 17 and requiring ⟨ht,Dt⟩ ≥ 1− 2ϵ from Equation 13, impose

wt,0D0(Kt) +
∑
t′<t

wt,t′
D(Kt ∩ Kt′)

D(Kt′)
≤ ϵ. (19)

In the following, we propose Kts such that constraints of Equations 16 and 19 are satisfied. These
are the necessary and sufficient conditions to have hts consistent with path dynamic benchmarks.

For 0 ≤ t < T = 2
ϵ : Consider Kts such that Kt ∩ Kt′ = K for any t′ < t. Sufficient conditions to

satisfy Equations 16 and 19 are

Kt ∩ Kt′ = K (20)
D(K)
D(Kt)

=
k

kt
≤ ϵ

2
(21)

D0(Kt) ≤
ϵ

2
(22)

at every time step. Let’s reorder axes in an ascending order of D0 and name them from 1 to d.
Also assume this results in an ascending order of D as well. For example, D = unif(Xd) always
satisfies this. We set K = [1, k] and K0 = [1, k′] where k′ = 2k

ϵ . Then for 1 ≤ t < T = 2
ϵ , we set

Kt = K ∪ (k′ + (t− 1)(k′ − k), k′ + t(k′ − k)]:

K :
k←→

K0 :
k′= 2k

ϵ←−−−−−−−−→

K1 :
k←→ k′−k←−−−−−−→

K2 :
k←→ k′−k←−−−−−−→

. . .

It is straightforward to see that this assignment satisfies Equations 20 and 21. Since axes are ordered
ascendingly according to D0, a sufficient condition to satisfy Equation 22 for all rounds is

D0(KT−1) ≤ D0

(
k′ + (T − 1)(k′ − k)

)
k′ ≤ D0(Tk

′)k′ = D0

(2k′
ϵ

)
k′ ≤ ϵ

2
. (23)
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For y = 2k′

ϵ , the above condition is D0(y) ≤ 1
y . Again, since axes are ordered in an ascending

order of D0, D0(y) ≤ 1
d−y+1 (otherwise, the sum of D0 elements will go above 1). Then simple

calculations show d ≥ 2y = 8k
ϵ2 is sufficient to hold Equation 23. Since k is an integer, this is

possible for d ≥ 8
ϵ2 which requires VCdim(H) ≥ 8

ϵ2 . For d = 8
ϵ2 , this gives k

d = ϵ2

8 .

For t ≥ T : We set ht = hϕ(t) where ϕ : [T,∞)→ [0, T − 1] is an assignment function working as
follows. We define updated weights for 0 ≤ τ < T :

vt,0 = wt,0 (24)

vt,τ = wt,τ +
∑

T≤t′<t

wt,t′1{ϕ(t′) = τ}. (25)

Then ϕ(·) assigns round t according to
ϕ(t) = argmin

0≤τ<T
vt,τ . (26)

The sum of the updated weights satisfies∑
0≤τ<T

vt,τ =
∑

0≤τ<T

wt,τ +
∑

T≤t′<t

wt,t′

∑
0≤τ<T

1{ϕ(t′) = τ} =
∑

0≤t′<t

wt,t′ ≤ 1, (27)

where we used the identity
∑

0≤τ<T 1{ϕ(t′) = τ} = 1. This guarantees

vt,ϕ(t) ≤
1

T
=

ϵ

2
. (28)

Plugging ht = hϕ(t) into Equation 19 gives:

wt,0D0(Kϕ(t)) +
∑

0≤τ<T

wt,τ
D(K)
D(Kτ )

+
∑

T≤t′<t

wt,t′
D(K)
D(Kϕ(t′))

= wt,0D0(Kϕ(t)) +
(
wt,ϕ(t) +

∑
T≤t′<t

ϕ(t′)=ϕ(t)

wt,t′

)
+

∑
0≤τ<T
τ ̸=ϕ(t)

wt,τ
D(K)
D(Kτ )

+
∑

T≤t′<t
ϕ(t′) ̸=ϕ(t)

wt,t′
D(K)
D(Kϕ(t′))

≤
(
wt,0 +

∑
0≤τ<T
τ ̸=ϕ(t)

wt,τ +
∑

T≤t′<t
ϕ(t′ )̸=ϕ(t)

wt,t′

) ϵ

2
+ vt,ϕ(t) ≤ ϵ (29)

Here we used the following observations. Since hτ satisfies D0(Kτ ) ≤ ϵ
2 for all τ < t, ht also

satisfies D0(Kt) = D0(Kϕ(t)) ≤ ϵ
2 . Also all the ratios D(K)

D(Kτ )
and D(K)

D(Kϕ(t′))
are bounded by ϵ

2

according to Equation 21. We finally applied Equation 28 to bound vt,ϕ(t). This completes our
argument that ht is consistent for t ≥ T .

So far, we have introduced a sequence of classifiers (ht)t which are consistent with path dynamic
benchmarks and all misclassify K. We also showed for the selection of d = 8

ϵ2 , we have k
d = ϵ2

8 .
The only required assumption is that the element of D0 and D are both ascending. For the special
case of D = unif(Xd), D(K) = k

d . Since elements of K are misclassified by all the classifiers, no
matter how the majority vote of them is calculated, K will be in the error set:

RD
(
maj(h0, h1, · · · )

)
≥ D(K) = k

d
=

ϵ2

8
. (30)

This completes the theorem.

Proof of Theorem 3.6. Let Dδ
t = Dt|x∈X δ and Dδ

t = Dt|x/∈X δ . Also let δt = PrDt(x ∈ X δ). So,
we can writeDt as a mixture of its restricted distributions: Dt = δtDδ

t +(1−δt)Dδ
t . The classifier ht

trained on Dt should satisfy

RDt
(ht) = δtRDδ

t
(ht) + (1− δt)RDδ

t
(ht) =

δt
2
+ (1− δt)RDδ

t
(ht)

≤ min
h∈H

RDt
(h) + ϵ =

δt
2
+ ϵ, (31)
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which requires (1− δt)RDδ
t
(ht) ≤ ϵ. Here we used the fact that labels of X δ are equiprobable to be

1 or −1. So, risk of any classifier under Dδ
t is 1

2 . The inequality comes fromA being ϵ-approximate
risk minimizer and the last equality is due the realizability of Dδ

t . The error distribution of ht is

Dt =
δ
2D

δ

t + (1− δ)RDδ(ht)D
δ

t
δ
2 + (1− δ)RDδ(ht)

, (32)

where Dδ = D|x/∈X δ , Dδ

t = D|x∈X δ,ht(x)̸=y , Dδ

t = D|x/∈X δ,ht(x) ̸=f(x), and δ = PrD(x ∈ X δ).
Note that again we used the fact that labels of X δ are random. Since D0 = D has a weight of 1

t+1
in Dt:

RDδ(ht) ≤ (t+ 1)RDδ
t
(ht) ≤ (t+ 1)

ϵ

1− δt
. (33)

So, the weight of Dδ

t component in Dt (Equation 32) will be greater than or equal to (1 + 2(t +
1) ϵδ

1−δ
1−δt

)−1. Then the total weight given to X δ by distribution Dt+1 = t+1
t+2Dt +

1
t+2Dt will be

δt+1 ≥
t+ 1

t+ 2
δt +

( 1

t+ 2

) 1

1 + 2(t+ 1) ϵδ
1−δ
1−δt

. (34)

The first observation from the above equation is

δ1 ≥
δ

2
+

1

2

1

1 + 2 ϵ
δ

, (35)

where we used δ0 = δ. For sufficiently large δ
ϵ , δ1 goes above 1

2 which means more than half of
the benchmark will be focused on the unrealizable instances. Next, we show this is not limited to
the first round, and δt maintains a large proportion of Dt as we progress. Recursively expanding
Equation 34 and assuming δt ≤ 2:

δt ≥
δ

t+ 1
+

1

t+ 1

t∑
t′=1

1

1 + a t′

≥ δ

t+ 1
+

ln(1 + a(t+ 1))

a(t+ 1)
− ln(1 + a)

a(t+ 1)
=

δ

t+ 1
+

ln(1 + a t
1+a )

a(t+ 1)

≥ δ

t+ 1
+

1

a(t+ 1)

( at/(1 + a)

1 + at/(1 + a)

)
=

δ

t+ 1
+

( t

t+ 1

) 1

1 + a(t+ 1)
, (36)

where a = 4 ϵ
δ (1 − δ). We applied ln(1 + x) ≥ x

1+x to obtain the last inequality. This shows the
upperbound cannot decrease faster than Ω( 1

1+a t ). For t ≥ 1, we have

δt ≥
1

2(1 + 2at)
≥ 1

2(1 + 8 ϵ
δ t)

. (37)

So, for t ≤ β δ
ϵ , δt ≥ 1

2(1+8β) . This completes the proof.

Proof of Theorem 4.1. We use the same notation as Figure 2 and follow similar arguments as
the proof of Theorem 3.4. Also for notation convenience we use the shorthand ∆0 to denote
dH∆H(D0,D).
Starting from the first path dynamic benchmarking step (h0 → h1 → h2), in Theorem 3.4 we
observed: Now we can bound RD(g0) by

RD(g0) ≤ 11ϵ2 + 8ϵ∆0. (38)

For the second path dynamic benchmarking step (h3 → h4 → h5) we have:
1

2
RD0(h3) +

1

2
Pr
D
(Eh3 |Eg0) ≤ ϵ (39)

1

3
RD0

(h4) +
1

3
Pr
D
(Eh4

|Eg0) +
1

3
Pr
D
(Eh4

|Eh3
) ≤ ϵ (40)

1

4
RD0(h5) +

1

4
Pr
D
(Eh5 |Eg0) +

1

4
Pr
D
(Eh5 |Eh3) +

1

4
Pr
D
(Eh5 |Eh4) ≤ ϵ. (41)
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These equations let us bound RD(g1) and PrD(Eg1 |Eg0):

RD(g1) ≤ Pr
D
(Eh3 ∩ Eh4) + Pr

D
(Eh3 ∩ Eh5) + Pr

D
(Eh4 ∩ Eh5)

≤ 3ϵ(2ϵ+∆0) + 4ϵ(2ϵ+∆0) + 4ϵ(3ϵ+∆0) = 26ϵ2 + 11ϵ∆0, (42)

and

Pr
D
(Eg1 |Eg0) ≤ Pr

D
(Eh3

|Eg0) + Pr
D
(Eh4

|Eg0) + Pr
D
(Eh5

|Eg0) ≤ 2ϵ+ 3ϵ+ 4ϵ = 9ϵ. (43)

Finally, for the third path dynamic benchmarking step (h6 → h7 → h8) we have:

1

3
RD0(h6) +

1

3
Pr
D
(Eh6 |Eg0) +

1

3
Pr
D
(Eh6 |Eg1) ≤ ϵ (44)

1

4
RD0

(h7) +
1

4
Pr
D
(Eh7

|Eg0) +
1

4
Pr
D
(Eh7

|Eg1) +
1

4
Pr
D
(Eh7

|Eh6
) ≤ ϵ (45)

1

5
RD0(h8) +

1

5
Pr
D
(Eh8 |Eg0) +

1

5
Pr
D
(Eh8 |Eg1) +

1

5
Pr
D
(Eh8 |Eh6) +

1

5
Pr
D
(Eh8 |Eh7) ≤ ϵ. (46)

This lets us bound PrD(Eg2 |Eg0) and PrD(Eg2 |Eg1):

Pr
D
(Eg2 |Eg0) ≤ Pr

D
(Eh6 |Eg0) + Pr

D
(Eh7 |Eg0) + Pr

D
(Eh8 |Eg0) ≤ 3ϵ+ 4ϵ+ 5ϵ = 12ϵ, (47)

and a similar calculation shows PrD(Eg2 |Eg1) ≤ 12ϵ. Putting these all together, we can bound the
risk of maj(g0, g1, g2) by

RD(maj(g0, g1, g2)) ≤ Pr
D
(Eg0 ∩ Eg1) + Pr

D
(Eg0 ∩ Eg2) + Pr

D
(Eg1 ∩ Eg2)

≤ RD(g0) Pr
D
(Eg1 |Eg0) +RD(g0) Pr

D
(Eg2 |Eg0) +RD(g1) Pr

D
(Eg2 |Eg1)

≤ 9ϵ(11ϵ2 + 8∆0ϵ) + 12ϵ(11ϵ2 + 8∆0ϵ) + 12ϵ(26ϵ2 + 11∆0ϵ)

= 543ϵ3 + 300ϵ2∆0, (48)

which completes the proof.

Proof of Theorem 4.2. We follow the proof of Theorem 3.5 and define equivalent vector representa-
tions of functions and distributions in a new finite domain Xd ∈ X d such that Xd can be shattered by
H (so, d ≤ 2

ϵ3 ). We also name variables according to Figure 2. For a true classifier f ,Kt denotes the
set of indices where ht and f disagree. Similarly, Kgt is the set of indices where f and gt disagree.

First of all, we reorder axes in an ascending order of D0. Also assume this results in an ascending
order of D as well. For example, D = unif(Xd) always satisfies this. Naming axes from 1 to d and
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showing them on the horizontal line, we assign Kts and Kgts according to:

K0 :
1
ϵ2←−−−−−−−−−−−−−−→

K1 :
1
ϵ←−−−→

1
ϵ2

− 1
ϵ←−−−−−−−−→

K2 :
1
ϵ←−−−→

1
ϵ2

− 1
ϵ←−−−−−−−−→

Kg0 :
1
ϵ←−−−→

K3 :
1←→

1
ϵ2

−1
←−−−−−−−−−−−−→

K4 :
1←→

1
ϵ−1
←−→

1
ϵ2

− 1
ϵ←−−−−−−−−→

K5 :
1←→

1
ϵ−1
←−→

1
ϵ2

− 1
ϵ←−−−−−−−−→

Kg1 :
1←→

1
ϵ−1
←−→

K6 :
1←→

1
ϵ2

−1
←−−−−−−−−−−−−→

K7 :
1←→

1
ϵ−1
←−→

1
ϵ2

− 1
ϵ←−−−−−−−−→

K8 :
1←→

1
ϵ−1
←−→

1
ϵ2

− 1
ϵ←−−−−−−−−→

Kg2 :
1←→

1
ϵ−1
←−→

Next, we discuss each path dynamic benchmarking step and find sufficient conditions under which
Kts are consistent with the dynamic benchmarking routine.

1. For the first path dynamic benchmarking step (h0 → h1 → h2), let K0 = [1, 1
ϵ2 ], K1 =

[1, 1
ϵ ] ∪ ( 1

ϵ2 ,
2
ϵ2 −

1
ϵ ], and K2 = [1, 1

ϵ ] ∪ (2 1
ϵ2 −

1
ϵ , 3

1
ϵ2 − 2 1

ϵ ]. We have

Kg0 = K0 ∩ K1 = K0 ∩ K2 = K1 ∩ K2 = [1,
1

ϵ
] (49)

D(Kg0)

D(K1)
≤ D(Kg0)

D(K0)
≤ ϵ. (50)

With a similar reasoning as the proof of Theorem 3.5, the only remaining condition to
ensure h0, h1, and h2 are consistent with path dynamic benchmarks, regardless of the
weightings, is D0(K2) ≤ ϵ. The output of this step has the error set of Kg0 = [1, 1

ϵ ] no
matter how the weighted majority vote is calculated.

2. For the second path dynamic benchmarking step (h3 → h4 → h5), let K3 = [1]∪ ( 1ϵ ,
1
ϵ2 +

1
ϵ − 1], K4 = [1] ∪ ( 1ϵ ,

2
ϵ − 1] ∪ ( 1

ϵ2 + 1
ϵ − 1, 2

ϵ2 − 1], and K5 = [1] ∪ ( 1ϵ ,
2
ϵ − 1] ∪ ( 2

ϵ2 −
1, 3

ϵ2 −
1
ϵ − 1]. We have

Kg1 = K3 ∩ K4 = K3 ∩ K5 = K4 ∩ K5 = [1] ∪ (
1

ϵ
,
2

ϵ
− 1] (51)

D(Kg1)

D(K4)
≤ D(Kg1)

D(K3)
≤ ϵ (52)

D(K3)

D(Kg0)
=
D(K4)

D(Kg0)
=
D(K5)

D(Kg0)
≤ ϵ. (53)
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It is easy to check that for any weighting of mixture components, if D0(K5) ≤ ϵ, h3, h4,
and h5 will be consistent with path dynamic benchmarks and the output of this step has the
error set of Kg1 = [1] ∪ ( 1ϵ ,

2
ϵ − 1]. Note that D0(K5) ≤ ϵ guarantees D0(K2) as well.

3. For the third path dynamic benchmarking step (h6 → h7 → h8), let K6 = [1] ∪ ( 2ϵ −
1, 1

ϵ2 + 2
ϵ − 2], K7 = [1] ∪ ( 2ϵ − 1, 3

ϵ − 2] ∪ ( 1
ϵ2 + 2

ϵ − 2, 2
ϵ2 + 1

ϵ − 2], and K8 =

[1] ∪ ( 2ϵ − 1, 3
ϵ − 2] ∪ ( 2

ϵ2 + 1
ϵ − 2, 3

ϵ2 − 2]. We have

Kg2 = K6 ∩ K7 = K6 ∩ K8 = K7 ∩ K8 = [1] ∪ (
2

ϵ
− 1,

3

ϵ
− 2] (54)

D(Kg2)

D(K7)
≤ D(Kg2)

D(K6)
≤ ϵ (55)

D(K6)

D(Kg0)
=
D(K7)

D(Kg0)
=
D(K8)

D(Kg0)
≤ ϵ (56)

D(K6)

D(Kg1)
=
D(K7)

D(Kg1)
=
D(K8)

D(Kg1)
≤ ϵ. (57)

Again, it is straightforward to see that for any weighting, if D0(K8) ≤ ϵ, h6, h6, and h8

will be consistent with path dynamic benchmarks and the output of this step has the error
set of Kg2 = [1] ∪ ( 2ϵ − 1, 3

ϵ − 2]. Note that D0(K8) ≤ ϵ guarantees D0(K5) as well.

Putting these all together, to make the provided classifiers consistent with hierarchical dynamic
benchmarking, it suffices to show D0(K8) ≤ ϵ:

D0(K8) ≤ D0(
3

ϵ2
− 2)

( 1

ϵ2
− 1

ϵ

)
≤ ϵ. (58)

Since axes are ordered in an ascending order of D0, D0(x) ≤ 1
d−x+1 . Otherwise, the sum of the

D0 elements would go above 1. So, we have:

1

d− ( 3
ϵ2 ) + 1

( 1

ϵ2
− 1

ϵ

)
≤ ϵ (59)

which imposes d ≥ 1
ϵ3 + 2

ϵ2 − 1. For any valid ϵ, i.e. ϵ ≥ 1
2 , d = 2

ϵ3 satisfies this condition. It also
satisfies the other limitation we had on VCdim(H). In this case

RD
(
maj(g0, g1, g2)

)
≥ D(Kg0 ∩ Kg1 ∩ Kg2) = D([1]). (60)

For the choice of D = unif(Xd), this risk is 1
d = ϵ3

2 which completes the proof.

Proof of Lemma A.1. The derivative of Rhinge
D (h) w.r.t h(x) is:

g(x) :=
∂Rhinge

D
∂h(x)

=

{
0 h(x)f(x) ≥ 1

−f(x)D(x) o.w.
. (61)

We can write g with vector representations as

g = −Pr
D
(Eh) (f ◦Dh) = −Rhinge

D (h) (f ◦Dh). (62)

As mentioned earlier, updates of the form h := h − ηg are infeasible as in practice Dh is only
available at limited samples. To make it practical, let h = A(Dh). As A is an ϵ-approximate risk
minimizer,

RDh
(h) =

1

2
⟨1− h ◦ f ,Dh⟩ =

1

2
− 1

2
⟨h,f ◦Dh⟩ ≤ ϵ. (63)

So, we have ⟨h,f ◦Dh⟩ ≥ 1− 2ϵ. For ϵ < 0.5, h will be a descent direction.
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Proof of Lemma A.2. The derivative of Rexp
D (h) w.r.t h(x) is

g(x) :=
∂Rexp

D
∂h(x)

= −f(x)D(x) exp(−h(x)f(x)) (64)

or in the vector space
g = −f ◦D ◦ exp(−h ◦ f). (65)

To find a good descent direction, we solve for

min
h̃∈H
⟨h̃, g⟩ = ⟨−h̃ ◦ f ,D ◦ exp(−h ◦ f)⟩. (66)

The solution to this problem is the minimizer of RDh
(h̃) where Dh is the true distribution weighted

according to Dh(x) =
1
Zh
D(x) exp(−h(x)f(x)) and Zh is a normalization factor to make sure Dh

will be a probability distribution. Let h̃ = A(Dh). Given A is ϵ-approximate risk minimizer,

RDh
(h̃) =

1

2
⟨1− h̃ ◦ f ,Dh⟩ =

1

2
− 1

2Zh
⟨h̃ ◦ f ,D ◦ exp(−h ◦ f)⟩ ≤ ϵ. (67)

So, we have ⟨h̃ ◦ f ,D ◦ exp(−h ◦ f)⟩ ≥ Zh(1 − 2ϵ). For ϵ < 0.5, h̃ will be a descent direction
and the updating rule is

h := h+ η h̃. (68)

Finally, in order to find the optimum step size η, we plug the updated h into Equation 8 and solve
for

min
η

RD(h+ η h̃) = ⟨exp(−(h+ η h̃) ◦ f),D⟩. (69)

Since the objective is a convex function of η, it suffices to check the first order condition:

∂RD(h+ η h̃)

∂η
= ⟨h̃ ◦ f ◦ exp(−(h+ η h̃) ◦ f),D⟩

= ⟨h̃ ◦ f ◦ exp(−η h̃ ◦ f),D ◦ exp(−h ◦ f)⟩
= Zh exp(−η)(1−RDh

(h̃))− Zh exp(η)RDh
(h̃) = 0. (70)

Solving the last equation gives

η =
1

2
log(

1

RDh
(h̃)
− 1). (71)

Theorem C.2. For any ϵ-approximate risk minimizer A with 1
ϵ ∈ N, and path dynamic bench-

mark with L ≥ 3 rounds of model building and arbitrary mixture weights, there exists a hypothesis
class H with VCdim(H) ≤ 4 such that for any true classifier f ∈ H, there exists an underly-
ing distribution D where for any initial distribution D0 with supp(D0) ⊆ supp(D) that satisfies
D(x2) ≥ D(x1) ⇐⇒ D0(x2) ≥ D0(x1), there exists a sequence (ht)

T−1
t=0 of classifiers consistent

with the path dynamic benchmark where a similar lower-bound as Theorem 3.5 holds.

Proof. The proof is straightforward given the results obtained so far in the proof of Theorem 3.5.
The way we constructed Kts is equivalent to selecting two subsets of R+ and changing their pre-
dicted labels. So, let H′ be the class of such functions, i.e., the class of unions of two intervals
(VCdim(H′) = 4). For any f ∈ H′, we select d points from the real line such that f(x) is all 1 or
all −1. Let Xd ∈ Rd be the set of the selected points. Then we induce a probability distribution D
on Xd such that D(x) = 1

d +α(x) where α(x) is an ascending function of x and
∑

x∈Xd
α(x) = 0.

Then all of our arguments in the first part of the proof will be true for any D0 which is ascending or
descending w.r.t x. In the limit we have

lim
α→0

RD
(
maj(h0, · · · , hL−1)

)
≥ lim

α→0
D(K) = ϵ2

8
. (72)

This completes the proof.
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Theorem C.3. For any ϵ-approximate risk minimizer A with 1
ϵ ∈ N, and hierarchical dynamic

benchmark with depth-2 and width-3 (Figure 2) with arbitrary mixture and majority weights, there
exists a hypothesis class H with VCdim(H) ≤ 6 such that for any true classifier f ∈ H, there
exists an underlying distributionD where for any initial distributionD0 with supp(D0) ⊆ supp(D)
that satisfies D(x2) ≥ D(x1) ⇐⇒ D0(x2) ≥ D0(x1), there exists classifiers consistent with the
hierarchical dynamic benchmark for which a similar lower-bound as Theorem 4.2 holds.

Proof. Given the results obtained in the proof of Theorem 4.2, the proof of this theorem is pretty
straightforward. The way we chose Kts in the proof of Theorem 4.2 is equivalent to choosing three
intervals from the real line. So, letH′ be such class of function (VCdim(H′) = 6). For any f ∈ H′,
we select d points from the real line such that f(x) is all 1 or all −1. Let Xd ∈ Rd be the set of
the selected points. Then we induce a probability distribution D on Xd such that D(x) = 1

d + α(x)
where α(x) is an ascending function of x and

∑
x∈Xd

α(x) = 0. All of our arguments in the first
part of the proof hold for any D0 which is ascending or descending w.r.t x. In the limit we have

lim
α→0

RD(maj(g0, g1, g2)) ≥ lim
α→0
D([1]) = ϵ3

2
, (73)

which completes the proof.
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