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Abstract

Neural scaling laws are observed in a range of domains, to date with no universal
understanding of why they occur. Recent theories suggest that loss power laws
arise from Zipf’s law, a power law observed in domains like natural language.
One theory suggests that language scaling laws emerge when Zipf-distributed
task quanta are learned in descending order of frequency. In this paper we ex-
amine power-law scaling in AlphaZero, a reinforcement learning algorithm, using
a model of language-model scaling. We find that game states in training and in-
ference data scale with Zipf’s law, which is known to arise from the tree structure
of the environment, and examine the correlation between scaling-law and Zipf’s-
law exponents. In agreement with the quanta scaling model, we find that agents
optimize state loss in descending order of frequency, even though this order scales
inversely with modelling complexity. We also find that inverse scaling, the fail-
ure of models to improve with size, is correlated with unusual Zipf curves where
end-game states are among the most frequent states. We show evidence that larger
models shift their focus to these less-important states, sacrificing their understand-
ing of important early-game states.

1 Introduction

Neural scaling laws, describing the scaling of model performance with training resources, have been
documented across many architectures and use cases [1, 2, 3, 4, 5]. The performance of these models,
typically measured by test loss, follows a power law in either compute, model size or training data.
The robustness of these power laws and their usefulness in training large models, especially large
language models (LLMs) [6], prompted a range of attempts to find a model explaining the mech-
anism behind neural power-law scaling [7, 8, 9, 10]. Several models connect performance power
laws to Zipf’s law, a universal power law appearing in natural language [11, 9, 12, 13, 14, 15].

Scaling laws in reinforcement learning (RL) are so far relatively rare compared to supervised learn-
ing [16, 17, 18]. AlphaZero, a multi-agent RL algorithm that beat human champions in games like
chess and Go [19], exhibits power laws of Elo score with training resources, as well as a power law
relation between compute and optimal model size [5, 20, 21].

In this paper, we explore the mechanism behind known RL scaling laws, comparing this mechanism
to the quantization model of LLM scaling [11]. Our main findings are:

1. We find that AlphaZero agents that exhibit scaling laws, such as those trained by Neumann
& Gros (2022) [5], produce train and test data that follows Zipf’s law, suggesting that
learned tasks also scale with Zipf’s law.

2. We show how these smooth Zipf laws form when agent policies are combined with the tree-
structure of board games, which is known to create a Zipf-like state distribution [27]. We
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find a correlation between the Zipf curve and scaling exponents, exposed by modulating
policy temperature at inference.

3. In agreement with the quanta scaling model, we show that agents minimize loss on game
states in descending order of frequency, counter-intuitively achieving better performance
on harder tasks.

4. Inverse scaling, the abrupt failure of scaling laws at large sizes, coincides with an unusual
state-frequency distribution. We show that large models scale negatively on games with an
unusual tree structure that increases the frequency of strategically-unimportant late-game
states. Larger agents achieve better loss on these late-game states, sacrificing performance
on more important early-game states. We propose an explanation of inverse scaling in
AlphaZero using a combination of the quantization model and the selective non-stationarity
of training targets.

All code and data required to reproduce our results is publicly available1.

2 Background

Figure 1: Zipf’s law in AlphaZero games.
Board-state frequency follows a power law in state
rank, here for Connect Four and Pentago. Simi-
lar exponents α appear for agents of various sizes
trained on different games, see appendix C.1.

A short description of the AlphaZero algorithm
and AlphaZero scaling laws is given in ap-
pendix A.

Zipf’s law Zipf’s law is an empirical law de-
scribing the distribution of values when sorted
in decreasing order, typically with respect to
frequency [22]. When sorting elements in de-
creasing order of frequency, e.g. words in natu-
ral language texts, one regularly finds that the
frequency distribution S(n) follows a power
law in element rank n:

S(n) ∝ 1

nα
, (1)

often with α ≈ 1 for natural language datasets
[23, 24].

Quantization model of LLM scaling
Michaud et al. (2023) [11] propose the quanti-
zation model to explain the origin of power-law
scaling in LLMs, connecting neural-network
training to language Zipf’s laws. This model
assumes that LLMs learn discreet task quanta, and that the frequency of these tasks follows Zipf’s
law. The quantization model suggests that language models learn tasks in descending order of
frequency, which leads to power-law scaling laws. If the loss on each task is reduced by a fixed
amount ∆L after it is learned, then a model that learned the first n tasks will have an expected loss
of

L =
∆L

αζ(α+ 1)
· n1−α + L∞ =⇒ (L− L∞) ∝ n1−α , (2)

where ζ is the Riemann zeta function. It is assumed that a fixed neural capacity c is needed to fit
each of the independent task quanta. At the limit of infinite compute and data, the number of learned
task quanta n = N

c is determined by the number of parameters N . Eq. 2 then becomes a power-law
scaling law:

(L(N)− L∞) ∝ 1

Nα−1
, (3)

and the Zipf exponent α determines the size-scaling exponent αN = α−1. Similar reasoning relates
compute- and data-scaling laws to Zipf’s law.

1Code and data available at github.com/OrenNeumann/alphazero_zipfs_law.
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Other supervised learning scaling models A large body of work exists on models of neural
scaling laws on static datasets, several of which making the connection between Zipf’s law and
scaling laws. Hutter (2021) [9] shows how a data scaling law emerges when training on Zipf-
distributed data under the assumption of infinite memory. Bordelon et al. (2020) [12] develop a
model of data scaling laws for kernels, which applies to neural nets at the infinite width limit. Other
works expand this line of work on kernel models, including results on real datasets [13, 25]. Mal-
oney et al. (2022) [14] develop a model that explains joint scaling of model size and dataset size.
Cabannes et al. (2023) [15] assume Zipf-distributed data and develop a model for scaling of atten-
tion models. Dohmatob et al. (2024) [26] explore model collapse through the effect of synthetic
data on heavy-tailed data distributions.

We frequently compare our results to Michaud et al. (2023) [11] throughout this paper, since their
model develops the full set of scaling laws for neural nets (compute, parameters, data) by assuming
a Zipf’s law of the data. Our comparisons also hold for the above-mentioned works, depending on
the assumptions they make. To our knowledge, no complete model exists that explains scaling laws
in any RL setting.

3 Related work

Finding Zipf’s law in board games To our knowledge, no study has been made on Zipf’s law in
AI games. Blasius & Tönjes (2009) [27] and Georgeot & Giraud (2012) [28] show that the popularity
of openings in human game datasets follows Zipf’s law in chess and Go, respectively. Blasius &
Tönjes are the first to propose a connection to the branching-tree structure of chess, without proof.
We provide evidence supporting such a connection in section 5.

Analyzing concept learning in AlphaZero In sections 6 and 7 we present results on the scaling
of AlphaZero loss on individual states. A similar analysis is done by McGrath et al. (2022) [29]
and Lovering et al. (2022) [30], who both analyze how human concepts are learned by AlphaZero
by measuring accuracy. McGrath et al. (2022) [29] map how human chess concepts are learned,
both as a function of training length and neural network depth. They measure the accuracy of a
few hand-crafted concepts, in contrast to our analysis that measures loss on up to 105 unique states.
Similar to our inverse-scaling results in section 7, Lovering et al. (2022) [30] observe differences
between how short-term and long-term concepts are learned in the game of Hex.

Effects of state frequency on training Our work discusses the effects of training-data state fre-
quency on AlphaZero agent performance. Another observation on this relation of data frequency
with performance is found in Ruoss et al. (2024), [31], where Transformers are trained with super-
vised learning on annotated human chess games. The authors perform an ablation study where they
change the frequencies of board states in the dataset, either sampling states uniformly or sampling
them according to their frequency in human games, which follows Zipf’s law. Testing on chess puz-
zle accuracy, they find that changing the state frequency has a strong effect on model performance,
favoring uniform sampling over sampling from the Zipf distribution.

4 Methods

We use AlphaZero agents trained on four board games: Connect Four, Pentago, Oware and Checkers.
All neural nets are either taken from Neumann & Gros (2022) [5] or trained using their open-sourced
OpenSpiel code [32]. We use the open-source model weights for Connect Four and Pentago, and
train new models with the same hyperparameters on Oware and Checkers. All of these models
exhibit power-law scaling laws, either partially or fully: Connect Four and Pentago scaling laws are
discussed at length by Neumann & Gros [5], while we present size-scaling curves for Oware and
Checkers in Fig. 4A. The power laws are in the Bradley-Terry playing strength γ, which determines
the Elo score: Elo ∝ log10(γ) [33, 34]. γ scales as a power of neural-net parameters and training
compute [5]:

γ ∝ NαN , γ ∝ CαC . (4)
Most results in this paper involve the frequency of states s ∈ S in a Markov decision process
M = ⟨S,A,P,R⟩ [35]. In practice, we identify each state by its observation tensor, which is the
input to the neural net. In all four games, this observation is the position of each piece on the board,
and does not include the history of previous moves (unlike the chess analysis of Blasius & Tönjes
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Figure 2: Zipf power laws emerging from the tree structure of board games. A: In a toy-
model game where board states branch out symmetrically, state frequency is organized as a series
of plateaus centered around a linear line. B: Adding game rules, but still playing random moves,
the plateaus are smoothed out, producing a power law with a slightly different exponent. This is in
particular evident for Connect Four, which has a much lower branching factor than Pentago. The
tail plateaus are caused by the finite amount of data.

(2009) [27]). All AlphaZero agents use MLP nets with 3 hidden layers at exponentially-increasing
widths, with a fixed amount of 300 MCTS steps per move during both training and inference.

5 Zipf’s law in AlphaZero

AlphaZero board state distribution We find a Zipf distribution in games played by AlphaZero
agents that exhibit scaling laws. Fig. 1 shows the frequency distribution of board states played
by Connect Four and Pentago AlphaZero agents of varying sizes during training. The number of
times each state was visited follows a clear Zipf power law when sorted in descending order. The
exact value of the exponent defined in Eq. 1 fluctuates in the range α ∼ 0.8−1.0 for different
models and games, close to the value observed in human Go games [28] and to the exponent of
random games, discussed in the next section. Appendix C.1 contains plots of individual-agent Zipf
curves, and discusses the variation of the power-law exponent α. The plateaus at the tail-end of
each distribution are due to finite-size effects, and smooth-out when more state-frequency data is
available.

This result strengthens the assumption that Zipf’s law is not caused by human decision-making, but
is rather derived from the game rules. The existence of Zipf’s law in human games has long since
been established, but its cause is not entirely clear. The frequency of popular opening moves in
games like Chess and Go follows a descending power law in rank, both for expert and amateur
human players [27, 28]. The fact that an RL model trained with no human knowledge produces
Zipf’s law similar to humans implies that Zipf’s law is not caused by human strategy preference.

Visualizing the origin of Zipf’s law We give some intuition to the source of Zipf’s law in Fig. 2.
The relation of Zipf’s law to the underlying branching process of board games was already pointed
out by Blasius & Tönjes (2009) [27]. It is easy to show that an ideal game, with a constant branching
factor and a tree structure free of loops, would produce a Zipf-like distribution. Specifically, one can
show that the frequency distribution in such a game is a series of plateaus around the line S(n) ∝ n,
see appendix H. The same reasoning explains the appearance of Zipf’s law in randomly-generated
texts [36]. In Fig. 2A, we visualize this ideal-game Zipf’s law by plotting the state-frequency dis-
tribution for a non-looping, constant branching game with fixed length. Increasing the branching
factor widens the plateaus, spreading them out. We use the initial branching factor of Connect Four.

In Fig. 2B we show that adding game rules molds the plateaus into a smoother curve. Using a uni-
formly random policy to play Connect Four and Pentago smooths the power-law-centered plateaus,
roughly merging them into a straight line. The toy-model exponent changes slightly after adding
game rules, but the general power-law trend remains intact.

Appendix C.2 contains additional results on the emergence of Zipf’s law, and shows that non-
uniform policies can also smooth the distribution into a power law. As we see in Fig. 1, a learned
policy smooths the distribution further, keeping the power-law shape while slightly changing the
exponent.

4



Figure 3: Connect Four value-loss3scaling with rank. A: Average loss on each agent’s own
training data. Loss steadily increases with rank. Larger agents achieve better loss. B: Loss on a
dataset annotated by a game solver. Larger models are closer to the ground truth values of optimal
play. The overall trend of loss increasing with rank is surprising, when one considers that the
complexity of states decreases with rank. C: The time needed to evaluate the same states using
alpha-beta pruning [37] drops on an exponential scale with rank (mean and standard deviation are
geometric).

Temperature and correlation with scaling laws In appendix D we show that the Zipf exponent is
correlated with the size scaling exponent. By changing the inference policy temperature of Connect
Four agents, we modulate both the Zipf distribution and the slope of the scaling law, see Fig. 10. We
argue that this correlation is causal at low T and plot the dependence of the scaling law exponent on
the Zipf exponent.

6 Analyzing how loss scales with Zipf’s law

In agreement with the quantization model [11], we find that AlphaZero models reduce their loss
on game states in descending order of frequency. In Fig. 3 we plot the value-head loss on Connect
Four training data in the limit of abundant compute, tracking the loss of each agent on its self-play
games.2

Comparison to the quantization model The quantization hypothesis assumes models learn tasks
in a binary way, sharply reducing the loss on each task in descending order of frequency. As a
function of neural net size N , this assumed loss function is a step function that changes from low to
high loss at rank n ∝ N [11]. In comparison, we find that AlphaZero loss increases smoothly with
rank rather than resembling a step function, likely because board positions are not independent task
quanta.

In Fig. 3B we plot the value loss Lvalue = (z − v)
2 on ground-truth labels z, calculated by an alpha-

beta pruning solver [37]. We see that larger agents have significantly better ground-truth loss over
smaller agents, confirming that increasing model size improves the absolute value loss. Ground-
truth value loss is directly related to better performance, similar to test loss in LLMs that is known
to correlate with accuracy on downstream tasks [38, 39, 6].

States are optimized in descending order of frequency & complexity It is surprising that ab-
solute value loss (Fig. 3B) tends to increase with state rank, since higher rank states are easier to
model, meaning loss increases as state complexity decreases. Low-loss states are the hardest to
model using conventional methods, as we show in Fig. 3C for alpha-beta pruning [40]. The most
frequent states have a larger state tree branching out from them, making it harder for search-based
algorithms like MCTS to tackle them. As a result, the CPU time required to calculate the ground
truth value of a state decreases steadily with rank on an exponential scale.

2The largest nets approach the optimal play limit [5], causing loss to stagnate as model size increases to the
largest values.

3Note that AlphaZero’s value head is not equivalent to the value net of actor-critic methods, see appendix E.
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Figure 4: Inverse scaling in AlphaZero. A: Agents playing Checkers and Oware follow a size
scaling law that abruptly changes direction, when large models fail to utilize their capacity. The
scaling curve does not flip due to approaching the perfect-play ceiling: training a suite of Oware
agents with different hyperparameters (light green), they extend to higher Elo scores. Error bars
are one standard deviation. B: Oware games played by AlphaZero follow Zipf’s law, interrupted
by a small plateau. This is caused by high-frequency late-game states, present due to the unusual
tree-structure of Oware, see Fig. 5. C: Checkers shares the same tree structure, but the effect on the
Zipf curve is less visible.

Figure 5: Turn distribution anomaly coincides with inverse scaling. A: When the game tree
spreads exponentially, e.g. in Connect Four and Pentago, turn number correlates with state frequency.
However, in games with inverse scaling (Oware and Checkers) the game tree converges to a com-
paratively small set of endings, resulting in high-frequency late-game states. B: The fraction of
late-game states (above dashed line in Oware and Checkers) rises either sharply or gradually with
rank.

7 Connecting inverse scaling to the game structure

Inverse scaling, i.e. performance scaling negatively with training resources, is known to occur in
LLM training [41]. RL models can similarly fail to scale reliably, sometimes decreasing in perfor-
mance as neural-network size and compute budget are increased. We see a clear example of inverse
scaling for AlphaZero agents trained on Checkers and Oware, as shown in Fig. 4A. These agents
follow a steady scaling curve that abruptly breaks down beyond a certain neural network size, where
Elo starts to scale negatively with size.

7.1 Inverse scaling coincides with a frequency-distribution anomaly

As we show in Fig. 4B, the state-frequency distribution of Oware games is visibly different from the
Zipf’s law present in other games. The Oware Zipf curve is interrupted by a bump starting after rank
100, caused by a group of states with roughly constant frequency. The Zipf power-law exponent
remains unchanged before and after this interruption. In this section, we show that the anomalous
Zipf curve is caused by a property of the Oware game tree. The same anomaly occurs in Checkers,
but is harder to detect solely by looking at frequency curves.
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Turn distribution anomaly The distribution of state turn numbers exposes a distinct difference
between games with clean scaling laws and games with inverse scaling. In Fig. 5 we plot the average
number of moves played in an episode before encountering each state. Connect Four and Pentago
turn numbers are strongly correlated with state rank, due to the number of possible states diverging
exponentially with time. In contrast, Oware and Checkers display forked turn distributions where a
substantial fraction of the most frequent states appear late in the game. In Oware, the sharp change
in the fraction of late states (Fig. 5B) happens at the same rank where the Zipf curve bump appears.

States above and below the dashed line in Fig. 5A are clearly distinguishable when visualized, see
examples in appendix F. Late-game states above the dashed line are positions close to the end of a
game, when the board is mostly empty, while early-game states below the line are opening moves,
i.e. small variations of the initial board state.

Anomaly is caused by game rules The prevalence of high-frequency late-game states in Oware
and Checkers data is a direct result of the game rules, which shape the game-tree structure. In both
games, pieces are successively removed from the board, ending the game when one of the players
has no pieces left (infinite-loop draws are rare). This win condition produces game trees that expand
and then contract: starting from a predetermined position, expanding exponentially every move, but
then contracting again towards the end of the game as the number of pieces decreases and with it
the number of possible board-state permutations. The probability that a game ends in a frequently-
visited board state is high.

In contrast, Connect Four and Pentago have a different tree structure. These are line-completion
games where pieces are repeatedly added to an empty board, and the number of possible full-board
combinations is still high. Go and Chess also do not have converging game trees; a Go game
typically ends with many pieces on the board, with large combinatorial complexity. Chess is a piece-
elimination game similar to Checkers, but winning is not conditioned on capturing all the opponent’s
pieces and checkmates can occur while the board is relatively full.

7.2 Relation to inverse scaling

The occurrence of inverse scaling at large model sizes as well as an anomaly in the train-set distribu-
tions suggests that the two phenomena might be linked. A possible connection is that an increased
neural capacity leads to higher-rank states having more influence on model training. Here we present
evidence for such a connection between state distribution and inverse scaling.

Oware loss spikes at transition point. As we show in Fig. 5, late-game states (above the dashed
line) dominate the Oware distribution at higher ranks, in a sharp transition from 0% to > 80%
of all states. This transition is drastic enough to visibly skew the frequency distribution seen in
Fig. 4B, bending the Zipf power law. The distribution shift causes Oware value loss to spike, as we
show in Fig. 6A. The loss of all but the largest models jumps by up to an order of magnitude at the
transition point, showing that models that fit early-game states well have a hard time fitting late-game
states. This counter-intuitive behavior of getting worse loss on easier states, which we discussed in
section 6, is even more surprising here: Oware states after the transition point are predominantly
end-game configurations, and should be significantly easier to model than early-game states using
search algorithms.

The quantization model provides an explanation for the sharp rise in loss. As models fit the most
frequent states, smaller models do not have enough capacity to additionally model less frequent
states accurately. The large qualitative difference between early- and late-game states makes the
difference in loss especially pronounced. Interestingly, larger agents converge on a smooth loss
curve similar to that of Connect Four, at the cost of worse loss on early-game states.

Large models overfit on late-game states. Splitting the loss curve to early- and late-game states
paints a clearer picture. Loss on early-game positions scales smoothly for all models (Fig. 6B), with
smaller models achieving lower loss than larger models. Surprisingly, large models have better loss
on late game states (Fig. 6C) following a reversed order compared to early-game states. We note that
the data is collected from games at late stages of training, when game quality is high and relatively
constant.

Inverse scaling is likely caused by large model overfitting on late-game states. Larger models fit
end-game states better, for the price of worse performance on game openings. Opening moves are
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Figure 6: Increasing neural capacity leads to overfitting on end-game states in Oware. A: Value
training loss sharply increases at the point where late-game moves dominate the state distribution
(dashed line). Late-game states have much higher loss despite being much easier to model. B&C:
Looking at the loss on late- and early-game states separately, we see that larger models predict late-
game states progressively better, but predict less-frequent, early-game states progressively worse.
Increasing the capacity allows larger models to optimize intermediate-rank states, shifting their focus
to frequently appearing late-game data. Forgetting crucial early-game information could explain the
onset of inverse scaling in Oware.

Figure 7: Large models forget knowledge on early-game states. A: The loss of the largest Oware
agent improves (on average) during training. B: On early-game states, loss initially goes down, then
stops improving and eventually worsens towards the end of training. C: Loss on late-game states
steadily improves during training. The fact that large nets fit early-game states but then forget them
suggests that target non-stationarity might be the cause of inverse scaling.

crucial for good performance, while end-game states are mostly insignificant; the branching factor
of end-game positions is small, meaning even an unguided MCTS agent could find the optimal move
through brute-force search. Sacrificing important strategic knowledge for the ability to fit numerous
trivial positions accurately directly leads to the inverse scaling of Elo seen in Fig. 4.

7.3 Why do large models overfit?

The degradation of large model performance on early-game states is an example where RL scaling
diverges from The quantization model. The quantization model explains how larger models could fit
more tasks, without forgetting higher-frequency tasks. In RL, we see that fitting less-frequent states
coincides with lower performance on the most frequent states, when states split into two distinct
groups. The difference between supervised learning and RL scaling might be caused by a shift of
the target distribution during training, which is known to cause training failure, e.g. through dormant
neurons [42].

Large models selectively forget. During training, large models seem to forget what they learn
about early-game states, but not about late-game. In Fig. 7 we plot the loss of the largest Oware
model at different stages of training. We see a clear difference between the learning dynamics of
early- and late-states: late-game loss improves gradually throughout training, while early-game loss
improves, then degrades at late training.

A possible explanation of this selective forgetting is a selective shift in the distribution of the target
labels, i.e. the value of each state. Sokar et al. (2023) [42] have shown that changes to the target
distribution in RL can harm performance by creating dormant neurons. Unlike early-game states,
late-game states have relatively fixed label distributions since the outcome is already decided by that
point in the game. A hypothetical mechanism of inverse scaling then follows: 1) Models fit states by
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order of frequency, gradually expanding the fraction of late-game states in the pool of learned states.
2) As new states are optimized, higher-frequency states learned earlier can be forgotten. 3) In Oware,
late-game states are immune to forgetting due to their strongly fixed labels. 4) Large Oware models
are trapped in local optima, fitting many end-game states well but forgetting a smaller fraction of
crucial early-game states.

Comparison to inverse scaling in supervised learning We note a certain similarity between this
inverse scaling phenomenon and one of the causes for inverse scaling identified by McKenzie et al.
(2023) [41], namely distractor tasks. Some LLM benchmarks require mastering a set of tasks T , but
as model scale increases, models first learn a set of easier tasks D that harm performance, leading to
inverse scaling. Another similar concept is competing tasks, which can cause inverse scaling in a su-
pervised learning setting [43]. While the concept of competing/distractor tasks bears resemblance to
the Oware case, the mechanism behind these phenomena is different. These examples of supervised
learning inverse scaling are driven by the similarity of tasks, while in our case early- and late-game
states are far from similar, which is why we believe inverse scaling is caused by indirect interaction
between tasks through forgetting.

Limitations. We note two limitations of our analysis of inverse scaling. First, unlike Oware, the
influence of late game configurations is harder to visualize in Checkers. Since the transition to late-
game states is smoother in Checkers (Fig. 5B), the Zipf curve only visibly skews at very high rank
numbers (Fig. 4C). As a result, one would need exceedingly large amounts of data to accurately plot
the rank at which late-states dominate the distribution.

The second limitation is the use of game states as proxies for independent task quanta. Oware inverse
scaling cannot be solved simply by removing all late turns from the training distribution, possibly
because the group of tasks that models overfit on only partially correlates with accuracy on late-
game states. Fig. 6 misses a large chunk of information about the dataset due to the large number
of states that only appear once in training. These states, at the tail-end of the frequency curve, have
low individual frequency but are the majority of states encountered in training. In appendix G we
visualize data frequency over a different axis and show that the tail-end of the state distribution,
which we removed in our analysis, is crucial for accurately calculating frequency scaling along
other axes. A better grouping of task quanta might allow one to know which states to exclude from
training in order to prevent inverse scaling.

8 Discussion

We presented evidence connecting the quantization model of LLM neural scaling to AlphaZero
power laws. In particular, we found that AlphaZero data follows Zipf’s law and that agents optimize
states according to their frequency rank, counter-intuitively achieving worse loss on easier states.
We also shed light on the mechanism behind inverse scaling, showing that inverse scaling correlates
with an abnormal frequency distribution. This in turn can cause agents with larger capacity to focus
on end-game states, getting better loss on these states but worse loss on crucial opening moves.

While this work touches several aspects of scaling law theory, we still lack a full model of RL scaling
that can fully connect state distribution to Elo scaling laws. We provided clear evidence of the effect
of Zipf’s law on loss, but loss is only a proxy for performance and the multi-agent Elo metric is
connected to it in a non-trivial way. A significant problem with applying the quantization model to
explain scaling laws is the difficulty of identifying task quanta, both for LLMs and RL, which is
why we use game states as a proxy of tasks. Identifying the tasks or concepts that AlphaZero learns
is a challenging interpretability problem, mostly limited to human game knowledge [29, 44].

We hope the analysis presented here will help advance the understanding of RL scaling. RL methods
are often challenging to scale, and understanding why is a prominent topic in the field today [45, 46,
42, 47]. Our results hint at a possibility for improved RL algorithms using a curriculum informed
by the frequency distribution, similar to recent attempts in supervised learning [31].
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A Additional Background

AlphaZero AlphaZero is an RL algorithm for learning two-player zero-sum games, learning
solely from self play [19]. The algorithm performs a Monte-Carlo tree search on the tree of fu-
ture moves, guided by a neural network. The neural net receives the current board state as input,
providing an estimate of its value, v, together with a policy prior, p. The loss function is composed
of separate elements for v and p:

L = (z − v)
2 − π⊤ logp . (5)

During training, the agent visits board states s, having ground-truth labels z, for which it gener-
ates estimates v and π for the state value and target prior, respectively. The MSE value-loss term
(z − v)

2 pushes v to fit the observed game outcome z ∈ {1, 0,−1}, representing win, draw and loss
respectively. The cross-entropy policy loss −π⊤ logp pushes p to fit the actual policy π generated
by the tree search.

AlphaZero scaling laws AlphaZero scaling is one of the earliest examples of neural power-law
scaling in RL [20, 5]. Jones [20] showed that AlphaZero agents trained to play Hex improve their
Elo score r with the log of training compute C, r ∝ log(C), with a coefficient that remains constant
across board sizes. As they point out, this predictable scaling behavior allows one to plan the com-
pute budget ahead of training to fit a desired performance level. Neumann & Gros [5] found similar
compute scaling in agents trained on Connect Four and Pentago, as well as scaling with neural net-
work size, and pointed out that these scaling curves are power laws of the Bradley-Terry playing
strength γ [33], since r ∝ log10(γ). Similar to LLM scaling laws, these scaling laws of AlphaZero
allow one to know in advance the optimal model size that would achieve maximal Elo score, given
the available training compute budget. An interesting result from Jones shows that training compute
can also be traded off predictably for inference compute [20].

B Board game descriptions

We describe here the rules of all four games examined in this paper. All games are two-player,
zero-sum, open information games, where players alternate turns between them moving pieces on a
board.

Connect Four The players alternate placing a disk of their color into one of seven vertical columns
on a 6x7 grid, and the disk falls to the lowest unoccupied position in that column. A player wins
by arranging four of their disks in a row, either vertically, horizontally, or diagonally. If all cells are
filled without such an alignment, the game is drawn.

Pentago Players alternate placing one marble of their color on any empty cell of a 6x6 board,
which is divided into four 3x3 rotating quadrants. After placing, the player must rotate one quadrant
by 90ř either clockwise or counter-clockwise. A player wins immediately upon obtaining five mar-
bles in a row (horizontal, vertical, or diagonal) either before or after rotation. If the board becomes
full without five in a row, the game is drawn.

Oware This game is played on a board with two rows of six houses and optionally store pits.
Each of the twelve small houses starts with four seeds. Each player controls the six houses on their
side. On their turn, a player selects one of their houses with seeds, removes all seeds, and sows
them counter-clockwise, placing one seed per subsequent house (excluding stores and skipping the
original house when it’s revisited). If the last seed lands in an opponent’s house and brings its count
to exactly two or three, those seeds are captured into the player’s store. Capture continues backward
from that house as long as the immediately preceding opponent’s houses also contain exactly two or
three seeds. Capturing all of an opponent’s seeds is forbidden; in that case no capture is made. The
game ends when a player captures 25 or more seeds, or both players capture 24 each (draw), or if
no legal move exists; remaining seeds are then collected by their owners. In our analyses, a draw is
also declared if the game lasts 1000 turns.

Checkers The players each control 12 pieces on opposite dark squares of an 8x8 chess board.
Normal pieces move diagonally forward one square to an unoccupied dark square. If an opponent’s
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Figure 8: Zipf’s law curves for AlphaZero games. On the left column, we plot the frequency
distribution of states collected from different-sized agents training on each of the four board games
discussed in this paper. In each row we plot curves describing the distribution of games played by
single agents. We find small variations of the power-law exponent between agents, overall staying
close to the general exponent of each game. The averaged exponents vary in a range that is in
agreement with human-game exponents.

piece is diagonally adjacent and the following square is empty, the adjacent piece may be jumped
and removed; multiple jumps are allowed in sequence if available. When a piece reaches the farthest
row on the opponent’s side, it is crowned as a king and gains the ability to move and jump both
forward and backward. Play continues until one player has no legal move (draw) or a player lost all
their pieces. We also draw the game if it lasts too long.

C Zipf’s law variation

C.1 Zipf-exponent variation among agents

The different strategies learned by individual agents lead to small differences in their frequency-
distribution curves. Here we show examples of Zipf curves obtained from games played by indi-
vidual agents during training. Agents follow slightly different Zipf laws, but the deviation between
agents is smaller than the deviation between environments.
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Figure 9: Zipf’s law in random games with a non-uniform policy. A: In a toy-model game with
a branching factor of 2, a policy that prefers one action over the other will smooth-out the plateaus
of Fig. 2A into a Zipf’s law with exponent α = 1. The power law dies out near the end of the
distribution, which depends on game length. B: If the policy heavily prefers one action over the
other, it produces a series of plateaus again. These plateaus quickly diverge from the α = 1 Zipf’s
law in short games, but converge to a Zipf’s law as game length increases.

Total Zipf distribution In Fig. 8 we plot the state-frequency distributions of different games,
plotting the combined distribution of many agents in the left-most column. We do this by counting
the total frequency of states across games played by several different-sized agents. Each environment
has its own Zipf exponent, but all exponents lie in the range [0.75, 1.05]. For Oware, we fit the part
of the curve that comes after the bump caused by late-game states, see appendix F. Checkers also
exhibits a bump in the distribution, albeit harder to see since it starts at a much higher rank.

Single-agent Zipf distribution Another set of Zipf curves can be obtained by counting state fre-
quencies only in games played by a single agent. In each column after the left-most one, we plot the
distribution generated by an agent with a different number of neural-net parameters. The standard
deviation of the exponent among agents is low in all environments, standing at 0.01 or lower for
Connect Four, Pentago and Checkers, and at 0.02 for Oware. The uniformity of the exponent across
different agents agrees with prior observations on human games: the opening frequencies of human
Go games also follow Zipf’s law, with the same exponent fitting both amateur games and games
played at prestigious Go tournaments [28].

C.2 Zipf’s law in non-uniformly-random games

Zipf’s law in games arises from their branching-tree structure. In section 5 we discuss the origin
of Zipf’s law, showing that random toy-model games create a frequency distribution of plateaus
centered on a power-law with exponent α = 1. We show that this distribution can be smoothed into
a Zipf’s law by adding complicated game rules, but keeping the games random.

Here we show another mechanism that can smooth the plateau distribution into a Zipf’s law. If the
policy generating the games is not uniformly random, it generates smooth power laws. However, if
the policy approaches a deterministic policy, the frequency plateaus reappear.

Policy bias smooths the distribution In Fig. 9 we plot the state-frequency distribution of toy-
model games under different agent policies. These games have a constant branching factor of 2,
and last a fixed number of turns. We look at games generated by random policies, that are skewed
towards preferring one action over the other at every level of the game tree.

Shifting away from the uniform policy p = (0.5, 0.5), we see that the plateaus of the uniform case
become shorter and denser, eventually becoming a smooth curve. The distribution follows the α = 1
power law, diverging only at the very end of the distribution. The power law stretches over more
orders of magnitude as game length is increased.

Extreme bias reintroduces plateaus Surprisingly, changing the policy too far from uniform even-
tually leads to frequency plateaus again. In Fig. 9B we plot games played by a policy that is close
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Figure 10: Measuring correlation between Zipf’s law and scaling exponents. By changing the
move-selection temperature at inference time, both the state-distribution Zipf’s law and the size-
scaling law are augmented, plotted here for Connect Four. A: As T → 0, the Zipf curve starts to
bend, following a steeper power law at high-ranks. B: T also changes the Connect Four size scaling
law4, either directly by lowering policy quality at high T , or indirectly by changing the game state
distribution. C: By modulating T at low values, we plot the dependence of the scaling power law on
Zipf’s law, using the tail exponent.

to being deterministic. The strong preference of one action creates plateaus of common games: the
first plateau corresponds to an entire game where the same action was played every turn, the second
plateau is made of games where the less-preferred action was played once, and so on. The plateau
distribution still follows the linear α = 1 trend, but diverges from it at a much earlier point than
more-uniform policies. One must increase game length significantly to see that this distribution
converges to a linear trend at the infinite-game-length limit.

D Temperature and correlation with scaling laws

Although measuring the correlation between Zipf’s law and scaling laws is not straightforward, we
present how this can be done using temperature. Natural language Zipf exponents are impossible
to change in real-world data. In contrast, RL Zipf laws can be augmented by changing the policy
temperature T . AlphaZero uses Monte-Carlo tree search (MCTS) to generate a policy π:

π(s0, a) =
N(s0, a)

1/T∑
b N(s0, b)1/T

(6)

where N(s, a) is the number of times the state-action pair (s, a) was probed, see appendix E for a
detailed explanation. The temperature T interpolates between a deterministic policy choosing the
best move at T = 0, and a uniform policy at T = ∞. At inference time, e.g. when calculating Elo
ratings, T is either set to zero or reduced to a low value, the latter to avoid deterministic policies.

Temperature has a strong influence on the state-frequency curve, as we show for Connect Four games
in Fig. 10A. As T approaches zero, the Zipf curve starts to bend due to the formation of plateaus
of popular games that are played repeatedly when temperature is low. Deviations from these games
make up the post-bend tail. The Zipf exponent of the tail is not well-defined for T → 0 for a finite
number of agents and finite numbers of games played. The bending of the frequency curve with
decreasing T is somewhat intuitive, considering how temperature affects games. At low T , fewer
unique states are played, meaning the curve must end at a lower rank. This pushes up the rest of the
frequencies, since the total number of states played remains constant.

Exponent correlation In Fig. 10C we tune the inference temperature T to analyze the correlation
between the size scaling law (Fig. 10B) and the Zipf exponent (Fig. 10A). The two exponents change
together, indicating that the inference-time state distribution does affect the scaling law, as predicted
by the quantization model. Unlike the linear correlation predicted by the quantization model for
LLMs, we observe a non-linear relation. The non-linearity is expected when one considers the
T → 0 limit, in which RL scaling laws converge to a finite exponent while the Zipf tail exponent
diverges to infinity.

Additional experiments confirm that the relation between the state distribution and the scaling law is
causal, meaning the scaling law changes only because of the changing Zipf distribution. A possible

4Where we plot Elo scores (Figs. 10,4), we set the Elo of the lowest agent to 100. Each curve in Fig. 10B is
to scale, but the positions of the curves are not to scale.
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Figure 11: The effect of temperature on agent performance. We plot the probability that an agent
will play an optimal move, against policy temperature T . As T is increased, the probability to take
the best action remains constant, starting to drop only above T ≈ 0.5. The region where performance
is unaffected is the same region plotted in Fig. 10B, confirming that the relation between Zipf- and
scaling-law-exponents is causal, rather than the result of degrading performance due to high T .

non-causal effect could be Elo scores changing due to the degradation of the policy π at high T .
We measure the effect of T on policy quality in appendix D.1 and find that the probability policy
π(T ) assigns to optimal moves only starts decreasing at T > 0.5. The correlation in Fig. 10C is
strictly causal, since it falls in the temperature range where policy quality is preserved. Interestingly,
the Zipf exponent only changes in the temperature where policy quality is optimal, and is fixed for
T > 0.5.

Limitations Augmenting policy temperature is not a perfect comparison method, since it is not
clear how much influence low-rank plateaus have on agent performance. This is especially true
at the lowest temperatures (T < 5 · 10−2), where the plateaus are most dominant, accounting for
75 − 90% of all states visited. In this temperature range, it is hard to tell how influential is the tail
distribution compared to the plateaus.

D.1 Policy degradation with temperature

In section 5 we plot the correlation between the scaling-law and Zipf’s-law exponents by modulating
the temperature of the action-selection policy, defined in Eq. 6. We claim that this correlation, plotted
in Fig. 10B, is caused solely by the shifting Zipf distribution that affects agent performance, and not
by temperature causing agents to play suboptimal moves.

Here we back up this claim by demonstrating that agent performance on individual states does not
change in the temperature range used to plot Fig. 10B. To estimate performance on states, we look at
the policy π(T ) produced by Monte-Carlo tree search and plot the probability it assigns to optimal
actions. For each state s, we calculate the probability the agent plays an optimal action:

p(optimal) =
∑

a∈A(s)

πa(T ) (7)

The set of optimal actions A(s) is calculated with a Connect Four solver using alpha-beta pruning.
An optimal action is defined as any action that, under optimal play, will lead to a victory, or to a
draw if a victory is not possible. States where every move leads to a loss do not have any optimal
actions, and are ignored in this analysis. The probability to "blunder", i.e. lose the lead in a game, is
therefore equivalent to 1− p(optimal).
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Figure 12: A zoomed-out version of Fig. 10C that includes higher temperatures (= smaller expo-
nents). Fig. 10C only contains data to the right of the vertical cutoff line, which marks the tempera-
ture where T stops affecting policy quality (equivalent to the line in Fig. 11). This line happens to
coincide with the point where the Zipf exponent starts changing.

Temperature does not harm performance in the examined range In Fig. 11 we plot p(optimal)
against policy temperature T for several Connect Four agent with different sizes5. For temperatures
below the vertical dashed line, marking the region where exponents were calculated for Fig. 10B,
the probability to take an optimal action is constant and does not change with T . This confirms that
the change of the scaling-law exponent in this region is only due to the effect T has on the Zipf
curve.

It is also possible to notice the effect of temperature on the scaling laws in Fig. 10B. The scaling law
exponent changes rapidly for T > 0.5, but slows down near T ≈ 0.5. It then starts to change more
rapidly only when the Zipf exponent starts to change significantly.

Zipf’s law only changes when policy quality is constant The full effect of temperature on ex-
ponent correlation is seen in Fig. 12, where we plot a zoomed-out version of Fig. 10C. The dashed
line marks the border of Fig. 10C, which is the same point where temperature stops affecting policy
quality in Fig. 11.

Interestingly, the vertical line in Fig. 12 marking the T value where policy stops affecting policy
quality coincides with the point where the Zipf curve starts to bend, as can be seen when looking at
the change of the x-axis values. Policy quality changes significantly above T ≈ 0.5, but the Zipf
distribution changes significantly only below T ≈ 0.5.

E The difference between AlphaZero value and actor-critic value

In sections 6 and 7 we present results on AlphaZero loss scaling, focusing on the loss of the net-
work’s value head. We chose the value head since it directly dictates the agent’s policy both at
training and inference time. This appendix, aimed for readers unfamiliar with AlphaZero, clarifies
how AlphaZero’s value head differs from the value net of actor-critic methods, which has no effect
on policy at inference time.

Actor-critic methods are a family of popular policy-gradient algorithms, such as PPO and SAC
[48, 49, 50]. These models use an architecture where two neural network outputs are used, namely a
value estimation v (or alternatively a Q value) and a policy vector p. Actions are sampled from the
policy vector, which in turn is trained on the output of the value net v. While the loss of the value
net on test data should be low for better agents, it has no effect on the actions played at test time.

In contrast, AlphaZero’s value head is the main parameter used for choosing actions, while the policy
head plays a secondary role as a static prior for Monte-Carlo tree search (MCTS). The AlphaZero
policy π is not the output of the policy head. Rather, π is calculated using Eq. 6, repeated here for
clarity:

5Error bars are the standard error of the mean.
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π(s0, a) =
N(s0, a)

1/T∑
b N(s0, b)1/T

. (8)

The visit count N(s, a) is the number of times action a was probed during MCTS, sampled in this
equation for each action at the root node, meaning at the current game state s0. The visit count is
indirectly determined by the neural net’s value and policy outputs (v,p), since these parameters are
used by MCTS to decide which future actions to probe when performing rollouts. The decision what
action to probe at each junction in the game tree is done by maximizing the following quantity [51]:

MCTS action = argmax
a

(Q(s, a) + U(s, a)) (9)

The exploitation term Q(s, a) is the average value v(s′) of all states s′ stemming from the state-
action pair (s, a). It is approximated by averaging the value-head output over all daughter nodes
probed by MCTS so far:

Q(s, a) =

∑
daughter nodes s′

v(s′)

N(s, a)
. (10)

The exploration term U(s, a) is a variation of the PUCT algorithm [52], favoring actions with low
visit counts N :

U(s, a) = cpuct · p(s, a)
√∑

b N(s, b)

1 +N(s, a)
. (11)

This term is weighted by the policy-head output p, which serves as a constant prior that favors
exploring some actions over others.

Low value head loss is a strong predictor of a good policy π, since it means the value head produces
an accurate exploitation term Q(s, a). The most frequently probed actions will be those with a high
Q(s, a) value. In contrast, the policy prior controls an exploration term that is only significant at
early stages of search, and vanishes at the limit of large search:

U(s, a) −−−−→
N→∞

0 (12)

Intuitive explanation We illustrate the difference between AlphaZero and actor-critic algorithms
with a simple example. A trained actor-critic agent will be unaffected if we replace its value net with
a random function at test time. In contrast, replacing the value head of AlphaZero with a random
function at test time will generate an almost random policy; replacing the policy head with a uniform
distribution will only somewhat degrade the policy.

F Board position visualization

We provide here visual examples of the two groups of high-frequency states found in Oware and
Checkers. As we show in Fig. 5, late-game states get mixed with early-game states in the set of
high-frequency states. This happens because by late game most pieces are captured, and the number
of possible board states narrows down to a small selection.

In Figs. 13 and 14 we plot randomly-sampled game states from the state-frequency distribution,
for both Checkers and Oware games. High-frequency states split into two clusters, namely opening
moves and end-game moves. Early-game openings, plotted in the top row of each figure, are all
small deviations from the initial board state. In the initial state of Checkers, each players’ man
pieces occupy their 3 closest rows; in the Oware initial state, there are 4 seeds in each pit.

The bottom row of each plot shows examples of late-game states. In these states, only a few pieces
are still left on the board, after most pieces have been captured by the players. In Checkers, these
states contain only 2-3 pieces that have already been promoted to king; in Oware, only a few seeds
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Figure 13: Checkers board positions. Low-rank (= high-frequency) states are mostly opening
moves, visited shortly after the game begins. These states are mixed with high-frequency end-game
positions, where only about 2-3 pieces still remain on the board, all promoted from man to king.
The time it takes to end the game after reaching such an empty-board state is long; about half of all
games end in a draw after no capture occurred for 40 turns.

Figure 14: Oware board positions. States below rank 100 are all openings, deviating only slightly
from the initial position of 4 seeds in each pit. At rank 164, end-game states start to dominate the
distribution, making up > 80% of all states. Most seeds have been captured in these late-game
states, and the game ends shortly after they are played, when the active player has no seeds left on
their row.
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remain uncaptured. It is easy to see why these states have such high frequencies: most games end in
one of those configurations, and the number of such possible configurations is very small. For exam-
ple, the number of possible Checkers configurations with two kings is 992, and the number of Oware
configurations with three seeds is 1728 (ignoring player scores). Moreover, these configurations are
not played with equal probability, leading to some states having even higher frequency.

G Frequency scaling on a different axis: capture difference

The quantization model of neural scaling laws states that models will learn independent task quanta
by descending order of frequency. In language modalities, it is assumed that the known Zipf’s law
of word frequencies will lead to a Zipf’s law of tasks. Similarly, we show that board states follow
Zipf’s law, suggesting that AlphaZero task quanta will also scale with a frequency power law. The
states themselves are not independent quanta, since many of them share similarities, and strategic
knowledge of one state can often transfer to another.

Here we show a different way to visualize training data frequency, to illustrate that more than one
dimension of the data can have clear frequency scaling. When models fit tasks by frequency, some
most-frequent tasks will not be represented at all on the state-rank curve, because states do not
correspond to tasks directly.

To illustrate the high-dimensionality of the training data, we plot in Fig. 15 the frequency of capture-
differences in Oware and Checkers board states. Capture difference is defined as the difference
between the number of pieces captured by each player at a certain point in the game, in absolute
value. We see that frequency drops smoothly in log-scale with capture difference, as states with a
higher score-difference between players are rarer. According to the quantization model, one would
expect agents to fit states according to the exponential distribution of capture-differences, giving
exponentially-decreasing importance to states with higher differences.

The distribution of capture-differences cannot be represented correctly in our state-frequency analy-
sis. We demonstrate this in Fig. 15, where we plot in yellow the same distribution, but omitting the
tail of the Zipf’s law state-frequency distribution. The tail is mostly composed of one-time states, i.e.
states that appeared only once in training. In fact, the majority of unique states in the dataset have a
frequency of 1. By discarding these states, as we do in our main results, we lose information about
the exponential decay of capture-difference frequencies. Our main results cannot take these states
into account, because exponentially-more games must be played in order to correctly measure the
frequencies of one-time states.

Capture difference is an arbitrary measure, but it showcases the difficulty of visualizing data fre-
quency. By visualizing one dimension of the data, we lose useful information about the frequency
of other properties. If task quanta are indeed learned by the models, then these tasks would likely
have a non-trivial representation, and visualizing their frequency could be difficult.

H Distribution of ideal games

In section 5 we claim that random games played in a toy-model setting will result in a frequency
distribution shaped as a series of plateaus, centered around a power law of exponent α = 1. We
verify this claim here.

In short, in a simple branching game the number of possible states is exponential in the turn number
t, and all states at turn t have an equal probability to appear in a game, hence the series of frequency
plateaus observed in Fig. 2A.

Frequency distribution function Consider a random game setting following the rules presented
in section 5, namely:

• Each game lasts K turns.
• Each turn t, a move at is sampled uniformly from b options.
• Each board position s played at turn t(s) can only be reached by a single, unique sequence

of moves as =
(
a1, a2, . . . at(s)

)
. This means that one can define a state s only by the

sequence of moves played to reach it.
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Figure 15: State frequency distribution by capture difference. Measuring the score difference
between players provides another natural axis along which frequency drops smoothly. Agents could
potentially prioritize optimizing small-difference states over large-difference, modelling more states
with increasing capacity. Prioritizing states in this way is not equivalent to prioritizing states by
their frequency-rank, i.e. by the Zipf’s law of Fig. 1, since a large portion of the states come from
the tail-end of the Zipf distribution which is discarded in the main section results. If we ignore the
tail of Fig. 1 by plotting only high-frequency states, the frequency distribution changes significantly
(yellow). It is likely impossible to visualize the true order in which data is learned with a simple
metric.

The position at turn t is effectively sampled uniformly from bt possible positions, since the t moves
ai, i ∈ {1, . . . , t} that lead to it are each sampled uniformly from b options. Since K turns are
played each game, when sampling a board position randomly from all games played the frequency
of sampling board state s is:

P (s) = P (t(s)) · P (s|t = t(s)) =
1

K
· 1

bt
, (13)

where t(s) is the turn number of board state s and P (t(s)) is the probability to sample from turn
t(s).

Sorting the board positions in descending order of frequency results in a series of plateaus, each
corresponding to a turn number. The number of board states in plateau number t is bt. Plateau
number t starts after board position number nstart(t), defined by:

nstart(t) =

t−1∑
i=1

bi =
bt − b

b− 1
, (14)

since each preceding plateau i contains bi states. Board state number n belongs to plateau number t
for the integer t ∈ N that satisfies:

nstart(t) ≤ n < nstart(t+ 1) , (15)

or:
bt − b

b− 1
≤ n <

bt+1 − b

b− 1
. (16)

Shifting terms in the inequality and taking the log we get:

bt − b ≤ (b− 1)n < bt+1 − b (17)

bt ≤ (b− 1)n+ b < bt+1 (18)
t log(b) ≤ log [(b− 1)n+ b] < (t+ 1) log(b) (19)

t ≤ log [(b− 1)n+ b]

log b
< t+ 1 (20)

since t ∈ N, this is equivalent to using the floor operator:

t(n) =

⌊
log [(b− 1)n+ b]

log b

⌋
. (21)
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Using Eq. 13 one sees that the frequency of the n’th most common position, sn, is proportional to:

P (sn) =
1

K
· 1

bt(n)
, (22)

where t(n) is defined in Eq. 21. This is the series of plateaus seen in Fig. 2A.

Distribution is bounded around power law Let us define t̃(n) ∈ R as t(n) without the floor
operator:

t̃(n) =
log [(b− 1)n+ b]

log b
. (23)

Since x− 1 < ⌊x⌋ ≤ x, P (sn) is bounded by:

1

K

1

bt̃(n)
≤ P (sn) <

1

K

1

bt̃(n)−1
. (24)

Expanding the bounding functions we get:

1

bt̃(n)
=

1

b
log[(b−1)n+b]

log b

=
1

elog[(b−1)n+b]
=

1

(b− 1)n+ b
, (25)

leaving us with:
1

K

1

(b− 1)n+ b
≤ P (sn) <

1

K

b

(b− 1)n+ b
. (26)

We therefore see that the frequency distribution P (sn) is bounded by two straight lines (power laws
with power 1) with different coefficients, which appear as two parallel lines in log-log scale, as we
observe in Fig. 2A.
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