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Abstract

The increasing prevalence of online sexual ha-
rassment reports highlights the need for effec-
tive automated tools to analyze these personal
accounts. In this study, we evaluate a range
of models, from neural networks to small and
large language models, on the SafeCity dataset
to classify incidents of sexual harassment, in-
cluding commenting, ogling, and groping. We
found that different model architectures per-
form best for different types of harassment, un-
derscoring the need for targeted model selec-
tion. Specifically, CNN-RNN models are the
most effective for detecting "ogling", BERT-
FT excels in identifying "commenting", and
DeepSeek7B-FT LLM performs best for "grop-
ing" related cases. To integrate these com-
plementary strengths, we introduce AD-ASH,
an adaptive ensemble framework that automat-
ically selects the highest-performing model
for each category of harassment. By dynami-
cally matching models to task types, AD-ASH
achieves state-of-the-art accuracy ranging from
84% to 88% across classes. This adaptive ap-
proach offers a robust solution for the nuanced
task of harassment classification, demonstrat-
ing improved performance over single-model
baselines. Our findings highlight the impor-
tance of model specialization and ensemble
learning in sensitive, real-world applications.
Supplementary analyses, including word clus-
tering and LIME-based interpretation of model
predictions, are provided in the appendix to of-
fer further insight into language cues that drive
classification.

1 Introduction

Social media platforms have significantly affected
public discourse by providing spaces in which in-
dividuals openly share personal experiences, in-
cluding sensitive narratives about sexual harass-
ment. Movements such as #MeToo have encour-
aged countless victims to share their experiences
online, creating an extensive, yet linguistically di-

Example Instances C O G

“a bunch of guys were passing very bad 1 0 O
comments”

“Men and boys hanging around outside 1 1 0
the station, staring and passing comments
on women passingby.”

“a man tried to touch me inappropriately 0 0 | 1
on the road. i looked at him and said what
and he didn’t react to it. i went away.”

Table 1: Annotated example instances from the SafeCity
dataset with binary labels for C (Commenting), O
(Ogling), and G (Groping). Positive cases (1) are shaded
in red, and negative cases (0) are shaded in green.

verse body of narratives. Analyzing these narra-
tives manually is impractical because of their sheer
volume and linguistic complexity, necessitating
effective automated natural language processing
(NLP) tools to classify and detect instances of sex-
ual harassment swiftly and accurately.

Early contributions, notably by Karlekar
and Bansal (2018), introduced the SafeCity
dataset, which comprises approximately 10,000
anonymized victim narratives. Table 1 shows three
example narratives from the SafeCity dataset. Ini-
tial studies applied neural network architectures
such as CNN and RNN to classify harassment types
effectively. The emergence of transformer-based
models, particularly BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., 2019), has significantly im-
proved contextual representation capabilities and
advanced NLP performance considerably.

More recently, large language models (LLMs)
such as Llama-3.1 (Grattafiori et al., 2024) and
DeepSeek (DeepSeek-Al et al., 2025) have further
expanded the toolkit for these tasks. These LLMs
support powerful prompting techniques, such as
zero-shot, one-shot, and few-shot learning, which
have shown notable effectiveness across a range
of natural language processing applications. A



study by Brown et al. (2020) showed that GPT-
3, using few-shot prompting, can achieve state-
of-the-art results on multiple NLP benchmarks by
effectively generalizing from a small number of
provided examples without requiring additional
fine-tuning. Additionally, Retrieval-Augmented
Generation (RAG) enables the dynamic retrieval of
relevant examples from external sources to guide
predictions, thereby enhancing context sensitivity
and model flexibility. Lewis et al. (2021) demon-
strated that this approach significantly improves
performance on knowledge-intensive tasks, partic-
ularly in settings with limited supervision or highly
variable language, such as those found in personal
harassment narratives.

Research has shown that different models, rang-
ing from neural networks to transformer-based
SLMs and LLMs, exhibit varying performance
across different tasks or subsets of the same task.
Studies by Lai et al. (2024); Zhou et al. (2021);
Balasubramanian et al. (2018) demonstrated that
adaptive or ensemble models can offer benefits by
incorporating a diverse set of models, each per-
forming better on specific subsets of a given task.

Building on this insight, our study introduces
AD-ASH, an adaptive and extensible ensemble
framework that dynamically selects the most ef-
fective model for each type of harassment clas-
sification task. Our findings reveal that differ-
ent model architectures specialize in different cat-
egories: CNN-RNN performs best for "ogling",
BERT-FT for "commenting", and DeepSeek7B-FT
LLM for "groping" related cases. This diversity
reflects how different narrative types emphasize
distinct linguistic structures, making them better
suited to different computational approaches. Cru-
cially, we observe that in some cases, LLMs do not
consistently outperform smaller, task-focused mod-
els (Everitt et al., 2025; Bellos et al., 2024). Sim-
pler models such as CNN-RNN yield more accurate
results, particularly in noisy or narrowly defined
contexts. These results emphasize that adaptability,
not model size, is central to robust classification,
and that a one-size-fits-all strategy is insufficient
for complex, real-world NLP tasks. Furthermore,
the AD-ASH framework is designed with extensi-
bility in mind, allowing new and emerging models
or classification techniques to be easily integrated
into the adaptive system, ensuring its continued
effectiveness as NLP technology evolves.

We also identify dataset noise, such as labeling
inconsistencies and ambiguous language, as a sig-

nificant challenge. These issues can hinder model
learning and introduce errors into both training
and prediction, disproportionately affecting LLMs
that rely heavily on broad contextual generalization
(Budnikov et al., 2025). As part of our study, we
examine the nature of this noise and its impact on
model behavior. Looking ahead, we aim to extend
our work by investigating LLM prompting strate-
gies, particularly how dynamic few-shot prompting
may help mitigate the effects of dataset misclassifi-
cations and improve reliability in noisy, real-world
applications.
Our contributions include the following:

1. A comparative evaluation of small and large
language models (SLMs and LL.Ms) in classi-
fying sexual harassment narratives.

2. A systematic exploration of fine-tuning and
prompt engineering strategies, ranging from
zero-shot and few-shot prompting to Retrieval-
Augmented Generation (RAG), to assess their
effectiveness in improving classification per-
formance of sexual harassment type detection.

3. The introduction of AD-ASH, a novel adap-
tive and extensible ensemble framework
that dynamically selects the best-performing
model for each harassment type, demonstrat-
ing improved accuracy across diverse narra-
tive structures.

This paper continues with related work, prob-
lem definition, methodology, experimental setup,
and detailed results analysis, and concludes with
implications and future research directions

2 Related work

Research on analyzing personal narratives of sexual
harassment is still developing, with limited work
specifically addressing these stories. However,
studies in related domains have laid the ground-
work for this research. For instance, early efforts to
analyze domestic abuse narratives on social media
platforms demonstrated the potential of compu-
tational methods for extracting valuable insights
from sensitive, user-generated content (Schrading,
2015; Schrading et al., 2015). NLP has also been
applied to other socially driven tasks, such as abuse
detection across social media platforms (Founta
et al., 2018) and identifying signs of depression
and suicidal ideation in user content (Pestian et al.,
2008; Yazdavar et al., 2017).



A key contribution to the analysis of sexual ha-
rassment narratives is the SafeCity study by Kar-
lekar and Bansal (2018), which introduced the
SafeCity dataset, a large collection of nearly 10,000
victim-reported stories. They applied CNN-RNN
architectures to classify harassment narratives into
multiple categories, achieving 80-86% accuracy
while highlighting the challenge of capturing com-
plex contextual and sequential nuances in these
personal accounts.

Recently, transformer-based models, such as
BERT (Devlin et al., 2019) and GPT-2 (Radford
et al., 2019) have revolutionized NLP by offering
richer contextual representations, leading to sig-
nificant improvements in various text classifica-
tion tasks. These models, along with earlier neu-
ral networks and more advanced large-language
models (LLMs), contribute to a diverse range of
models with unique capabilities. Building on
these advancements, research has investigated en-
semble learning techniques to enhance the per-
formance and leverage the strengths of multiple
models within this space. For example, Shahri
et al. (2020) combined BERT with CNN and RNN
components to capture complementary features
and boost the classification accuracy. Similarly,
Kim et al. (2021) introduced the auxiliary class-
based multiple-choice learning (AMCL) frame-
work, which improves performance through model
specialization. Furthermore, Large et al. (2019)
showed that combining classifiers from different
model families can enhance the predictive accuracy.
Drawing on these insights, our study adopts an
adaptive ensemble approach for classifying sexual
harassment narratives. We expand on the method-
ology presented by Karlekar and Bansal (2018) by
incorporating the top-performing candidate mod-
els from binary classifiers to enhance multi-label
classification tasks.

Several studies have explored large language
models (LLMs) (Paik, 2024; Kwon and Hun-
joon Kim, 2024; Riahi Samani et al., 2025) as well
as frameworks such as LaMSUM (Chhikara et al.,
2025). LaMSUM, a multi-level framework for gen-
erating extractive summaries from Safe City posts
using LLMs, employs various voting methods for
robust summarization. Evaluations of LaMSUM
with models such as Llama, Mistral, and GPT-40
highlight its superiority in extractive summariza-
tion, highlighting LLMs’ strength of LLMs in sum-
marization tasks. However, while LLMs excel at
summarization, our findings suggest that they are
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Figure 1: Adaptive model: During the training phase,
the candidate models for each type of sexual harassment
detection are selected and applied to the binary classifi-
cation task for each utterance, before being used for the
multi-class classification.

less effective in label classification, especially for
detecting sexual harassment types. Despite LLMs
such as GPT-40 achieving high accuracy in con-
tent detection (Wen et al., 2024; Chhikara et al.,
2025), our study shows that Small Language Mod-
els (SLMs) such as BERT outperform LLMs in
accurately classifying harassment labels. This in-
dicates that while LLMs are powerful for summa-
rization tasks, task-specific models, such as SLMs,
are more suited to the nuanced task of classify-
ing sexual harassment labels. Moreover, retrieval
augmented generation (RAG) methods that dynami-
cally incorporate relevant examples into model pre-
dictions have demonstrated superior performance
by effectively grounding responses in contextually
relevant information (Lewis et al., 2021).

3 Problem definition

In this section, we formally define the problem
of detecting sexual harassment. Given an utter-
ance U = {wl,..wN}, where w, represents a
textual word, the goal is to identify the types of
sexual harassment in each utterance from the set
{Commenting, ogling, groping}. The problem
is approached as two sub-problems.

The first sub-problem consists of three indepen-
dent binary classification tasks, each corresponding
to one harassment type. In this case, the possible
output labels for each classifier are: [Comment-
ing, Non-Commenting], [Ogling, Non-Ogling ], and
[Groping, Non-Groping]. Consequently, three sep-
arate binary classifiers are trained, one for each



category.

The second sub-problem is a multi-label classi-
fication task, where any combination of the three
categories is allowed. This results in 23 = 8 possi-
ble label configurations, including a label for none
of the three classes.

4 AD-ASH: An Adaptive Architecture
for Sexual Harassment Detection

We introduce AD-ASH, an adaptive and extensible
framework designed for the detection of different
types of sexual harassment. The core idea is to
evaluate a set of candidate models and select the
best-performing one for each harassment category
(e.g., commenting, ogling, groping), thereby creat-
ing a tailored and modular multi-label classifier.
Figure 1 illustrates the pipeline. During train-
ing, each model is assessed for each harassment
type in a binary classification setting. The highest-
performing model per class is then selected and
used in that class inference. The results from the
independent harassment type classifiers are com-
bined to produce the final multi-label prediction.
This design not only improves classification ac-
curacy by leveraging the strengths of different mod-
els but also ensures extensibility. As new models or
fine-tuning techniques emerge, they can be easily
integrated into the AD-ASH framework.

4.1 Candidate Models for AD-ASH

Below we describe the models evaluated and used
as components within AD-ASH.

BERT-FT utilizes the implementation from the
Hugging Face Transformers library “BertForSe-
quenceClassification”, which appends a classifica-
tion head to BERT’s final hidden layer to produce
logits for each class. During fine-tuning, all model
parameters, including the classification head, are
optimized jointly. For binary classification, the
model outputs two logits passed through a sigmoid
activation. For multi-label classification (comment-
ing, ogling, groping), three logits are generated and
passed through independent sigmoid functions. Ut-
terances are input directly into the encoder with no
additional prompt or instructional text, and gold-
standard labels are used for supervision. A maxi-
mum sequence length of 512 tokens is used, match-
ing BERT’s supported input size.

GPT2-FT leverages the implementation
“GPT2ForSequenceClassification”, which at-
taches a fully connected classification head

to GPT-2’s final hidden representation.  All
parameters are fine-tuned end-to-end. For binary
classification, two logits are produced and passed
through a softmax function. For multi-class
prediction, three logits are generated and passed
through sigmoid activations for each class. Unlike
BERT, GPT-2 is guided by short task-specific
prompts to steer generation during both training
and inference. A maximum sequence length of
512 tokens is used.

In addition to improving classification accuracy,

AD-ASH is extensible, new models, prompting
strategies, and classification heads can be inte-
grated as the landscape of language models contin-
ues to evolve.
Llama-3.1-FT utilizes the Llama-3.1 8B Instruct
"LlamaForSequenceClassification” model from
the Hugging Face Transformers library to per-
form binary classification with the "Llama-3.1-8B-
Instruct”" model. To facilitate binary classification,
the model is provided with a task-specific instruc-
tional prompt that describes the classification objec-
tive clearly (e.g., determining whether a statement
reflects commenting, ogling, or groping), enabling
the model to align its outputs with the expected
label format (e.g., True/False combinations).

To efficiently manage this large model, we ap-
ply 4-bit quantization using the BitsAndBytes li-
brary. Additionally, we enhance Llama-3.1 with
Low-Rank Adaptation (LoRA) through the PEFT
framework. A LoRA configuration is set with a
rank of 8, an alpha scaling factor of 16, and a
dropout rate of 0.1. To conserve memory during
training, gradient checkpointing is enabled and the
model is prepared for k-bit training before integrat-
ing the LoRA adapters. The fine-tuning process
is performed end-to-end on our binary classifica-
tion task. Input text is tokenized to determine the
maximum sequence length and then tokenized with
padding accordingly. The tokenized data is con-
verted into PyTorch tensors and structured into a
dataset compatible with the Hugging Face Trainer.
We optimize the model using cross-entropy loss.
DeepSeek7B-FT We adopt the instruction-tuned
"deepseek-1lm-7b-chat" model for binary classifica-
tion using "AutoModelForSequenceClassification".
The model is fine-tuned with LoRA and 4-bit quan-
tization similar to Llama-3.1. Instructional prompts
are used during training and inference to specify
the classification task, enabling the model to pro-
duce structured outputs aligned with the required
label formats. Tokenization uses AutoTokenizer,



and training is performed with the Hugging Face
Trainer framework using AdamW optimizer and
linear learning rate scheduler.

4.2 Candidate Model Selection for AD-ASH

As previously introduced, AD-ASH is an adap-
tive and extensible framework that selects the best-
performing model for each type of sexual harass-
ment. In our implementation, BERT-FT is selected
for detecting "commenting," Deepseek7B-FT for
"groping,” and CNN-RNN for "ogling", see Fig-
ure 1. Each harassment type is first modeled using
a binary classifier, and the selected classifiers’ out-
puts are then combined to generate a multi-label
prediction for each utterance. This modular de-
sign allows the framework to leverage the specific
strengths of each model for more accurate and in-
terpretable classification.

5 Experimental setup

5.1 Dataset

In our experiments, we utilize the SafeCity dataset
Karlekar and Bansal (2018). The dataset was in-
troduced to capture real-world reports of sexual ha-
rassment, SafeCity comprises of 9,892 anonymized
narratives where victims describe their experiences
along with contextual information such as the inci-
dent location. While the original dataset includes
annotations for 13 different forms of harassment,
our work focuses on a carefully selected subset of
categories that are most prevalent in the data: com-
menting, ogling (staring), and groping (touching).
For our experiments, the dataset is partitioned into
7,201 training examples, 990 validation examples,
and 1,701 test examples. Given the inconsistent
performance across similar models, we investigated
potential label noise within the dataset by conduct-
ing a validation study. This involved comparing
the original dataset labels with expert-provided an-
notations and applying statistical tests to evaluate
mismatch rates and potential directional biases (see
Appendix A).

5.2 Evaluation metrics

Single-label. We use accuracy to measure how
often a model correctly classifies each sample. For-
mally, if N is the total number of instances and
7; is the predicted label for the i-th instance (with
gold label y;),

N
1 .
Accuracy = 2; G =y), (D
1=
where I(-) is the indicator function that returns
1 if its argument is true, and O otherwise.

Multi-label. We report two primary metrics: ex-
act match ratio and Hamming score. Let each in-
stance have a set of gold labels Y; (out of L total
labels) and a predicted set Y;. The exact match
ratio is:

N
. 1 ~
Exact Match Ratio = i E 1 IY;=Y;), (2
1=

i.e., the fraction of instances for which the model
predicts the exact set of labels. The Hamming score
is defined as the complement of the Hamming loss.
The Hamming loss is computed as:

Y, AY|
L )

N
. 1
Hamming Loss = N Z; 3)
1=

where A denotes the symmetric difference between
the predicted labels and the ground truth. The Ham-
ming score is thus,

Hamming Score = 1 — Hamming Loss. (4)

5.3 Baselines

We compare the performance of best performing
binary-classification models and our novel adaptive
framework for multi-label classification against the
following baseline models, as reported by Karlekar
and Bansal (2018):

Random forest (Breiman, 2001) is an ensemble
learning method that builds multiple decision trees
and combines their outputs, thereby improving clas-
sification accuracy and reducing overfitting. This
traditional approach serves as a useful non-neural
reference.

CNN performs sentence classification by trans-
forming input text into word embeddings, then ap-
plying multiple convolutional filters with varying
kernel sizes to extract local n-gram features. Max-
pooling selects the most informative features from
each filter, creating a fixed-length representation
that feeds into a fully-connected layer for classi-
fication probability computation. This approach



processes the entire text as a single instance (Kim,
2014).

RNN utilizes Long Short-Term Memory (LSTM)
units (Hochreiter and Schmidhuber, 1997) to cap-
ture sequential and contextual dependencies in text.
After converting tokenized text into word embed-
dings, the LSTM network processes them sequen-
tially, maintaining an evolving hidden state that
summarizes contextual information. The final hid-
den state serves as a comprehensive representation
for classification through a fully-connected layer.
This approach effectively handles tasks where word
order and long-range dependencies are crucial.
CNN-RNN combines convolutional and recurrent
architectures by first converting text into word em-
beddings and extracting local features through con-
volutional filters. These features then feed into an
LSTM layer that models temporal dynamics and
sequential relationships. The final LSTM hidden
state provides a unified representation for classifi-
cation through a fully-connected layer. This hybrid
approach effectively handles scenarios requiring
both local patterns and global context (Zhou et al.,
2015).

CNN-RNN (B+C)* model combines convolutional
layers with a bidirectional LSTM and integrates
character-level embeddings to capture fine-grained
morphological information. This approach lever-
ages the strength of CNNs for extracting local fea-
tures and the capability of bidirectional LSTMs
for modeling contextual dependencies, as demon-
strated previously by Ma and Hovy (2016).

5.4 Training and testing

Across all models, a batch size of 8 is used, and
optimization is performed using the AdamW op-
timizer. A fixed random seed is applied to ensure
reproducibility. For single-label classification tasks,
standard cross-entropy loss is employed, while for
multi-label classification, binary cross-entropy with
logits loss (i.e., BCEWithLogitsLoss) is used.

At test time, any category whose predicted prob-
ability exceeds a chosen threshold of 0.5 is marked
as positive, allowing for various combinations of
commenting, ogling, and groping to be recognized
simultaneously.

5.5 Prompting strategies and Retrieval Setup

In addition to supervised fine-tuning, we evalu-
ate instruction-tuned models using prompting and
retrieval-augmented strategies:

Model Comment Ogle Grope
Previous models

CNN 80.9 82.2 86.0
RNN 81.0 82.2 86.2
CNN-RNN 81.6 84.1 86.5
SLMs

BERT-FT (ours) 83.2 83.1 88.0
GPT2-FT (ours) 82.1 83.1 87.4
LLMs

Llama-3.1 FT (ours) 62.0 59.7 56.0
LLama-3.1 zero-shot (ours) 63 56.7 81.4
Llama-3.1 one-shot (ours) 67.5 59.7 83.6
Llama-3.1 few-shot (ours) 63 55.3 84.4
Llama-3.1 + RAG (ours) 76.6 74.4 83.4
DeepSeek7B FT (ours) 81.7 83 88.7
DeepSeek7B zero-shot  72.8 71.1 79.3
(ours)

DeepSeek7B one-shot  51.6 78 82.7
(ours)

DeepSeek7B few-shot  60.1 55.8 82.0
(ours)

Deepseek7B+ RAG (ours) 67.7 60.6 55.3

Table 2: Single-label classification (accuracy) results.
The best results are shown in bold, and the second-
best results are underlined. Performance of traditional
models such as Linear Support Vector Machine, Logistic
Regression, Gaussian Naive Bayes, and Support Vector
Machine can be found in the original study by Karlekar
and Bansal (2018).

Zero-shot prompting : An instruction prompt
is constructed using the task definition and a ha-
rassment narrative. The model is asked to classify
the narrative based on this instruction without any
examples.

One-shot and few-shot prompting: Prompts are
extended to include one or more annotated exam-
ples before the test instance. These examples are
manually selected to provide representative context
and ensure format consistency.

RAG-enhanced few-shot prompting: We imple-
ment a dynamic prompting pipeline using Sentence-
BERT (MiniLM-L6-v2) (Hossain et al., 2024) for
embedding SafeCity training narratives. FAISS
(Douze et al., 2024) is used to retrieve the top-k
semantically similar examples (with k¥ = 6), bal-
ancing class distribution. Retrieved examples are
injected into the prompt along with their binary
labels. The combined context and test instance are
passed to the instruction-tuned LLM (Llama-3.1 or
DeepSeek7B), which generates the binary label.
This setup enables us to compare differ-
ent prompting strategies, including static versus



retrieval-based examples, and evaluate whether the
dynamic context improves generalization in binary
harassment classification.

6 Results and discussions

Table 2 summarizes the accuracy of various models
on binary (single-label) classification tasks for sex-
ual harassment detection. The results indicate that
different models excel at different classification
tasks. Our BERT-FT model achieves the high-
est accuracy on the commenting task, with a score
of 83.2%, and the second-highest performance on
groping at 88.0%. The best performance on the
groping task is obtained by our DeepSeek7B-FT
LLM model, with an accuracy of 88.7%. CNN-
RNN achieves the highest accuracy on the ogling
task at 84.1%, while our GPT2-FT model ranks
second for both commenting and ogling, with accu-
racies of 82.1% and 83.1%, respectively.

These findings reinforce the notion that different
models, ranging from traditional neural networks
to SLMs and LLMs, perform better on different
aspects of the harassment classification problem.
This variability highlights the value of an adap-
tive architecture that can dynamically leverage the
strengths of each model. Overall, SLMs demon-
strate strong suitability for domain-specific classifi-
cation tasks such as these. Table

Additionally, Table 2 reveals that large language
models (LLMs), such as Llama-3.1, perform sig-
nificantly worse on these specialized classification
tasks despite their scale and recent development.
For example, the Llama-3.1 FT model achieves
only 62.0% accuracy on commenting and 56.0%
on groping, highlighting a common limitation of
LLMs in extracting precise labels from text, even
though they often excel in generative tasks. In con-
trast, DeepSeek7B-FT, a newer instruction-tuned
LLM, demonstrates performance much closer to
smaller language models (SLMs), achieving 82.0%,
81.6%, and 86.5% accuracy on commenting, ogling,
and groping, respectively. This suggests that some
of the typical performance gaps between LLLMs and
SLMs can be bridged with appropriate tuning and
design.

Moreover, the table also shows that LLMs oper-
ating in zero-shot, one-shot, few-shot, and RAG-
enhanced settings generally underperform when
compared to their fine-tuned LLM counterparts
and SLMs. Nevertheless, retrieval-augmented gen-
eration (RAG) provides noticeable performance

Model Exact Match Hamming Score
Random Forest 35.0 70.2
CNN 53.7 80.2
RNN 57.1 81.5
CNN-RNN 59.2 82.3
CNN-RNN(B+C)* 62.0 82.5
GPT2(ours) 62.8 84.0
BERT (ours) 64.7 84.5
DeepSeek7B-FT(ours) 64.9 84.46
AD-ASH(ours) 66.02 85.26

Table 3: Multi-label classification results. The best
results are shown in bold, and the second-best results
are underlined.

improvements for Llama on the commenting and
ogling tasks, indicating the potential of such aug-
mentation strategies. These findings emphasize the
need for further exploration of advanced prompt-
ing and augmentation methods to identify stronger
candidate models for inclusion in the adaptive AD-
ASH framework.

These performance variations across models
may be partially explained by inconsistencies in
the original training labels, as identified in our
label validation study (see Appendix A). Statis-
tical testing revealed moderate disagreement be-
tween the original and expert-assigned labels, with
elevated mismatch rates in the commenting and
ogling categories. Additionally, a significant di-
rectional bias was found in the groping category,
suggesting that true groping cases were frequently
overlooked. These findings highlight the presence
of label noise, which may contribute to variability
in model behavior, especially in commenting and
ogling categories.

Table 3 summarizes the multi-label classification
results across various baseline models, transformer-
based small language models (SLMs), large lan-
guage models (LLMs), and our adaptive ensemble
approach. Traditional machine learning methods
such as Random Forest yield relatively modest per-
formance, with an exact match score of 35.0 and a
Hamming score of 70.2. Neural network architec-
tures, including CNNs, RNNs, and the combined
CNN-RNN model, demonstrate improved effective-
ness, with the CNN-RNN (B+C)* model achieving
an exact match of 62.0 and a Hamming score of
82.5.

Among transformer-based SLMs, BERT-FT de-
livers the strongest results, attaining an exact match
score of 64.7 and a Hamming score of 84.5. GPT2-
FT also performs well, with exact match and Ham-



ming scores of 62.8 and 84.0, respectively. Our
DeepSeek7B-FT LLM model slightly outperforms
the SLMs in terms of exact match with a score
of 64.9, while achieving a comparable Hamming
score of 84.46. Most notably, our adaptive ensem-
ble model, AD-ASH, which integrates predictions
from BERT-FT (for commenting), DeepSeek7B-FT
(for groping), and CNN-RNN (for ogling), deliv-
ers the highest overall performance. It achieves
an exact match score of 66.02 and a Hamming
score of 85.26, underscoring the value of selec-
tively combining specialized models for each ha-
rassment type.

The improved performance of AD-ASH, the
adaptive model suggests that leveraging the com-
plementary strengths of the selected candidate mod-
els such as BERT-FT, DeepSeek7B-FT and CNN-
RNN, is advantageous for multi-label classification
in this domain. While BERT-FT, DeepSeek7B-
FT, and CNN-RNN individually capture important
contextual and sequential information, their com-
bined predictions offer a more robust representa-
tion of the multiple harassment types present in
a single narrative. This adaptive, extensible en-
semble approach effectively addresses some of the
weaknesses inherent in each model when used in
isolation, resulting in higher overall classification
accuracy. These findings suggest that, given the
wide range of available models, solutions could
benefit from creating frameworks that leverage the
strengths of multiple models. It also emphasizes
the importance of continuing to explore older mod-
els, as they have proven beneficial when combined
with more complex models.

7 Conclusion and future work

In this work, we propose an adaptive model that
leverages the strengths of transformer-based small
language models (SLMs) such as BERT, large lan-
guage models (LLMs) like DeepSeek, and neu-
ral network architectures such as CNN-RNN. Us-
ing the foundational SafeCity dataset introduced
by Karlekar and Bansal (2018), our goal is to ad-
vance the automated classification of sexual harass-
ment narratives. By fine-tuning (FT) a range of
models, including BERT, GPT-2, Llama-3.1, and
DeepSeek7B, we constructed a pool of candidate
classifiers capable of identifying distinct harass-
ment categories. Our adaptive, extensible ensem-
ble strategy selects the top-performing model for
each label, BERT-FT for groping, DeepSeek7B-FT

for commenting, and CNN-RNN for ogling, based
on validation performance. This selective integra-
tion enables our system to achieve state-of-the-art
results across these key categories.

To support transparency and trust in deployment
contexts, we incorporate interpretability techniques
such as LIME and t-SNE-based word clustering
(detailed in the Appendix B), which reveal impor-
tant linguistic patterns influencing model decisions.

Future work will focus on refining the ensem-
ble strategy and exploring larger or more optimized
variants of DeepSeek and other large language mod-
els (LLMs), given their promising performance in
sensitive classification tasks. We also plan to in-
vestigate more sophisticated fine-tuning methods,
advanced ensemble mechanisms, and domain adap-
tation techniques to further improve robustness and
generalizability. In addition, we will explore aug-
mentation strategies using knowledge graphs en-
riched with relational and contextual information
to better capture the nuanced semantics present in
harassment narratives.

A critical research direction involves addressing
the sensitivity of LLMs to label noise, as high-
lighted in prior work by Khandalkar et al. (2025);
Havrilla and Iyer (2024a). Misclassifications in-
troduced by noisy or ambiguous labels can signif-
icantly reduce predictive reliability, especially in
emotionally charged and socially sensitive domains
like harassment detection. As shown in our label
validation analysis (see Appendix A), mitigating
these issues will be key to realizing the full poten-
tial of LLMs in this space.

Finally, we aim to enhance interpretability using
more advanced explanation techniques to better un-
derstand multi-label predictions and the model’s de-
cision pathways. Ultimately, our work contributes
to the broader goal of developing accurate, inter-
pretable, and socially responsible NLP systems that
support real-world harassment reporting and victim
advocacy (Manche et al., 2025).

8 Limitations

Although our adaptive ensemble framework shows
promising performance, it has several limitations.
Our experiments rely solely on the SafeCity dataset,
which, despite its size, may not capture the full
diversity of sexual harassment narratives across
different platforms, potentially limiting the gen-
eralizability of our findings. Additionally, while
transformer-based models like BERT and GPT-2



perform robustly, larger models such as Llama-3.1
and DeepSeek sometimes yield inconsistent results
when distinguishing between similar harassment
categories, indicating that further adaptation or spe-
cialized fine-tuning may be required. Moreover,
the inherent imbalance in the distribution of harass-
ment categories and the ambiguity in certain narra-
tives can lead to misclassifications, and our reliance
on quantitative metrics like accuracy, exact match,
and Hamming score may not fully reflect the qual-
itative aspects of model predictions. Future work
should address these challenges by incorporating
more diverse datasets, refining model adaptation
techniques, and exploring additional interpretabil-
ity methods to develop more robust and transparent
automated systems for sexual harassment classifi-
cation.

9 Ethics statement

We analyze sensitive sexual harassment narratives
from the anonymized SafeCity dataset, strictly for
research and in full compliance with ethical guide-
lines. Our methods include interpretability anal-
yses to help mitigate potential biases and support
victim advocacy, recognizing that automated clas-
sification is only part of a comprehensive, human-
centered approach. We adhere to all institutional
and ACL ethical policies and encourage continued
research on the ethical challenges of processing
sensitive content.

References

Vivek Balasubramanian, Matteo Turilli, Weiming Hu,
Matthieu Lefebvre, Wenjie Lei, Ryan Modrak, Guido
Cervone, Jeroen Tromp, and Shantenu Jha. 2018.
Harnessing the power of many: Extensible toolkit
for scalable ensemble applications. In 2018 IEEE
international parallel and distributed processing sym-
posium (IPDPS), pages 536-545. IEEE.

Filippos Bellos, Yayuan Li, Wuao Liu, and Jason Corso.
2024. Can large language models reason about goal-
oriented tasks? In Proceedings of the First edition
of the Workshop on the Scaling Behavior of Large
Language Models (SCALE-LLM 2024), pages 24-34.

Leo Breiman. 2001. Random forests. Machine Learn-
ing, 45(1):5-32.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,

Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Mikhail Budnikov, Anna Bykova, and Ivan P
Yamshchikov. 2025. Generalization potential of large
language models. Neural Computing and Applica-
tions, 37(4):1973-1997.

Garima Chhikara, Anurag Sharma, V. Gurucharan, Kri-
pabandhu Ghosh, and Abhijnan Chakraborty. 2025.
Lamsum: Amplifying voices against harassment
through IIm guided extractive summarization of user
incident reports. Preprint, arXiv:2406.158009.

DeepSeek-Al, Daya Guo,
Haowei Zhang et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in Ilms via
reinforcement learning. Preprint, arXiv:2501.12948.

Dejian Yang, and

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng,
Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé
Jégou. 2024. The faiss library. arXiv preprint
arXiv:2401.08281.

Tom Everitt, Cristina Garbacea, Alexis Bellot, Jonathan
Richens, Henry Papadatos, Siméon Campos, and Ro-
hin Shah. 2025. Evaluating the goal-directedness
of large language models. arXiv preprint
arXiv:2504.11844.

Antigoni-Maria Founta, Despoina Chatzakou, Nico-
las Kourtellis, Jeremy Blackburn, Athena Vakali,
and Ilias Leontiadis. 2018. A unified deep learn-
ing architecture for abuse detection.  Preprint,
arXiv:1802.00385.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, and Abhishek Kadian et al.
2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Alex Havrilla and Maia Iyer. 2024a. Understanding the
effect of noise in llm training data with algorithmic
chains of thought. arXiv preprint arXiv:2402.04004.

Alex Havrilla and Maia Iyer. 2024b. Understanding the
effect of noise in llm training data with algorithmic
chains of thought. Preprint, arXiv:2402.04004.


https://doi.org/10.1023/A:1010933404324
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2406.15809
https://arxiv.org/abs/2406.15809
https://arxiv.org/abs/2406.15809
https://arxiv.org/abs/2406.15809
https://arxiv.org/abs/2406.15809
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1802.00385
https://arxiv.org/abs/1802.00385
https://arxiv.org/abs/1802.00385
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2402.04004
https://arxiv.org/abs/2402.04004
https://arxiv.org/abs/2402.04004
https://arxiv.org/abs/2402.04004
https://arxiv.org/abs/2402.04004

Lingxiao He and Wu Liu. 2020. Guided saliency fea-
ture learning for person re-identification in crowded
scenes. In Computer Vision—ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XXVIII 16, pages 357-373.
Springer.

S Hochreiter and J Schmidhuber. 1997. Long short-term
memory. Neural Comput, 9(8):1735-1780.

Md Sajjad Hossain, Ashraful Islam Paran,
Symom Hossain Shohan, Jawad Hossain, and
Mohammed Moshiul Hoque. 2024. Semanticcuet-
sync at semeval-2024 task 1: Finetuning sentence
transformer to find semantic textual relatedness. In
Proceedings of the 18th International Workshop
on Semantic Evaluation (SemEval-2024), pages
1222-1228.

Sweta Karlekar and Mohit Bansal. 2018. SafeCity: Un-
derstanding diverse forms of sexual harassment per-
sonal stories. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2805-2811, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Nikhil Khandalkar, Pavan Yadav, Krishna Shinde,
Lokesh B Ramegowda, and Rajarshi Das. 2025. Im-
pact of noise on llm-models performance in ab-
straction and reasoning corpus (arc) tasks with

model temperature considerations. arXiv preprint
arXiv:2504.15903.

Sihwan Kim, Dae Yon Jung, and Taejang Park. 2021.
Auxiliary class based multiple choice learning.
Preprint, arXiv:2108.02949.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746—-1751,
Doha, Qatar. Association for Computational Linguis-
tics.

Taeksoo Kwon and Connor Hunjoon Kim. 2024. Effi-
cacy of utilizing large language models to detect pub-
lic threat posted online. Advances in Artificial Intelli-
gence and Machine Learning, 04(04):3125-3134.

Zhixin Lai, Xuesheng Zhang, and Suiyao Chen.
2024. Adaptive ensembles of fine-tuned trans-
formers for llm-generated text detection. Preprint,
arXiv:2403.13335.

James Large, Jason Lines, and Anthony Bagnall. 2019.
A probabilistic classifier ensemble weighting scheme
based on cross-validated accuracy estimates. Data
Mining and Knowledge Discovery, 33(6):1674—1709.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. Preprint, arXiv:2005.11401.

10

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional 1stm-cnns-crf.
Preprint, arXiv:1603.01354.

Rahul Manche, Fnu Samaah, Tejaswini Tejaswini, and
Praveen Kumar Myakala. 2025. Empowering safe
online spaces: Ai in gender violence detection and
prevention. Available at SSRN 5176463.

Seung Yeon Paik. 2024. Analyzing Large Language
Models For Classifying Sexual Harassment Stories
With Out-of-Vocabulary Word Substitution.

John Pestian, Pawel Matykiewicz, Jacqueline Grupp-
Phelan, Sarah Arszman Lavanier, Jennifer Combs,
and Robert Kowatch. 2008. Using natural language
processing to classify suicide notes. In Proceedings
of the Workshop on Current Trends in Biomedical
Natural Language Processing, pages 96-97, Colum-
bus, Ohio. Association for Computational Linguis-
tics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Ali Riahi Samani, Tianhao Wang, Kangshuo Li, and
Feng Chen. 2025. Large language models with rein-
forcement learning from human feedback approach
for enhancing explainable sexism detection. In Pro-
ceedings of the 31st International Conference on
Computational Linguistics, pages 6230-6243, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should i trust you?": Ex-
plaining the predictions of any classifier. Preprint,
arXiv:1602.04938.

J Nicolas Schrading. 2015. Analyzing domestic abuse
using natural language processing on social media
data.

Nicolas Schrading, Cecilia Ovesdotter Alm, Raymond
Ptucha, and Christopher Homan. 2015. #WhylIS-
tayed, #WhylLeft: Microblogging to make sense of
domestic abuse. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 1281-1286, Denver, Col-
orado. Association for Computational Linguistics.

Morteza Pourreza Shahri, Katrina Lyon, Julia Schearer,
and Indika Kahanda. 2020. Deeppppred: An ensem-
ble of bert, cnn, and rnn for classifying co-mentions
of proteins and phenotypes. bioRxiv.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579-2605.

Ruoyu Wen, Stephanie Elena Crowe, Kunal Gupta,
Xinyue Li, Mark Billinghurst, Simon Hoermann,
Dwain Allan, Alaeddin Nassani, and Thammathip
Piumsomboon. 2024. Large language models for


https://doi.org/10.18653/v1/D18-1303
https://doi.org/10.18653/v1/D18-1303
https://doi.org/10.18653/v1/D18-1303
https://doi.org/10.18653/v1/D18-1303
https://doi.org/10.18653/v1/D18-1303
https://arxiv.org/abs/2108.02949
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.54364/aaiml.2024.44179
https://doi.org/10.54364/aaiml.2024.44179
https://doi.org/10.54364/aaiml.2024.44179
https://doi.org/10.54364/aaiml.2024.44179
https://doi.org/10.54364/aaiml.2024.44179
https://arxiv.org/abs/2403.13335
https://arxiv.org/abs/2403.13335
https://arxiv.org/abs/2403.13335
https://doi.org/10.1007/s10618-019-00638-y
https://doi.org/10.1007/s10618-019-00638-y
https://doi.org/10.1007/s10618-019-00638-y
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/1603.01354
https://arxiv.org/abs/1603.01354
https://arxiv.org/abs/1603.01354
https://doi.org/10.25394/PGS.25661544.v1
https://doi.org/10.25394/PGS.25661544.v1
https://doi.org/10.25394/PGS.25661544.v1
https://doi.org/10.25394/PGS.25661544.v1
https://doi.org/10.25394/PGS.25661544.v1
https://aclanthology.org/W08-0616/
https://aclanthology.org/W08-0616/
https://aclanthology.org/W08-0616/
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://aclanthology.org/2025.coling-main.416/
https://aclanthology.org/2025.coling-main.416/
https://aclanthology.org/2025.coling-main.416/
https://aclanthology.org/2025.coling-main.416/
https://aclanthology.org/2025.coling-main.416/
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://api.semanticscholar.org/CorpusID:141804499
https://api.semanticscholar.org/CorpusID:141804499
https://api.semanticscholar.org/CorpusID:141804499
https://api.semanticscholar.org/CorpusID:141804499
https://api.semanticscholar.org/CorpusID:141804499
https://doi.org/10.3115/v1/N15-1139
https://doi.org/10.3115/v1/N15-1139
https://doi.org/10.3115/v1/N15-1139
https://doi.org/10.3115/v1/N15-1139
https://doi.org/10.3115/v1/N15-1139
https://doi.org/10.1101/2020.09.18.304329
https://doi.org/10.1101/2020.09.18.304329
https://doi.org/10.1101/2020.09.18.304329
https://doi.org/10.1101/2020.09.18.304329
https://doi.org/10.1101/2020.09.18.304329
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/2409.00940
https://arxiv.org/abs/2409.00940

automatic detection of sensitive topics. Preprint,
arXiv:2409.00940.

Amir Hossein Yazdavar, Hussein S Al-Olimat, Monireh
Ebrahimi, Goonmeet Bajaj, Tanvi Banerjee, Krish-
naprasad Thirunarayan, Jyotishman Pathak, and Amit
Sheth. 2017. Semi-Supervised approach to monitor-
ing clinical depressive symptoms in social media.
Proc IEEE ACM Int Conf Adv Soc Netw Anal Min,
2017:1191-1198.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis C. M. Lau. 2015. A c-Istm neural network for
text classification. Preprint, arXiv:1511.08630.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang.
2021. Domain adaptive ensemble learning. /EEE
Transactions on Image Processing, 30:8008-8018.

A Label Quality Validation Study

To better understand potential sources of variation
in model performance, we conducted a validation
study to assess the quality of the original labels
used in the training data. This study evaluates the
level of agreement between the original annotations
and a set of expert-verified labels across three ha-
rassment categories: commenting (verbal), ogling
(visual), and groping (physical).

A.1 Procedure

From the full dataset of 7,201 harassment reports,
we drew a stratified random sample of 200 entries
from the training set. Each sample was indepen-
dently reviewed by domain experts and relabeled to
form a gold-standard reference set. For each entry,
we compared:

 Original labels: The initial labels assigned by
an automated or external annotation process.

* Manual labels: The revised labels assigned
by expert annotators, used as ground truth.

Each category label is binary, indicating pres-
ence (1) or absence (0). We computed mismatch
rates and applied hypothesis tests to characterize
the degree and nature of disagreement.

A.2 Mismatch Rates
We first counted how often the original and expert
labels differed. Out of 200 examples:

¢ Commenting: 44 instances had mismatched
labels (22.0%)

* Ogling: 43 instances had mismatched labels
(21.5%)
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* Groping: 28 instances had mismatched labels
(14.0%)

These values suggest that the commenting and
ogling labels were less consistently annotated than
groping. Higher mismatch rates imply greater la-
bel noise, which could affect model learning and
evaluation, especially for models that are sensitive
to nuanced distinctions.

A.3 Statistical Testing

We applied two statistical methods to assess the
significance and directionality of the mismatches.

A.3.1 One-Sided Z-Test for Proportions

This test evaluates whether the observed mismatch
rate for each category exceeds a predefined accept-
able threshold (pg), such as 5%, 10%, or 15%. It
answers the question: Are the disagreement rates
too high to be considered acceptable noise?

Hypotheses:
Hy: p<py (Mismatch rate is acceptable)
Hi: p>pg (Mismatch rate exceeds threshold)

We evaluated pg thresholds from 1% to 30%.
The test statistic is:
P — Do

po(1—po)
n

7 —

where p is the observed mismatch rate and n =
200 is the sample size.
Results:

* Commenting: The null hypothesis is rejected
for thresholds below 18%, meaning that un-
less we accept an 18% error margin, the mis-
match rate is statistically too high.

* Ogling: Similar to commenting, the mismatch
rate only becomes acceptable at or above 18%.

* Groping: The mismatch rate is lower and
acceptable for thresholds above 11%.

These results show that the labeling quality for
commenting and ogling may not meet stricter qual-
ity standards (e.g., 5-10%), which is important
when training models requiring high-fidelity labels.

A.3.2 McNemar’s Exact Test for Directional
Bias

This test determines whether labeling errors were

balanced or skewed in a particular direction—i.e.,

whether the original labels tended to miss positive
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cases (false negatives) or incorrectly labeled nega-
tive cases as positive (false positives).
We define:

* b: Number of false negatives (original label =
0, new true label = 1)

* ¢: Number of false positives (original label =
1, new true label = 0)

Under the null hypothesis (no directional bias), b
and c should be roughly equal. We use the binomial
test:

b ~ Binomial(b + ¢, 0.5)
Results:

¢ Commenting: b = 20, c =24, p = 0.65 —
No directional bias.

* Ogling: b =24, ¢ =19, p = 0.54 — No
directional bias.

e Groping: b = 22, ¢ = 6, p = 0.0037 —
Significant directional bias.

In the groping category, the number of false neg-
atives significantly exceeded false positives. This
suggests the original annotations consistently failed
to identify positive cases of groping, which may
have led to under-training on this class.

A4 Summary

This validation study reveals moderate mismatch
rates across all three harassment categories. The
analysis suggests that, while the labels are broadly
usable, elevated mismatch rates in commenting and
ogling, and an asymmetry in groping, may in-
troduce noise or directional bias. Such noise can
disproportionately affect large language models,
which rely heavily on consistent contextual cues
to make accurate predictions. Even small amounts
of noise in training or prompting data have been
shown to substantially degrade LLM performance
(Havrilla and Iyer, 2024b). These insights help
contextualize the variability we observe in our own
LLM results and highlight the importance of label
quality when applying large models to sensitive
classification tasks.

B Interpretability Analysis

In this section we provide a range of visualization
techniques to analyze our best performing model.
Each visualization method takes a unique approach,
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providing fresh insights or reinforcing existing con-
clusions. These visualizations enhance our under-
standing of the model, helping to uncover patterns,
identify potential issues, and validate assumptions.

B.1 Word clusters

We selected seed words corresponding to class la-
bels and identified the nearest neighbors of each
seed word’s vector by reducing the dimensional-
ity of the word embeddings using t-SNE (van der
Maaten and Hinton, 2008), as shown in Table 4.
This visualization not only confirms that our model
has effectively learned meaningful word embed-
dings but also reveals that each type of sexual ha-
rassment is associated with a distinct context. Addi-
tionally, it demonstrates that our model, AD-ASH,
captures related words and concepts specific to
each harassment category. We observe that BERT
underperformed for the "ogling" category, while
the CNN-RNN model used in our adaptive ap-
proach achieved better results. This is reflected
in the words extracted from our adaptive model,
which more accurately represent this specific ha-
rassment categories compared to those from the
BERT model.

B.2 Saliency Heat Map

Saliency heatmaps (He and Liu, 2020) highlight
which words in an input have the greatest impact
on the final classification.

In Figure 2a, the word “laughing” has the most
significant influence on the classification, followed
by “girls” and “noises”. These words lead the
model to predict the label “commenting”, which
matches the true label. This corresponds to a sce-
nario where a group of boys makes remarks and
strange noises toward girls—behavior that falls un-
der the “commenting” category of sexual harass-
ment.

To understand why the model classifies certain
incidents as non-commenting, consider Figure 2b.
Here, the word “touched”, followed by “bus”, has
the greatest influence, resulting in the model pre-
dicting the label “non-commenting”, which again
aligns with the true label. The model appears to
associate “touching” with physical acts such as
“groping”, which are categorized under a different
type of sexual harassment.

B.3 LIME analysis

LIME (Local Interpretable Model-Agnostic Expla-
nations) (Ribeiro et al., 2016) is a technique that



‘ Observed word clusters

Model: AD-ASH |

Commenting shameful  disrespectful misbehaved vulgar inappropriate
Groping groping inappropriate touch  assault harassment  molestation
Ogling gestures  visually disturbing  voyeur leering
Model: BERT |
Ogling ‘ encounter surrounded talk embarrassed leering
Table 4: Observed word clusters in AD-ASH and BERT.
10 tant feature, followed by “passing” and “cheap”, in-
08 dicating the model’s recognition of the “comment-
9 ing” category of sexual harassment. In another ex-
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(b) Correctly classified example of non-
commenting.

Figure 2: Saliency heat-map fo example BERT classi-
fied utterances.

helps interpret a model’s decision-making process
by explaining predictions for specific instances.
In the context of our binary classification models,
LIME identifies the key features that influence the
model’s prediction for individual inputs. It does
this by approximating the model’s decision bound-
ary with a simpler, interpretable model in the local
vicinity of the instance, striking a balance between
fidelity and interpretability.

This approach provides valuable insights into
the features most relevant to a given classification,
enhancing our understanding of how the model in-
terprets specific examples. For instance, in the sen-
tence “The guy at first was staring at me and later
started passing cheap comments,” LIME analysis
identified the word “comments” as the most impor-
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type. Similarly, in the sentence “A man standing
too close to me in a semi-crowded metro station
continued to touch me indecently till I pushed him
away,” LIME identified “touch”, “pushed”, “stand-
ing”, and “close” as the most significant terms,
aligning with the “groping” classification.

Overall, LIME analysis offers meaningful in-
sights into the linguistic cues driving the model’s
predictions, contributing to a clearer understanding
of how the classifier distinguishes between types
of sexual harassment such as "commenting", "grop-
ing", and "ogling".
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