

000 RACER: RETRIEVAL-AUGMENTED CONTEXTUAL 001 002 RAPID SPECULATIVE DECODING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Autoregressive decoding in Large Language Models (LLMs) generates one token per step, causing high inference latency. Speculative decoding (SD) mitigates this through a guess-and-verify strategy, but existing training-free variants face trade-offs: retrieval-based drafts break when no exact match exists, while logits-based drafts lack structural guidance. We propose **RACER** (Retrieval-Augmented Contextual Rapid Speculative Decoding), a lightweight and training-free framework that integrates retrieved exact patterns with logit-driven future cues. This unification supplies both reliable anchors and flexible extrapolation, yielding richer speculative drafts. Experiments on Spec-Bench, HumanEval, and MGSM demonstrate that RACER consistently accelerates inference, achieving a speedup of 2.2~2.8 \times compared to autoregressive decoding, and outperforms prior training-free methods, offering a scalable, plug-and-play solution for efficient LLM decoding. Our source code is available at this anonymous repository.

025 1 INTRODUCTION

026 Large Language Models (LLMs) such as GPT (OpenAI, 2025), LLaMA (Dubey et al., 2024), and Qwen (Bai et al., 2023) have achieved remarkable success across diverse natural language processing tasks. However, their autoregressive decoding paradigm, which generates one token per step, fundamentally limits inference efficiency. The sequential dependency causes inference latency to scale linearly with sequence length and model size, creating a key bottleneck for real-world deployment.

027 Speculative Decoding (SD) has emerged as a promising approach to address this challenge. By adopting a *guess-and-verify* strategy, SD enables multiple tokens to be proposed and verified in parallel, achieving acceleration without sacrificing output quality. Existing methods fall into two categories. Model-based approaches rely on lightweight auxiliary models – either separately trained (Cai et al., 2024; Li et al., 2024a;b; 2025) or inherited from smaller variants of the same model family (Leviathan et al., 2023) – to generate draft tokens, at the cost of additional memory, training, and integration overhead. Model-free approaches, in contrast, construct draft tokens directly from signals available during inference. Among model-free approaches, most are retrieval-based, leveraging exact token sequence matches from static corpora or dynamically generated contexts (Saxena, 2023; He et al., 2023). Recent work further exploits the predictive power of last logit (Liu et al., 2025b), or recycles candidate logits (Luo et al., 2025), showing that LLMs inherently encode richer cues for near-future tokens than previously assumed.

028 Despite these advances in model-free methods, two key limitations remain. First, retrieval-based methods depend on exact token matching, which breaks down when no continuation can be directly aligned. Second, logits-based methods are restricted to last-step or self-drafted candidates and lack external structural guidance, making it difficult to extrapolate toward more suitable tokens. As a result, their predictions tend to be narrow in scope and suboptimal in quality.

029 To address these limitations, we propose **RACER** (Retrieval-Augmented Contextual Rapid Speculative Decoding), a **plug-and-play, training-free** method that unifies the strengths of both paradigms. Retrieval provides **seen information** through exact pattern matches, offering structural guidance, while logits supply **unseen information**, enabling extrapolation beyond strict matches. By augmenting logit predictions with retrieval signals, RACER generates richer and more accurate speculative

054 drafts. In this way, retrieval functions not as an independent generator but as structural guidance that
 055 empowers logits to hypothesize plausible continuations beyond their immediate horizon.
 056

057 We conduct comprehensive experiments among general benchmark Spec-Bench (Xia et al., 2024),
 058 code generation benchmark HumanEval (Chen et al., 2021) and Chinese math reasoning benchmark
 059 MGSM (Shi et al., 2022). Our contribution is threefold:

- 060 1. We identify and exploit the complementary nature of seen and unseen information for spec-
 061 ulation decoding.
- 062 2. We introduce a unified cache-like framework that integrates retrieval-based draft trees and
 063 logit-based dynamic updates.
- 064 3. We show that RACER achieves superior inference acceleration with stable memory usage,
 065 establishing a lightweight and scalable foundation for training-free speculative decoding.

067 2 BACKGROUND

069 In this section, we provide the necessary background and related works on speculative decoding.

071 **Speculative Decoding** Speculative Decoding (SD) typically proceeds in two phases: a *drafting*
 072 *phase* and a *verification phase*.

074 Given a prefix x , a lightweight **draft model** M_q generates γ candidate tokens $\tilde{x}_1, \dots, \tilde{x}_\gamma$. These
 075 tokens, together with the prefix, are then passed to the **target model** M_p , which produces logits
 076 p_1, \dots, p_γ . Each draft token \tilde{x}_i is verified by comparing its probability under M_p with that under
 077 M_q (Leviathan et al., 2023; Chen et al., 2023):

$$\alpha_i = \begin{cases} 1 & \text{if } p_i[\tilde{x}_i] \geq q_i[\tilde{x}_i], \\ \frac{p_i[\tilde{x}_i]}{q_i[\tilde{x}_i]} & \text{otherwise.} \end{cases} \quad (1)$$

083 If \tilde{x}_i is accepted (with probability α_i), it is appended to the sequence; otherwise, $\tilde{x}_i, \dots, \tilde{x}_\gamma$ are
 084 discarded, and the speculative decoding step terminates early. The next iteration then resumes from
 085 the last accepted prefix, using the last accepted logits p_{i-1} of the target model to resample x_i as
 086 the new continuation token. This guarantees that every iteration produces at least one token, while
 087 leveraging accepted drafts whenever possible to accelerate generation.

088 Regardless of whether greedy or nucleus sampling is employed, validation always leverages the
 089 logits from the target model. In expectation, a single SD step can advance by up to $\gamma + 1$ tokens,
 090 significantly reducing the number of target model invocations compared to standard AR decoding.

091 **Retrieval-based Speculative Decoding** Retrieval-based SD methods bypass the draft model M_q
 092 and instead rely on pattern matching within the token sequence. PLD (Saxena, 2023), for example,
 093 stores past n -grams together with their succeeding m -grams as predictions. This method is simple
 094 and effective in pattern-repeating scenarios such as code generation, but can only propose a single
 095 continuation at a time. Moreover, because pattern matches are sparse and fail to capture the full
 096 diversity of target model outputs, PLD is constrained to specific domains and cannot generalize
 097 broadly.

099 **Tree Attention** The standard guess-and-verify scheme assumes a linear draft sequence. *Tree at-*
 100 *tention* (Cai et al., 2024) generalizes this by allowing the draft model to propose a branching tree
 101 of candidates. During verification, the target model processes all nodes in parallel, with position
 102 encodings set by depth and attention masks restricting each node to its ancestors:

$$103 \quad \text{pos}[i] = \text{pos}[\text{parent}(i)] + 1, \quad \text{mask}[i, j] = \mathbb{1}[j = i \text{ or } j \in \text{ancestor}(i)]. \quad (2)$$

104 This transforms speculative decoding into a branching search process, enabling higher parallelism
 105 and more effective utilization of the target model when multiple plausible continuations exist.

107 For model-based methods, Medusa (Cai et al., 2024) attaches multiple additional LM heads to the
 top layer, each predicting draft tokens for different tree depths. EAGLE-3 (Li et al., 2025) further

integrates low-, mid-, and high-level features of the target model, with its core structured as a Transformer decoder layer. For model-free methods, REST (He et al., 2023) constructs a suffix array to identify the longest suffix match and expands the matched continuation into a trie, while SAM Decoding (Hu et al., 2025) employs both dynamic and static suffix automata to capture contextual as well as pre-built suffix patterns, providing more flexible retrieval-guided expansions.

3 METHODOLOGY

In this section, we introduce our approach in three parts: *Logits Tree*, *Retrieval Tree with LRU (Least Recently Used) eviction*, and their integration strategy. Logits Tree leverages predictive distributions to hypothesize unseen continuations, while Retrieval Tree reuses observed contexts to provide reliable structural guidance. Their combination yields a unified framework that balances generalization and memorization.

3.1 LOGITS TREE

First Step beyond Next-Token We examine two *logit-reuse* strategies when extending the tree beyond the next token. The *last-logit* strategy reuses the logit distribution from which the next-token was sampled to expand all of its children candidates, assuming local smoothness in the token space. The *copy-logit* strategy instead reuses the logit from the most recent occurrence of the same token, assuming that identical vocabulary tokens tend to preserve similar semantic tendencies when appearing in comparable contexts. Here, “the same token” refers to the same vocabulary token (same token ID), and we reuse the logits from its most recent occurrence in the history. To evaluate these strategies, we conducted experiments on Spec-Bench using Vicuna-7B-v1.5 and Qwen3-1.7B under greedy decoding. For each speculative step, we selected the top-63 tokens from the corresponding logits to form the first layer, and measured their effectiveness by the Mean Accepted Tokens (MAT) and the distribution of accepted ranks (from 1 to 63). Since both models exhibited similar trends, we report only the results of Vicuna-7B-v1.5 here. Additional results could be found in Appendix E.

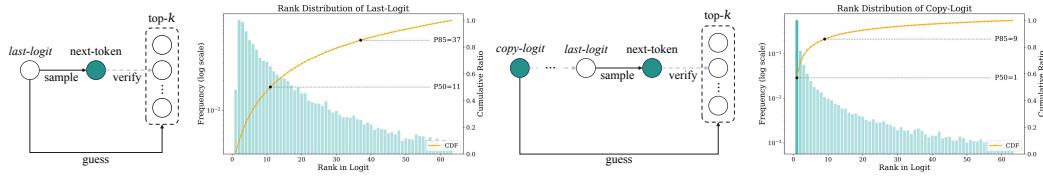


Figure 1: The *last-logit* node (white) produces both the next-token sample and the draft tokens immediately after it. The *copy-logit* node (green) marks the same token ID as the next-token, whose logit is reused to approximate the next-token’s logits when generating subsequent draft tokens. After the target model digests the next-token, its logit is used to verify only one draft token in the first layer of the Logits Tree. In the histogram, the x-axis denotes the reused-logit rank of each draft token, and the y-axis reports their relative frequency among accepted draft tokens.

The MAT values of *last-logit* and *copy-logit* are 1.57 and 1.87, respectively, indicating that *copy-logit* achieves higher accepted rate. As shown in Figure 1, the *copy-logit* strategy also exhibits a pronounced heavy-tail property: its accepted tokens concentrate strongly at the top ranks, with rank-1 alone accounting for more than 50% of accepted cases. For *copy-logit*, the 50th and 85th percentile accepted ranks are 1 and 9, compared with 11 and 37 for *last-logit*. These results demonstrate that *copy-logit* provides a sharper and more reliable distribution for speculative expansion, and we therefore adopt it as the basic expansion strategy of Logits Tree.

k -ary Analogy and Pruning Motivated by the heavy-tail property observed in Figure 1, we next extend the ex-

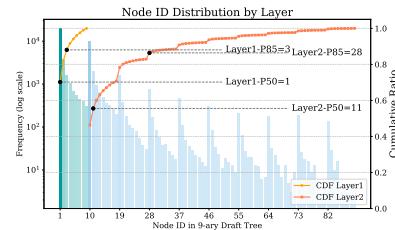


Figure 2: Analogy experiments with a fixed 9-ary draft tree of height 3, illustrating the accumulative trends across different parents and motivating the proposed breadth allocation rule for effective pruning.

162 pansion recursively to deeper layers. Two principles guide this design: (i) the 85th percentile rank
 163 is around 9, indicating that useful candidates concentrate in the head of the distribution; and (ii)
 164 because speculative decoding proceeds prefix-wise, the breadth of any child node should not exceed
 165 that of the root expansion.

166 To further examine the implications of the above principles and to explore how to prune the draft
 167 tree effectively, we conducted analogy experiments with a fixed 9-ary draft tree of height 3. This
 168 tree contains $1 + 9 + 9^2 = 91$ nodes, indexed from 0 to 90. Node 0 is the root corresponding to the
 169 next-token position; nodes 1-9 form the first layer; and nodes 10-90 form the second layer. Under
 170 this level-order indexing scheme, each node $i > 0$ has its parent given by $\text{parent}(i) = \lfloor \frac{i-1}{k} \rfloor$.
 171

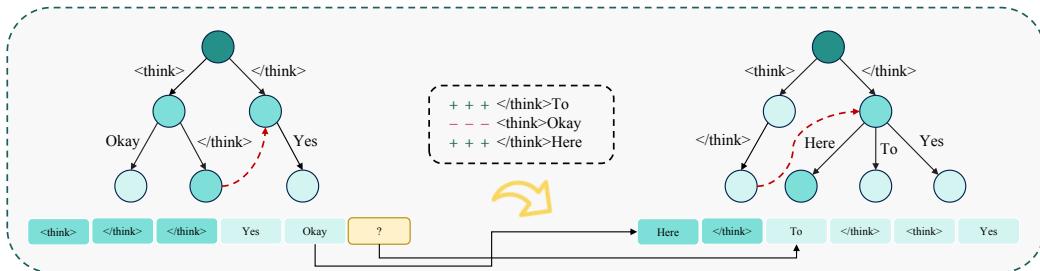
172 As illustrated in Figure 2, the second-layer children of node 1 exhibit an accumulative trend resem-
 173 bling that of the first layer, albeit slightly slower. For children of parents with larger IDs, the growth
 174 further slows and the total volume is nearly halved. The distribution remains front-loaded, with the
 175 50th percentile at the second node (ID 11) and the 85th percentile at the 19th node (ID 28, the second
 176 child of node 3). Compared with *copy-logit*, the MAT raises from 1.87 to 2.34.
 177

To capture this behavior, we define the breadth allocation in the Logits Tree for child nodes as

$$b_{\text{child}(i,j)} = \max\left(1, \left\lfloor \frac{b_i}{2^{j+\lceil i \neq 0 \rceil}} \right\rfloor\right), \quad j = 0, 1, \dots, b_i - 1. \quad (3)$$

180 where b_i is the breadth of the parent node and j is the child index. Specifically, nodes at the first
 181 layer start with the maximum breadth, while deeper layers inherit half of their parent’s breadth. This
 182 design ensures that the upper part of the Logits Tree expands more aggressively, while deeper layers
 183 are progressively pruned. Given a specific draft capacity, the Logits Tree then expands in a breadth-
 184 first manner according to this allocation rule. Figure 6 in the Appendix illustrates this process using
 185 a 4-ary example, showing: (i) the original k -ary indexing, and (ii) the pruned Logits Tree structure.

3.2 RETRIEVAL TREE WITH LRU EVICTION



200 Figure 3: Illustration of the LRU-based eviction strategy in RACER’s retrieval automaton. Solid
 201 black edges denote standard trie transitions, and dashed red edges denote failure links. Yellow nodes
 202 represent unallocated states. Green nodes indicate allocated states, where darker color corresponds
 203 to more recent usage. The example demonstrates how inserting the 2-gram [</think>, To] creates a new node To,
 204 and how LRU leaf node Okay is evicted and replaced with Here when the capacity is reached with the new 2-gram [</think>, Here].
 205

206 Approaches such as SAM Decoding (Hu et al., 2025) and LogitSpec (Liu et al., 2025b) indicate
 207 that explicit retrieval drafts can complement the logits and improve acceptance rates. Motivated
 208 by these findings, we aim to design an efficient retrieval structure that exploits repeated patterns in
 209 the context. Classical indexing structures such as suffix arrays (Manber & Myers, 1993) or suffix
 210 automata (Blumer et al., 1984) provide efficient substring matching, but they grow proportionally
 211 with the context length and lack a natural mechanism to discard obsolete states. This is undesirable
 212 in language modeling, where the distribution of substrings follows a Zipf-like long-tail law, implying
 213 that many substrings have little utility and can be safely evicted. To balance efficiency and adaptivity,
 214 we propose to use an Aho–Corasick (AC) automaton (Aho & Corasick, 1975) to maintain an n -
 215 gram based Retrieval Tree. Unlike a plain n -gram trie, the AC automaton supports failure links that
 facilitate fast state transitions and naturally enrich draft diversity.

216 **Transition Rule** As shown in Figure 3, we incorporate an **LRU-style (Least Recently Used)**
 217 **eviction mechanism** into the AC automaton so that infrequent n -gram patterns are pruned while
 218 new ones from the incoming context are continually incorporated. Each time a state is visited –
 219 either through a valid transition or via a failure-link fallback – that state is marked as “touched”. Im-
 220 portantly, when backtracking with failure links, all of its ancestor (prefix) states are also necessarily
 221 touched. This ensures that prefix nodes always remain equal or more recent than their descendants.
 222 For example, when the token `Yes` follows [`<think>`, `</think>`] and there is no direct transi-
 223 tion, the automaton backtracks along its failure link to state [`</think>`] and then transitions to
 224 [`</think>`, `Yes`]; all states along this fallback and transition path are touched.

225 **Update and Eviction Rule** During decoding, newly observed n -grams are incrementally inserted
 226 into the automaton. Insertion follows the transition path whenever possible; if a transition does not
 227 exist, a new node is allocated either from an empty slot or by reusing an LRU leaf node. When
 228 the automaton reaches its predefined capacity, the LRU *leaf* node is evicted (e.g., the leaf `Okay` in
 229 Figure 3). All nodes are managed using a hash table and a doubly linked list, enabling $\mathcal{O}(1)$ updates
 230 and eviction. Failure links are updated lazily: they are rebuilt only once at the end of the prefilling
 231 phase. Before the rebuild, the newly added portion of the structure temporarily behaves as a standard
 232 trie without failure links.

233 **Expansion Rule** We consider all match states (borders) whose matched depth is at least 2. For
 234 each such border, we take the sub-trie rooted at that state, collect all outgoing n -gram continuations,
 235 pool them across borders, and select the globally most frequent top- k continuation states to expand
 236 the Retrieval Tree. For illustration, suppose the current match state is [`<think>`, `</think>`],
 237 and the automaton has observed:

- 239 • [`<think>`, `</think>`, `Okay`] with frequency 3,
- 240 • [`</think>`, `Yes`, `<space>`] with frequency 2,
- 241 • [`</think>`, `Yes`, `<comma>`] with frequency 1.

243 Pooling continuations over all prefixes ending in `</think>` yields:

245 `[Okay]` : 3, `[Yes]` : 2+1 = 3, `[Yes, <space>]` : 2, `[Yes, <comma>]` : 1.

246 Selecting the top-3 continuations gives:

247 `[Okay]` : 3, `[Yes]` : 2+1 = 3, `[Yes, <space>]` : 2,

249 If a depth constraint is applied (i.e., only continuations consistent with the matched suffix of length
 250 2 are allowed), then only the continuation `Okay` remains valid, because it is the only 3-gram whose
 251 prefix exactly matches the current border [`<think>`, `</think>`]. Other candidates such as
 252 `[Yes]` or `[Yes, <space>]` originate from shorter matches ending in `</think>`, and are there-
 253 fore pruned under the depth restriction.

255 3.3 INTEGRATED STRATEGY

257 Given a fixed speculative capacity C , retrieval-based candidates are first generated according to
 258 the expansion rule in Section 3.2, while the remaining capacity is allocated to the Logits Tree via
 259 breadth-first expansion (Equation 3). Since retrieval candidates are sparse but structurally reliable,
 260 we retain only the most confident ones and leave the remaining budget for logits-based exploration
 261 through the top- k adjacency matrix.

262 Importantly, retrieval not only complements the current speculation, but also provides stronger cues
 263 for upcoming tokens than logits alone. Because retrieval captures repeated patterns in closer con-
 264 texts, it guides the logits distribution toward sharper predictions and mitigates error accumulation in
 265 speculative expansions.

266 The two candidate sets are finally merged into a unified draft tree through a trie-based union, and
 267 verified by the target model under the guess-and-verify scheme. This hybrid design enables RACER
 268 to exploit both *seen information* from retrieval and *unseen speculation* from logits, achieving higher
 269 acceptance rates with controlled memory usage. The overall workflow is presented in Figure 4; fur-
 270 ther implementation details can be found in Section D.

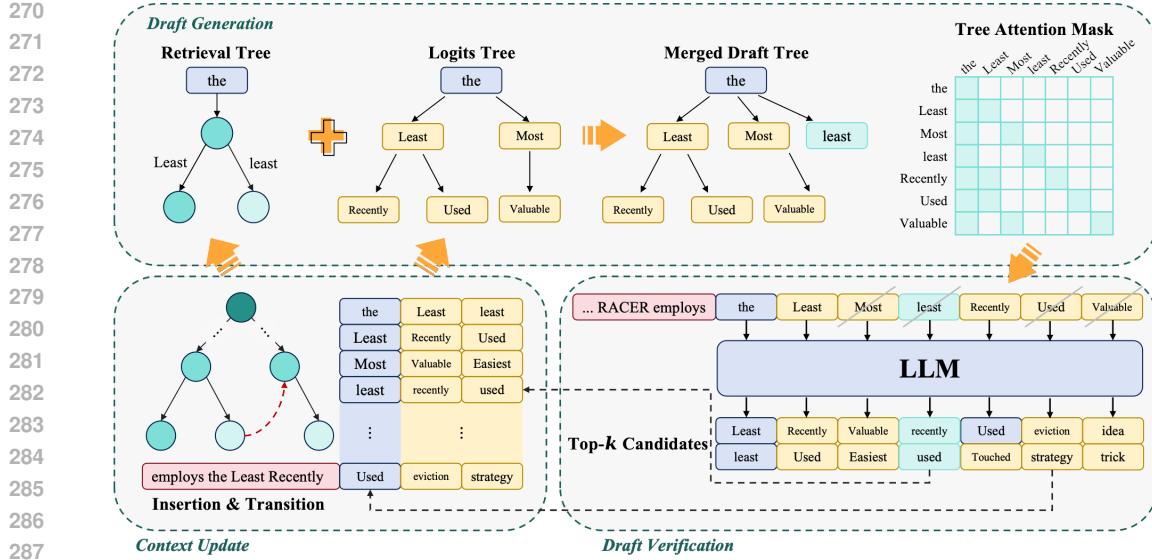


Figure 4: Overview of RACER. At each decoding step, the AC automaton accepts the next token and identifies border nodes with depth ≥ 2 , from which the globally most frequent children are selected as retrieval candidates. If retrieval nodes do not fill the draft capacity C , the remaining slots are assigned to Logits Tree expansion (Eq. 3). Verified n -grams are inserted into the automaton, while the logits adjacency matrix is refreshed with the newly generated logits.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Following prior work (Luo et al., 2025), we focus on greedy decoding with batch size 1 and maximum output length 1024. We report the following metrics: **Mean Accepted Tokens (MAT)** (Xia et al., 2024): the average number of tokens confirmed in a single speculative decoding step; **Throughput (Tokens/s)**: the number of tokens processed per second during inference; **Speedup Ratio**: relative performance compared with HuggingFace’s implementation of autoregressive decoding.

For all experiments, we use the following default hyperparameters unless otherwise specified. For the Logits Tree, the maximum breadth is set to 8. For the Retrieval Tree, we maintain up to 10,000 nodes with an n -gram length of 10. The draft size of each decoding step is 64 as suggested in Medusa (Cai et al., 2024). These values are chosen based on preliminary analyses, and we further demonstrate in Section 4.3 that our method is robust with respect to these hyperparameters.

Experiments were conducted on two types of GPUs: NVIDIA A800 (80GB) and RTX 4090 (24GB). For practicality, we ran models with 7B/8B parameters on the RTX 4090, and larger models (13B and above) on the A800, so that all models fit comfortably within the available memory while ensuring fair comparison. Detailed hardware and software specifications are included in Appendix A.

Datasets and Target Models We evaluate on three benchmarks: **Spec-Bench** (Xia et al., 2024), **HumanEval** (Chen et al., 2021), and **MGSM-ZH** (Cobbe et al., 2021; Shi et al., 2022). Spec-Bench covers diverse scenarios including Multi-turn Conversation (MT), Translation (Trans), Summarization (Sum), Question Answering (QA), Mathematical Reasoning (Math), and Retrieval-Augmented Generation (RAG). HumanEval is a widely used benchmark for code generation. MGSM-ZH is the Chinese counterpart of GSM8K. Following the multilingual evaluation setup used in PEARL (Liu et al., 2025a), we adopt MGSM-ZH to assess non-English mathematical reasoning in a language where Qwen3 exhibits stable performance, while avoiding languages for which Vicuna generates unstable outputs. Together, these benchmarks cover general-purpose, domain-specific, and cross-lingual reasoning tasks. We utilize Vicuna (Chiang et al., 2023) at three scales: 7B, 13B, and 33B,

324 where the 7B and 13B models use version 1.5 and the 33B model uses version 1.3. We also include
 325 Qwen3 (Yang et al., 2025) at the corresponding 8B, 14B, and 32B scales.
 326

327 **Baselines** We compare RACER against two retrieval-based methods (PLD and REST), two logits-
 328 involved methods (Token Recycling and LogitSpec), and the state-of-the-art model-based method
 329 EAGLE-3. **PLD** (Saxena, 2023) stores past n -grams as sequential keys and their succeeding m -
 330 grams as predicted values. **REST** (He et al., 2023) builds a suffix array over the training set to
 331 locate the longest suffix match, then expands the matched continuation into a trie. **Token Recycling**
 332 (**TR**) (Luo et al., 2025) maintains a top- k adjacency matrix from token logits and extends it into a
 333 draft tree using a predefined template. **LogitSpec** (Liu et al., 2025b) speculates the first draft token
 334 from the top- k candidates of the last-step logits, then augments expansion with retrieval tokens
 335 drawn from the context. **EAGLE-3** (Li et al., 2025) incorporates low-, mid-, and high-level features
 336 of the target model, with a Transformer decoder layer as its core. Since the official Qwen3 draft
 337 model weights for EAGLE-3 have not been released, we use the re-implementation by AngelSlim¹.
 338 All baselines are run with their default hyperparameters.

339 4.2 MAIN RESULTS

341 Table 1 reports the performance of RACER compared to baseline methods on different datasets.
 342 Among retrieval-based methods, PLD relies solely on the context and REST leverages an external
 343 training set. Their speedup ratios remain below $2\times$, highlighting the inherent limitations of retrieval-
 344 only approaches. In contrast, methods involving logits – whether model-free or model-based – can
 345 readily surpass $2\times$ speedup, demonstrating the advantage of exploiting predictive distributions from
 346 the target model.

347 RACER achieves the best speedup across most benchmarks and consistently delivers the highest
 348 overall speedup among different target models. Notably, with Qwen3-series target models, EAGLE-
 349 3 (AngelSlim’s re-implementation) achieves the highest MAT on most tasks except the Chinese rea-
 350 soning benchmark MGSM-ZH. However, its advantage in MAT does not translate into end-to-end ef-
 351 ficiency, as RACER still outperforms it in terms of speedup ratio. This is because EAGLE-3 requires
 352 an additional draft model, incurring extra inference cost, whereas RACER remains lightweight and
 353 model-free.

354 Moreover, the weaker performance of EAGLE-3 on MGSM-ZH highlights a broader limitation of
 355 model-based approaches: their effectiveness is sensitive to the distribution and coverage of the draft
 356 model’s training data. It is plausible that AngelSlim’s re-implementation, trained primarily on En-
 357 glish corpora, fails to simulate the target model’s distribution accurately in Chinese reasoning tasks.
 358 Such data distribution mismatches, rooted in differences in post-training procedures or training cor-
 359 pora, generally constrain the robustness of model-based speculative decoding methods. To com-
 360 plement this observation, we additionally report results on purely English reasoning benchmarks
 361 GSM8K (Cobbe et al., 2021), AIME (Veeraboina, 2023) and MATH (Hendrycks et al., 2021) in
 362 Appendix F, along with extended discussions on how EAGLE-3 compares to RACER.

363 Compared with the other two logits-involved methods, TR and LogitSpec, RACER consistently out-
 364 performs them on both MAT and speedup. Overall, TR achieves better performance than LogitSpec,
 365 except on the reasoning task MGSM-ZH. This suggests that in general tasks, TR is able to exploit
 366 logits more effectively. However, in reasoning tasks where repeated patterns from previous context
 367 are frequent, retrieval provides crucial guidance and brings substantial benefits. Therefore, an effec-
 368 tive strategy must integrate both logits and retrieval. RACER achieves this integration successfully,
 369 yielding consistently superior MAT and speedup across benchmarks.

370 In summary, RACER consistently delivers the best trade-off between acceptance and efficiency,
 371 achieving stable improvements across model sizes, domains, and languages, thus demonstrating its
 372 robustness and generality compared to retrieval-only, logits-only, and model-based baselines.

373 4.3 ABLATION STUDIES

375 To better verify RACER, we conduct ablation experiments with Vicuna-7B-v1.5 on Spec-Bench,
 376 HumanEval and MGSM-ZH.
 377

¹<https://github.com/Tencent/Angelslim>

378
379
380
381
382
383Table 1: Results on Spec-Bench, HumanEval, and MGSM-ZH, reported in mean accepted tokens (MAT) and speedup ratio. Best results are in **bold**, suboptimal results are underlined. PLD and REST belong to retrieval-based methods, whereas TR is solely logits-based, LogitSpec integrates both retrieval and logits, and EAGLE-3 represents a **model-based** approach.

Models	Method	Spec-Bench		HumanEval		MGSM-ZH		Average	
		MAT	Speedup	MAT	Speedup	MAT	Speedup	MAT	Speedup
Vicuna 7B	PLD	1.71	1.50	1.58	1.40	2.57	2.27	1.95	1.87
	REST	1.82	1.45	2.06	1.71	1.29	1.06	1.72	1.41
	LogitSpec	2.34	1.77	2.22	1.66	<u>3.55</u>	<u>2.67</u>	2.70	2.03
	TR	<u>2.76</u>	<u>2.06</u>	<u>2.83</u>	<u>2.17</u>	3.00	2.30	<u>2.86</u>	<u>2.18</u>
	RACER	3.00	2.21	3.11	2.29	3.71	2.77	3.27	2.42
Vicuna 13B	PLD	1.65	1.41	1.59	1.43	2.45	2.11	1.90	1.65
	REST	1.82	1.44	2.07	1.71	1.31	1.07	1.73	1.41
	LogitSpec	2.32	1.73	2.23	1.77	<u>3.44</u>	<u>2.72</u>	2.66	2.07
	TR	<u>2.79</u>	<u>1.99</u>	<u>2.83</u>	<u>2.08</u>	3.05	2.22	<u>2.89</u>	<u>2.10</u>
	RACER	2.95	2.25	3.09	2.42	3.64	2.83	3.23	2.50
Vicuna 33B	PLD	1.33	1.03	1.64	1.48	2.18	1.97	1.72	1.49
	REST	1.81	1.54	1.98	1.72	1.32	1.17	1.70	1.48
	LogitSpec	2.32	1.73	2.35	1.92	<u>2.96</u>	<u>2.44</u>	2.54	<u>2.03</u>
	TR	<u>2.63</u>	<u>1.83</u>	<u>2.79</u>	<u>2.05</u>	2.83	2.10	<u>2.75</u>	1.99
	RACER	2.74	2.20	3.16	2.58	3.36	2.77	3.09	2.52
Qwen3 8B	PLD	1.52	1.35	1.52	1.41	<u>1.69</u>	<u>1.52</u>	1.58	1.43
	EAGLE-3 [†]	3.46	2.14	3.84	2.44	1.41	0.86	2.90	<u>1.81</u>
	RACER	<u>2.73</u>	<u>2.13</u>	<u>2.79</u>	<u>2.24</u>	2.95	2.26	<u>2.82</u>	2.21
Qwen3 14B	PLD	1.45	1.34	1.43	1.27	<u>1.59</u>	<u>1.49</u>	1.49	1.37
	EAGLE-3 [†]	2.72	<u>1.87</u>	3.03	<u>2.05</u>	1.56	1.12	<u>2.44</u>	<u>1.68</u>
	RACER	<u>2.67</u>	2.23	<u>2.77</u>	2.29	2.88	2.30	2.77	2.27
Qwen3 32B	PLD	1.45	1.34	1.34	1.23	1.56	<u>1.46</u>	1.45	1.34
	EAGLE-3 [†]	2.88	<u>2.12</u>	2.97	2.17	<u>1.60</u>	1.18	<u>2.48</u>	<u>1.82</u>
	RACER	<u>2.66</u>	2.17	<u>2.55</u>	<u>2.08</u>	2.78	2.28	2.66	2.18

† EAGLE-3 models and weights from AngelSlim’s re-implementation.

414
415
416

Table 2: Ablation experiments on Spec-Bench, HumanEval and MGSM-ZH.

Models	Method	Spec-Bench		HumanEval		MGSM-ZH			
		MAT	Speedup	MAT	Speedup	MAT	Speedup		
Vicuna 7B	w/o logits	1.59	<u>1.41</u>	1.43	<u>0.78</u>	1.67	<u>0.73</u>	1.52	<u>0.77</u>
	w/o retrieval	2.72	<u>0.28</u>	2.01	<u>0.20</u>	2.68	<u>0.20</u>	2.04	<u>0.25</u>
	RACER	3.00	2.21	3.11	2.29	3.71	2.77		
Vicuna 13B	w/o logits	1.56	<u>1.39</u>	1.38	<u>0.87</u>	1.65	<u>1.44</u>	1.43	<u>0.99</u>
	w/o retrieval	2.68	<u>0.27</u>	2.06	<u>0.19</u>	2.70	<u>0.39</u>	2.14	<u>0.28</u>
	RACER	2.95	2.25	3.09	2.42	3.64	2.83		
Vicuna 33B	w/o logits	1.46	<u>1.28</u>	1.38	<u>0.82</u>	1.76	<u>1.40</u>	1.66	<u>0.92</u>
	w/o retrieval	2.55	<u>0.19</u>	2.05	<u>0.15</u>	2.66	<u>0.50</u>	2.19	<u>0.39</u>
	RACER	2.74	2.20	3.16	2.58	3.36	2.77		

431

Component Contribution Table 2 reports ablation results by removing either the logits or retrieval component. We observe that removing logits causes the most severe degradation: MAT drops by more than one token on average and speedup decreases by $0.8\text{-}1.0\times$, confirming that logits form the backbone of speculative expansion. In contrast, removing retrieval leads to smaller but still notable drops, especially on MGSM-ZH where MAT and speedup decrease by up to 0.7 and 0.6, respectively. This highlights the complementary role of retrieval in reasoning and cross-lingual tasks, where repeated patterns provide strong predictive cues. Across all three model scales, RACER consistently benefits from both components, validating our integration strategy that balances generalization from logits with structural guidance from retrieval. For more verification of retrieval component, please see Appendix D.4.

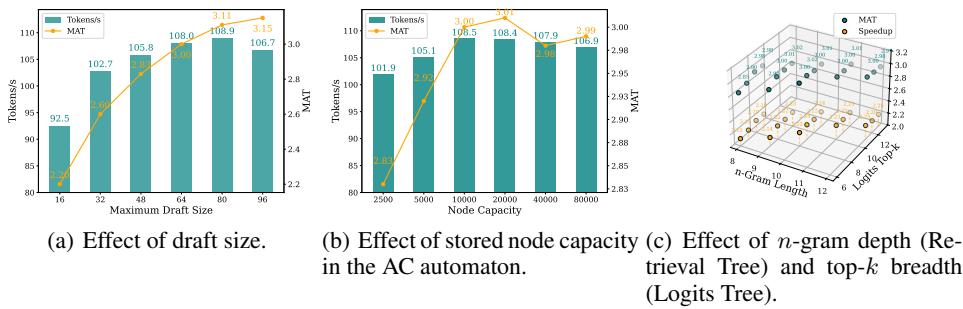


Figure 5: Ablation studies of RACER on key parameters.

Parameter Robustness We further study the robustness of RACER under different hyperparameter settings on Vicuna-7B-v1.5. Conceptually, these hyperparameters control complementary aspects of the unified speculative draft: the *draft size* specifies the total number of draft tokens per step, the *top-k breadth* of the Logits Tree controls how widely we explore model-predicted candidates, and the *capacity* and *n-gram depth* of the Retrieval Tree determine how many *n*-grams can be stored and how long they can be. A larger draft size or broader trees generally increases coverage and acceptance probability, but if they grow too large, the decoding regime may shift from memory-bound to compute-bound, leading to diminishing or even negative returns. Similarly, increasing retrieval capacity and *n*-gram depth allows matching more rare patterns, but over-emphasizing long-tail matches can dilute the draft budget and reduce MAT. In practice, RACER remains stable over a broad range of these settings.

Figure 5 summarizes three ablation experiments. **Draft Size (Figure a).** The draft size controls the *total* number of speculative tokens proposed by both the Logits Tree and the Retrieval Tree in each step. Increasing the draft size from 16 to 64 steadily improves both MAT and throughput, after which the gains saturate. This shows that RACER benefits from moderately larger drafts while remaining stable even with further expansion. However, overly large drafts can push the system into a compute-bound regime, where the additional verification cost outweighs the benefit of higher acceptance. The optimal draft size is therefore hardware-dependent: on resource-constrained or edge devices, it is often preferable to cap the draft size to match the device’s most efficient batch inference mode. **Retrieval Node Capacity (Figure b).** The Retrieval Tree is implemented as an AC automaton whose *capacity* specifies an upper bound on the number of *n*-gram states (e.g., 10k nodes). Expanding the automaton’s storage from 2.5k to around 10k-20k nodes yields the best trade-off between MAT and throughput. Beyond this range, performance only fluctuates slightly, suggesting that RACER does not rely on excessively large retrieval buffers. The built-in LRU eviction policy exploits both *temporal* and *spatial* locality: frequently reused *n*-grams are retained, while rarely used ones are pruned. Since each node in an AC automaton has a unique parent and a failure link, the space complexity of the automaton \mathcal{A} is $\mathcal{O}(|\mathcal{A}|)$, i.e., linear in the number of nodes. In practice, this overhead is modest and remains negligible even with node sizes up to 10k. **Joint Effect of n-gram Depth and Top-k Breadth (Figure c).** The *n*-gram depth controls the maximum height of the Retrieval Tree, and thus the longest context it can match. With an upper bound such as $n = 10$, the automaton can flexibly match keys of length 1 to 9 and retrieve the corresponding value sequences. Because candidates are selected according to empirical frequency, this design naturally balances ex-

486 ploration and exploitation: it covers diverse patterns while prioritizing high-yield matches. On the
 487 Logits Tree side, the top- k breadth specifies how many high-probability continuations are expanded
 488 at each level; increasing it extends coverage into the long tail but also competes for the finite draft
 489 budget. The 3D plot shows that both MAT and speedup improve smoothly as n -gram depth and
 490 top- k breadth increase, and the performance surface remains relatively flat near the optimal range
 491 (n -gram depth 9-11, top- k breadth 8-10), indicating that RACER is robust to small parameter devi-
 492 ations. This trend is consistent with our analysis in Section 3.1, where the 85th percentile rank for
 493 the *copy-logit* strategy is 9, suggesting that setting these parameters around this range is sufficient
 494 and provides a practical guideline when adapting RACER to new target models.

495 5 RELATED WORK

496 Efficient inference is crucial for real-time applications and resource-constrained scenarios. Various
 497 strategies, including KV cache compression and quantization, have been developed to reduce la-
 498 tency. Among these, speculative decoding (SD) (Leviathan et al., 2023; Chen et al., 2023) stands
 499 out as a promising technique that predicts multiple continuations simultaneously, reducing decoding
 500 steps while maintaining accuracy.

501 Speculative decoding methods can be broadly categorized into **draft-model-based** and **draft-
 502 model-free** approaches. Draft-model-based methods use additional models to predict draft tokens.
 503 These models are typically (i) separately trained or (ii) derived from smaller variants of the same
 504 model family. Some methods reuse hidden states to predict multiple future tokens in parallel (Cai
 505 et al., 2024; Li et al., 2024b;a), employing different layer selection and draft tree expansion strate-
 506 gies. Beyond post-training draft models, Multi-Token Prediction (MTP) integrates draft genera-
 507 tion during pre-training. Gloeckle et al. (2024) proposes parallel prediction of multiple tokens with
 508 independent output heads, while Liu et al. (2024) introduces sequential multi-token prediction to
 509 preserve the full causal chain at each prediction depth.

510 In contrast, **draft-model-free** methods, such as retrieval-based approaches, eliminate the need for
 511 additional models by constructing retrieval libraries to generate draft tokens. PLD (Saxena, 2023)
 512 builds libraries from past content, achieving speedup in tasks with high redundancy like summa-
 513 rization. However, these methods are limited by their inability to generate novel content or adapt
 514 to diverse queries. REST (He et al., 2023) builds retrieval libraries from existing corpora, offering
 515 substantial speedup but facing challenges such as large memory requirements and retrieval ineffi-
 516 ciencies. Token Recycling (Luo et al., 2025) requires no additional generation, covering a broader
 517 range of continuations using past logits, while minimizing storage and retrieval costs.

518 RACER integrates both retrieval-based and logits-based methods, unifying the strengths of both. By
 519 combining logits for speculative prediction and retrieval for structural guidance, RACER achieves
 520 superior speedup and acceptance rates across benchmarks, while maintaining lightweight memory
 521 usage suitable for resource-constrained scenarios.

522 6 CONLUSION

523 In this work, we introduced RACER, a training-free framework that unifies retrieval-based and
 524 logits-based signals for speculative decoding. By treating retrieved exact patterns as structural
 525 anchors and logits as dynamic future cues, RACER constructs richer speculative drafts while re-
 526 maining lightweight and plug-and-play. Extensive experiments across multiple model families (Vi-
 527 cuna, Qwen3), hardware settings (RTX 4090, A800), and benchmarks (Spec-Bench, HumanEval,
 528 MGSM-ZH) demonstrate consistent acceleration, stable memory usage, and improved speculative
 529 efficiency measured by MAT, tokens-per-second, and speedup ratio. Our method remains robust
 530 under diverse hyperparameter choices, underscoring both practicality and scalability. We believe
 531 RACER establishes a general foundation for training-free speculative decoding, opening avenues
 532 for future work on integrating more advanced retrieval structures, multilingual retrieval cues, and
 533 harmonization with parallel or distributed decoding algorithms.

540
541 ETHICS STATEMENT542
543 This work focuses on improving the efficiency of LLM inference through training-free speculative
544 decoding in real-time and resource-constrained environments. We do not introduce or rely on additional
545 training data, and our experiments are conducted entirely on publicly available benchmarks
546 (Spec-Bench, HumanEval, and MGSM-ZH) and widely used open-source models (Vicuna, Qwen3).
547 As such, no sensitive, private, or personally identifiable information is involved in this research.548
549 REPRODUCIBILITY STATEMENT550
551 We have made efforts to ensure the reproducibility of all reported results. Detailed descriptions
552 of hardware (RTX 4090 and A800 GPUs), software (PyTorch, CUDA, HuggingFace Transformers
553 versions), and experimental setups are provided in Appendix A. All hyperparameters, including
554 maximum draft size, retrieval node capacity, n -gram depth, and top- k breadth, are explicitly spec-
555 ified in Section 4. Baselines are reproduced with their official implementations or widely accepted
556 re-implementations (e.g., AngelSlim’s EAGLE-3). To further facilitate verification, we provide
557 pseudocode for key algorithmic components such as Logits Tree construction and the LRU evic-
558 tion strategy in Appendix D. Our implementation (including evaluation scripts and inference CLI)
559 is released in this anonymous repository, and will be made publicly available upon publication.

560 REFERENCES

561
562 Alfred V Aho and Margaret J Corasick. Efficient string matching: an aid to bibliographic search.
563 *Communications of the ACM*, 18(6):333–340, 1975.564
565 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
566 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.567
568 Anselm Blumer, Janet Blumer, Andrzej Ehrenfeucht, David Haussler, and Ross McConnell. Build-
569 ing the minimal dfa for the set of all subwords of a word on-line in linear time. In *International
Colloquium on Automata, Languages, and Programming*, pp. 109–118. Springer, 1984.570
571 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
572 Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. *arXiv
preprint arXiv: 2401.10774*, 2024.573
574 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
575 Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
576 <https://arxiv.org/abs/2302.01318>.577
578 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
579 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
580 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
581 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
582 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
583 Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
584 Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
585 Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
586 Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter
587 Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
588 Zaremba. Evaluating large language models trained on code. *CoRR*, abs/2107.03374, 2021.
589 URL <https://arxiv.org/abs/2107.03374>.590
591 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
592 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
593 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.594
595 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
596 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John

- 594 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 595 2021.
- 596
- 597 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 598 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 599 *arXiv e-prints*, pp. arXiv–2407, 2024.
- 600
- 601 Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Syn-
 602 naeve. Better & faster large language models via multi-token prediction. *arXiv preprint*
 603 *arXiv:2404.19737*, 2024.
- 604
- 605 Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
 606 decoding, 2023.
- 607
- 608 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 609 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 610 *preprint arXiv:2103.03874*, 2021.
- 611
- 612 Yuxuan Hu, Ke Wang, Xiaokang Zhang, Fanjin Zhang, Cuiping Li, Hong Chen, and Jing Zhang.
 613 SAM decoding: Speculative decoding via suffix automaton. In Wanxiang Che, Joyce Nabende,
 614 Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meet-
 615 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12187–12204,
 616 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 617 251-0. doi: 10.18653/v1/2025.acl-long.595. URL <https://aclanthology.org/2025.acl-long.595/>.
- 618
- 619 Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast pattern matching in strings. *SIAM*
 620 *journal on computing*, 6(2):323–350, 1977.
- 621
- 622 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 623 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.
- 624
- 625 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
 626 rethinking feature uncertainty. In *International Conference on Machine Learning*, 2024a.
- 627
- 628 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
 629 guage models with dynamic draft trees. In *Empirical Methods in Natural Language Processing*,
 630 2024b.
- 631
- 632 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
 633 acceleration of large language models via training-time test, 2025. URL <https://arxiv.org/abs/2503.01840>.
- 634
- 635 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 636 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 637 *arXiv:2412.19437*, 2024.
- 638
- 639 Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, Winston Hu, and Xiao Sun. PEARL: Par-
 640 allel speculative decoding with adaptive draft length. In *The Thirteenth International Confer-
 641 ence on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=QOXrVMiHGK>.
- 642
- 643 Tianyu Liu, Qitan Lv, Hao Li, Xing Gao, and Xiao Sun. Logitspec: Accelerating retrieval-based
 644 speculative decoding via next next token speculation. *arXiv preprint arXiv:2507.01449*, 2025b.
- 645
- 646 Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming Zhang, Xuanyu Zhang, Qing Yang, and
 647 Dongliang Xu. Turning trash into treasure: Accelerating inference of large language models with
 648 token recycling. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
 649 Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational
 650 Linguistics (Volume 1: Long Papers)*, pp. 6816–6831, Vienna, Austria, July 2025. Association
 651 for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.338.
 652 URL <https://aclanthology.org/2025.acl-long.338/>.

- 648 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. *siam Journal*
 649 *on Computing*, 22(5):935–948, 1993.
 650
- 651 OpenAI. gpt-oss-120b gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.
 652
- 653 Apoorv Saxena. Prompt lookup decoding, November 2023. URL <https://github.com/apoorvumang/prompt-lookup-decoding/>.
 654
- 655 Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
 656 Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
 657 guage models are multilingual chain-of-thought reasoners, 2022.
 658
- 659 Hemish Veeraboina. Aime problem set 1983-2024, 2023. URL <https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024>.
 660
- 661 Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
 662 Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
 663 of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of*
 664 *the Association for Computational Linguistics ACL 2024*, pp. 7655–7671, Bangkok, Thailand and
 665 virtual meeting, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 666 *findings-acl.456*. URL <https://aclanthology.org/2024.findings-acl.456>.
 667
- 668 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 669 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 670 *arXiv:2505.09388*, 2025.
 671
- 672

673 674 A EXPERIMENTAL SETUP

675 **Hardware Setup** Experiments were conducted on dual-GPU servers, with all runs restricted to a
 676 single GPU to ensure fairness and reproducibility. We used an NVIDIA RTX 4090 (24GB) with 20
 677 CPU cores for 7B/8B-scale models, and an NVIDIA A800 (80GB) with 64 CPU cores for 13B-scale
 678 and larger models.
 679

680 **Software Setup** Our implementation is based on PyTorch and HuggingFace Transformers. Ex-
 681 periments were run under the following environment:
 682

- 683 • PyTorch 2.8.0 with CUDA 12.8 and cuDNN 91002
- 684 • HuggingFace Transformers 4.37.1 for Vicuna experiments, and 4.52.3 for Qwen3
 685 experiments

686 We enabled fp16 inference on both GPUs. No further optimizations (e.g., quantization or Ten-
 687 sorRT) were applied, to ensure fair comparison with prior work.
 688

689 **Evaluation Instructions** In our experiments, we employ different instructions for different eval-
 690 uation tasks and models. For Vicuna, we use its standard instructions:
 691

692 693 Chat Template for Vicuna on Spec-Bench and MGSM

694 695 A chat between a curious user and an artificial intelligence assistant. The assistant gives
 696 helpful, detailed, and polite answers to the user’s questions.
 697

698 **USER:** Question

699 **ASSISTANT:**

702

Chat Template for Vicuna on HumanEval

703

704

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user’s questions.

705

706

707

USER: Implement the following code. [Code](#)

708

ASSISTANT:

709

710

For Qwen3, we use a common system prompt:

711

712

Chat Template for Qwen3 on Spec-Bench and MGSM

713

714

You are a helpful assistant.

715

716

USER: [Question](#)

717

ASSISTANT:

718

719

Chat Template for Qwen3 on HumanEval

720

721

You are a helpful assistant.

722

723

USER: Implement the following code. [Code](#)

724

ASSISTANT:

725

726

B ADDITIONAL EXPERIMENT RESULTS

727

Table 3 and Table 4 present the results on individual SpecBench tasks, complementing the overall comparison in Table 1. RACER consistently outperforms other model-free methods in most cases, including all overall speedup ratios, with only a few exceptions in Translation (Trans), Question Answering (QA), and Mathematical Reasoning (Math). For Translation, the retrieval component contributes little to MAT and may even offset part of the logits-based advantage, leading to weaker performance on smaller models. However, with larger models such as Vicuna-33B, this effect becomes negligible, and RACER consistently outperforms TR. For QA, TR surpasses RACER on Vicuna-7B across both A800 and RTX 4090, suggesting that its predefined tree template may align better with the characteristics of this task. For Math, TR slightly outperforms RACER only on Vicuna-7B with A800, but this advantage does not generalize to other model scales or hardware. In contrast, as model size increases, RACER shows a growing margin in overall speedup over TR, highlighting its robustness across diverse tasks and architectures.

728

729

Table 5 complements Table 1 by providing a closer look at Vicuna-7B across different hardware. We observe that LogitSpec achieves slightly lower MAT on the A800 compared to the RTX 4090, but exhibits a higher speedup ratio on the A800. This suggests that its efficiency gains are more sensitive to hardware characteristics, whereas RACER maintains stable improvements across both platforms.

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

C ADDITIONAL ABLATION RESULTS

748

749

750

751

752

753

754

755

756
757
758
759 Table 3: Speedup ratios and overall MAT across different tasks of Spec-Bench evaluated on NVIDIA
760 A800 (80GB).
761

Models	Method	MT	Trans	Sum	QA	Math	RAG	MAT	Speedup
Vicuna 7B	PLD	1.42	0.97	2.25	1.12	1.59	1.61	1.72	1.49
	REST	1.52	1.09	1.21	1.28	1.07	1.31	1.82	1.33
	LogitSpec	1.79	1.35	2.48	1.50	2.08	1.82	2.35	1.86
	TR	2.19	1.84	2.02	2.02	2.58	1.85	2.76	2.15
	RACER	2.23	1.61	2.61	1.82	2.46	2.12	3.01	2.22
Vicuna 13B	PLD	1.36	0.98	1.93	1.09	1.53	1.44	1.65	1.41
	REST	1.61	1.14	1.30	1.56	1.21	1.42	1.82	1.44
	LogitSpec	1.67	1.33	2.13	1.40	2.00	1.72	2.32	1.73
	TR	2.00	1.74	1.89	1.82	2.31	1.87	2.79	1.99
	RACER	2.23	1.70	2.49	1.85	2.55	2.21	2.95	2.25
Vicuna 33B	PLD	1.33	1.03	1.84	1.11	1.57	1.23	1.54	1.37
	REST	1.70	1.24	1.41	1.57	1.31	1.61	1.81	1.54
	LogitSpec	1.66	1.36	2.11	1.38	2.02	1.50	2.11	1.71
	TR	1.90	1.67	1.85	1.76	2.20	1.72	2.63	1.83
	RACER	2.22	1.73	2.41	1.87	2.51	1.91	2.74	2.20
Qwen3 8B	PLD	1.37	1.67	1.35	1.41	1.72	1.44	1.52	1.47
	EAGLE-3	2.43	2.07	2.12	2.36	2.63	2.45	3.47	2.37
	RACER	2.41	2.69	2.35	2.41	2.72	2.42	2.73	2.48
Qwen3 14B	PLD	1.27	1.56	1.18	1.31	1.54	1.29	1.45	1.34
	EAGLE-3	1.93	1.86	1.60	1.82	2.12	1.76	2.72	1.87
	RACER	2.12	2.55	2.10	2.19	2.47	2.11	2.67	2.23
Qwen3 32B	PLD	1.26	1.54	1.13	1.35	1.48	1.29	1.44	1.33
	EAGLE-3	2.20	2.03	1.84	2.02	2.47	2.04	2.88	2.12
	RACER	2.10	2.40	2.04	2.06	2.38	2.16	2.66	2.17

790
791
792
793
794
795 Table 4: Speedup ratios and overall MAT across different tasks of Spec-Bench evaluated on NVIDIA
796 RTX 4090 (24GB).
797

Models	Method	MT	Trans	Sum	QA	Math	RAG	MAT	Speedup
Vicuna 7B	PLD	1.43	1.00	2.19	1.16	1.63	1.56	1.71	1.50
	REST	1.63	1.18	1.30	1.53	1.21	1.46	1.82	1.45
	LogitSpec	1.70	1.27	2.37	1.42	1.95	1.76	2.34	1.77
	TR	2.10	1.76	1.98	1.91	2.41	1.81	2.76	2.06
	RACER	2.21	1.65	2.54	1.82	2.45	2.09	3.00	2.21
Qwen3 8B	PLD	1.27	1.57	1.24	1.30	1.56	1.32	1.52	1.35
	EAGLE-3	2.19	1.92	1.88	2.16	2.41	2.14	3.46	2.14
	RACER	2.05	2.44	1.96	2.11	2.37	2.02	2.73	2.13

task-dependent effect aligns with our main results and further validates the complementary nature of logits- and retrieval-based speculation.

Table 5: Experimental results of Vicuna-7B-v1.5 and Qwen3-8B on Spec-Bench, HumanEval, and MGSM-ZH, running on the NVIDIA A800 GPU (80G).

Models	Method	Spec-Bench		HumanEval		MGSM-ZH		Average	
		MAT	Speedup	MAT	Speedup	MAT	Speedup	MAT	Speedup
Vicuna 7B	PLD	1.72	1.49	1.59	1.43	2.57	2.10	1.96	1.67
	REST	1.82	1.33	2.06	1.59	1.29	0.91	1.72	1.92
	LogitSpec	2.35	1.86	2.23	1.84	3.57	2.81	2.72	2.17
	TR	2.76	2.15	2.83	2.31	3.00	2.27	2.86	2.24
	RACER	3.01	2.22	3.10	2.35	3.73	2.57	3.28	2.38
Qwen3 8B	PLD	1.52	1.47	1.51	1.41	1.68	1.69	1.57	1.52
	EAGLE-3	3.47	2.37	3.84	2.70	1.40	1.06	2.90	2.04
	RACER	2.73	2.48	2.81	2.40	2.96	2.66	2.83	2.51

Table 6: Ablation experiments on multiple tasks of Spec-Bench (Speedup only).

Models	Method	MT	Trans	Sum	QA	Math	RAG
Vicuna 7B	w/o logits	1.42 \downarrow 0.79	0.94 \downarrow 0.71	1.85 \downarrow 0.69	1.11 \downarrow 1.71	1.51 \downarrow 0.94	1.50 \downarrow 0.59
	w/o retrieval	1.98 \downarrow 0.23	1.68 \uparrow 0.03	2.14 \downarrow 0.40	1.81 \downarrow 1.02	2.31 \downarrow 0.14	1.90 \downarrow 0.19
	RACER	2.21	1.65	2.54	2.82	2.45	2.09
Vicuna 13B	w/o logits	1.35 \downarrow 0.88	0.90 \downarrow 0.80	1.69 \downarrow 0.80	1.04 \downarrow 0.71	1.51 \downarrow 1.04	1.56 \downarrow 0.56
	w/o retrieval	2.04 \downarrow 0.19	1.69 \downarrow 0.01	2.17 \downarrow 0.32	1.81 \downarrow 0.04	2.37 \downarrow 0.18	2.00 \downarrow 0.21
	RACER	2.23	1.70	2.49	1.85	2.55	2.21
Vicuna 33B	w/o logits	1.39 \downarrow 0.83	0.97 \downarrow 0.76	1.63 \downarrow 0.78	1.09 \downarrow 0.78	1.56 \downarrow 0.79	1.26 \downarrow 0.65
	w/o retrieval	2.03 \downarrow 0.19	1.72 \downarrow 0.01	2.12 \downarrow 0.29	1.84 \downarrow 0.03	2.36 \downarrow 0.15	1.85 \downarrow 0.06
	RACER	2.22	1.73	2.41	1.87	2.51	1.91

Table 7: Ablation experiments with Qwen2.5 series on NVIDIA A800 (80GB). Overall MAT and speedup ratios on general dataset Spec-Bench are reported.

	Qwen2.5-0.5B	Qwen2.5-1.5B	Qwen2.5-14B	Qwen2.5-32B
MAT	3.30	3.25	2.64	2.71
Speedup	2.64	2.64	2.33	2.19

Tables 7 and 8 report ablation results across different model sizes and architectures on Spec-Bench under fp16 on a single NVIDIA A800 (80GB). The Qwen2.5 series are dense instruct models, while the Qwen3 series evaluated here are dense thinking models.

For Qwen2.5, we observe that both MAT and speedup are higher for the smaller models (0.5B and 1.5B), and drop when moving to 14B and 32B. A key factor behind this gap is the output length: on Spec-Bench, Qwen2.5-14B and Qwen2.5-32B generate on average about 1.2 \times more tokens than the 0.5B and 1.5B models. Since the later tokens rely on longer-range context and are more likely to be rejected, which naturally reduces MAT.

Qwen3 provides a complementary perspective. As thinking models, all Qwen3 variants tend to produce much longer answers than Qwen2.5, so the difference in average output length across Qwen3-0.6B to Qwen3-32B is relatively small. In this regime, the dominant factor for MAT is no longer model size, but long-range dependency itself. This explains why the MAT for Qwen3 stays within a narrow band (2.66 - 2.89): RACER is operating under consistently longer effective sequence lengths,

864

865 Table 8: Ablation experiments with Qwen3 series on NVIDIA A800 (80GB). Overall MAT and
866 speedup ratios on general dataset Spec-Bench are reported.

867

	Qwen3-0.6B	Qwen3-1.7B	Qwen3-4B	Qwen3-8B	Qwen3-14B	Qwen3-32B
MAT	2.89	2.78	2.78	2.73	2.67	2.66
Speedup	2.55	2.48	2.53	2.13	2.23	2.17

871

872

873 and its logits-based component is increasingly challenged by dependencies far from the current po-
874 sition due to Transformer nature. Nonetheless, even under these longer-context conditions, RACER
875 is still able to maintain MAT close to 3 on average.

876

877 Given that MAT remains roughly stable within each model family, the slight degradation in speedup
878 as model size increases is expected and does not undermine RACER’s core advantage. Larger
879 models incur higher verification cost per token, so the same MAT translates into a smaller rela-
880 tive speedup – a general phenomenon shared by speculative decoding methods. The key takeaway
881 from these ablations is that RACER sustains strong and stable acceleration (consistently above 2 \times)
882 across a wide range of model sizes and sequence lengths, even as longer outputs and long-range
883 dependencies make speculation inherently more difficult.

884

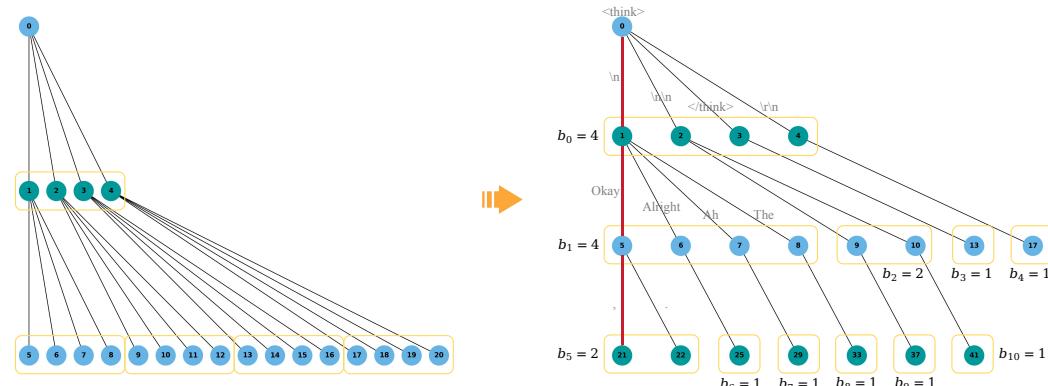
885

D MORE IMPLEMENTATION DETAILS

886

D.1 LOGITS TREE CONSTRUCTION

887

888 The Logits Tree leverages the top- k adjacency matrix from past logits and expands breadth-first,
889 following the breadth allocation rule in Eq. 3. The full procedure is described in Algorithm 1.
890 Figure 6 illustrates how Logits Tree is pruned from dense to sparse, with the same capacity of 21.

901

902

903 Figure 6: The tree on the left shows the expansion of an unpruned 4-ary tree with 21 nodes, while the
904 tree on the right depicts the expansion of the pruned 4-ary tree with the same number of nodes. The
905 path in red represent a possible candidate [`<think>`, `<end_of_line>`, `Okay`, `<comma>`].

906

907

D.2 AHO-CORASICK AUTOMATON CONSTRUCTION AND TRANSITION

908

909

910 The Aho–Corasick automaton could be simply described as trie with failure links. Each failure link
911 at a node connects to the longest proper suffix of the string at that node, which also serves as a prefix
912 for another pattern in the trie. If no such suffix exists, the link reverts to the root. This is analogous
913 to the “failure function” in the Knuth–Morris–Pratt (KMP) string-matching algorithm (Knuth et al.,
914 1977), but Aho–Corasick extends this idea to work efficiently for multiple patterns.

915

916

917 Figure 8 illustrates the AC automaton’s structure, showcasing failure links in red and final states
918 with double circles, though some transitions may be omitted for clarity. The process begins with

918
919
920
921
922
923
924
925
926
927
928

Algorithm 1 Construct Logits Tree (BFS) and Return Draft Candidates

```

929
930 1: function BUILDLOGITSTREE(next_token,  $C$ )  $\triangleright C$  is the maximum number of draft nodes
931 2:   Initialize an empty queue  $Q$ 
932 3:   Initialize an empty list candidates
933 4:    $\text{token}(0) \leftarrow \text{next\_token}$ 
934 5:   push  $Q \leftarrow 0$ 
935 6:    $C \leftarrow C - 1$   $\triangleright$  Root consumes one draft slot
936 7:   while not  $Q$ .isEmpty() do
937 8:      $u \leftarrow Q$ .dequeue()
938 9:     if  $C > 0$  then
939 10:     $\text{next\_breadth} \leftarrow \begin{cases} b(u), & \text{if } u = \text{root} \\ \lfloor b(u)/2 \rfloor, & \text{otherwise} \end{cases}$   $\triangleright$  Breadth allocation follows Eq. 3
940 11:    for  $j \leftarrow 0$  to  $b(u) - 1$  do
941 12:      if  $C = 0$  then
942 13:        break
943 14:      end if
944 15:       $v \leftarrow k \times u + j$   $\triangleright$  The  $j$ -th child of  $u$ 
945 16:       $\text{token}(v) \leftarrow \text{top\_k}[\text{token}(u)][j]$ 
946 17:       $b(v) \leftarrow \text{next\_breadth}$ 
947 18:      push  $Q \leftarrow v$ 
948 19:       $\text{next\_breadth} \leftarrow \lfloor \text{next\_breadth}/2 \rfloor$   $\triangleright$  Breadth allocation follows Eq. 3
949 20:       $C \leftarrow C - 1$ 
950 21:    end for
951 22:  else  $\triangleright$  Backtrack to get a draft candidate
952 23:     $\text{path} \leftarrow []$ ;  $v \leftarrow u$ 
953 24:    while  $v \neq \epsilon$  do
954 25:      append  $\text{token}(v)$  to  $\text{path}$ 
955 26:       $v \leftarrow \text{parent}(v)$ 
956 27:    end while
957 28:    reverse( $\text{path}$ )  $\triangleright$  Leaf  $\rightarrow$  root to root  $\rightarrow$  leaf
958 29:    append  $\text{path}$  to candidates
959 30:  end if
960 31: end while
961 32: return candidates
33: end function

```

962
963
964
965
966
967
968
969
970
971

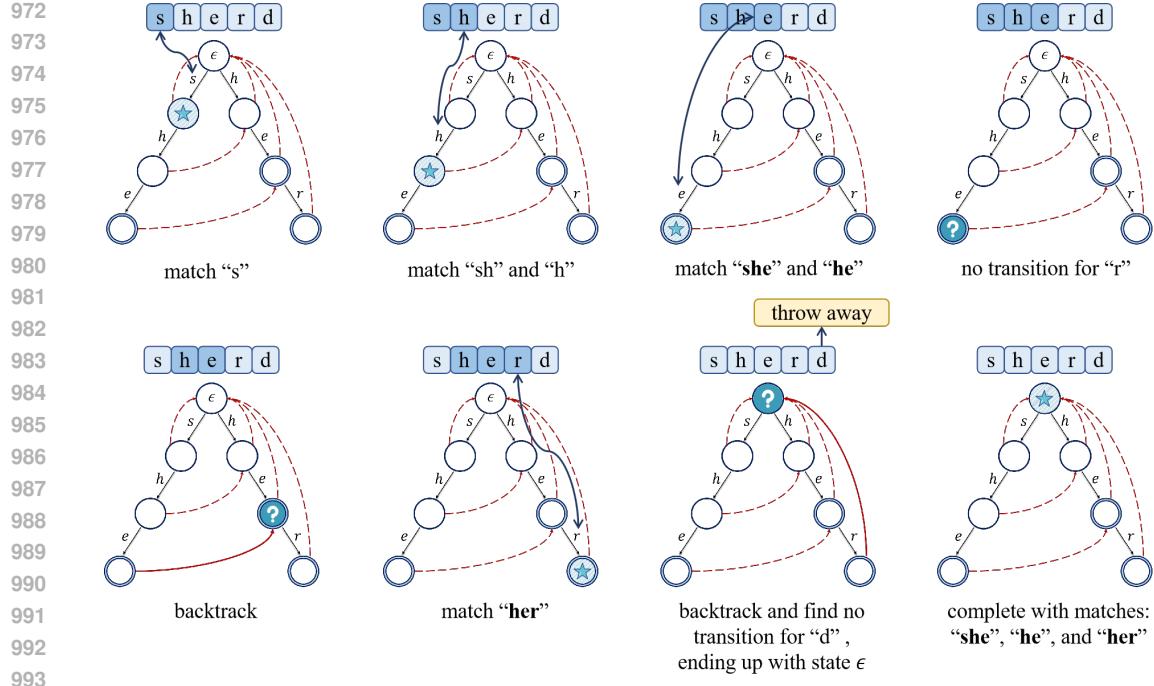


Figure 7: The process of how “sherd” matches patterns “she”, “he”, and “her” by transitions on an AC automaton.

an input sequence that progresses through the trie. If a mismatch occurs, such as when at the state “she” and the next input is “r” without a corresponding edge, the automaton utilizes failure links to backtrack until a valid node with the “r” edge is found or until it returns to the root. When the automaton reaches the state “her”, not only is the pattern “her” itself recognized but the state of its failure pointer is also included. This forms part of a recursive process: matching a state involves sequentially matching the state of its failure pointer until it traces back to the root node, which represents the absence of further matches, denoted as ϵ .

For further clarification, Figure 7 illustrates the matching process for the string “sherd”, identifying the substrings “she”, “he”, and “her”. The elements highlighted in dark blue represent both the longest pattern prefix that the current state can match, and the minimal suffix information necessary for subsequent matches. This setup can be visualized as a “sliding window” that moves from left to right across each position. During normal transitions, this sliding window accordingly steps to the right. Conversely, during backtracking, the state transitions via the failure pointer, effectively discarding any irrelevant left-side components. Note that in actual implementations, the failure links in AC automata are primarily used during the construction phase and the match phase. Once the automaton is constructed, these failure links are often replaced by virtual transitions that directly lead to the correct states like Algorithm 2. This optimization streamlines the matching process, enhancing efficiency by reducing unnecessary transitions.

D.3 LRU EVICTION STRATEGY

In RACER’s retrieval automaton, we adopt an LRU (Least Recently Used) eviction mechanism to manage limited node capacity. When the maximum number of nodes is reached, the least recently accessed node is recycled and reassigned to represent a new state. This ensures that the automaton

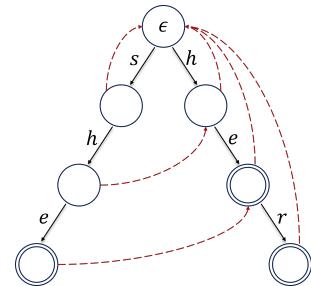


Figure 8: The illustration of an Aho–Corasick automaton with patterns “she”, “he”, and “her”, with final states in double circles and failure links in red.

1026 **Algorithm 2** Calculate failure links for nodes in an AC automaton

```

1027 1: function GET_TRANSITIONS
1028 2:   Initialize an empty queue  $Q$ 
1029 3:   for  $v \leftarrow$  children of the root do
1030 4:      $\text{fail}(v) \leftarrow \text{root}$                                  $\triangleright$  Set initial failure state to root
1031 5:     Enqueue  $v$  into  $Q$ 
1032 6:   end for
1033 7:   while not  $Q.\text{isEmpty}()$  do
1034 8:      $u \leftarrow Q.\text{dequeue}()$ 
1035 9:     for  $i \leftarrow$  possible transitions from  $u$  do
1036 10:     $v \leftarrow \text{child}(u, i)$ 
1037 11:    if  $v \neq \epsilon$  then
1038 12:       $\text{fail}(v) \leftarrow \text{child}(\text{fail}(u), i)$                  $\triangleright$  Update the failure pointer
1039 13:      Enqueue  $v$  into  $Q$ 
1040 14:    else
1041 15:       $f \leftarrow \text{fail}(u)$ 
1042 16:      while  $f \neq \text{root}$  and  $\text{child}(f, i) = \epsilon$  do
1043 17:         $f \leftarrow \text{fail}(f)$                                  $\triangleright$  Backtrack through the failure pointer
1044 18:      end while
1045 19:      if  $\text{child}(f, i) \neq \epsilon$  then
1046 20:         $\text{fail}(v) \leftarrow \text{child}(f, i)$ 
1047 21:      else
1048 22:         $\text{fail}(v) \leftarrow \text{root}$ 
1049 23:      end if
1050 24:    end if
1051 25:  end for
1052 26: end while
1053 27: end function

```

1054 continuously adapts to the most relevant n -grams from the current decoding context while maintaining
1055 bounded memory.

1056 The mechanism is shown in Algorithm 3 and works as follows: **Touch**: Every time a node is visited,
1057 it is moved to the front of the LRU list and its reference is updated in the hash map. This guarantees
1058 that the tail of the list always contains the least recently used node. **TouchPrefix**: When a failure
1059 transition occurs, not only the current node but also its ancestors along the prefix are “touched”. This
1060 ensures that the entire matching path is marked as recently used. **TransTokens**: When processing
1061 a sequence of tokens, the automaton repeatedly performs *Touch* and failure transitions until either a
1062 matching child node is found or the traversal falls back to the root. **InsertTokens**: When inserting
1063 a new n -gram, if no free node is available, the node at the back of the LRU list (the least recently
1064 used one) is evicted and reset. It is then reassigned as the child for the new transition. Frequency
1065 counters along the insertion path are updated accordingly. This design ensures that: Only leaf nodes
1066 are evicted, preventing structural corruption of the automaton. The automaton remains adaptive
1067 to changing contexts, exploiting temporal and spatial locality during decoding. The eviction and
1068 update operations remain lightweight and efficient, keeping inference fast.

1069 **Time Complexity** The *Touch* operation runs in constant time $\mathcal{O}(1)$, as it only updates the doubly
1070 linked list and hash map. *TouchPrefix* has a worst-case complexity of $\mathcal{O}(d)$, where d is the maxi-
1071 mum depth of the automaton (i.e., the n -gram length, typically a small constant). The *TransTokens*
1072 procedure processes each token in the input sequence and may backtrack up to depth d through fail-
1073 ure links, giving a worst-case complexity of $\mathcal{O}(|\text{tokens}| \cdot d)$, though in practice it is close to linear
1074 $\mathcal{O}(|\text{tokens}|)$. Finally, *InsertTokens* requires at most d steps for each token sequence, resulting in
1075 $\mathcal{O}(|\text{tokens}|)$ complexity.

1077 **Space Complexity** The storage requirement is linear in the number of automaton nodes. Trie
1078 nodes occupy $\mathcal{O}(|\mathcal{A}|)$ space, bounded by the maximum capacity of the automaton. The LRU list
1079 and hash map also require $\mathcal{O}(|\mathcal{A}|)$ space, as each node is tracked in both structures. Thus, total

1080

1081

1082

1083

1084

1085

1086

1087

Algorithm 3 LRU Eviction Strategy in AC Automaton

```

1: function TOUCH(node)
2:   Move node to the front of LRU_LIST
3:   Update LRU_MAP[node]  $\leftarrow$  LRU_LIST.begin()
4: end function
5: function TOUCHPREFIX(node)
6:   while node  $\neq \epsilon$  do
7:     fail(node)  $\leftarrow$  root            $\triangleright$  Default failure link to the root before rebuild
8:     TOUCH(node)
9:     node  $\leftarrow$  parent(node)
10:   end while
11: end function
12: function TRANSTOKENS(tokens)
13:   u  $\leftarrow$  current_state
14:   for each  $t \in$  tokens do
15:     TOUCH(u)
16:     while  $u \neq$  root and child( $u, t$ )  $= \epsilon$  do
17:       u  $\leftarrow$  fail(u)            $\triangleright$  Failure transition
18:     end while
19:     TOUCHPREFIX(u)            $\triangleright$  Update prefix after failure transition
20:     if child( $u, t$ )  $\neq \epsilon$  then
21:       u  $\leftarrow$  child( $u, t$ )
22:     else
23:       u  $\leftarrow$  root
24:     end if
25:   end for
26:   TOUCH(u)            $\triangleright$  Final state after processing tokens
27:   current_state  $\leftarrow$  u
28: end function
29: function INSERTTOKENS(tokens, frequency)
30:   u  $\leftarrow$  root
31:   freq(u)  $\leftarrow$  freq(u) + frequency
32:   for each  $t \in$  tokens do
33:     TOUCH(u)
34:     if child( $u, t$ )  $= \epsilon$  then
35:       new_node  $\leftarrow$  LRU_LIST.back()
36:       new_node.reset()
37:       child( $u, t$ )  $\leftarrow$  new_node
38:     end if
39:     u  $\leftarrow$  child( $u, t$ )
40:     freq(u)  $\leftarrow$  freq(u) + frequency
41:   end for
42:   TOUCH(u)            $\triangleright$  Touch the leaf node
43: end function

```

1128

1129

1130

1131

1132

1133

1134 memory is $O(|\mathcal{A}|)$, capped in practice at 10^4 - 10^5 nodes, which corresponds to tens of megabytes –
 1135 well within the budget of modern devices and suitable for memory-constrained scenarios.
 1136
 1137

1138 **D.4 VERIFICATION OF AC AUTOMATA WITH LRU EVICTION**
 1139

1140 In the full RACER method, the failure links of AC automaton are constructed once during prefill
 1141 because the retrieval component works together with the Logits Tree, and frequent updates bring
 1142 negligible benefit. However, for the retrieval-only ablation, the retrieval component must operate in-
 1143 dependently. To fairly evaluate the retrieval structure itself (without support from the logits branch),
 1144 we adopt a fixed-interval update of the automaton (every K steps). This ensures that the retrieval-
 1145 only version reflects a reasonable and competitive retrieval behavior, enabling a fair comparison
 1146 with other retrieval-based baselines.

1147 Table 9 reports the retrieval-only evaluation results across Spec-Bench, HumanEval, and MGSM-
 1148 ZH using an RTX 3090 GPU, comparing PLD, REST, SAM-Decoding (SAMD), and the retrieval-
 1149 only configuration of RACER. Overall, RACER consistently achieves the highest MAT scores and
 1150 speedup ratios across all benchmarks. For the Vicuna-7B backbone, RACER surpasses the strongest
 1151 baseline by a large margin: MAT improves by 0.20 to 0.70 across individual benchmarks, and its
 1152 average MAT reaches 2.53, compared to 1.98 for SAMD and 1.95 for PLD. The speedup gains fol-
 1153 low a similar pattern, with RACER achieving an average $2.05\times$ acceleration, exceeding all other
 1154 retrieval-only approaches. The improvements are particularly pronounced on MGSM-ZH, where
 1155 RACER attains a MAT of 3.32, significantly outperforming the baselines (1.29-2.65). Such gains
 1156 indicate that RACER’s retrieval mechanism exhibits stronger robustness under multi-step reasoning
 1157 tasks, especially those involving localized patterns and longer dependency chains. Spec-Bench and
 1158 HumanEval also show consistent benefits, demonstrating that RACER’s retrieval operations are ef-
 1159 fective across both synthetic and code-generation workloads. Importantly, although RACER in this
 1160 ablation does not leverage the Logits Tree and only employs the AC automaton for seen information,
 1161 it still substantially outperforms other retrieval-only systems. This suggests that RACER’s retrieval
 1162 automaton is intrinsically more efficient and semantically aligned with the model’s generation dy-
 1163 namics.

1163
 1164

1165 Table 9: Evaluation results on Spec-Bench, HumanEval and MGSM-ZH using an RTX 3090 GPU,
 1166 compared with retrieval-only methods PLD, REST and SAM-Decoding (SAMD). * indicates that
 1167 RACER here only employs the retrieval automaton for **seen information**, configured with 10,000
 1168 nodes, an n -gram length of 8, and updating AC automaton failure links every 20 steps.

Models	Method	Spec-Bench		HumanEval		MGSM-ZH		Average	
		MAT	Speedup	MAT	Speedup	MAT	Speedup	MAT	Speedup
Vicuna 7B	PLD	1.72	1.57	1.57	1.45	2.57	2.35	1.95	1.79
	REST	<u>1.82</u>	1.37	<u>2.06</u>	<u>1.65</u>	1.29	1.06	1.49	1.36
	SAMD	1.70	<u>1.65</u>	1.59	1.54	<u>2.65</u>	<u>2.49</u>	<u>1.98</u>	<u>1.89</u>
	RACER*	2.02	1.69	2.25	1.86	3.32	2.61	2.53	2.05

1169
 1170
 1171
 1172
 1173
 1174
 1175

1176
 1177
 1178
 1179
 1180 **E SUPPLEMENTARY PRELIMINARY RESULTS**
 1181

1182 As shown in Figure 9, the supplementary experiments confirm the same trend observed in the main
 1183 text (Figure 1 and Figure 2). Specifically, the *copy-logit* expansion consistently produces a sharper,
 1184 heavy-tailed acceptance distribution compared to *last-logit*, with most accepted tokens concentrated
 1185 in top ranks. Moreover, deeper k -ary expansions preserve this concentration and further validate the
 1186 breadth allocation rule. These results demonstrate that the phenomena discussed in the main text are
 1187 robust across different model scales and settings, reinforcing our choice of *copy-logit* as the default
 1188 expansion strategy in RACER.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197



(a) Logits Tree with one layer beyond next-token expanded with *last-logit*. (b) Logits Tree with one layer beyond next-token expanded with *copy-logit*. (c) Logits Tree with two layers beyond next-token expanded with *copy-logit* in 9-ary manner.

1198

1199

1200

1201

Figure 9: Accepted draft statistics of Qwen3-1.7B on Spec-Bench.

1202

F COMPARISON WITH EAGLE-3

1203

1204

1205

1206

1207

As a model-free method, RACER is orthogonal to model-based methods like EAGLE-3. While EAGLE-3 benefits from extensive training and model-based optimizations, RACER provides significant acceleration without requiring any additional training. Here, we explore in which scenarios RACER can complement EAGLE-3, potentially providing better acceleration in a hybrid setting with minimal modification to EAGLE-3.

1208

1209

1210

1211

1212

In the supplementary results with Qwen3, we include several reasoning tasks: GSM8K (Cobbe et al., 2021), AIME (Veeraboina, 2023), and MATH (Hendrycks et al., 2021), using AngelSlim’s re-implementation of EAGLE-3 model weights. We select 250 (+2) samples from each dataset: the first 250 samples for GSM8K, 250 random samples for AIME (from 1983 to 2024), and 50 random samples across levels 1 to 5, and 2 samples from level ? for MATH.

1213

1214

1215

1216

Table 10: Results on reasoning tasks: GSM8K, AIME, and MATH, reported in mean accepted tokens (MAT) and speedup ratio. † denotes that the EAGLE-3 model weight is from AngelSlim’s re-implementation.

Models	Method	GSM8K		AIME		MATH		Average	
		MAT	Speedup	MAT	Speedup	MAT	Speedup	MAT	Speedup
Qwen3 8B	EAGLE-3 [†]	3.86	2.65	3.44	2.44	3.55	2.60	3.62	2.56
	RACER	3.01	2.68	2.91	2.63	2.88	2.58	2.93	2.63
Qwen3 14B	EAGLE-3 [†]	3.08	2.23	3.05	2.24	3.06	2.23	3.06	2.23
	RACER	2.95	2.72	2.90	2.64	2.87	2.55	2.91	2.64
Qwen3 32B	EAGLE-3 [†]	3.32	2.51	3.26	2.34	3.33	2.42	3.30	2.42
	RACER	2.87	2.53	2.84	2.30	2.82	2.32	2.84	2.38

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

Table 10 shows that EAGLE-3 achieves higher MAT across all settings, which is expected given its task-specific training and model-based predictive capability. However, RACER attains comparable or even higher speedups in several cases (e.g., Qwen3-8B on GSM8K/AIME and Qwen3-14B across all tasks), despite having lower MAT. This highlights a key advantage of model-free decoding: RACER incurs nearly constant draft-generation cost, so its speedup does not degrade as sharply as computation-heavy model-based methods when model size increases. Across Qwen3-14B and Qwen3-32B, RACER maintains stable acceleration (2.38-2.72 \times), while EAGLE-3’s speedup remains limited by verification overhead. These results suggest that RACER’s speculative drafting is highly efficient even for long reasoning tasks, and that its acceleration stems from computational structure rather than model training. Most importantly, this comparison illustrates that RACER and EAGLE-3 offer orthogonal strengths: EAGLE-3 excels when high-quality next-step predictions are available via training. RACER excels when low overhead and robustness across tasks and model sizes are required.

1241

Notably, even with the official Vicuna-13B-v1.3 EAGLE-3 weight – trained on substantially broader and more diverse data – the gap between EAGLE-3 and RACER on MGSM-ZH remains relatively

Table 11: Results on Spec-Bench, HumanEval, and MGSM-ZH, reported in mean accepted tokens (MAT) and speedup ratio.

Models	Method	Spec-Bench		HumanEval		MGSM-ZH		Average	
		MAT	Speedup	MAT	Speedup	MAT	Speedup	MAT	Speedup
Vicuna 13B	EAGLE-3	5.70	3.36	6.41	3.92	4.69	2.90	5.60	3.39
	RACER	2.92	2.23	3.22	2.50	3.57	2.79	3.24	2.51

small (Table 11). This suggests that RACER retains competitive efficiency even in settings where the model-based draft generator has seen relevant training data.

SAM Decoding surpasses EAGLE-2 once combined with it, indicating that a lightweight model-free router can further improve well-trained model-based systems. By analogy, integrating RACER with EAGLE-3 is a natural and promising direction: RACER can provide efficient multi-branch drafting while EAGLE-3 provides high-quality predictions. We chose not to include this hybrid variant in the main submission to keep the method lightweight and implementation minimal, but we believe it represents a valuable avenue for future work.

G USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models (LLMs) were employed solely to provide assistance with language editing and textual clarification during the preparation of this paper. All technical ideas, methodological designs, analyses, and experimental studies were conceived, executed, and validated exclusively by the human authors.