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Abstract

The increasing prevalence of online sexual ha-001
rassment reports highlights the need for effec-002
tive automated tools to analyze these personal003
accounts. In this study, we evaluate a range004
of models, from neural networks to small and005
large language models, on the SafeCity dataset006
to classify incidents of sexual harassment, in-007
cluding commenting, ogling, and groping. We008
found that different model architectures per-009
form best for different types of harassment, un-010
derscoring the need for targeted model selec-011
tion. Specifically, CNN-RNN models are the012
most effective for detecting "ogling", BERT-013
FT excels in identifying "commenting", and014
DeepSeek7B-FT LLM performs best for "grop-015
ing" related cases. To integrate these com-016
plementary strengths, we introduce AD-ASH,017
an adaptive ensemble framework that automat-018
ically selects the highest-performing model019
for each category of harassment. By dynami-020
cally matching models to task types, AD-ASH021
achieves state-of-the-art accuracy ranging from022
84% to 88% across classes. This adaptive ap-023
proach offers a robust solution for the nuanced024
task of harassment classification, demonstrat-025
ing improved performance over single-model026
baselines. Our findings highlight the impor-027
tance of model specialization and ensemble028
learning in sensitive, real-world applications.029
Supplementary analyses, including word clus-030
tering and LIME-based interpretation of model031
predictions, are provided in the appendix to of-032
fer further insight into language cues that drive033
classification.034

1 Introduction035

Social media platforms have significantly affected036

public discourse by providing spaces in which in-037

dividuals openly share personal experiences, in-038

cluding sensitive narratives about sexual harass-039

ment. Movements such as #MeToo have encour-040

aged countless victims to share their experiences041

online, creating an extensive, yet linguistically di-042

Example Instances C O G

“a bunch of guys were passing very bad
comments”

1 0 0

“Men and boys hanging around outside
the station, staring and passing comments
on women passingby.”

1 1 0

“a man tried to touch me inappropriately
on the road. i looked at him and said what
and he didn’t react to it. i went away.”

0 0 1

Table 1: Annotated example instances from the SafeCity
dataset with binary labels for C (Commenting), O
(Ogling), and G (Groping). Positive cases (1) are shaded
in red, and negative cases (0) are shaded in green.

verse body of narratives. Analyzing these narra- 043

tives manually is impractical because of their sheer 044

volume and linguistic complexity, necessitating 045

effective automated natural language processing 046

(NLP) tools to classify and detect instances of sex- 047

ual harassment swiftly and accurately. 048

Early contributions, notably by Karlekar 049

and Bansal (2018), introduced the SafeCity 050

dataset, which comprises approximately 10,000 051

anonymized victim narratives. Table 1 shows three 052

example narratives from the SafeCity dataset. Ini- 053

tial studies applied neural network architectures 054

such as CNN and RNN to classify harassment types 055

effectively. The emergence of transformer-based 056

models, particularly BERT (Devlin et al., 2019) and 057

GPT-2 (Radford et al., 2019), has significantly im- 058

proved contextual representation capabilities and 059

advanced NLP performance considerably. 060

More recently, large language models (LLMs) 061

such as Llama-3.1 (Grattafiori et al., 2024) and 062

DeepSeek (DeepSeek-AI et al., 2025) have further 063

expanded the toolkit for these tasks. These LLMs 064

support powerful prompting techniques, such as 065

zero-shot, one-shot, and few-shot learning, which 066

have shown notable effectiveness across a range 067

of natural language processing applications. A 068
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study by Brown et al. (2020) showed that GPT-069

3, using few-shot prompting, can achieve state-070

of-the-art results on multiple NLP benchmarks by071

effectively generalizing from a small number of072

provided examples without requiring additional073

fine-tuning. Additionally, Retrieval-Augmented074

Generation (RAG) enables the dynamic retrieval of075

relevant examples from external sources to guide076

predictions, thereby enhancing context sensitivity077

and model flexibility. Lewis et al. (2021) demon-078

strated that this approach significantly improves079

performance on knowledge-intensive tasks, partic-080

ularly in settings with limited supervision or highly081

variable language, such as those found in personal082

harassment narratives.083

Research has shown that different models, rang-084

ing from neural networks to transformer-based085

SLMs and LLMs, exhibit varying performance086

across different tasks or subsets of the same task.087

Studies by Lai et al. (2024); Zhou et al. (2021);088

Balasubramanian et al. (2018) demonstrated that089

adaptive or ensemble models can offer benefits by090

incorporating a diverse set of models, each per-091

forming better on specific subsets of a given task.092

Building on this insight, our study introduces093

AD-ASH, an adaptive and extensible ensemble094

framework that dynamically selects the most ef-095

fective model for each type of harassment clas-096

sification task. Our findings reveal that differ-097

ent model architectures specialize in different cat-098

egories: CNN-RNN performs best for "ogling",099

BERT-FT for "commenting", and DeepSeek7B-FT100

LLM for "groping" related cases. This diversity101

reflects how different narrative types emphasize102

distinct linguistic structures, making them better103

suited to different computational approaches. Cru-104

cially, we observe that in some cases, LLMs do not105

consistently outperform smaller, task-focused mod-106

els (Everitt et al., 2025; Bellos et al., 2024). Sim-107

pler models such as CNN-RNN yield more accurate108

results, particularly in noisy or narrowly defined109

contexts. These results emphasize that adaptability,110

not model size, is central to robust classification,111

and that a one-size-fits-all strategy is insufficient112

for complex, real-world NLP tasks. Furthermore,113

the AD-ASH framework is designed with extensi-114

bility in mind, allowing new and emerging models115

or classification techniques to be easily integrated116

into the adaptive system, ensuring its continued117

effectiveness as NLP technology evolves.118

We also identify dataset noise, such as labeling119

inconsistencies and ambiguous language, as a sig-120

nificant challenge. These issues can hinder model 121

learning and introduce errors into both training 122

and prediction, disproportionately affecting LLMs 123

that rely heavily on broad contextual generalization 124

(Budnikov et al., 2025). As part of our study, we 125

examine the nature of this noise and its impact on 126

model behavior. Looking ahead, we aim to extend 127

our work by investigating LLM prompting strate- 128

gies, particularly how dynamic few-shot prompting 129

may help mitigate the effects of dataset misclassifi- 130

cations and improve reliability in noisy, real-world 131

applications. 132

Our contributions include the following: 133

1. A comparative evaluation of small and large 134

language models (SLMs and LLMs) in classi- 135

fying sexual harassment narratives. 136

2. A systematic exploration of fine-tuning and 137

prompt engineering strategies, ranging from 138

zero-shot and few-shot prompting to Retrieval- 139

Augmented Generation (RAG), to assess their 140

effectiveness in improving classification per- 141

formance of sexual harassment type detection. 142

3. The introduction of AD-ASH, a novel adap- 143

tive and extensible ensemble framework 144

that dynamically selects the best-performing 145

model for each harassment type, demonstrat- 146

ing improved accuracy across diverse narra- 147

tive structures. 148

This paper continues with related work, prob- 149

lem definition, methodology, experimental setup, 150

and detailed results analysis, and concludes with 151

implications and future research directions 152

2 Related work 153

Research on analyzing personal narratives of sexual 154

harassment is still developing, with limited work 155

specifically addressing these stories. However, 156

studies in related domains have laid the ground- 157

work for this research. For instance, early efforts to 158

analyze domestic abuse narratives on social media 159

platforms demonstrated the potential of compu- 160

tational methods for extracting valuable insights 161

from sensitive, user-generated content (Schrading, 162

2015; Schrading et al., 2015). NLP has also been 163

applied to other socially driven tasks, such as abuse 164

detection across social media platforms (Founta 165

et al., 2018) and identifying signs of depression 166

and suicidal ideation in user content (Pestian et al., 167

2008; Yazdavar et al., 2017). 168
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A key contribution to the analysis of sexual ha-169

rassment narratives is the SafeCity study by Kar-170

lekar and Bansal (2018), which introduced the171

SafeCity dataset, a large collection of nearly 10,000172

victim-reported stories. They applied CNN-RNN173

architectures to classify harassment narratives into174

multiple categories, achieving 80-86% accuracy175

while highlighting the challenge of capturing com-176

plex contextual and sequential nuances in these177

personal accounts.178

Recently, transformer-based models, such as179

BERT (Devlin et al., 2019) and GPT-2 (Radford180

et al., 2019) have revolutionized NLP by offering181

richer contextual representations, leading to sig-182

nificant improvements in various text classifica-183

tion tasks. These models, along with earlier neu-184

ral networks and more advanced large-language185

models (LLMs), contribute to a diverse range of186

models with unique capabilities. Building on187

these advancements, research has investigated en-188

semble learning techniques to enhance the per-189

formance and leverage the strengths of multiple190

models within this space. For example, Shahri191

et al. (2020) combined BERT with CNN and RNN192

components to capture complementary features193

and boost the classification accuracy. Similarly,194

Kim et al. (2021) introduced the auxiliary class-195

based multiple-choice learning (AMCL) frame-196

work, which improves performance through model197

specialization. Furthermore, Large et al. (2019)198

showed that combining classifiers from different199

model families can enhance the predictive accuracy.200

Drawing on these insights, our study adopts an201

adaptive ensemble approach for classifying sexual202

harassment narratives. We expand on the method-203

ology presented by Karlekar and Bansal (2018) by204

incorporating the top-performing candidate mod-205

els from binary classifiers to enhance multi-label206

classification tasks.207

Several studies have explored large language208

models (LLMs) (Paik, 2024; Kwon and Hun-209

joon Kim, 2024; Riahi Samani et al., 2025) as well210

as frameworks such as LaMSUM (Chhikara et al.,211

2025). LaMSUM, a multi-level framework for gen-212

erating extractive summaries from Safe City posts213

using LLMs, employs various voting methods for214

robust summarization. Evaluations of LaMSUM215

with models such as Llama, Mistral, and GPT-4o216

highlight its superiority in extractive summariza-217

tion, highlighting LLMs’ strength of LLMs in sum-218

marization tasks. However, while LLMs excel at219

summarization, our findings suggest that they are220

Figure 1: Adaptive model: During the training phase,
the candidate models for each type of sexual harassment
detection are selected and applied to the binary classifi-
cation task for each utterance, before being used for the
multi-class classification.

less effective in label classification, especially for 221

detecting sexual harassment types. Despite LLMs 222

such as GPT-4o achieving high accuracy in con- 223

tent detection (Wen et al., 2024; Chhikara et al., 224

2025), our study shows that Small Language Mod- 225

els (SLMs) such as BERT outperform LLMs in 226

accurately classifying harassment labels. This in- 227

dicates that while LLMs are powerful for summa- 228

rization tasks, task-specific models, such as SLMs, 229

are more suited to the nuanced task of classify- 230

ing sexual harassment labels. Moreover, retrieval 231

augmented generation (RAG) methods that dynami- 232

cally incorporate relevant examples into model pre- 233

dictions have demonstrated superior performance 234

by effectively grounding responses in contextually 235

relevant information (Lewis et al., 2021). 236

3 Problem definition 237

In this section, we formally define the problem 238

of detecting sexual harassment. Given an utter- 239

ance U = {w1, ...wN}, where w, represents a 240

textual word, the goal is to identify the types of 241

sexual harassment in each utterance from the set 242

{Commenting, ogling, groping}. The problem 243

is approached as two sub-problems. 244

The first sub-problem consists of three indepen- 245

dent binary classification tasks, each corresponding 246

to one harassment type. In this case, the possible 247

output labels for each classifier are: [Comment- 248

ing, Non-Commenting], [Ogling, Non-Ogling], and 249

[Groping, Non-Groping]. Consequently, three sep- 250

arate binary classifiers are trained, one for each 251
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category.252

The second sub-problem is a multi-label classi-253

fication task, where any combination of the three254

categories is allowed. This results in 23 = 8 possi-255

ble label configurations, including a label for none256

of the three classes.257

4 AD-ASH: An Adaptive Architecture258

for Sexual Harassment Detection259

We introduce AD-ASH, an adaptive and extensible260

framework designed for the detection of different261

types of sexual harassment. The core idea is to262

evaluate a set of candidate models and select the263

best-performing one for each harassment category264

(e.g., commenting, ogling, groping), thereby creat-265

ing a tailored and modular multi-label classifier.266

Figure 1 illustrates the pipeline. During train-267

ing, each model is assessed for each harassment268

type in a binary classification setting. The highest-269

performing model per class is then selected and270

used in that class inference. The results from the271

independent harassment type classifiers are com-272

bined to produce the final multi-label prediction.273

This design not only improves classification ac-274

curacy by leveraging the strengths of different mod-275

els but also ensures extensibility. As new models or276

fine-tuning techniques emerge, they can be easily277

integrated into the AD-ASH framework.278

4.1 Candidate Models for AD-ASH279

Below we describe the models evaluated and used280

as components within AD-ASH.281

BERT-FT utilizes the implementation from the282

Hugging Face Transformers library “BertForSe-283

quenceClassification”, which appends a classifica-284

tion head to BERT’s final hidden layer to produce285

logits for each class. During fine-tuning, all model286

parameters, including the classification head, are287

optimized jointly. For binary classification, the288

model outputs two logits passed through a sigmoid289

activation. For multi-label classification (comment-290

ing, ogling, groping), three logits are generated and291

passed through independent sigmoid functions. Ut-292

terances are input directly into the encoder with no293

additional prompt or instructional text, and gold-294

standard labels are used for supervision. A maxi-295

mum sequence length of 512 tokens is used, match-296

ing BERT’s supported input size.297

GPT2-FT leverages the implementation298

“GPT2ForSequenceClassification”, which at-299

taches a fully connected classification head300

to GPT-2’s final hidden representation. All 301

parameters are fine-tuned end-to-end. For binary 302

classification, two logits are produced and passed 303

through a softmax function. For multi-class 304

prediction, three logits are generated and passed 305

through sigmoid activations for each class. Unlike 306

BERT, GPT-2 is guided by short task-specific 307

prompts to steer generation during both training 308

and inference. A maximum sequence length of 309

512 tokens is used. 310

In addition to improving classification accuracy, 311

AD-ASH is extensible, new models, prompting 312

strategies, and classification heads can be inte- 313

grated as the landscape of language models contin- 314

ues to evolve. 315

Llama-3.1-FT utilizes the Llama-3.1 8B Instruct 316

"LlamaForSequenceClassification" model from 317

the Hugging Face Transformers library to per- 318

form binary classification with the "Llama-3.1-8B- 319

Instruct" model. To facilitate binary classification, 320

the model is provided with a task-specific instruc- 321

tional prompt that describes the classification objec- 322

tive clearly (e.g., determining whether a statement 323

reflects commenting, ogling, or groping), enabling 324

the model to align its outputs with the expected 325

label format (e.g., True/False combinations). 326

To efficiently manage this large model, we ap- 327

ply 4-bit quantization using the BitsAndBytes li- 328

brary. Additionally, we enhance Llama-3.1 with 329

Low-Rank Adaptation (LoRA) through the PEFT 330

framework. A LoRA configuration is set with a 331

rank of 8, an alpha scaling factor of 16, and a 332

dropout rate of 0.1. To conserve memory during 333

training, gradient checkpointing is enabled and the 334

model is prepared for k-bit training before integrat- 335

ing the LoRA adapters. The fine-tuning process 336

is performed end-to-end on our binary classifica- 337

tion task. Input text is tokenized to determine the 338

maximum sequence length and then tokenized with 339

padding accordingly. The tokenized data is con- 340

verted into PyTorch tensors and structured into a 341

dataset compatible with the Hugging Face Trainer. 342

We optimize the model using cross-entropy loss. 343

DeepSeek7B-FT We adopt the instruction-tuned 344

"deepseek-llm-7b-chat" model for binary classifica- 345

tion using "AutoModelForSequenceClassification". 346

The model is fine-tuned with LoRA and 4-bit quan- 347

tization similar to Llama-3.1. Instructional prompts 348

are used during training and inference to specify 349

the classification task, enabling the model to pro- 350

duce structured outputs aligned with the required 351

label formats. Tokenization uses AutoTokenizer, 352
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and training is performed with the Hugging Face353

Trainer framework using AdamW optimizer and354

linear learning rate scheduler.355

4.2 Candidate Model Selection for AD-ASH356

As previously introduced, AD-ASH is an adap-357

tive and extensible framework that selects the best-358

performing model for each type of sexual harass-359

ment. In our implementation, BERT-FT is selected360

for detecting "commenting," Deepseek7B-FT for361

"groping," and CNN-RNN for "ogling", see Fig-362

ure 1. Each harassment type is first modeled using363

a binary classifier, and the selected classifiers’ out-364

puts are then combined to generate a multi-label365

prediction for each utterance. This modular de-366

sign allows the framework to leverage the specific367

strengths of each model for more accurate and in-368

terpretable classification.369

5 Experimental setup370

5.1 Dataset371

In our experiments, we utilize the SafeCity dataset372

Karlekar and Bansal (2018). The dataset was in-373

troduced to capture real-world reports of sexual ha-374

rassment, SafeCity comprises of 9,892 anonymized375

narratives where victims describe their experiences376

along with contextual information such as the inci-377

dent location. While the original dataset includes378

annotations for 13 different forms of harassment,379

our work focuses on a carefully selected subset of380

categories that are most prevalent in the data: com-381

menting, ogling (staring), and groping (touching).382

For our experiments, the dataset is partitioned into383

7,201 training examples, 990 validation examples,384

and 1,701 test examples. Given the inconsistent385

performance across similar models, we investigated386

potential label noise within the dataset by conduct-387

ing a validation study. This involved comparing388

the original dataset labels with expert-provided an-389

notations and applying statistical tests to evaluate390

mismatch rates and potential directional biases (see391

Appendix A).392

5.2 Evaluation metrics393

Single-label. We use accuracy to measure how394

often a model correctly classifies each sample. For-395

mally, if N is the total number of instances and396

ŷi is the predicted label for the i-th instance (with397

gold label yi),398

Accuracy =
1

N

N∑
i=1

I(ŷi = yi), (1) 399

where I(·) is the indicator function that returns 400

1 if its argument is true, and 0 otherwise. 401

Multi-label. We report two primary metrics: ex- 402

act match ratio and Hamming score. Let each in- 403

stance have a set of gold labels Yi (out of L total 404

labels) and a predicted set Ŷi. The exact match 405

ratio is: 406

Exact Match Ratio =
1

N

N∑
i=1

I(Ŷi = Yi), (2) 407

i.e., the fraction of instances for which the model 408

predicts the exact set of labels. The Hamming score 409

is defined as the complement of the Hamming loss. 410

The Hamming loss is computed as: 411

Hamming Loss =
1

N

N∑
i=1

|Ŷi△Yi|
L

, (3) 412

where △ denotes the symmetric difference between 413

the predicted labels and the ground truth. The Ham- 414

ming score is thus, 415

Hamming Score = 1− Hamming Loss. (4) 416

5.3 Baselines 417

We compare the performance of best performing 418

binary-classification models and our novel adaptive 419

framework for multi-label classification against the 420

following baseline models, as reported by Karlekar 421

and Bansal (2018): 422

Random forest (Breiman, 2001) is an ensemble 423

learning method that builds multiple decision trees 424

and combines their outputs, thereby improving clas- 425

sification accuracy and reducing overfitting. This 426

traditional approach serves as a useful non-neural 427

reference. 428

CNN performs sentence classification by trans- 429

forming input text into word embeddings, then ap- 430

plying multiple convolutional filters with varying 431

kernel sizes to extract local n-gram features. Max- 432

pooling selects the most informative features from 433

each filter, creating a fixed-length representation 434

that feeds into a fully-connected layer for classi- 435

fication probability computation. This approach 436
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processes the entire text as a single instance (Kim,437

2014).438

RNN utilizes Long Short-Term Memory (LSTM)439

units (Hochreiter and Schmidhuber, 1997) to cap-440

ture sequential and contextual dependencies in text.441

After converting tokenized text into word embed-442

dings, the LSTM network processes them sequen-443

tially, maintaining an evolving hidden state that444

summarizes contextual information. The final hid-445

den state serves as a comprehensive representation446

for classification through a fully-connected layer.447

This approach effectively handles tasks where word448

order and long-range dependencies are crucial.449

CNN-RNN combines convolutional and recurrent450

architectures by first converting text into word em-451

beddings and extracting local features through con-452

volutional filters. These features then feed into an453

LSTM layer that models temporal dynamics and454

sequential relationships. The final LSTM hidden455

state provides a unified representation for classifi-456

cation through a fully-connected layer. This hybrid457

approach effectively handles scenarios requiring458

both local patterns and global context (Zhou et al.,459

2015).460

CNN-RNN (B+C)* model combines convolutional461

layers with a bidirectional LSTM and integrates462

character-level embeddings to capture fine-grained463

morphological information. This approach lever-464

ages the strength of CNNs for extracting local fea-465

tures and the capability of bidirectional LSTMs466

for modeling contextual dependencies, as demon-467

strated previously by Ma and Hovy (2016).468

5.4 Training and testing469

Across all models, a batch size of 8 is used, and470

optimization is performed using the AdamW op-471

timizer. A fixed random seed is applied to ensure472

reproducibility. For single-label classification tasks,473

standard cross-entropy loss is employed, while for474

multi-label classification, binary cross-entropy with475

logits loss (i.e., BCEWithLogitsLoss) is used.476

At test time, any category whose predicted prob-477

ability exceeds a chosen threshold of 0.5 is marked478

as positive, allowing for various combinations of479

commenting, ogling, and groping to be recognized480

simultaneously.481

5.5 Prompting strategies and Retrieval Setup482

In addition to supervised fine-tuning, we evalu-483

ate instruction-tuned models using prompting and484

retrieval-augmented strategies:485

Model Comment Ogle Grope

Previous models

CNN 80.9 82.2 86.0
RNN 81.0 82.2 86.2
CNN-RNN 81.6 84.1 86.5

SLMs

BERT-FT (ours) 83.2 83.1 88.0
GPT2-FT (ours) 82.1 83.1 87.4

LLMs

Llama-3.1 FT (ours) 62.0 59.7 56.0
LLama-3.1 zero-shot (ours) 63 56.7 81.4
Llama-3.1 one-shot (ours) 67.5 59.7 83.6
Llama-3.1 few-shot (ours) 63 55.3 84.4
Llama-3.1 + RAG (ours) 76.6 74.4 83.4

DeepSeek7B FT (ours) 81.7 83 88.7
DeepSeek7B zero-shot
(ours)

72.8 71.1 79.3

DeepSeek7B one-shot
(ours)

51.6 78 82.7

DeepSeek7B few-shot
(ours)

60.1 55.8 82.0

Deepseek7B+ RAG (ours) 67.7 60.6 55.3

Table 2: Single-label classification (accuracy) results.
The best results are shown in bold, and the second-
best results are underlined. Performance of traditional
models such as Linear Support Vector Machine, Logistic
Regression, Gaussian Naive Bayes, and Support Vector
Machine can be found in the original study by Karlekar
and Bansal (2018).

Zero-shot prompting : An instruction prompt 486

is constructed using the task definition and a ha- 487

rassment narrative. The model is asked to classify 488

the narrative based on this instruction without any 489

examples. 490

One-shot and few-shot prompting: Prompts are 491

extended to include one or more annotated exam- 492

ples before the test instance. These examples are 493

manually selected to provide representative context 494

and ensure format consistency. 495

RAG-enhanced few-shot prompting: We imple- 496

ment a dynamic prompting pipeline using Sentence- 497

BERT (MiniLM-L6-v2) (Hossain et al., 2024) for 498

embedding SafeCity training narratives. FAISS 499

(Douze et al., 2024) is used to retrieve the top-k 500

semantically similar examples (with k = 6), bal- 501

ancing class distribution. Retrieved examples are 502

injected into the prompt along with their binary 503

labels. The combined context and test instance are 504

passed to the instruction-tuned LLM (Llama-3.1 or 505

DeepSeek7B), which generates the binary label. 506

This setup enables us to compare differ- 507

ent prompting strategies, including static versus 508
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retrieval-based examples, and evaluate whether the509

dynamic context improves generalization in binary510

harassment classification.511

6 Results and discussions512

Table 2 summarizes the accuracy of various models513

on binary (single-label) classification tasks for sex-514

ual harassment detection. The results indicate that515

different models excel at different classification516

tasks. Our BERT-FT model achieves the high-517

est accuracy on the commenting task, with a score518

of 83.2%, and the second-highest performance on519

groping at 88.0%. The best performance on the520

groping task is obtained by our DeepSeek7B-FT521

LLM model, with an accuracy of 88.7%. CNN-522

RNN achieves the highest accuracy on the ogling523

task at 84.1%, while our GPT2-FT model ranks524

second for both commenting and ogling, with accu-525

racies of 82.1% and 83.1%, respectively.526

These findings reinforce the notion that different527

models, ranging from traditional neural networks528

to SLMs and LLMs, perform better on different529

aspects of the harassment classification problem.530

This variability highlights the value of an adap-531

tive architecture that can dynamically leverage the532

strengths of each model. Overall, SLMs demon-533

strate strong suitability for domain-specific classifi-534

cation tasks such as these. Table535

Additionally, Table 2 reveals that large language536

models (LLMs), such as Llama-3.1, perform sig-537

nificantly worse on these specialized classification538

tasks despite their scale and recent development.539

For example, the Llama-3.1 FT model achieves540

only 62.0% accuracy on commenting and 56.0%541

on groping, highlighting a common limitation of542

LLMs in extracting precise labels from text, even543

though they often excel in generative tasks. In con-544

trast, DeepSeek7B-FT, a newer instruction-tuned545

LLM, demonstrates performance much closer to546

smaller language models (SLMs), achieving 82.0%,547

81.6%, and 86.5% accuracy on commenting, ogling,548

and groping, respectively. This suggests that some549

of the typical performance gaps between LLMs and550

SLMs can be bridged with appropriate tuning and551

design.552

Moreover, the table also shows that LLMs oper-553

ating in zero-shot, one-shot, few-shot, and RAG-554

enhanced settings generally underperform when555

compared to their fine-tuned LLM counterparts556

and SLMs. Nevertheless, retrieval-augmented gen-557

eration (RAG) provides noticeable performance558

Model Exact Match Hamming Score

Random Forest 35.0 70.2
CNN 53.7 80.2
RNN 57.1 81.5
CNN-RNN 59.2 82.3
CNN-RNN(B+C)* 62.0 82.5
GPT2(ours) 62.8 84.0
BERT(ours) 64.7 84.5
DeepSeek7B-FT(ours) 64.9 84.46
AD-ASH(ours) 66.02 85.26

Table 3: Multi-label classification results. The best
results are shown in bold, and the second-best results
are underlined.

improvements for Llama on the commenting and 559

ogling tasks, indicating the potential of such aug- 560

mentation strategies. These findings emphasize the 561

need for further exploration of advanced prompt- 562

ing and augmentation methods to identify stronger 563

candidate models for inclusion in the adaptive AD- 564

ASH framework. 565

These performance variations across models 566

may be partially explained by inconsistencies in 567

the original training labels, as identified in our 568

label validation study (see Appendix A). Statis- 569

tical testing revealed moderate disagreement be- 570

tween the original and expert-assigned labels, with 571

elevated mismatch rates in the commenting and 572

ogling categories. Additionally, a significant di- 573

rectional bias was found in the groping category, 574

suggesting that true groping cases were frequently 575

overlooked. These findings highlight the presence 576

of label noise, which may contribute to variability 577

in model behavior, especially in commenting and 578

ogling categories. 579

Table 3 summarizes the multi-label classification 580

results across various baseline models, transformer- 581

based small language models (SLMs), large lan- 582

guage models (LLMs), and our adaptive ensemble 583

approach. Traditional machine learning methods 584

such as Random Forest yield relatively modest per- 585

formance, with an exact match score of 35.0 and a 586

Hamming score of 70.2. Neural network architec- 587

tures, including CNNs, RNNs, and the combined 588

CNN-RNN model, demonstrate improved effective- 589

ness, with the CNN-RNN (B+C)* model achieving 590

an exact match of 62.0 and a Hamming score of 591

82.5. 592

Among transformer-based SLMs, BERT-FT de- 593

livers the strongest results, attaining an exact match 594

score of 64.7 and a Hamming score of 84.5. GPT2- 595

FT also performs well, with exact match and Ham- 596
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ming scores of 62.8 and 84.0, respectively. Our597

DeepSeek7B-FT LLM model slightly outperforms598

the SLMs in terms of exact match with a score599

of 64.9, while achieving a comparable Hamming600

score of 84.46. Most notably, our adaptive ensem-601

ble model, AD-ASH, which integrates predictions602

from BERT-FT (for commenting), DeepSeek7B-FT603

(for groping), and CNN-RNN (for ogling), deliv-604

ers the highest overall performance. It achieves605

an exact match score of 66.02 and a Hamming606

score of 85.26, underscoring the value of selec-607

tively combining specialized models for each ha-608

rassment type.609

The improved performance of AD-ASH, the610

adaptive model suggests that leveraging the com-611

plementary strengths of the selected candidate mod-612

els such as BERT-FT, DeepSeek7B-FT and CNN-613

RNN, is advantageous for multi-label classification614

in this domain. While BERT-FT, DeepSeek7B-615

FT, and CNN-RNN individually capture important616

contextual and sequential information, their com-617

bined predictions offer a more robust representa-618

tion of the multiple harassment types present in619

a single narrative. This adaptive, extensible en-620

semble approach effectively addresses some of the621

weaknesses inherent in each model when used in622

isolation, resulting in higher overall classification623

accuracy. These findings suggest that, given the624

wide range of available models, solutions could625

benefit from creating frameworks that leverage the626

strengths of multiple models. It also emphasizes627

the importance of continuing to explore older mod-628

els, as they have proven beneficial when combined629

with more complex models.630

7 Conclusion and future work631

In this work, we propose an adaptive model that632

leverages the strengths of transformer-based small633

language models (SLMs) such as BERT, large lan-634

guage models (LLMs) like DeepSeek, and neu-635

ral network architectures such as CNN-RNN. Us-636

ing the foundational SafeCity dataset introduced637

by Karlekar and Bansal (2018), our goal is to ad-638

vance the automated classification of sexual harass-639

ment narratives. By fine-tuning (FT) a range of640

models, including BERT, GPT-2, Llama-3.1, and641

DeepSeek7B, we constructed a pool of candidate642

classifiers capable of identifying distinct harass-643

ment categories. Our adaptive, extensible ensem-644

ble strategy selects the top-performing model for645

each label, BERT-FT for groping, DeepSeek7B-FT646

for commenting, and CNN-RNN for ogling, based 647

on validation performance. This selective integra- 648

tion enables our system to achieve state-of-the-art 649

results across these key categories. 650

To support transparency and trust in deployment 651

contexts, we incorporate interpretability techniques 652

such as LIME and t-SNE-based word clustering 653

(detailed in the Appendix B), which reveal impor- 654

tant linguistic patterns influencing model decisions. 655

Future work will focus on refining the ensem- 656

ble strategy and exploring larger or more optimized 657

variants of DeepSeek and other large language mod- 658

els (LLMs), given their promising performance in 659

sensitive classification tasks. We also plan to in- 660

vestigate more sophisticated fine-tuning methods, 661

advanced ensemble mechanisms, and domain adap- 662

tation techniques to further improve robustness and 663

generalizability. In addition, we will explore aug- 664

mentation strategies using knowledge graphs en- 665

riched with relational and contextual information 666

to better capture the nuanced semantics present in 667

harassment narratives. 668

A critical research direction involves addressing 669

the sensitivity of LLMs to label noise, as high- 670

lighted in prior work by Khandalkar et al. (2025); 671

Havrilla and Iyer (2024a). Misclassifications in- 672

troduced by noisy or ambiguous labels can signif- 673

icantly reduce predictive reliability, especially in 674

emotionally charged and socially sensitive domains 675

like harassment detection. As shown in our label 676

validation analysis (see Appendix A), mitigating 677

these issues will be key to realizing the full poten- 678

tial of LLMs in this space. 679

Finally, we aim to enhance interpretability using 680

more advanced explanation techniques to better un- 681

derstand multi-label predictions and the model’s de- 682

cision pathways. Ultimately, our work contributes 683

to the broader goal of developing accurate, inter- 684

pretable, and socially responsible NLP systems that 685

support real-world harassment reporting and victim 686

advocacy (Manche et al., 2025). 687

8 Limitations 688

Although our adaptive ensemble framework shows 689

promising performance, it has several limitations. 690

Our experiments rely solely on the SafeCity dataset, 691

which, despite its size, may not capture the full 692

diversity of sexual harassment narratives across 693

different platforms, potentially limiting the gen- 694

eralizability of our findings. Additionally, while 695

transformer-based models like BERT and GPT-2 696
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perform robustly, larger models such as Llama-3.1697

and DeepSeek sometimes yield inconsistent results698

when distinguishing between similar harassment699

categories, indicating that further adaptation or spe-700

cialized fine-tuning may be required. Moreover,701

the inherent imbalance in the distribution of harass-702

ment categories and the ambiguity in certain narra-703

tives can lead to misclassifications, and our reliance704

on quantitative metrics like accuracy, exact match,705

and Hamming score may not fully reflect the qual-706

itative aspects of model predictions. Future work707

should address these challenges by incorporating708

more diverse datasets, refining model adaptation709

techniques, and exploring additional interpretabil-710

ity methods to develop more robust and transparent711

automated systems for sexual harassment classifi-712

cation.713

9 Ethics statement714

We analyze sensitive sexual harassment narratives715

from the anonymized SafeCity dataset, strictly for716

research and in full compliance with ethical guide-717

lines. Our methods include interpretability anal-718

yses to help mitigate potential biases and support719

victim advocacy, recognizing that automated clas-720

sification is only part of a comprehensive, human-721

centered approach. We adhere to all institutional722

and ACL ethical policies and encourage continued723

research on the ethical challenges of processing724

sensitive content.725
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A Label Quality Validation Study925

To better understand potential sources of variation926

in model performance, we conducted a validation927

study to assess the quality of the original labels928

used in the training data. This study evaluates the929

level of agreement between the original annotations930

and a set of expert-verified labels across three ha-931

rassment categories: commenting (verbal), ogling932

(visual), and groping (physical).933

A.1 Procedure934

From the full dataset of 7,201 harassment reports,935

we drew a stratified random sample of 200 entries936

from the training set. Each sample was indepen-937

dently reviewed by domain experts and relabeled to938

form a gold-standard reference set. For each entry,939

we compared:940

• Original labels: The initial labels assigned by941

an automated or external annotation process.942

• Manual labels: The revised labels assigned943

by expert annotators, used as ground truth.944

Each category label is binary, indicating pres-945

ence (1) or absence (0). We computed mismatch946

rates and applied hypothesis tests to characterize947

the degree and nature of disagreement.948

A.2 Mismatch Rates949

We first counted how often the original and expert950

labels differed. Out of 200 examples:951

• Commenting: 44 instances had mismatched952

labels (22.0%)953

• Ogling: 43 instances had mismatched labels954

(21.5%)955

• Groping: 28 instances had mismatched labels 956

(14.0%) 957

These values suggest that the commenting and 958

ogling labels were less consistently annotated than 959

groping. Higher mismatch rates imply greater la- 960

bel noise, which could affect model learning and 961

evaluation, especially for models that are sensitive 962

to nuanced distinctions. 963

A.3 Statistical Testing 964

We applied two statistical methods to assess the 965

significance and directionality of the mismatches. 966

A.3.1 One-Sided Z-Test for Proportions 967

This test evaluates whether the observed mismatch 968

rate for each category exceeds a predefined accept- 969

able threshold (p0), such as 5%, 10%, or 15%. It 970

answers the question: Are the disagreement rates 971

too high to be considered acceptable noise? 972

Hypotheses: 973

H0: p ≤ p0 (Mismatch rate is acceptable)
H1: p > p0 (Mismatch rate exceeds threshold)

974

We evaluated p0 thresholds from 1% to 30%. 975

The test statistic is: 976

Z =
p̂− p0√
p0(1−p0)

n

977

where p̂ is the observed mismatch rate and n = 978

200 is the sample size. 979

Results: 980

• Commenting: The null hypothesis is rejected 981

for thresholds below 18%, meaning that un- 982

less we accept an 18% error margin, the mis- 983

match rate is statistically too high. 984

• Ogling: Similar to commenting, the mismatch 985

rate only becomes acceptable at or above 18%. 986

• Groping: The mismatch rate is lower and 987

acceptable for thresholds above 11%. 988

These results show that the labeling quality for 989

commenting and ogling may not meet stricter qual- 990

ity standards (e.g., 5–10%), which is important 991

when training models requiring high-fidelity labels. 992

A.3.2 McNemar’s Exact Test for Directional 993

Bias 994

This test determines whether labeling errors were 995

balanced or skewed in a particular direction—i.e., 996

whether the original labels tended to miss positive 997

11

https://arxiv.org/abs/2409.00940
https://arxiv.org/abs/1511.08630
https://arxiv.org/abs/1511.08630
https://arxiv.org/abs/1511.08630


cases (false negatives) or incorrectly labeled nega-998

tive cases as positive (false positives).999

We define:1000

• b: Number of false negatives (original label =1001

0, new true label = 1)1002

• c: Number of false positives (original label =1003

1, new true label = 0)1004

Under the null hypothesis (no directional bias), b1005

and c should be roughly equal. We use the binomial1006

test:1007

b ∼ Binomial(b+ c, 0.5)1008

Results:1009

• Commenting: b = 20, c = 24, p = 0.65 →1010

No directional bias.1011

• Ogling: b = 24, c = 19, p = 0.54 → No1012

directional bias.1013

• Groping: b = 22, c = 6, p = 0.0037 →1014

Significant directional bias.1015

In the groping category, the number of false neg-1016

atives significantly exceeded false positives. This1017

suggests the original annotations consistently failed1018

to identify positive cases of groping, which may1019

have led to under-training on this class.1020

A.4 Summary1021

This validation study reveals moderate mismatch1022

rates across all three harassment categories. The1023

analysis suggests that, while the labels are broadly1024

usable, elevated mismatch rates in commenting and1025

ogling, and an asymmetry in groping, may in-1026

troduce noise or directional bias. Such noise can1027

disproportionately affect large language models,1028

which rely heavily on consistent contextual cues1029

to make accurate predictions. Even small amounts1030

of noise in training or prompting data have been1031

shown to substantially degrade LLM performance1032

(Havrilla and Iyer, 2024b). These insights help1033

contextualize the variability we observe in our own1034

LLM results and highlight the importance of label1035

quality when applying large models to sensitive1036

classification tasks.1037

B Interpretability Analysis1038

In this section we provide a range of visualization1039

techniques to analyze our best performing model.1040

Each visualization method takes a unique approach,1041

providing fresh insights or reinforcing existing con- 1042

clusions. These visualizations enhance our under- 1043

standing of the model, helping to uncover patterns, 1044

identify potential issues, and validate assumptions. 1045

B.1 Word clusters 1046

We selected seed words corresponding to class la- 1047

bels and identified the nearest neighbors of each 1048

seed word’s vector by reducing the dimensional- 1049

ity of the word embeddings using t-SNE (van der 1050

Maaten and Hinton, 2008), as shown in Table 4. 1051

This visualization not only confirms that our model 1052

has effectively learned meaningful word embed- 1053

dings but also reveals that each type of sexual ha- 1054

rassment is associated with a distinct context. Addi- 1055

tionally, it demonstrates that our model, AD-ASH, 1056

captures related words and concepts specific to 1057

each harassment category. We observe that BERT 1058

underperformed for the "ogling" category, while 1059

the CNN-RNN model used in our adaptive ap- 1060

proach achieved better results. This is reflected 1061

in the words extracted from our adaptive model, 1062

which more accurately represent this specific ha- 1063

rassment categories compared to those from the 1064

BERT model. 1065

B.2 Saliency Heat Map 1066

Saliency heatmaps (He and Liu, 2020) highlight 1067

which words in an input have the greatest impact 1068

on the final classification. 1069

In Figure 2a, the word “laughing” has the most 1070

significant influence on the classification, followed 1071

by “girls” and “noises”. These words lead the 1072

model to predict the label “commenting”, which 1073

matches the true label. This corresponds to a sce- 1074

nario where a group of boys makes remarks and 1075

strange noises toward girls—behavior that falls un- 1076

der the “commenting” category of sexual harass- 1077

ment. 1078

To understand why the model classifies certain 1079

incidents as non-commenting, consider Figure 2b. 1080

Here, the word “touched”, followed by “bus”, has 1081

the greatest influence, resulting in the model pre- 1082

dicting the label “non-commenting”, which again 1083

aligns with the true label. The model appears to 1084

associate “touching” with physical acts such as 1085

“groping”, which are categorized under a different 1086

type of sexual harassment. 1087

B.3 LIME analysis 1088

LIME (Local Interpretable Model-Agnostic Expla- 1089

nations) (Ribeiro et al., 2016) is a technique that 1090
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Observed word clusters

Model: AD-ASH

Commenting shameful disrespectful misbehaved vulgar inappropriate
Groping groping inappropriate touch assault harassment molestation
Ogling gestures visually disturbing voyeur leering

Model: BERT

Ogling encounter surrounded talk embarrassed leering

Table 4: Observed word clusters in AD-ASH and BERT.

(a) Correctly classified example of comment-
ing.

(b) Correctly classified example of non-
commenting.

Figure 2: Saliency heat-map fo example BERT classi-
fied utterances.

helps interpret a model’s decision-making process1091

by explaining predictions for specific instances.1092

In the context of our binary classification models,1093

LIME identifies the key features that influence the1094

model’s prediction for individual inputs. It does1095

this by approximating the model’s decision bound-1096

ary with a simpler, interpretable model in the local1097

vicinity of the instance, striking a balance between1098

fidelity and interpretability.1099

This approach provides valuable insights into1100

the features most relevant to a given classification,1101

enhancing our understanding of how the model in-1102

terprets specific examples. For instance, in the sen-1103

tence “The guy at first was staring at me and later1104

started passing cheap comments,” LIME analysis1105

identified the word “comments” as the most impor-1106

tant feature, followed by “passing” and “cheap”, in- 1107

dicating the model’s recognition of the “comment- 1108

ing” category of sexual harassment. In another ex- 1109

ample, the phrase “touching/groping, commenting, 1110

ogling, and sexual invites” (labeled as “ogling”) 1111

highlighted the word “ogling” as the most influen- 1112

tial feature, demonstrating the model’s ability to 1113

detect key terms associated with this harassment 1114

type. Similarly, in the sentence “A man standing 1115

too close to me in a semi-crowded metro station 1116

continued to touch me indecently till I pushed him 1117

away,” LIME identified “touch”, “pushed”, “stand- 1118

ing”, and “close” as the most significant terms, 1119

aligning with the “groping” classification. 1120

Overall, LIME analysis offers meaningful in- 1121

sights into the linguistic cues driving the model’s 1122

predictions, contributing to a clearer understanding 1123

of how the classifier distinguishes between types 1124

of sexual harassment such as "commenting", "grop- 1125

ing", and "ogling". 1126

13


	Introduction
	Related work
	 Problem definition 
	 AD-ASH: An Adaptive Architecture for Sexual Harassment Detection
	Candidate Models for AD-ASH
	 Candidate Model Selection for AD-ASH 

	Experimental setup
	Dataset
	Evaluation metrics
	Baselines
	Training and testing
	Prompting strategies and Retrieval Setup

	Results and discussions
	Conclusion and future work
	Limitations
	Ethics statement
	Label Quality Validation Study
	Procedure
	Mismatch Rates
	Statistical Testing
	One-Sided Z-Test for Proportions
	McNemar’s Exact Test for Directional Bias

	Summary

	Interpretability Analysis
	Word clusters
	Saliency Heat Map
	LIME analysis


