
Published as a conference paper at ICLR 2024

LOCALITY SENSITIVE SPARSE ENCODING FOR
LEARNING WORLD MODELS ONLINE

Zichen Liu
†‡

Chao Du
†

Wee Sun Lee
‡

Min Lin
†

†
Sea AI Lab

‡
National University of Singapore

ABSTRACT

Acquiring an accurate world model online for model-based reinforcement learn-
ing (MBRL) is challenging due to data nonstationarity, which typically causes
catastrophic forgetting for neural networks (NNs). From the online learning per-
spective, a Follow-The-Leader (FTL) world model is desirable, which optimally
fits all previous experiences at each round. Unfortunately, NN-based models need
re-training on all accumulated data at every interaction step to achieve FTL, which
is computationally expensive for lifelong agents. In this paper, we revisit models
that can achieve FTL with incremental updates. Specifically, our world model is
a linear regression model supported by nonlinear random features. The linear part
ensures efficient FTL update while the nonlinear random feature empowers the
fitting of complex environments. To best trade off model capacity and compu-
tation efficiency, we introduce a locality sensitive sparse encoding, which allows
us to conduct efficient sparse updates even with very high dimensional nonlinear
features. We validate the representation power of our encoding and verify that it
allows efficient online learning under data covariate shift. We also show, in the
Dyna MBRL setting, that our world models learned online using a single pass
of trajectory data either surpass or match the performance of deep world models
trained with replay and other continual learning methods.

1 INTRODUCTION

World models have been demonstrated to enable sample-efficient model-based reinforcement learn-
ing (MBRL) (Sutton, 1990; Janner et al., 2019; Kaiser et al., 2020; Schrittwieser et al., 2020), and are
deemed as a critical component for next-generation intelligent agents (Sutton et al., 2022; LeCun,
2022). Unfortunately, learning accurate world models in an incremental online manner is challeng-
ing, because the data generated from agent-environment interaction is nonstationarily distributed,
due to the continually changing policy, state visitation, and even environment dynamics. For neural
network (NN) based world models, the nonstationarity could lead to catastrophic forgetting (Mc-
Closkey & Cohen, 1989; French, 1999), making models inaccurate at recently under-visited regions
(as illustrated in the top row of Figure 1). Planning with inaccurate models is detrimental as the
model errors can compound due to rollouts, resulting in misleading agent updates (Talvitie, 2017;
Jafferjee et al., 2020; Wang et al., 2021; Liu et al., 2023). To attain a world model of good accu-
racy over the observed data coverage, NN-based methods often maintain all collected experiences
from the start of the environment interaction and perform periodic re-training, possibly at every step,
resulting in a growing computation cost for lifelong agents.

In this paper, we aim to develop a world model, in the Dyna MBRL architecture (Sutton, 1990;
1991), that learns incrementally without forgetting prior knowledge about the environment. We
notice that re-training NN-based world models every step on previous observations till convergence
resembles the concept of Follow-The-Leader (FTL) in online learning (Shalev-Shwartz et al., 2012).
While re-training the NN on all previous data is prohibitively expensive, especially under the stream-
ing setting in RL, specific types of models studied in online learning can achieve incremental FTL
with only a constant computation cost. To this end, we revisit the classic idea of learning a lin-
ear regressor on top of non-linear random features. The loss function of such models is quadratic
with respect to the parameters, satisfying the online learning requirement. It may seem a retrograde
choice given all the success of deep learning, and the findings that a shallow NN needs to be ex-
ponentially large to match the capability of a deep one (Eldan & Shamir, 2016; Telgarsky, 2016).

1

Published as a conference paper at ICLR 2024

Unvisited regions under current policy

Visited regions under current policy

𝑠! when d 𝑠!"#, 𝑓 𝑠!, 𝑎! > 𝛿

𝑠! when d 𝑠!"#, 𝑓 𝑠!, 𝑎! ≤ 𝛿

N
eu

ra
l N

et
w

or
ks

O
ur

s

𝜋!𝜋" 𝜋!!

Figure 1: This Gridworld environment requires the agent to navigate from the start position (“S”) to the goal
location (“G”) with shortest path. The tabular Q-learning agent starts from a random policy π0 and improves
to get better policies πt · · ·πt′ , leading to narrower state visitation towards the optimal trajectories (the yellow
regions). Due to such distributional shift, the NN-based model (top) may forget recently under-visited regions,
even though it has explored there before. The red circles indicate erroneous predictions where the Euclidean
distance between the ground truth next state and the prediction is greater than a threshold (δ = 0.05). In
contrast, our method (bottom) learns online, and at each step incrementally computes the optimal solution over
all accumulated data, thus is resilient to forgetting.

Nevertheless, we believe it is worth exploring under the RL context for three reasons: (1) In RL, data
is streamed online and highly non-stationary, advocating for models capable of incremental FTL. (2)
Many continuous control problems have a moderate number of dimensions that could fall within the
capability of shallow models (Rajeswaran et al., 2017). (3) Sparse features can be employed to
further enlarge the model capacity without extra computation cost (Knoll & de Freitas, 2012).

Inspired by Knoll & de Freitas (2012), we propose an expressive sparse non-linear feature repre-
sentation which we call locality sensitive sparse encoding. Our encoder generates high-dimensional
sparse features with random projection and soft binning. Exploiting the sparsity, we further develop
an efficient algorithm for online model learning, which only updates a small subset of weights
while continually tracking a solution to the FTL objective. World models learned online with our
method are resilient to forgetting compared to those based on NNs (see the bottom row of Figure 1
for intuition). We empirically validate the representational advantage of our encoding over other
non-linear features, and demonstrate that our method outperforms NNs in the online supervised
learning setting (Orabona, 2019; Hoi et al., 2021) as well as the model-based reinforcement learning
setting (Sutton, 1990) with models learned online.

2 PRELIMINARIES

In this section, we first recap the protocol of online learning and introduce the Follow-The-Leader
strategy. Then we revisit Dyna, a classic MBRL architecture, where we apply our method to learn
world models online.

2.1 ONLINE LEARNING

Online learning refers to a learning paradigm where the learner needs to make a sequence of
accurate predictions given knowledge about the correct answers for all prior questions (Shalev-
Shwartz et al., 2012). Formally, at round t, the online learner is given a question xt ∈ X and
asked to provide an answer to it, which we denote as ht(xt), letting ht ∈ H : X → Y be a
model in the hypothesis class built by the learner. After predicting the answer, the learner will
be revealed the ground truth yt ∈ Y and suffers a loss ℓ(ht(xt),yt). The learner’s goal is to
adjust its model to achieve the lowest possible regret relative to H defined as RegretT (H) =

maxh∗∈H

(∑T
t=1 ℓ(ht(xt),yt)−

∑T
t=1 ℓ(h

∗(xt),yt)
)

. When the input is a convex set S , the pre-
diction is a vector wt ∈ S, and the loss ℓ(wt,yt) is convex, the problem is cast as online convex
optimization. Absorbing the target into the loss, ℓt(wt) = ℓ(wt,yt), the regret with respect to a

2

Published as a conference paper at ICLR 2024

competing hypothesis (a vector u) is then defined as RegretT (u) =
∑T

t=1 ℓt(wt) −
∑T

t=1 ℓt(u).
One intuitive strategy is for the learner to predict a vector wt at any online round such that it achieves
minimal loss over all past rounds. This strategy is usually referred to as Follow-The-Leader (FTL):

∀t, wt = argmin
w∈S

t−1∑
i=1

ℓi(w). (1)

2.2 MODEL-BASED REINFORCEMENT LEARNING WITH DYNA

Reinforcement learning problems are usually formulated with the standard Markov Decision Pro-
cess (MDP)M = {S,A, P,R, γ, P0}, where S andA denote the state and action spaces, P (s′|s,a)
the Markovian transition dynamics, R(s,a, s′) the reward function, γ ∈ (0, 1) the discount factor,
and P0 the initial state distribution. The goal of RL is to learn the optimal policy that maximizes
the discounted cumulative reward: π∗ = argmaxπ Eπ,P [

∑∞
t=0 γ

tR (st,at, st+1) | s0 = s ∼ P0].
Model-based RL solves the optimal policy with a learned world model. Existing NN-based MBRL
methods (Schrittwieser et al., 2020; Hansen et al., 2022; Hafner et al., 2023) have shown state-of-the-
art performance on various domains but rely heavily on techniques to make data more stationary,
such as maintaining a large replay buffer or periodically updating the target network. With these
components removed, they would fail to work. When they fail, however, it is unclear how much is
due to the forgetting in policies, value functions, or world models because all components are entan-
gled and trained end-to-end in these methods. Therefore, we focus on Dyna, which learns a world
model (or simply model in RL literature) alongside learning the base agent1 in a decoupled manner.

Base Agent

Experience

World Model

planning
updates

acting

model
learning

search
control

direct RL
updates

Simulation

Figure 2: The Dyna architecture.

Figure 2 illustrates the Dyna architecture that we employ
in this paper to study online model learning. The base
agent will act in the environment and collect environment
experiences, which can be used for learning the world
model to mimic the environment’s behavior. With
such a model learned, the agent then simulate with it
to synthesize model experiences for planning updates.
Search control defines how the agent queries the model,
and some commonly used ones include predecessor
(Moore & Atkeson, 1993), on-policy (Janner et al., 2019)
and hill-climbing (Pan et al., 2019). Next, we define how
to learn and plan with the model.

Model learning. We first formulate how to learn the dy-
namics model m(s′|s,a) with environment experiences.
Instead of directly predicting the next state, we model the dynamics as an integrator which estimates
the change of the successive states ŝ′ = s + ∆t · m̂(∆s|s,a), where ∆t is the discrete time step.
This technique enables more stable predictions and is widely adopted (Chua et al., 2018; Janner
et al., 2019; Yu et al., 2020). The dynamics can either be modeled as a stochastic or a determin-
istic function, with the former predicting the state-dependent variance besides the mean to capture
aleatoric uncertainty in the environment (Chua et al., 2018). We focus on learning a deterministic
dynamics model since we are mainly interested in environments without aleatoric uncertainty. As
shown in Lutter et al. (2021), deterministic dynamics models can obtain comparable performance
with stochastic counterparts. Even when the environment exhibits stochasticity, generating rollouts
with fixed variance is also as effective as learned variance (Nagabandi et al., 2020). Therefore,
dynamics model learning is a regression problem with the objective

E(s,a,s′)∼Denv ∥m̂(s,a)−∆s∥22 , (2)

where Denv is the environment experiences and ∆s = s′ − s. The reward model learning follows a
similar regression objective and we will omit it throughout this paper for brevity.

Model planning. In Dyna-style algorithms, the learned model is meant for the agent to interact
with, as a substitution of the real environment. When the agent “plans” with the model, it queries the
model at (s̃, ã) ∈ S ×A to synthesize model experiences Dm = (s̃, ã, r̂, ŝ′), which serves as a data
source for agent learning. There are various ways to determine how to query the model. For example,

1We use the term base agent to refer to other components than the model, e.g., the value function and policy.

3

Published as a conference paper at ICLR 2024

the classic Dyna-Q (Sutton, 1990) conducts one-step simulations on state-action pairs uniformly
sampled from prior experiences. More recently, MBPO (Janner et al., 2019) generalizes the one-step
simulation to short-horizon on-policy rollout branched from observed states and provides theoretical
analysis for the monotonic improvement of model-based policy optimization.

3 LEARNING WORLD MODELS ONLINE

The agent-environment interaction generates a temporally correlated data stream (st,at, rt, st+1)t.
At each time step, the world model observes xt = [st,at] ∈ RS+A, predicts the next state and
suffers a quadratic loss ℓt(m̂t) = ∥m̂t(xt)− yt∥22, where S and A are the dimensionalities of
state and action spaces, yt = (st+1 − st) ∈ RS is the state difference target. In most model-based
RL algorithms built with neural networks, the model learning is conducted in a supervised offline
manner, with periodic re-training over the whole dataset (see the objective in Equation 2). Such
methods achieve FTL for NNs but are inefficient due to the growing size of the dataset. We develop
in this section an online method for learning world models with efficient incremental update on
every single environment step.

3.1 ONLINE FOLLOW-THE-LEADER MODEL LEARNING

Our world model m̂(x) = ϕ(x)⊤W employs a linear function approximation with weights W ∈
RD×S on an expressive and sparse non-linear feature ϕ(x) ∈ RD. The FTL objective in Equation 1
thus converts to a least squares loss per time step:

∀t, Wt = argmin
W∈RD×S

∥Φt−1W −Yt−1∥2F , (3)

where Φτ = [ϕ(x1), . . . , ϕ(xτ)]
⊤ ∈ Rτ×D denotes non-linear features for observations accumu-

lated until time step τ , Yτ = [y1, . . . ,yτ]
⊤ ∈ Rτ×S is the corresponding targets, and || · ||F

denotes the Frobenius norm. We can expect our world model with the weights satisfying Equation 3
to have good regret, as the regret of FTL for online linear regression problems with quadratic loss is
RegretT (W) = O(log T) (Shalev-Shwartz et al., 2012; Gaillard et al., 2019). As a consequence, our
online learned world model will be immune to forgetting, rendering it suitable for lifelong agents.

In the following sections, we present how to attain a feature representation that is expressive enough
for modeling complex transition dynamics (Section 3.2), as well as how its sparsity helps to achieve
efficient incremental update (Section 3.3).

3.2 FEATURE REPRESENTATION

We construct high-dimensional sparse features using random projection followed by soft binning.
The input vector xt ∈ RS+A is first projected into feature space σ : x→ Px, where P ∈ Rd×(S+A)

is a random projection matrix sampled from a multivariate Gaussian distribution so that the transfor-
mation approximately preserves similarity in the original space (Johnson & Lindenstrauss, 1984).
Afterwards, each element of σ(xt) is binned in a soft manner by locating its neighboring edges as
indices and computing the distances between all edges as values. We denote the binning operation
as b : Rd → RD, where D ≫ d. Compared to naive binning which produces binary one-hot vec-
tors and loses precision, ours has greater discriminative power by generating multi-hot real-valued
representations.

We provide the following example to illustrate. Assume we are binning σ1(xt) = 1.7 into a 1-d grid
with edges [0, 1, 2, 3]. The naive binning would generate a vector [0, 1, 0] to indicate the value falls
into the central bin. In comparison, the soft binning first locates the neighbors 1 and 2 as indices, and
computes distances to the neighbors as values, thus forming a vector [0, 0.7, 0.3, 0]. Our soft binning
can discriminate two inputs falling inside the same bin, such as σ1(xt) = 1.7 and σ1(xt) = 1.2,
while naive binning fails to do so.

Altogether, our feature encoder ϕ = b ◦σ resembles Locality Sensitive Hashing (LSH) with random
projections (Charikar, 2002) but is more expressive thanks to soft binning. We term our feature
representation as Locality sensitive sparse encoding, hence Losse. We depict the overall Losse
process in Figure 3.

4

Published as a conference paper at ICLR 2024

⨂

xt σ(xt) φ(xt)

N

bσ

Figure 3: Locality sensitive sparse encoding. σ(·)
projects input vectors into a random feature space, and
b(·) softly bins σ(xt) into multiple ρ-dimensional grids,
which are flattened and stacked into a high-dimensional
sparse encoding ϕ(xt).

We note that the raw output of b can be
multi-dimensional before flattening (e.g. 2-
dimensional in Figure 3), and we use ρ to de-
note its dimensionality. A ρ-dimensional grid
has λ evenly spaced bins along each axis, thus
producing a highly sparse feature vector of
length λρ per grid. Finally, we can stack κ
grids with different random projection direc-
tions to get diverse features. Losse has guar-
anteed sparsity as stated in Remark 3.1.
Remark 3.1 (Sparsity guarantee of Losse).
For any ρ, λ, κ ∈ Z>0, and any input vec-
tor x, ϕ(x) outputs a vector whose number of
nonzero entries ∥ϕ(x)∥0 satisfies ∥ϕ(x)∥0 ≤
κ2ρ, and the proportion of nonzero entries in
ϕ(x) is at most

(
2
λ

)ρ
.

To give a concrete example, if we set ρ = 3 and λ = 10, then ∥ϕ(x)∥0 is at most 8κ while the
dimension of ϕ(x) can be as high as 1000κ. The high-dimensional feature brings us more fitting
capacity, while the bounded sparsity permits efficient model updates with constant overheads, as we
will show in the following section.

3.3 EFFICIENT SPARSE INCREMENTAL UPDATE

A no-regret world model after t steps of interaction can be updated online by computing the
weights Wt+1 (Equation 3), which can be solved in closed form using the normal equation:
Wt+1 = A−1

t Bt, where At = Φ⊤
t Φt and Bt = Φ⊤

t Yt are two memory matrices. Hence,
we obtain a simple algorithm (Algorithm 1) to learn the model online at every time step.

Algorithm 1 Online model learning

1: t = 0,A0 ∈ RD×D = 0,B0 ∈ RD×S = 0
2: while True do
3: t← t+ 1
4: At ← At−1 + ϕ(xt)ϕ(xt)

⊤

5: Bt ← Bt−1 + ϕ(xt)y
⊤
t

6: Wt+1 ← A−1
t Bt

7: end while

Algorithm 2 Sparse online model learning

1: t = 0,A0 ∈ RD×D = 0,B0 ∈ RD×S = 0
2: while True do
3: t← t+ 1
4: s← nonzero index(ϕ(xt))
5: At,ss ← At−1,ss + ϕs(xt)ϕs(xt)

⊤

6: Bt,s ← Bt−1,s + ϕs(xt)y
⊤
t

7: Wt+1,s ← A−1
t,ss(Bt,s −At,ssWt,s)

8: end while

Updating the memory matrices At,Bt is relatively cheap, but computing weights (line 6 of Algo-
rithm 1) involves matrix inversion, which is computationally expensive. Though Wt+1 can be re-
cursively updated using Sherman-Morrison formula (Sherman & Morrison, 1950) as done in Least-
Squares TD (Bradtke & Barto, 1996), when the feature becomes very high-dimensional to gain
expressiveness, it can become inefficient or even impractical.

Fortunately, the incremental updates ϕ(xt)ϕ(xt)
⊤ and ϕ(xt)y

⊤
t are highly sparse by Losse, so that

we can efficiently update a small subset of weights. As shown in Algorithm 2, we first record the
indices where the softly binned random features fall into (line 4), which are used to locate those
“activated” entries in the current step and update only a small block of the memory matrices (line
5-6). Most importantly, the matrix inversion for updating the weight subset can be conducted on a
much smaller sub-matrix efficiently while ensuring optimality (line 7). The cardinality of the index
set s is bounded by the number of non-zero features (κ2ρ), giving constant compute cost regardless
of the number of data samples. We next derive how our sparse weight update rule solves Equation 3
in a block-wise manner, which yields an optimal fitting for all data including the current one at each
update step.

We first re-index the sparse vector such that it is the concatenation of two vectors ϕ(x) =
[ϕs(x), ϕs(x)], where all zero entries go to the former and the latter is densely real-valued. We
discard the subscript on time step for notational convenience. Intuitively, the new observation x

5

Published as a conference paper at ICLR 2024

will only update a subset of weights associated with its non-zero feature entries, which we denote
as Ws ∈ RK×S , where K is the dimension of ϕs(x). Then Ws ∈ R(D−K)×S is the complement
weight matrix. Correspondingly, the accumulative memories A = Φ⊤Φ and B = Φ⊤Y can be
decomposed as

A =

(
Ass Ass

Ass Ass

)
, B =

(
Bs

Bs

)
. (4)

Then the objective in Equation 3 becomes

argmin
W

(
∥ΦW∥2F + ∥Y∥2F − 2 ⟨ΦW,Y⟩F

)
⇔ argmin

W

[
Tr

((
Ws

Ws

)⊤(
Ass Ass

Ass Ass

)(
Ws

Ws

))
− 2Tr

((
Ws

Ws

)⊤(
Bs

Bs

))]
,

(5)

where ⟨·, ·⟩F denotes the Frobenius inner product. Treating Ws as a constant since it is not affected
by current data and optimizing Ws only gives

argmin
Ws

(
((((((((
Tr(W⊤

s AssWs) + Tr(W⊤
s AssWs) + 2Tr(W⊤

s AssWs)

−������
2Tr(W⊤

s Bs)− 2Tr(W⊤
s Bs)

)
.

(6)

The new objective in Equation 6 is quadratic, so we differentiate with respect to Ws and set the
derivative to zero to obtain the solution of the sub-matrix

Ws = A−1
ss (Bs −AssWs), (7)

which gives us the sparse update rule in Algorithm 2.

Concluding remark. So far, we have presented an efficient algorithm that learns world models
online without forgetting. In our algorithm, linear models are exploited so that we can achieve
no-regret online learning with Follow-The-Leader. To enlarge the model capacity, we devise a
high-dimensional nonlinear random feature encoding, Losse, turning linear models into universal
approximators (Huang et al., 2006). Moreover, the sparsity guarantee of Losse permits efficient
updates of the shallow but wide model. We name our method Losse-FTL. We note that feature
sparsity has been utilized to mitigate catastrophic forgetting for decades (McCloskey & Cohen,
1989; French, 1991; Liu et al., 2019; Lan & Mahmood, 2023). Our work differs from them in that
not only does sparsity help reduce feature interference, but the incremental closed-form solution
also guarantees the optimal fitting of all observed data, thus eliminating forgetting. More discussion
on feature sparsity can be found in Appendix A. Another related line of research to ours is analytic
class-incremental learning (Zhuang et al., 2022; 2023; 2024), which we discuss in Appendix B due
to space constraints. The implementation details of Losse-FTL can be found in Appendix E.

4 EMPIRICAL RESULTS ON SUPERVISED LEARNING

In this section, we will showcase empirical results to validate the expressiveness of Losse (Sec-
tion 4.1) and the online learning capability of Losse-FTL (Section 4.2), both in supervised learning
settings.

4.1 COMPARING FEATURE REPRESENTATIONS

We compare our locality sensitive sparse encoding with other feature encoding techniques, including
Random Fourier Features (Rahimi & Recht, 2007), Random ReLU Features (Sun et al., 2018), and
Random Tile Coding, which combines random projection and Tile Coding (Sutton & Barto, 2018).
We note that in all these methods including ours, random projections are used to construct high-
dimensional features to acquire more representation power. However, they have different properties
with regards to the sparsity and feature values, as summarized in Table 1. Losse is designed to be
sparse and real-valued. Sparse encoding allows for more efficient incremental update (Algorithm 2),
while distance-based real values provide better generalization. Although ReLU also produces sparse
features, it does not guarantee the sparsity level, which is dependent on the sign of its outputs.

We test different encoding methods on an image denoising task, where the inputs are MNIST (Deng,
2012) images with Gaussian noise, and the outputs are clean images. The flattened noisy images

6

Published as a conference paper at ICLR 2024

are first encoded by different methods to produce feature vectors, on which a linear layer is applied
to predict the clean images of the same size. We use mini-batch stochastic gradient descent to
optimize the weights of the linear layer until convergence. To keep the online update efficiency
similar, we keep the same number of non-zero entries for all encoding methods. The mean squared
errors on the test set for different patch sizes are reported in Table 1. We observe that Losse achieves
the lowest error across all patch sizes, justifying its representational strength over other non-linear
feature encoders. When compared with the NN baseline, which is a strong function approximator
but not an efficient online learner, linear models with Losse work better when the patch size is 36
or smaller, suggesting its sufficient capacity for problems with a moderate number of dimensions,
such as locomotion or robotics (Todorov et al., 2012; Zhu et al., 2020). See Appendix C.1 for more
experimental details.

Sparse Real-value 9 16 25 36 49

NN - - 0.36 0.35 0.34 0.34 0.33

Fourier ✗ ✓ 0.32 0.39 0.67 1.00 1.40
ReLU ✓✗ ✓ 0.35 0.34 0.37 0.39 0.43
Tile Code ✓ ✗ 0.36 0.39 0.51 0.61 0.73
Losse ✓ ✓ 0.28 0.29 0.31 0.34 0.40

Table 1: Properties of different encoding methods and
their mean squared errors on the image denoising task on
different patch sizes. All numbers are scaled by 10−1.

0.0 0.2 0.4 0.6 0.8 1.0
d

0.00

0.05

0.10

0.15

M
ea

n
S

qu
ar

ed
E

rr
or NN-batch

NN-online

Losse-FTL

Figure 4: Mean squared errors on the stream
learning task of different correlation levels. Solid
lines and shaded areas correspond to the means
and stand errors of 30 runs.

4.2 ONLINE LEARNING WITH COVARIATE SHIFT

Next, we consider a supervised stream learning setting, where we can precisely control the level
of covariate shift in the training data, and test the online learning capability of Losse-FTL against
the neural network counterpart. Similar to Pan et al. (2021), we create a synthetic data stream with
observations sampled from a non-stationary input distribution. Specifically, the synthetic data is
generated according to a Piecewise Random Walk. At each time step, the observation is sampled
from a Gaussian Xt ∼ N (St, β

2), where β is fixed and St drifts every τ steps. The drifting follows
a Gaussian first order auto-regressive random walk St+1 = (1 − c)St + Zt,∀t mod τ ≡ 0, where
c ∈ (0, 1] and Zt ∼ N (0, σ2) with a fixed σ. For Xt = xt, the target is defined as yt = sin (2πx2

t).

As proven in Pan et al. (2021), Xt can share the same equilibrium distribution but possess different
levels of temporal correlation if β, c, and σ are properly chosen. It turns out the three scalars can
be uniquely determined by a single parameter d ∈ [0, 1), which we call correlation level. When
d = 0, the generated data recovers i.i.d. property. Given the data stream {(xt, yt)}t∈N, we fit
our model online and measure the mean squared error at the end of learning on a holdout test set,
which contains independent samples across all St. As a comparison, we use neural networks to
fit online as well as in batch and plot the errors under different correlation levels in Figure 4. The
results show that our method outperforms neural networks in two aspects. First, when the data
is i.i.d. (d = 0), Losse-FTL achieves a much lower error than NN-online. This indicates neural
networks with gradient descent have low sample efficiency, even on stationary data. Training NNs
using batch samples alleviates the issue and reaches a similar performance to ours. Second, our
model consistently attains very low error across all correlation levels, showing its capacity of non-
forgetting online learning. In contrast, neural networks learned with both batch and online updates
incur increasingly high errors when d is large, indicating catastrophic forgetting in the presence of
data nonstationarity. More experimental details can be found in Appendix C.2.

5 EMPIRICAL RESULTS ON REINFORCEMENT LEARNING

In this section, we will demonstrate that world models built with Losse-FTL can be accurately
learned online, outperforming several NN-based world model baselines and improving the data
efficiency of RL agents. We first introduce the settings and baselines in Section 5.1, and then
present our results in Section 5.2.

7

Published as a conference paper at ICLR 2024

0 10k 20k 30k 40k 50k

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

ep
is

o
de

re
tu

rn

Gridworld

Model-free

Online

SI

Coreset

Full-replay

Losse-FTL

0 10k 20k 30k 40k 50k
0.0

0.2

0.4

0.6

0.8

Mountain Car

0 10k 20k 30k 40k 50k
0.0

0.2

0.4

0.6

0.8

Acrobot

0 5k 10k 15k
Step

0.0

0.2

0.5

0.8

1.0

N
or

m
al

iz
ed

ep
is

o
de

re
tu

rn

Inverted Pendulum

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

Reacher

0 25k 50k 75k 100k
Step

0.0

0.2

0.4

0.6

0.8

Hopper

Figure 5: Learning curves showing normalized episode return. We compare our method with five baselines on
(top) discrete control and (bottom) continuous control benchmarks. Solid curves depict the means of multiple
runs with different random seeds, while shaded areas represent standard errors.

5.1 SETTINGS AND BASELINES

We employ the Dyna MBRL architecture and restrict our study to the model learning part, keep-
ing the base agent’s value (and policy) learning untouched. We compare Losse-FTL world models
learned online with their NN-based counterparts, using the same model-free base agent. We intro-
duce the baselines below. The algorithm and more experimental details can be found in Appendix D.

Model-free. The model-free base agent used in Dyna. We use two strong off-policy agents: DQN
(Mnih et al., 2015) for discrete action space and SAC (Haarnoja et al., 2018) for continuous action
space. All other settings below are MBRL coupled with either DQN or SAC.
Full-replay. We use neural networks to build the world model and train the NNs over all collected
data till convergence. Before the training loop starts, the data is split into train and holdout sets with
a ratio of 4:1. The loss on the holdout set is measured after each epoch. We stop training if the loss
does not improve over 5 consecutive epochs. The NNs are trained continuously without resetting
the weights (Nagabandi et al., 2020). This is the closest setting to FTL for NNs, but with growing
computational cost as the data accumulates.
Online. We train NN-based world models in a stream learning fashion, where only a mini-batch of
256 transitions is kept for training. However, we still update the model for 250 gradient descent steps
on each mini-batch, unlike our method which only needs a single pass of the interaction trajectory.
SI. This is similar to Online, but the NN is trained with Synaptic Intelligence (SI) (Zenke et al.,
2017), a regularization-based continual learning (CL) method to overcome catastrophic forgetting.
However, there is no explicit task boundary defined in the RL process, thus we adapt SI to treat each
training sample as a new task.
Coreset. This refers to rehearsal-based CL methods (Lopez-Paz & Ranzato, 2017; Chaudhry et al.,
2019) that keep an important subset of experiences for replay. There are different ways to decide
whether to keep or remove a data point. We use Reservoir sampling (Vitter, 1985), which uniformly
samples a subset of items from a stream of unknown length. Similar to Full-replay, data split and
early stopping strategies are adopted for each training epoch.

5.2 RESULTS

The learning curves are presented in Figure 5, where we compare Losse-FTL with aforementioned
baselines on 6 environments. We first revisit the discrete control Gridworld environment, which is
used for illustration in Figure 1. This environment is a variant of the one introduced by Peng &
Williams (1993) to test Dyna-style planning. The agent is required to navigate from the starting lo-

8

Published as a conference paper at ICLR 2024

cation to the goal position without being blocked by the barrier. A small offset is added on each step
to make the state space continuous. In such navigation tasks, intuitively, the world model needs to
learn from extremely nonstationary data. When the agent evolves from randomly behaving to nearly
optimal, its state visitation changes dramatically, making all NN-based world models completely
fail to learn due to catastrophic forgetting, unless experiences are fully replayed (see the first plot
in Figure 5). The poorly learned models are unable to provide useful planning, leading to almost
zero performance. In contrast, a world model based on Losse-FTL can be learned accurately and
improves the data efficiency over Model-free.

In the other two general discrete control tasks, Mountain Car and Acrobot, the data nonstationarity
still exists but may be less severe than that in navigation tasks. The results show that Losse-FTL con-
sistently outperforms all baselines and brings sample efficiency improvement.

For continuous control tasks from Gym Mujoco (Todorov et al., 2012), we can observe that Online
NN fails to capture the dynamics for all environments, resulting in even worse performance than the
Model-free baseline. While SI and Coreset can help reduce forgetting to some extent, their perfor-
mances vary across tasks and are inferior to Full-replay in all cases. Losse-FTL, however, achieves
on-par or even better performance than Full-replay, which is a strong baseline that continuously
trains a deep neural network on all collected data until convergence to pursue FTL. These positive
results verify the strength of Losse-FTL for building an online world model.

0 200 400 600 800
Step

200

400

600

800

1000

E
pi

so
de

le
ng

th

0 50 100 150
Time (min.)

1k

2k

15k

Losse-FTL

Figure 6: (Left) Sample and (Right) wall-clock ef-
ficiency comparison between world models learned
with Losse-FTL and Coreset of different replay sizes.

Model update efficiency. Among contin-
ual learning methods with neural networks,
rehearsal-based ones are closer to the FTL objec-
tive and usually demonstrate strong performance
(Chaudhry et al., 2019; Boschini et al., 2022). It
seems that Coreset can offer a good balance be-
tween computation cost and non-forgetting per-
formance with a properly set buffer size. We
hence ablate Coreset with different replay sizes
and compare their performance with Losse-FTL.
Figure 6 shows both the sample efficiency and
wall-clock efficiency on the Gridworld environment. Coreset with a small replay size leads to poor
asymptotic performance while being relatively more efficient. Increasing the replay size indeed
contributes to better results at the cost of more computation. In comparison, Losse-FTL updates
the model purely online without any replay buffer and achieves the best performance with the best
wall-clock efficiency.

6 LIMITATION AND FUTURE WORK

Currently, we have not validated our method on problems with very high-dimensional state space
such as Humanoid, or tasks with image observations. They are expected to be challenging for linear
models to directly work on. Extending Losse-FTL to handle such large-scale problems, perhaps
using pre-trained models to obtain compact sparse encoding, is a potential avenue for future work.

7 CONCLUSION

In this work, we investigate the problem of online world model learning using Dyna. We first
demonstrate that NN-based world models suffer from catastrophic forgetting when used for MBRL
because the data collected in the RL process is innately nonstationary. As a result, re-training over
all previous data is adopted by common MBRL methods, which is of low efficiency. Through
the lens of online learning, we uncover the implicit connection between NN re-training and FTL,
which allows us to formulate online model learning with linear regressors to achieve incremental
update. We devise locality sensitive sparse encoding (Losse), a high-dimensional non-linear random
feature generator that can be coupled with a linear layer to produce models with greater capacities.
We provide a sparsity guarantee for Losse, controlled by two parameters, ρ and λ, which can be
adjusted to develop an efficient sparse update algorithm. We test our method in both supervised
learning and MBRL settings, with the presence of data nonstationarity. The positive results verify
that Losse-FTL is capable of learning accurate world models online, which enhances both the
sample and computation efficiency of reinforcement learning.

9

Published as a conference paper at ICLR 2024

REFERENCES

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2022.

Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal difference
learning. Machine Learning, 1996.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the Thiry-fourth Annual ACM Symposium on Theory of Computing, 2002.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania,
P Torr, and M Ranzato. Continual learning with tiny episodic memories. In Workshop on Multi-
Task and Lifelong Reinforcement Learning at ICML, 2019.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in Neural Information
Processing Systems, 2018.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing, 2012.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference
on Learning Theory, 2016.

Robert M French. Using semi-distributed representations to overcome catastrophic forgetting in
connectionist networks. In Proceedings of the 13th Annual Cognitive Science Society Conference,
1991.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
1999.

Pierre Gaillard, Sébastien Gerchinovitz, Malo Huard, and Gilles Stoltz. Uniform regret bounds over
Rd for the sequential linear regression problem with the square loss. In Algorithmic Learning
Theory, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In ICML, 2022.

J Fernando Hernandez-Garcia and Richard S Sutton. Learning sparse representations incrementally
in deep reinforcement learning. In Workshop on Continual Learning at NeurIPS, 2019.

Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey.
Neurocomputing, 2021.

Guang-Bin Huang, Lei Chen, Chee Kheong Siew, et al. Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks,
2006.

Taher Jafferjee, Ehsan Imani, Erin Talvitie, Martha White, and Micheal Bowling. Hallucinating
value: A pitfall of dyna-style planning with imperfect environment models. arXiv preprint
arXiv:2006.04363, 2020.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in Neural Information Processing Systems, 2019.

10

Published as a conference paper at ICLR 2024

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary Mathematics, 1984.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. In International Conference on Learning Representations, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Byron Knoll and Nando de Freitas. A machine learning perspective on predictive coding with paq8.
In Data Compression Conference, 2012.

Qingfeng Lan and A Rupam Mahmood. Elephant neural networks: Born to be a continual learner.
In Workshop on High-dimensional Learning Dynamics at ICML, 2023.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 2022.

Vincent Liu, Raksha Kumaraswamy, Lei Le, and Martha White. The utility of sparse representa-
tions for control in reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2019.

Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng Yan, and Zhongwen Xu. Efficient offline policy
optimization with a learned model. In International Conference on Learning Representations,
2023.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 2017.

Michael Lutter, Leonard Hasenclever, Arunkumar Byravan, Gabriel Dulac-Arnold, Piotr Trochim,
Nicolas Heess, Josh Merel, and Yuval Tassa. Learning dynamics models for model predictive
agents. arXiv preprint arXiv:2109.14311, 2021.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of Learning and Motivation. 1989.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 2015.

Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement learning with
less data and less time. Machine Learning, 1993.

Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models for
learning dexterous manipulation. In Conference on Robot Learning, 2020.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Yangchen Pan, Hengshuai Yao, Amir-massoud Farahmand, and Martha White. Hill climbing on
value estimates for search-control in dyna. 2019.

Yangchen Pan, Kirby Banman, and Martha White. Fuzzy tiling activations: A simple approach to
learning sparse representations online. In International Conference on Learning Representations,
2021.

Jing Peng and Ronald J Williams. Efficient learning and planning within the dyna framework.
Adaptive Behavior, 1993.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, 2007.

11

Published as a conference paper at ICLR 2024

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards general-
ization and simplicity in continuous control. Advances in Neural Information Processing Systems,
2017.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 2020.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 2012.

Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix corresponding to a change
in one element of a given matrix. The Annals of Mathematical Statistics, 1950.

Yitong Sun, Anna Gilbert, and Ambuj Tewari. On the approximation properties of random relu
features. arXiv preprint arXiv:1810.04374, 2018.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximat-
ing dynamic programming. In Machine Learning Proceedings. 1990.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 1991.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

Richard S Sutton, Michael Bowling, and Patrick M Pilarski. The alberta plan for ai research. arXiv
preprint arXiv:2208.11173, 2022.

Erik Talvitie. Self-correcting models for model-based reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2017.

Matus Telgarsky. Benefits of depth in neural networks. In Conference on Learning Theory, 2016.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE International Conference on Intelligent Robots and Systems, 2012.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software,
1985.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. Advances in neural information
processing systems, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 2020.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, 2017.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiri-
any, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot
learning. In arXiv preprint arXiv:2009.12293, 2020.

Huiping Zhuang, Zhenyu Weng, Hongxin Wei, Renchunzi Xie, Kar-Ann Toh, and Zhiping Lin.
ACIL: Analytic class-incremental learning with absolute memorization and privacy protection. In
Advances in Neural Information Processing Systems, 2022.

Huiping Zhuang, Zhenyu Weng, Run He, Zhiping Lin, and Ziqian Zeng. GKEAL: Gaussian kernel
embedded analytic learning for few-shot class incremental task. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

Huiping Zhuang, Run He, Kai Tong, Ziqian Zeng, Cen Chen, and Zhiping Lin. DS-AL: A dual-
stream analytic learning for exemplar-free class-incremental learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 2024.

12

Published as a conference paper at ICLR 2024

A ON FEATURE SPARSITY

Feature sparsity has been pursued to reduce forgetting dating back to McCloskey & Cohen (1989);
French (1991). The core idea is that catastrophic forgetting occurs due to the overlap of distributed
representations in NNs, hence it can be reduced by reducing the overlap. Sparse features are lo-
cal features with less overlap, so they should alleviate the forgetting issue. Recent works have
demonstrated positive results by enforcing sparse hidden features in NNs either by regularization
(Liu et al., 2019; Hernandez-Garcia & Sutton, 2019) or by deterministic activation functions (Pan
et al., 2021; Lan & Mahmood, 2023). However, we emphasize that, in our work, non-forgetting is
ensured by FTL and the high-dimensional sparse encoding is mainly for representational capacity
and computational efficiency, though it also reduces feature interference as a byproduct.

We first conduct theoretical analysis similar to Lan & Mahmood (2023) to understand how sparsity
contributes to non-forgetting, then present empirical results to show sparsity alone is not sufficient
to guarantee non-forgetting.

Assume we are regressing a scalar target given an input vector using squared loss: ℓ(f,x, y) =
(fw(x) − y)2, where f is our predictor with parameters w. When a new data sample {xt, yt}
arrives, we want to adjust the parameters w to minimize ℓ(f,xt, yt) with gradient descent:

w′ −w = ∆w = −α∇wℓ(f,xt, yt) (8)

The change of the parameters will lead to the change of the predictor’s output, and by the first-order
Taylor expansion:

fw′(x)− fw(x) ≈ ∇wfw(x) (w′ −w)

= −α∇wfw(x)∇wℓ(f,xt, yt)

= −α∇f ℓ(f,xt, yt)⟨∇wfw(x),∇wfw(xt)⟩
(9)

We assume non-zero loss so ∇f ℓ(f,xt,yt) ̸= 0 and analyze ⟨∇wfw(x),∇wfw(xt)⟩. For linear
models as in our case, fw(x) = w⊤ϕ(x), thus ⟨∇wfw(x),∇wfw(xt)⟩ = ⟨ϕ(x), ϕ(xt)⟩. Then we
could investigate the following question: after we adjust the parameters (Equation 8) based on the
new sample, what’s the output difference (Equation 9) at any x for x that is similar or dissimilar to
xt?

1. For x similar to xt, we expect ⟨ϕ(x), ϕ(xt)⟩ ̸= 0 to yield improvement and generaliza-
tion. This will hold since a proper feature encoder ϕ(·) should approximately preserve the
similarity in the original space.

2. For x dissimilar to xt, we hope ⟨ϕ(x), ϕ(xt)⟩ ≈ 0 to reduce interference (therefore less
forgetting). The claim is that if ϕ(·) produces sparse features, it is highly likely that the
inner product is approximately zero, hence meeting our expectation.

However, we argue that feature sparsity is not sufficient to mitigate forgetting, because the proba-
bility that there is no single overlap between representations is low even if the feature is sparse. In
Figure 7, we show the mean squared errors for the piecewise random walk stream learning task intro-
duced in Section 4.2. We use our Losse representation with different sparsity levels as features and
compare our sparse FTL update with gradient descent update. We can observe that the gradient de-
scent update relying on feature sparsity still suffers from catastrophic forgetting until λ = 30, which
corresponds to a 9000-dimensional feature with 40 nonzero entries — an extremely high sparsity
level. Nevertheless, increasing sparsity indeed helps sparse features to reduce interference when us-
ing gradient descent (comparing the absolute values of MSEs across different λ). In contrast, Losse-
FTL ensures non-forgetting incrementally by finding the optimal fitting for all experienced samples,
even with the presence of feature overlap. Notably, when Losse gets more sparse, we can observe
the error for Losse-FTL decreases, verifying our design that the high dimensional sparse feature
brings more fitting capacity while maintaining the same computational cost with our sparse update.

B ANALYTIC CONTINUAL LEARNING

Our work is closely related to a paradigm called analytic continual learning, where the closed-form
solution, if obtainable, is employed in training a continual learner. A recent line of research explores

13

Published as a conference paper at ICLR 2024

d

0.01

0.02

0.03

M
ea

n
S

qu
ar

ed
E

rr
or

λ=10 λ=20

0.0 0.2 0.4 0.6 0.8
d

0.0005

0.0010

0.0015

M
ea

n
S

qu
ar

ed
E

rr
or

λ=25

0.0 0.2 0.4 0.6 0.8
d

λ=30

Losse-GD Losse-FTL

Figure 7: Mean squared errors on piecewise random walk stream learning. The results compare the FTL update
to the gradient descent update using Losse features with different sparsity levels. Note that gradient descent
(GD) update uses a mini-batch of 50 samples for each update, resulting in lower errors than FTL’s when the
feature dimension gets higher.

this topic focusing on class-incremental learning (Zhuang et al., 2022; 2023; 2024). In particular,
Zhuang et al. (2022) employ a pre-trained neural network to extract feature vectors X

(fe)
k after

a process called feature expansion, and then learn the weights of a fully connected layer ŴFCN

on the frozen features for class-incremental classification. The weights at round k can be solved
analytically in a recursive manner utilizing the Woodbury matrix identity:

Ŵ
(k)
FCN =

[
Ŵ

(k−1)
FCN −RkX

(fe)⊤
k X

(fe)
k Ŵ

(k−1)
FCN RkX

(fe)⊤
k Y train

k

]
, (10)

where Y train
k is the label for class k, and Rk =

(∑k
i=0 X

(fe)⊤
i X

(fe)
i + γI

)−1

is the regularized

feature auto-correlation matrix (similar to the inverse of At = Φ⊤
t Φt in our formulation), which

also has a recursive form:

Rk = Rk−1 −Rk−1X
(fe)⊤
k

I +X
(fe)
k Rk−1X

(fe)⊤
k︸ ︷︷ ︸

Nk×Nk


−1

X
(fe)
k Rk−1. (11)

Though Zhuang et al. (2022) have achieved state-of-the-art class-incremental learning performance,
there are a few limitations. First, a deep network must be pre-trained and frozen to serve as an ex-
pressive feature encoder, which is simply infeasible in online settings. Second, Equation 11 involves
inverting a matrix whose size grows with the number of samples, limiting its scalability. Third, the
learning system requires the knowledge of task boundaries for matrix decomposition, which may
not be accessible in many real-world scenarios. In contrast, our work develops an expressive fea-
ture encoder that does not rely on pre-training, proposes a constant-time update rule exploiting the
feature sparsity, and applies to reinforcement learning where the nonstationarity appears without
explicit task boundaries.

C SUPERVISED LEARNING DETAILS

In this section, we provide more details regarding the supervised learning experiments on image
denoising (Appendix C.1) and piecewise random walk (Appendix C.2).

C.1 IMAGE DENOISING

We add pixel-wise Gaussian noise with µ = 0, σ = 0.3 to normalized images from the MNIST
dataset (Deng, 2012), and create train and test splits with ratio 9 : 1. To test the feature representation

14

Published as a conference paper at ICLR 2024

on different difficulties, we crop patches from the center with different sizes, ranging from 2 × 2
to 7 × 7. Figure 8 shows some sample pairs. For different feature encoding methods compared

Figure 8: Sample pairs for the image denoising task.

in Section 4.1, we limit the number of non-zero feature entries up to 80 for fair comparison. This
means 2-d binning with 20 grids for Losse-FTL. The number of bins affects the performance slightly,
due to different granularity for generalization. Hence we sweep it over {5, 6, 7, 8, 9}. We observe
that the scale of the standard deviation of the Gaussian random projection matrix affects the final
performance significantly for random ReLU and random Frouier features, so we select the best one
from a sweep over {0.1, 0.3, 0.5, 1, 5, 10}. The linear layer is optimized using Adam (Kingma & Ba,
2015) with a learning rate 0.0001. We repeated experiments for all settings for 5 times and report
the mean scores.

C.2 PIECEWISE RANDOM WALK

Recall that observations in the process are sampled from a Gaussian Xt ∼ N (St, β
2) with {St}t∈N

being a Gaussian first order auto-regressive random walk St+1 = (1− c)St + Zt, where c ∈ (0, 1]
and Zt ∼ N

(
0, σ2

)
. The equilibrium distribution of {Xt}t∈N is also a Gaussian with E[Xt] = 0

and variance ξ2 = β2 + σ2

2c−c2 . We can use a single parameter d ∈ [0, 1), which we call correlation
level, to control the variance:

c = 1−
√
1− d,

σ2 = d2
(
B

2

)2

,

β2 = (1− d)

(
B

2

)2

,

where B gives a high probability bound. See Pan et al. (2021) for detailed derivation.

We visualize sampling trajectories of Xt for B = 1 d ∈ [0, 1) in Figure 9.

For neural networks trained in Section 4.2, we use 2-layer MLP with 50 hidden units. For NN-Batch,
we take 50 samples from each Xt and use mini-batch gradient descent to update the weights. Adam
optimizer is used with the best learning rate swept from {5×10−6, 1×10−5, 5×10−5, . . . , 1×10−2}.
For Losse-FTL, we use 2-d binning with 10 bins for each grid and use 10 grids to construct the final
feature. We run all experiments for 50 independent seeds and report the means and standard errors.

D REINFORCEMENT LEARNING DETAILS

Learning algorithm. We present the detailed Dyna-style algorithm based on Losse-FTL in Algo-
rithm 3, where the world models are learned online. For NN-based settings, line 4 of Algorithm 3
is replaced by training a neural network (optionally with replay buffer or other continual learning
techniques).

Settings for discrete control tasks. We use κ = 30, ρ = 2, and λ = 10 for Losse-FTL, and 3-layer
MLPs with 32 hidden units for neural networks. For Coreset we maintain a buffer with size 100, and
for SI we use the best ξ and c from a grid search. The DQN parameters are updated using real data
with an interval of 4 interactions. In MBRL, 16 planning steps are conducted after each real data
update. Both real data updates and planning updates use a mini batch of 32. The learning rate of
DQN is swept from {1× 10−2, 3× 10−3, 1× 10−3, . . . , 1× 10−5} for all configurations. All world

15

Published as a conference paper at ICLR 2024

0 200 400
t

−1

0

1

d = 0

0 200 400
t

−1

0

1

d = 0.21

0 200 400
t

−1

0

1

d = 0.41

0 200 400
t

−1

0

1

d = 0.62

0 200 400
t

−1

0

1

d = 0.83

0 200 400
t

−1

0

1

d = 0.98

Xt

St = E[Xt]

Figure 9: Visualization of piecewise random walk sampling trajectories with different correlation levels d.

Algorithm 3 Dyna MBRL with Losse-FTL

Require: environmentM, agent π, world model f̂ , state search control c, model unroll length k,
model experiences Dm

1: for epoch ∈ {1, . . . , E} do
2: for interaction ∈ {1, . . . ,K} do
3: s,a, s′, r ← rollout(M, π)

4: Update f̂ with (s,a, s′, r) (Algorithm 2) ▷ incremental model updates
5: end for
6: for planning ∈ {1, . . . , N} do
7: s̃← c ▷ uniform state sampling
8: ã, ŝ′, r̂ ← ModelUnroll(f̂ , s̃, π, k) ▷ short-horizon on-policy unroll
9: Dm ← (s̃, ã, ŝ′, r̂)

10: end for
11: for learning ∈ {1, . . . , G} do
12: Update DQN or SAC on a batch of model data B ∼ Dm

13: end for
14: end for

models are updated every 25 environment steps to accelerate experiments. We run all experiments
for 30 independent seeds and report the means and standard errors.

Settings for continuous control tasks. We use κ = 300, ρ = 2, and λ = 10 for Losse-FTL,
and 4-layer MLPs with 400 hidden units for neural networks following Janner et al. (2019). Our
implementation follows closely the official codebase2 of MBPO (Janner et al., 2019), and also adopts
the same hyper-parameters for both MBPO and SAC. The replay size of Coreset is 5000, and the
hyper-parameters for SI are chosen from a grid search. All world models are updated every 250
environment steps to accelerate experiments. We run all experiments for 5 independent seeds and
report the means and standard errors.

E IMPLEMENTATION DETAILS

We provide more implementation details of Losse-FTL in this section. Referring to Figure 3, the
input xt is first pre-processed to be bounded between [−3, 3], and then projected with a matrix

2https://github.com/jannerm/mbpo

16

https://github.com/jannerm/mbpo

Published as a conference paper at ICLR 2024

containing values sampled from an isotropic Gaussian with µ = 0 and Σ = 1
c I, where c is the fan-

in dimension, i.e., S+A. This ensures the projected values σ(xt) are bounded with high probability
and facilitates a more even bin utilization. In computing the sparse update at line 7 of Algorithm 2,
we use (At,ss+εI)−1 for some small ε > 0 to ensure its invertibility. We provide Jax-based Python
codes in Listing 1.

1 import math
2 from typing import NamedTuple, Tuple
3
4 import chex
5 import jax
6 import jax.numpy as jnp
7 import numpy as np
8
9

10 class LosseParams(NamedTuple):
11 count: jax.Array
12 projection: jax.Array
13 xtx: jax.Array
14 xty: jax.Array
15 w: jax.Array
16
17
18 def _to_1d_index(indices, offsets, n_feat, bin_dim, n_bins):
19 """Compute the flattened index into the weight matrix."""
20 n_grids_per_lsh = (n_bins + 1) ** bin_dim
21 indices = jnp.reshape(indices, (-1, bin_dim, n_feat))
22 offsets = jnp.reshape(offsets, (-1, bin_dim, n_feat))
23 indices = jnp.stack([indices, indices + 1], axis=-1) # [-1, bin_dim, n_feat, 2]
24 values = jnp.stack([1.0 - offsets, offsets], axis=-1) # [-1, bin_dim, n_feat, 2]
25 multiplier = jnp.power(n_bins + 1, jnp.arange(bin_dim - 1, -1, -1))
26 indices *= multiplier[:, None, None]
27 # shape = (-1, n_feat,) + (2,) * bin_dim
28 shape_suffix = [tuple(*p) for p in np.split(np.eye(bin_dim, dtype=np.int32) + 1,

bin_dim)]↪→
29 indices = sum(jnp.reshape(indices[:, i], (-1, n_feat, *suffix)) for i, suffix in

enumerate(shape_suffix))↪→
30 values = math.prod(jnp.reshape(values[:, i], (-1, n_feat, *suffix)) for i, suffix in

enumerate(shape_suffix))↪→
31 # both indices and values has the shape (-1, n_feat, *(2,)*bin_dim) now.
32 indices += jnp.expand_dims(
33 n_grids_per_lsh * jnp.arange(n_feat), axis=tuple(range(-bin_dim, 1, 1))
34) # expand 1 dim in the front and bin_dim in the back.
35 indices = jnp.reshape(indices, (-1, n_feat * 2**bin_dim))
36 values = jnp.reshape(values, (-1, n_feat * 2**bin_dim))
37 return indices, values
38
39
40 class Losse:
41 """Linear regressor with LOcality Sensitive Sparse Encoding (Losse).
42
43 We update the linear weights online sparsely following Algorithm.2 in the paper, i.e.,

computing the incremental closed-form solution based on newly incoming data points.↪→
44 """
45
46 def __init__(
47 self,
48 inout_dims: Tuple[int, int],
49 num_features: int,
50 num_bins: int,
51 bin_dim: int,
52 eps: float,
53) -> None:
54 self.num_features = num_features
55 self.num_bins = num_bins
56 self.bin_dim = bin_dim
57 self.inout_dims = inout_dims
58 self.eps = eps
59 n_edges = num_bins + 1
60 n_grids_per_lsh = (n_edges + 1) ** bin_dim
61 self.d = n_grids_per_lsh * num_features
62
63 def init(self, rng: jax.random.PRNGKey) -> LosseParams:
64 input_dim = self.inout_dims[0]
65 output_dim = self.inout_dims[1]
66 std = 1 / jnp.sqrt(input_dim)
67 projection = std * jax.random.truncated_normal(
68 rng,
69 -2,

17

Published as a conference paper at ICLR 2024

70 2,
71 (input_dim, self.num_features * self.bin_dim),
72)
73 return LosseParams(
74 count=jnp.array(0, dtype=jnp.int64),
75 projection=projection,
76 xtx=jnp.zeros((self.d * self.d,), dtype=projection.dtype),
77 xty=jnp.zeros((self.d, output_dim), dtype=projection.dtype),
78 w=jnp.zeros((self.d, output_dim), dtype=projection.dtype),
79)
80
81 def update(
82 self,
83 params: LosseParams,
84 x: jax.Array,
85 y: jax.Array,
86) -> LosseParams:
87 chex.assert_tree_shape_prefix((x, y), (1,)) # assert non-batched
88 indices, values = self._indices_and_values(params.projection, x)
89 params = self._update_memory(params, indices, values, y)
90 params = self._update_w(params, indices)
91 return params
92
93 def predict(self, params: LosseParams, x: jax.Array):
94 indices, values = self._indices_and_values(params.projection, x)
95 output = params.w[indices] * values[..., None]
96 return output.sum(1)
97
98 def _indices_and_values(
99 self,

100 projection: jax.Array,
101 x: jax.Array,
102):
103 h = jnp.matmul(x, projection)
104 h = jax.nn.sigmoid(h)
105 h = jnp.clip(h, 0, 1) * self.num_bins
106 indices = jnp.floor(h).astype(jnp.int32)
107 offsets = h - indices
108 indices, values = _to_1d_index(
109 indices,
110 offsets,
111 self.num_features,
112 self.bin_dim,
113 self.num_bins,
114)
115 return indices, values
116
117 def _update_memory(
118 self,
119 params: LosseParams,
120 indices: jax.Array,
121 values: jax.Array,
122 y: jax.Array,
123) -> LosseParams:
124 chex.assert_equal_shape_prefix((indices, values, y), prefix_len=1)
125 xtx_indices = (indices * self.d)[:, :, None] + indices[:, None, :]
126 xtx_indices = xtx_indices.flatten()
127 xty_indices = indices.flatten()
128 xtx_updates = values[:, :, None] * values[:, None]
129 xtx_updates = xtx_updates.flatten()
130 xty_updates = values[:, :, None] * y[:, None, :]
131 xty_updates = xty_updates.reshape(-1, y.shape[-1])
132 return params._replace(
133 xtx=params.xtx.at[xtx_indices].add(xtx_updates),
134 xty=params.xty.at[xty_indices].add(xty_updates),
135 count=params.count + y.shape[0],
136)
137
138 def _update_w(
139 self,
140 params: LosseParams,
141 indices: jax.Array,
142) -> LosseParams:
143 indices = indices.flatten()
144 sub_indices = (indices * self.d)[:, None] + indices[None, :]
145 sub_xtx = jnp.reshape(params.xtx[sub_indices], [indices.shape[0]] * 2)
146 sub_xty = params.xty[indices]
147 a = sub_xtx
148 sub_xtxw = jnp.matmul(
149 jnp.reshape(params.xtx, (self.d, self.d))[indices],
150 params.w,

18

Published as a conference paper at ICLR 2024

151)
152 b = sub_xty - sub_xtxw + jnp.matmul(sub_xtx, params.w[indices])
153 a_norm = a / params.count + self.eps * jnp.eye(len(a))
154 b_norm = b / params.count
155 solution = jnp.linalg.solve(a_norm, b_norm)
156 return params._replace(w=params.w.at[indices].set(solution))
157
158
159 losse = Losse(
160 inout_dims=(1, 1),
161 num_features=50,
162 num_bins=10,
163 bin_dim=2,
164 eps=1e-5,
165)
166
167 losse.init = jax.jit(losse.init)
168 losse.update = jax.jit(losse.update, donate_argnums=(0,)) # donate to avoid copy
169 losse.predict = jax.jit(losse.predict)

Listing 1: Jax-based Python codes for learning an online linear regressor with Losse-FTL.

19

	Introduction
	Preliminaries
	Online learning
	Model-based reinforcement learning with Dyna

	Learning world models online
	Online Follow-The-Leader model learning
	Feature representation
	Efficient sparse incremental update

	Empirical results on supervised learning
	Comparing feature representations
	Online learning with covariate shift

	Empirical results on reinforcement learning
	Settings and baselines
	Results

	Limitation and future work
	Conclusion
	On feature sparsity
	Analytic continual learning
	Supervised learning details
	Image denoising
	Piecewise random walk

	Reinforcement learning details
	Implementation details

