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Abstract—Sleep disorders, particularly Obstructive Sleep Ap-
nea (OSA), have a considerable effect on an individual’s health
and quality of life. Accurate sleep stage classification and pre-
diction of OSA are crucial for timely diagnosis and effective
management of sleep disorders. In this study, we propose a
sequential network that enhances sleep stage classification by
incorporating self-attention mechanisms and Conditional Ran-
dom Fields (CRF) into a deep learning model comprising multi-
kernel Convolutional Neural Networks (CNNs) and Transformer-
based encoders. The self-attention mechanism enables the model
to focus on the most discriminative features extracted from
single-channel electroencephalography (EEG) recordings, while
the CRF module captures the temporal dependencies between
sleep stages, improving the model’s ability to learn more plausible
sleep stage sequences. Moreover, we explore the relationship
between sleep stages and OSA severity by utilizing the predicted
sleep stage features to train various regression models for Apnea-
Hypopnea Index (AHI) prediction. Our experiments demonstrate
an improved sleep stage classification performance of 78.7%,
particularly on datasets with diverse AHI values, and highlight
the potential of leveraging sleep stage information for monitoring
OSA. By employing advanced deep learning techniques, we
thoroughly explore the intricate relationship between sleep stages
and sleep apnea, laying the foundation for more precise and
automated diagnostics of sleep disorders.

Index Terms—sleep stage classification, obstructive sleep ap-
nea, transformer, clinical decision support.

I. INTRODUCTION

Sleep is a crucial aspect of human health and well-being,
with disorders such as sleep apnea significantly impacting an
individual’s quality of life [1], [2]. Obstructive Sleep Apnea
(OSA) is a common sleep disorder characterized by repeated
episodes of partial or complete upper airway obstruction
during sleep [3], leading to intermittent hypoxia and sleep
fragmentation [4], [5]. The disruption of normal sleeping be-
havior in patients with OSA is associated with severe comorbid
diseases such as hypertension, diabetes, cardiovascular disease,
and stroke, making early detection and treatment crucial [6].
The severity of OSA is quantified using the Apnea-Hypopnea
Index (AHI), which measures the number of apnea and hy-
popnea events per hour of sleep. OSA severity is categorized
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Fig. 1: An overview of the proposed sequential network. We
first collect the whole record of single-channel EEG signals,
sleep stage information, and AHI labels from patients, then
model for both sleep stages and sleep apnea with EEG signals.

into four levels: normal (AHI < 5), mild (5 ≤ AHI < 15),
moderate (15 ≤ AHI < 30), and severe (AHI ≥ 30) [7], [8].
Sleep stages, however, are distinct phases of sleep character-
ized by specific brain activity patterns, eye movements, and
muscle tone [9], [10]. These stages include wakefulness (W),
rapid eye movement (REM), and four Non-REM stages (N1,
N2, N3, and N4), ranging from light to deep sleep [11]. The
distribution and cycling of these stages throughout the night
provide valuable insights into an individual’s sleep quality and
health.

Breakthroughs in computational intelligence and neural
architectures have unlocked innovative methods for interpret-
ing complex neurophysiological data, especially electroen-
cephalography (EEG) recordings [12]–[16]. Advanced deep
learning methods, such as Convolutional Neural Networks
(CNNs) and Transformer architectures, have demonstrated
notable success in tasks classifying sleep stages and detecting
sleep disorders. These models are proficient in capturing time-
based dependencies and intricate patterns within sequential
datasets, making them highly effective for analyzing physi-
ological signals. Consequently, these advancements are facili-
tating the development of more automated and reliable systems
in clinical practice.

EEG signals have been widely used for diagnosing various
sleep-related issues, including sleep staging and the detection
of sleep disorders [17]. These EEG-based diagnostic models
have proven effective due to their ability to capture the brain’s
electrical activity and analyze nuances between sleep stages
and abnormal pathology. Despite these advancements, most
existing models separately focus on either sleep stage classi-



fication [13], [15], [18], [19] or sleep apnea detection [17],
[20]–[22]. This separation is a limitation, as few studies
have attempted to simultaneously classify sleep stages and
the severity of sleep apnea using physiological signals. Early
research suggests a link between sleep stages and the severity
of sleep apnea, indicating that disruptions in sleep stages could
be a sign of OSA [23], [24]. Understanding and leveraging
this relationship is vital for clinical decision-making, pro-
viding comprehensive insights into a patient’s sleep health
and facilitating more accurate and holistic diagnoses. The
capability to simultaneously classify sleep stages and predict
sleep apnea severity using a single model can greatly improve
the efficiency and efficacy of sleep disorder diagnostics.

Transformer-based models have recently become a powerful
approach for modeling sequential physiological signals, as
they can more effectively grasp distant dependencies and
contextual nuances than traditional RNNs and LSTMs. [25],
[26]. Transformers employ self-attention mechanisms to as-
sign varying importance to different components of the input
sequence, making them particularly suited for tasks where
capturing complex temporal patterns is essential. In this work,
we enhance the Transformer-based model with Conditional
Random Fields (CRF) to improve the classification of se-
quential data by modeling the transition probabilities between
different states, a crucial factor for precise classification in
sleep stages. The CRF layer helps in capturing the temporal
dependencies between sleep stages, ensuring more plausible
and accurate sequence predictions. This combination leverages
the strengths of both Transformer and CRF models, providing
a powerful framework for sequential data analysis. The main
contributions of this paper include the following:

• Novel Sequential Network: We introduce a novel archi-
tecture that simultaneously performs sleep stage classi-
fication and sleep apnea severity prediction using multi-
kernel CNNs, self-attention mechanisms, and CRFs to
capture temporal dependencies.

• Dual Timescale Task Performance: The model effec-
tively handles short-term sleep stage classification and
long-term sleep apnea severity prediction within a single
framework by integrating self-attention and CRF layers.

• Model Interpretability: We employ attention heatmaps
to shed light on the model’s decision-making mecha-
nisms, thereby improving the transparency and reliability
of the predictions.

In summary, our work illustrates how integrating advanced
neural network techniques with traditional probabilistic mod-
els can lead to more accurate and interpretable outcomes
in sleep stage classification and sleep apnea severity predic-
tion, ultimately contributing to better clinical decision support
systems. By combining the strengths of Transformer-based
models and CRFs, we develop a comprehensive framework
for analyzing EEG signals and enhancing sleep disorder diag-
nostics.

II. RELATED WORKS

A. Sleep Stages Classification

Deep learning has been employed in different areas and
has shown its superiority over conventional machine learning
models without the need for domain knowledge. For instance,
Tsinalis et al. addressed this classification task by utilizing
a combination of convolutional and pooling layers, along
with fully connected layers [27]. In a different study, Sors
et al. utilized a model composed of 12 convolutional layers
paired with two fully connected layers [18]. Additionally,
Chambon et al. [28] introduced a two-dimensional convolution
network integrated with MaxPooling layers to categorize the
raw data obtained from three channels: EEG, EOG, and
EMG. Sokolovsky et al. [29] developed a more complex CNN
architecture, demonstrating that increasing the network’s depth
resulted in improved performance. Phan et al. [19] transformed
raw signals into log-power spectra and employed a CNN to
carry out both classification tasks aimed at recognizing sleep
stages. While these CNN models have shown good perfor-
mance in classifying sleep stages, they struggle to accurately
capture the temporal relationships within the EEG data.

B. Sleep Apnea Severity Classification

In the context of sleep apnea detection, Wang et al. [12]
investigate the use of CNN and LSTM models to predict
apnea events using respiratory data, presenting four advanced
methods—1D-CNN, 1D-CNN-LSTM, ConvLSTM, and 2D-
CNN-LSTM. Tested on a large dataset, these models demon-
strated robust performance, achieving up to 83% sensitivity
and 85% specificity, suggesting their potential to enhance ap-
nea management. Sheta et al. [16] employs various classifiers,
including a novel CNN-LSTM hybrid, to diagnose OSA using
ECG data. The results highlighted the effectiveness of KNN
and ensemble decision trees, with enhancements observed
through ADASYN and feature selection techniques. The pro-
posed CNN-LSTM model demonstrated superior diagnostic
performance, suggesting potential methods for future research
in feature selection and fuzzy logic to further enhance OSA
detection.

Even though these studies have made important advance-
ments in the field, there is still a need for research that
examines the correlation between sleep stages and sleep apnea
using deep learning models. Our study aims to bridge this
gap by proposing a novel approach that combines sleep stage
classification and OSA severity prediction. This will provide
a more thorough comprehension of the relationship between
these two crucial elements of sleep health.

III. METHODS

A. The Overall Sequential Network

The comprehensive designed architecture of our proposed
model includes three primary parts: a Feature Extractor con-
sists of feature extraction and self-attention enhancement;
an Encoding Module consists of a transformer-based model,
which is usually recognized as a temporal context encoding
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Fig. 2: Our proposed sequential network for classifying sleep
stages and predicting sleep apnea via a transformer-based
model, which includes three main components: feature extrac-
tor, encoding module, and decoding module. We utilize the
features from predicted sleep stages to further classify normal
and OSA subjects.

process; and a Decoder Module consists of a conditional
random field for final classification. In detail, the EEG signal is
first processed through a multi-kernel CNN to extract features,
which are then recalibrated by the Squeeze-and-Excitation
block (SE-Block). These recalibrated features are enhanced
by an attention mechanism designed to obtain long-range
dependencies. The enhanced features are then passed through
a Transformer-based encoder to further capture temporal re-
lationships. Finally, we incorporate a CRF layer to model
the progression between different sleep stages, enabling the
prediction of the most likely sequence of sleep stages.

For sleep apnea prediction, the output from the temporal
encoder is passed through a sequence of dense layers to
perform sleep stage classification. The model predicts a sleep
stage to every 30 seconds segment. The sleep stage predictions
for all segments from one record are then aggregated to obtain
a representation of the entire EEG recording. This aggregated
representation serves as input to a regression model, such
as a dense neural network, for estimating the AHI value
and determining the severity of OSA. Algorithm 1 presents
the procedure for sleep stage classification and sleep apnea
severity assessment.

B. Feature Extractor

For EEG signal feature extraction, we utilize the multi-
kernel CNN and feature recalibration module to form the
feature extraction block, which has been verified to be an
effective EEG feature extraction method [14], [15]. The multi-
kernel CNN, as shown in Figure 2, processes the raw EEG
signals through multiple convolutional layers to capture fea-
tures at various scales. Following every convolutional layer,
we implement batch normalization and a ReLU activation
function. The convolutional window captures about 50 samples
(0.5 seconds) of the EEG signal, enabling the model to learn
local temporal dependencies. To prevent overfitting, we add
a dropout layer with a rate of 0.5 after each max pooling
operation.

The SE-Block aims to re-weight each channel of the features
learned by the multi-kernel CNN. It is constructed from an
adaptive average pooling layer with two dense layers that
utilize a sigmoid activation function. The SE-Block learns to
assign importance weights to different channels, enhancing the
model’s ability to identify and utilize the most informative fea-
tures. The output of the SE-Block is then multiplied element-
wise with the input features to obtain the recalibrated features.

Formally, let X ∈ RB×T×C be the input EEG recording,
where B corresponds to the batch size and T denotes the
temporal length, while C represents the number of channels.
Thus, the feature extraction is defined as:

ft = σ(W1 ∗ xt + b1), (1)

where W1 and b1 represent the convolutional layer’s weights
and biases, respectively, and σ signifies the ReLU activation
function. The SE-Block then recalibrates the features:

f̃t = SE(ft), (2)

where SE denotes the Squeeze-and-Excitation block.

C. Self-Attention in Feature Enhancement

To improve the model’s capacity to concentrate on the most
discriminative parts of the extracted features [30], we introduce
a self-attention mechanism between the feature extraction and
temporal context encoding stages. The self-attention mecha-
nism captures long-range dependencies within the extracted
features, which is crucial for accurate sleep stage classification.

The self-attention mechanism operates on the feature map
F ∈ RB×T×C . The self-attention is computed:

Attention(Q,K,V) = softmax
(
QK⊤
√
dk

)
V, (3)

where {Q, K, V} corresponds to the query, key, and value
matrices, respectively, and dk represents the dimension of the
key vectors. The feature map F undergoes an initial linear
transformation to obtain {Q, K, V}:

Q = FWQ, K = FWK , V = FWV , (4)

where WQ, WK , and WV represent the trainable weight
matrices. Subsequently, the self-attention output A is calcu-



Algorithm 1 Our Sequential Network for Sleep Stage & OSA
Classification

1: Input: EEG recording X = [x1,x2, . . . ,xT ], T denotes
the count of epochs

2: Output: Pred. sleep stage Ŷ = [ŷ1, ŷ2, . . . , ŷT ], Pred.
AHI â

3: for t = 1 to T do
4: ft = σ(W1 ∗ xt + b1) // multi-kernel CNN
5: f̃t = SE(ft) // SE-Block
6: end for
7: F̃ = [f̃1, f̃2, . . . , f̃T ]
8: Q,K,V = WQF̃,WKF̃,WV F̃

9: A = softmax
(

QK⊤
√
dk

)
V // Self-Attention

10: E = LayerNorm(F̃+A)
11: H = E
12: for i = 1 to N do
13: H = LayerNorm(H+ MHA(H))

// Multi-Head Attention
14: H = LayerNorm(H+ FFN(H))

// Feed-Forward Network
15: end for
16: Z = Flatten(H)
17: U = WfcZ+ bfc // Emission Scores
18: U = U.view(T,−1) // Reshape for CRF
19: CRF Decoding:
20: Initialize α1(y) = exp(U1,y) for all y
21: for t = 2 to T do
22: for each state yt do
23: αt(yt) =

∑
yt−1

αt−1(yt−1) · exp(Ut,yt +
trans(yt−1, yt))

24: end for
25: end for
26: ŷ = argmaxy αT (y) // Viterbi Decoding
27: z = F (ŷ)
28: â = Regression(z)

lated and added to the original feature map, followed by layer
normalization:

A = Attention(Q,K,V), (5)

Fattn = LayerNorm(F+A), (6)

D. Transformer-based Encoder Module

The enhanced features from the self-attention block are
passed through a Transformer-based module to capture long-
range dependencies as a temporal context encoder in the
EEG signal, which is adopted from [15], [31]. This encoder
architecture utilizes the attention mechanism to model the
temporal relationships between different segments of the entire
recorded EEG signal. Formally, the Transformer-based en-
coder processes the input features Fattn through several layers
composed of multiple attention heads and feed-forward neural
networks with layer normalization:

H = Fattn, (7)

H = LayerNorm(H+ MHA(H)), (8)

H = LayerNorm(H+ FFN(H)), (9)

where MHA refers to the multi-head attention mechanism, and
FFN stands for the feed-forward network.

E. Conditional Random Field

Inspired by Fonseca et al. [32], we propose a classifier for
enhancing the previous model by incorporating a CRF layer,
which models the temporal relationships between sleep stages.
In the context of sleep stage classification, CRF can explicitly
capture the transition dynamics between sleep stages, helping
the model learn more plausible sleep stage sequences. This
is especially pertinent to our task, as sleep stages exhibit
strong temporal patterns and dependencies, which may be
affected by the occurrence and severity of sleep apnea. For
example, patients with severe sleep apnea may experience
more frequent transitions between sleep stages or have altered
durations of specific sleep stages compared to those with mild
or no sleep apnea. By leveraging CRF, we aim to capture
these temporal dynamics and improve the model’s ability to
accurately classify sleep stages across a diverse range of sleep
apnea severities.

To incorporate CRF into the proposed model, we add a CRF
layer following the model’s final output layer. The CRF layer
models the transition probabilities between sleep stages, de-
noted as ψ(yt−1, yt), representing the likelihood of transition-
ing from sleep stage yt−1 to yt. The emission scores, denoted
as ϕ(yt, xt), are obtained from the proposed model’s output
and indicate the likelihood of observing a particular sleep stage
yt at each time step t given the input features xt. The joint
probability of a sequence of sleep stages y = (y1, y2, . . . , yT )
given the input sequence x = (x1, x2, . . . , xT ) is defined as:

P (y|x) = 1

Z(x)
exp

(
T∑

t=1

ϕ(yt, xt) +

T∑
t=1

ψ(yt−1, yt)

)
,

(10)
where Z(x) is the normalization factor, also known as the
partition function, which ensures that the probabilities sum to
one:

Z(x) =
∑
y

exp

(
T∑

t=1

ϕ(yt, xt) +

T∑
t=1

ψ(yt−1, yt)

)
. (11)

To train this CRF-based model, we design a weighted CRF
loss function that combines the negative log-likelihood loss
of the CRF and a weighted cross-entropy loss. The negative
log-likelihood loss encourages the model to learn the correct
sequence of sleep stages, the weighted cross-entropy loss is
employed to mitigate the issue of class imbalance in the
distribution of sleep stages. The weighted CRF loss function
is defined as:

LCRF = − logP (y|x) +
T∑

t=1

C∑
c=1

wc · yt,c log ŷt,c, (12)

where wc is the weight for class c, yt,c is the true label for
class c at time step t, and ŷt,c is the predicted probability for
class c at time step t. The first component of the loss function
is the negative log-likelihood of the CRF, which encourages



TABLE I: Details of two different AHI distributed datasets containing 329 subjects from SHHS-1 study. SHHS 1-L represents
subjects with AHI < 5, while SHHS 1-D includes subjects with diverse AHI values, reflecting varying severities of OSA.

Dataset AHI Category Sampling Rate Channel REM N1 N2 N3 W Total Samples

SHHS 1-L AHI<5 125 Hz C4-A1 65953 10304 142125 60153 46319 324854
SHHS 1-D Diverse AHI 125 Hz C4-A1 51244 11135 140826 47635 58096 308936

TABLE II: Comparison between our proposed model and
cutting-edge models on two different AHI distributed datasets.
The best performance is highlighted in bold.

Method Dataset W N1 N2 N3 REM Accuracy

AttnSleep [15] SHHS 1-L 84.7 45.7 80.9 76.7 77.9 79.2
Ours SHHS 1-L 88.7 19.2 82.5 78.5 85.5 81.6

w/o Self-Attn SHHS 1-L 90.0 18.1 82.6 75.5 85.8 81.5
w/o CRF SHHS 1-L 86.6 58.5 86.9 64.4 65.1 78.0

AttnSleep [15] SHHS 1-D 87.6 30.0 76.7 64.6 76.2 75.3
Ours SHHS 1-D 88.6 6.2 80.8 75.1 76.8 78.7

w/o Self-Attn SHHS 1-D 88.3 7.8 76.6 71.1 79.7 76.5
w/o CRF SHHS 1-D 83.1 22.0 77.3 56.4 85.1 74.4

the model to correctly learn the sequence of sleep stages. The
second component is the weighted cross-entropy loss, which
helps address the class imbalance in sleep stage distribution.

During inference, the most likely sequence of sleep stages
y∗ is obtained using the Viterbi algorithm:

y∗ = argmax
y

P (y|x). (13)

The Viterbi algorithm efficiently finds the most likely se-
quence by maximizing the conditional probability P (y|x),
considering both the emission scores and transition scores.
By incorporating the CRF layer and the weighted CRF loss
function, our CRF-based model can better capture the temporal
dependencies between sleep stages and improve its perfor-
mance across a range of sleep apnea severities.

IV. RESULTS AND DISCUSSION

A. Dataset

1) SHHS-1 Dataset
The Sleep Heart Health Study (SHHS) [33], [34] is an

extensive multi-center cohort investigation that explores the
wider impact of sleep-disordered breathing on cardiovascu-
lar well-being. The study includes participants with various
health conditions, such as lung, cardiovascular, and coronary
diseases. Contrary to prior studies, we did not solely select
subjects with low AHI. Instead, we curated two distinct
datasets, each containing 329 subjects:

1) SHHS 1-L: This group includes subjects with an AHI
less than 5, representing individuals without significant
sleep apnea, as per previous studies [32]. This dataset
was chosen due to its stable sleep patterns, minimizing
the interference of sleep-disordered breathing.

2) SHHS 1-D: This group consists of a random selection of
subjects with no restrictions on AHI values. This dataset
was assembled to test how well the model performs
across a wide range of AHI values, similar to real-world
conditions. By including different AHI levels, our goal
is to evaluate how well the model works for a larger
population and how adaptable it is. The diverse range of

AHI values aligns with the guidelines established by the
American Academy of Sleep Medicine (AASM) [35]–
[38], which categorize sleep apnea severity into four
categories: no apnea (AHI < 5), mild apnea (5–15),
moderate apnea (15–30), and severe apnea (AHI > 30).

In both datasets, EEG data from the C4-A1 channel was
utilized, and sampled at a frequency of 125 Hz to main-
tain consistency across the analysis. These datasets enable
a comparison of model performance across populations with
different severities of sleep apnea, and help evaluate the
generalizability of our approach.

2) Data Preprocessing
EEG signals inherently contain uncertainties and impreci-

sions, which can significantly impact analysis results, mak-
ing proper preprocessing crucial to improve signal quality
and reduce artifacts [39]. Both datasets consist of single-
channel EEG signals. For each subject’s recording, we also
documented the corresponding AHI value to facilitate the
subsequent analysis of sleep apnea severity. The preprocessing
steps applied to both datasets are as follows:

• Omission of any unidentified stages that do not corre-
spond to the predefined sleep stages.

• Combining N3 and N4 stages into a unified stage (N3),
as per AASM guidelines.

• Restricting wake periods to 30 minutes before and after
sleep phases to emphasize the sleep stages.

B. Sleep Stages Classification

1) Experimental Settings
In alignment with the prior study by Eldele et al.

(2021) [15], we utilize various models for training and testing
on the SHHS-1 dataset, which includes two distinct AHI
distributions. These models are employed to classify sleep
stages using a 30-second EEG signal recorded from a single
channel, in the same settings. The experimental configuration
includes a batch size of 128, the use of the Adam optimizer
with a learning rate of 1e-3, and a weight decay of 1e-3.
The training process spans 100 epochs. Maintaining consistent
settings across each experiment, as illustrated in Table II, our
model achieves an overall classification accuracy of 81.6%
for sleep stages on the first dataset SHHS 1-L, which is
an improvement when compared to the previous cutting-edge
model [15]. We also conduct ablation experiments by remov-
ing the self-attention module and the CRF module separately
for comparison, thereby demonstrating the effectiveness of
these two modules.

2) Results and Analysis
As shown in the results of Table II, all models perform

worst in predicting the N1 stage, with accuracies below 60%,
suggesting that N1 is the most challenging of the five stages
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Fig. 3: Comparison of testing results for four models across five metrics (Accuracy, F1 Score, Sensitivity, Specificity, and
Precision) on two datasets.

for models to capture and predict. The weighted CRF greatly
enhances the model’s performance in comparison to using the
previous model alone, particularly on the dataset with diverse
AHI values. Regarding the prediction results on the two
different datasets, we find that the different AHI distributions
of the datasets greatly influence the model’s performance.
Modeling on the dataset with diverse AHI shows a significant
decrease in prediction accuracy about 10.1% compared to
the dataset with AHI less than 5 according to our method.
This suggests that previous studies using datasets composed of
normal subjects for modeling may obtain relatively stable EEG
signals and changes of sleep stages to achieve better prediction
results. These results support trends explored by Shahveisi
et. al. identifying temporal differences between sleep stages
of patients with OSA and healthy individuals, specifically
regarding the duration of N1 stages [6]. With the increased
variability in temporal trends due to the inclusion of OSA
patients in the dataset with diverse AHI values representing
different severities, the reduced prediction accuracy further
highlights the interaction between sleep stages and sleep
apnea.

3) Explainability of Model Decision Making

We utilize the attention mechanism from our trained model
to analyze EEG signals across different sleep stages, visualiz-
ing neural features through importance heatmaps as Figure 4.
The heatmaps (a-e) reveal the model’s focus on various
segments of the EEG signals, reflecting the distinct neural
activities characteristic of each sleep stage. In the Wake stage
(4a), the model primarily focuses on two distinct areas with
noticeable fluctuations, alongside a stable segment, suggesting
attention to changes in alertness and restfulness. During the
N1 stage (4b), the model attends to multiple fluctuation areas,
particularly emphasizing two larger oscillations, indicative of
the shift from wakefulness to sleep. In N2 (4c), the model
concentrates on the region with the most pronounced fluctua-
tion, covering both peaks and troughs, which may align with
the presence of sleep spindles or K-complexes—key markers
of this stage. In the N3 stage (4d), the model highlights
two regions of significant fluctuation, reflecting the slow-wave
activity that defines deep sleep. Finally, in the REM stage (4e),
attention is directed towards a combination of peak areas and a
stable region, likely correlating with vivid dreaming and high
brain activity.

C. Sleep Apnea Classification

After obtaining the sleep stage classification results from
the previous stage, we extract different features from the
classification results to form dataset with AHI labels. The
training and testing datasets are simply divided in a 7:3 ratio to
be further input into the regression model to learn AHI, thereby
exploring the possibility of directly predicting OSA from sleep
stages. Since each subject’s record consists of many sleep
stage segments corresponding to one OSA label, we perform
simple feature extraction on the predicted sleep stages from the
previous step, such as the average of predicted sleep stages and
the proportion of each kind of stage, and use them as features
to input into various traditional regression models (Random
Forest, Linear Regressor, Logistic Regressor). Ultimately, we
obtain the OSA classification results by AHI predictions from
different models with various features. OSA is classified based
on the corresponding predicted AHI value.

As shown in Figure 6, we obtain the testing results for
both accuracy and F1-score regarding the 4-class classification
related to OSA using predicted sleep stages. It can be observed
that the results using the distribution across the five distinct
sleep stages as features in the logistic regressor achieve the
highest accuracy of 54.55%. It is worth noting that the overall
framework has only a 71.07% testing result on sleep stage
prediction in the last step, while the accuracy of the four-
class classification for OSA reaches 54.55%. After we further
perform binary classification of OSA (normal or OSA) as most
studies have done [12], [40], we find that the testing accuracy
reaches 67.68%, with the per-class F1-score results being 0.76
for OSA and 0.50 for normal in the test set. Furthermore,
based on the box plot analysis 5, several key differences in
sleep stage proportions between OSA patients and normal
individuals are observed. OSA patients exhibit a higher pro-
portion in the Wake stage (p-value = 1.756e-13), which likely
results from frequent awakenings and light sleep caused by the
reduced blood oxygen saturation indicative of sleep apnea. In
contrast, normal individuals have a higher proportion of deep
sleep (N3, p-value = 2.233e-07), indicating their ability to
maintain a healthy sleep stage cycle. Both groups show similar
distributions in the N2 stage (p-value = 7.986e-01), suggesting
minimal differences in this sleep stage between OSA patients
and normal individuals. The differences observed in N1 (p-
value = 6.194e-08) and REM stages (p-value = 1.101e-06) also
indicate significant variations, reflecting the disrupted sleep
architecture in OSA patients.
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(b) N1 stage

0 500 1000 1500 2000 2500 3000 3500
Time (samples)

100
75
50
25

0
25
50
75

Si
gn

al
 A

m
pl

itu
de

Sleep Stage: N2
EEG Signal

0.04

0.06

0.08

0.10

Im
po

rta
nc

e

(c) N2 stage
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(d) N3 stage
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Fig. 4: 30 seconds EEG signals with attention heatmap overlay
for different sleep stages after 100 epochs training. Regions
with higher brightness/heat indicate areas of the signal that
have a greater weight during the decision-making process.

V. CONCLUSION

This study presents a new deep learning framework that
enhances the classification of the sleep stage by incorporating
self-attention mechanisms and CRF into a model consisting
of multi-kernel CNNs and Transformer-based encoders. The
self-attention mechanism and CRF module help improve the
ability of our model to emphasize discriminative features
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Fig. 5: Box plot showing the proportions of sleep stages (W,
N1, N2, N3, REM) by OSA category (Normal and OSA).
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Fig. 6: Performance comparison histogram for five-class clas-
sification of OSA severity using different sleep stage features
under various regression models.

and capture temporal dependencies between sleep stages,
leading to improved classification performance, particularly
on datasets with diverse AHI values. Additionally, we have
explored the association between sleep stages and the severity
of OSA by utilizing the predicted sleep stage features for AHI
prediction, revealing the potential of leveraging sleep stage
information to assess and monitor sleep apnea. Our model
can potentially assist in the early detection and management
of sleep disorders, ultimately resulting in improved patient
outcomes and enhanced quality of life. Our study demonstrates
the promising application of deep learning techniques in
uncovering the complex interplay between sleep stages and
sleep apnea, laying the foundation for more precise and easily
accessible sleep disorder diagnostics.
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“Estimation of the global prevalence and burden of obstructive sleep
apnoea: a literature-based analysis,” The Lancet Respiratory Medicine,
vol. 7, no. 8, pp. 687–698, 2019.

[6] K. Shahveisi, A. Jalali, M. R. Moloudi, S. Moradi, A. Maroufi, and
H. Khazaie, “Sleep architecture in patients with primary snoring and
obstructive sleep apnea,” Basic and Clinical Neuroscience, vol. 9, no. 2,
p. 147, 2018.

[7] D. W. Hudgel, “Sleep apnea severity classification—revisited,” Sleep,
vol. 39, no. 5, pp. 1165–1166, 2016.

[8] W. R. Ruehland, P. D. Rochford, F. J. O’Donoghue, R. J. Pierce, P. Singh,
and A. T. Thornton, “The new aasm criteria for scoring hypopneas:
impact on the apnea hypopnea index,” sleep, vol. 32, no. 2, pp. 150–
157, 2009.

[9] G. Rauchs, B. Desgranges, J. Foret, and F. Eustache, “The relationships
between memory systems and sleep stages,” Journal of sleep research,
vol. 14, no. 2, pp. 123–140, 2005.

[10] A. Noviyanto and A. M. Arymurthy, “Sleep stages classification based
on temporal pattern recognition in neural network approach,” in The
2012 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2012, pp. 1–6.

[11] P. Memar and F. Faradji, “A novel multi-class eeg-based sleep stage
classification system,” IEEE Transactions on Neural Systems and Reha-
bilitation Engineering, vol. 26, no. 1, pp. 84–95, 2017.

[12] E. Wang, I. Koprinska, and B. Jeffries, “Sleep apnea prediction using
deep learning,” IEEE Journal of Biomedical and Health Informatics,
2023.

[13] F. Li, R. Yan, R. Mahini, L. Wei, Z. Wang, K. Mathiak, R. Liu, and
F. Cong, “End-to-end sleep staging using convolutional neural network
in raw single-channel eeg,” Biomedical Signal Processing and Control,
vol. 63, p. 102203, 2021.

[14] N. Goshtasbi, R. Boostani, and S. Sanei, “Sleepfcn: A fully convo-
lutional deep learning framework for sleep stage classification using
single-channel electroencephalograms,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 30, pp. 2088–2096, 2022.

[15] E. Eldele, Z. Chen, C. Liu, M. Wu, C.-K. Kwoh, X. Li, and C. Guan,
“An attention-based deep learning approach for sleep stage classification
with single-channel eeg,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 29, pp. 809–818, 2021.

[16] A. Sheta, H. Turabieh, T. Thaher, J. Too, M. Mafarja, M. S. Hossain,
and S. R. Surani, “Diagnosis of obstructive sleep apnea from ecg signals
using machine learning and deep learning classifiers,” Applied Sciences,
vol. 11, no. 14, p. 6622, 2021.

[17] X. Zhao, X. Wang, T. Yang, S. Ji, H. Wang, J. Wang, Y. Wang, and
Q. Wu, “Classification of sleep apnea based on eeg sub-band signal
characteristics,” Scientific Reports, vol. 11, no. 1, p. 5824, 2021.

[18] A. Sors, S. Bonnet, S. Mirek, L. Vercueil, and J.-F. Payen, “A convo-
lutional neural network for sleep stage scoring from raw single-channel
eeg,” Biomedical Signal Processing and Control, vol. 42, pp. 107–114,
2018.

[19] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “Joint
classification and prediction cnn framework for automatic sleep stage
classification,” IEEE Transactions on Biomedical Engineering, vol. 66,
no. 5, pp. 1285–1296, 2018.

[20] L. D. Barnes, K. Lee, A. W. Kempa-Liehr, and L. E. Hallum, “Detection
of sleep apnea from single-channel electroencephalogram (eeg) using
an explainable convolutional neural network (cnn),” PLOS one, vol. 17,
no. 9, p. e0272167, 2022.

[21] S. V. Bhalerao and R. B. Pachori, “Sparse spectrum based swarm
decomposition for robust nonstationary signal analysis with application
to sleep apnea detection from eeg,” Biomedical Signal Processing and
Control, vol. 77, p. 103792, 2022.

[22] F. Setiawan and C.-W. Lin, “A deep learning framework for automatic
sleep apnea classification based on empirical mode decomposition
derived from single-lead electrocardiogram,” Life, vol. 12, no. 10, p.
1509, 2022.

[23] A. K. Ng and C. Guan, “Impact of obstructive sleep apnea on sleep-
wake stage ratio,” in 2012 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE, 2012, pp. 4660–
4663.

[24] M. Basunia, S. A. Fahmy, F. Schmidt, C. Agu, B. Bhattarai, V. Oke,
D. Enriquez, and J. Quist, “Relationship of symptoms with sleep-stage
abnormalities in obstructive sleep apnea-hypopnea syndrome,” Journal
of community hospital internal medicine perspectives, vol. 6, no. 4, p.
32170, 2016.

[25] H. Phan, K. Mikkelsen, O. Y. Chén, P. Koch, A. Mertins, and M. De Vos,
“Sleeptransformer: Automatic sleep staging with interpretability and un-
certainty quantification,” IEEE Transactions on Biomedical Engineering,
vol. 69, no. 8, pp. 2456–2467, 2022.

[26] S. Mousavi, F. Afghah, and U. R. Acharya, “Sleepeegnet: Automated
sleep stage scoring with sequence to sequence deep learning approach,”
PloS one, vol. 14, no. 5, p. e0216456, 2019.

[27] O. Tsinalis, P. M. Matthews, Y. Guo, and S. Zafeiriou, “Automatic
sleep stage scoring with single-channel eeg using convolutional neural
networks,” arXiv preprint arXiv:1610.01683, 2016.

[28] S. Chambon, M. N. Galtier, P. J. Arnal, G. Wainrib, and A. Gramfort, “A
deep learning architecture for temporal sleep stage classification using
multivariate and multimodal time series,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 26, no. 4, pp. 758–769,
2018.

[29] M. Sokolovsky, F. Guerrero, S. Paisarnsrisomsuk, C. Ruiz, and S. A.
Alvarez, “Deep learning for automated feature discovery and classifica-
tion of sleep stages,” IEEE/ACM transactions on computational biology
and bioinformatics, vol. 17, no. 6, pp. 1835–1845, 2019.

[30] C. Wan, H. Yu, Z. Li, Y. Chen, Y. Zou, Y. Liu, X. Yin, and K. Zuo,
“Swift parameter-free attention network for efficient super-resolution,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 6246–6256.

[31] Y. Song, Q. Zheng, B. Liu, and X. Gao, “Eeg conformer: Convolutional
transformer for eeg decoding and visualization,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 31, pp. 710–719,
2022.

[32] P. Fonseca, N. den Teuling, X. Long, and R. M. Aarts, “Cardiorespiratory
sleep stage detection using conditional random fields,” IEEE Journal of
Biomedical and Health Informatics, vol. 21, no. 4, pp. 956–966, 2017.

[33] G.-Q. Zhang, L. Cui, R. Mueller, S. Tao, M. Kim, M. Rueschman,
S. Mariani, D. Mobley, and S. Redline, “The national sleep research
resource: towards a sleep data commons,” Journal of the American
Medical Informatics Association, vol. 25, no. 10, pp. 1351–1358, 2018.

[34] S. F. Quan, B. V. Howard, C. Iber, J. P. Kiley, F. J. Nieto, G. T. O’Connor,
D. M. Rapoport, S. Redline, J. Robbins, J. M. Samet et al., “The sleep
heart health study: design, rationale, and methods,” Sleep, vol. 20, no. 12,
pp. 1077–1085, 1997.

[35] A. A. of Sleep Medicine et al., “Sleep-related breathing disorders
in adults: recommendations for syndrome definition and measurement
techniques in clinical research. the report of an american academy of
sleep medicine task force,” Sleep, vol. 22, pp. 667–689, 1999.

[36] C. Iber, “The aasm manual for the scoring of sleep and associated events:
rules, terminology, and technical specification,” (No Title), 2007.

[37] R. B. Berry, R. Budhiraja, D. J. Gottlieb, D. Gozal, C. Iber, V. K. Kapur,
C. L. Marcus, R. Mehra, S. Parthasarathy, S. F. Quan et al., “Rules for
scoring respiratory events in sleep: update of the 2007 aasm manual
for the scoring of sleep and associated events: deliberations of the sleep
apnea definitions task force of the american academy of sleep medicine,”
Journal of clinical sleep medicine, vol. 8, no. 5, pp. 597–619, 2012.

[38] V. K. Kapur, D. H. Auckley, S. Chowdhuri, D. C. Kuhlmann, R. Mehra,
K. Ramar, and C. G. Harrod, “Clinical practice guideline for diagnostic
testing for adult obstructive sleep apnea: an american academy of sleep
medicine clinical practice guideline,” Journal of clinical sleep medicine,
vol. 13, no. 3, pp. 479–504, 2017.

[39] M. Versaci and F. La Foresta, “Eeg data analysis techniques for precision
removal and enhanced alzheimer’s diagnosis: Focusing on fuzzy and
intuitionistic fuzzy logic techniques,” Signals, vol. 5, no. 2, pp. 343–
381, 2024.

[40] Y. Wu, X. Pang, G. Zhao, H. Yue, W. Lei, and Y. Wang, “A novel
approach to diagnose sleep apnea using enhanced frequency extraction
network,” Computer Methods and Programs in Biomedicine, vol. 206,
p. 106119, 2021.


	Introduction
	Related Works
	Sleep Stages Classification
	Sleep Apnea Severity Classification

	Methods
	The Overall Sequential Network
	Feature Extractor
	Self-Attention in Feature Enhancement
	Transformer-based Encoder Module
	Conditional Random Field

	Results and Discussion
	Dataset
	SHHS-1 Dataset
	Data Preprocessing

	Sleep Stages Classification
	Experimental Settings
	Results and Analysis
	Explainability of Model Decision Making

	Sleep Apnea Classification

	Conclusion
	References

