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ABSTRACT

Anomaly detection in tabular data is crucial for applications such as fraud preven-
tion and risk control, yet it remains challenging due to heterogeneous features,
class imbalance, and limited labeled anomalies. Although pretrained tabular in
context learning (TICL) models reduce label dependence, the inductive biases they
develop on synthetic tasks are often misaligned with the actual data distributions
encountered in downstream scenarios. Effective adaptation to new domains is thus
difficult when labels are scarce. We propose ProFiT, an unsupervised fine-tuning
framework that leverages only unlabeled target-domain data to adjust pretrained
tabular models. ProFiT constructs a variety of proxy tasks by sampling different
features as targets and using correlated features as inputs, encouraging the model to
capture the underlying structure of the new data. To improve training effectiveness,
we introduce a consistency regularizer that aligns the predictions from two different
proxy views using Jensen—Shannon divergence. Experiments on tabular anomaly
detection benchmarks show that ProFiT outperforms weakly-supervised and unsu-
pervised methods, as well as vanilla TICL models. ProFiT offers a practical way to
improve tabular anomaly detection under limited labeled data conditions and vast
amounts of unlabeled data.

1 INTRODUCTION

Anomaly detection (Chandola et al., 2009; Li et al., 2023) in tabular data plays a central role in
numerous high-stakes applications, ranging from fraud detection and financial risk control (Dornadula
& Geetha, 2019) to anti-crawling systems and cybersecurity monitoring (Lazarevic et al., 2003).
In these domains, the ability to identify anomalous behaviors within high-dimensional structured
data is critical to ensuring business security. Despite its practical importance, tabular anomaly
detection remains challenging due to multiple factors, including the heterogeneity of feature types,
the imbalance of class distributions, and the scarcity of reliable labels. Moreover, anomaly patterns
are often rare and context-dependent, which further complicates the construction of robust detection
systems that can generalize to evolving environments (Aggarwal, 2015; Zong et al., 2018; Pang
et al., 2021b). These challenges demand approaches that are both data-efficient and adaptable, while
maintaining robustness under real-world operational constraints.

Supervised methods that treat anomaly detection as binary classification are commonly used (Han
et al., 2022). Tree-based pipelines (e.g., Random Forests (Breiman, 2001), XGBoost (Chen &
Guestrin, 2016)) often deliver strong performance for tabular data when trained with sufficient in-
domain labels. However, in practice, anomalous labels are exceedingly scarce and their annotation
is costly, whereas vast amounts of unlabeled data are typically available. Recent pretrained tabular
in context learning models , such as TabPFN (Hollmann et al., 2022) and MotherNet (Mueller
et al., 2025), adopt a meta-learning paradigm in which the models are trained on a large collection
of synthetic datasets. Through this pretraining process, they acquire transferable inductive biases,
allowing them to generalize to new downstream tasks with only few-shot labeled samples. How-
ever, their generalization to downstream anomaly detection tasks remains limited, as the pretrained
representations often mismatch the target distribution, thereby necessitating additional fine-tuning
for effective adaptation. Unfortunately, this requirement conflicts with the scarcity of high-quality
labels in practice, and few existing studies have explored how to leverage the abundance of unlabeled
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data to fine-tune such tabular in context learning pretrained models, enabling them to better capture
downstream task-specific distributions

In this paper, we address this gap by proposing a novel proxy-task-based unsupervised fine-tuning
framework (ProFiT) for tabular anomaly detection. Instead of relying on labeled anomalies, ProFiT
leverages the intrinsic structure of tabular data to construct a diverse set of predictive proxy tasks.
Specifically, we randomly designate one feature as the prediction target and sample correlated subsets
of the remaining features as inputs, thereby generating large-scale heterogeneous prediction tasks.
These tasks serve as proxy tasks for the downstream anomaly detection problem, enabling the
model to learn the underlying distributional characteristics required for effective generalization. We
provide theoretical support that clarifies why ProFiT is effective. Under a standard latent factor
model, we establish a regret identity and a finite-sample transfer bound showing that minimizing the
task-averaged proxy risk controls the excess risk to Bayes on unseen downstream labels. To further
enhance effectiveness, we propose a consistency regularization strategy. For the same prediction
target, we construct two distinct proxy subsets of input features and encourage consistency between
their predictions using Jensen—Shannon divergence. We evaluate ProFiT on multiple benchmark
anomaly detection datasets, where it achieves superior performance compared to existing methods.

Our contributions can be summarized as follows:

* We propose ProFiT, a proxy task fine-tuning framework for tabular anomaly detection that
leverages unlabeled data to construct proxy tasks, enabling the model to capture distributional
structure without relying on annotated anomalies.

* We establish a regret identity and a finite sample transfer bound, showing that minimizing the
average proxy risk across tasks effectively controls excess risk on unseen downstream labels.

* We introduce a consistency regularization strategy to enhance training effectiveness, and demon-
strate through extensive experiments on benchmark datasets that ProFiT outperforms existing
SOTA methods.

2 RELATED WORK

Anomaly Detection Current popular deep anomaly detection on tabular data methods are unsuper-
vised approach (Pang et al., 2021a). These methods typically relies on distance- or density-based
scoring (e.g., KNN (Ramaswamy et al., 2000), LOF (Breunig et al., 2000)) and one-class classifi-
cation (e.g., iForest (Liu et al., 2008), OCSVM (Scholkopf et al., 1999)), with deep variants (e.g.,
DeepSVDD (Ruff et al., 2018), DIF (Xu et al., 2023a)) improving high-dimensional feature extrac-
tion. However, these methods hinge on strong priors and effectively model only the normal class,
lacking any guidance about anomalies; as a result, performance plateaus when anomaly semantics
are context-dependent or data are contaminated (Shou et al., 2025).

To bridge this gap, weakly-supervised anomaly detection assumes a small set of labeled anomalies
amid abundant unlabeled data (Durani et al., 2025). Early hybrids like XGBOD (Zhao & Hryniewicki,
2018) convert unsupervised scores into meta-features for a downstream classifier, while end-to-end
approaches learn anomaly-aware representations directly: DevNet (Pang et al., 2021a) regularizes
unlabeled scores toward a Gaussian prior and enlarges known anomalies, DeepSAD (Ruff et al.,
2020) pushes labeled anomalies away from a normal hypersphere, and FeaWAD (Zhou et al., 2022)
applies weak supervision in an autoencoded latent space. To cope with extremely sparse labels and
noise, PReNet (Ren et al., 2019) iteratively self-trains on pseudo-labels, RoOSAS (Xu et al., 2023b)
uses robust continuous supervision, a dual-kernel design enforces compactness vs. separation with
light- and heavy-tailed kernels (Durani et al., 2025), and READ (Shou et al., 2025) frames subset
selection as reinforcement learning to emphasize boundary normals and suspected anomalies. In this
work, we adopt this setting and operate with only a handful of labeled anomalies.

Tabular In Context Learning Model Tabular in context learning (TICL) frames tabular prediction
builds on the principles of meta-learning. The model learns from a large collection of meta-tasks,
each composed of a support set and a query set. This process can be viewed as learning a mapping
from “task to prediction” across a wide range of heterogeneous meta-tasks. each with a small support
set and a query set, thereby acquiring cross-task transferability. As a result, the model can rapidly
adapt to a target task with only a few samples during inference.
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A variety of approaches have been proposed under this paradigm. TabPFN (Hollmann et al., 2022)
encodes each row of a table as a token and predicts query labels by modeling attention among tokens.
Building on this, TabPFN v2 (Hollmann et al., 2025) introduces two-way attention to simultaneously
capture feature-wise and instance-wise interactions. To handle large-scale datasets, TabFlex (Zeng
et al., 2025) replaces the softmax attention in TabPFN with linear attention, enabling scalability
to larger data regimes. Another line of research explores hypernetwork architectures (Ha et al.,
2017). Methods such as HyperFast (Bonet et al., 2024) and MotherNet (Mueller et al., 2025) train
a hypernetwork via meta-learning to generate a set of MLP parameters for each task. At inference
time, predictions are obtained by a simple forward pass through the generated MLP, which greatly
improves efficiency.

Despite these advances, existing methods typically rely on constructing a large number of diverse meta-
tasks during pretraining, which in turn requires extensive labeled data. To mitigate this requirement,
many studies employ synthetic tabular datasets for training. However, this inevitably introduces
distributional discrepancies with downstream tasks, a challenge that becomes particularly acute in
anomaly detection. In this setting, the data distribution is highly imbalanced and labeled samples are
scarce. Consequently, how to effectively fine-tune TICL models in an unsupervised manner remains
an underexplored yet crucial research direction.

3 METHOD

3.1 PROBLEM SETTING

We focus on weakly-supervised anomaly detection in tabular data. Let each sample in the feature
space x = [z, ..., 2(D] € X c R? The training dataset consists of a large unlabeled set
Dy = {x1,...,xn} and a small labeled anomaly set Dy, = {(xny+1,1),..., (XntK,1)} with
K < N. Our objective is to learn a scoring function fy : X — [0, 1], which assigns higher scores to
anomalous instances in unseen test dataset.

3.2 FRAMEWORK OVERVIEW

Our method integrates proxy-based fine-tuning with tabular in context learning. As illustrated
in Figure 1, the framework has three stages:

e Proxy Task Sampling. From the training data, we construct proxy tasks by conditioning on a
feature subset Xg € R*? and predicting the held-out feature X, ; € R?. Detailed sampling
strategies are provided in subsection 3.5. To unify the learning objective, we treat the prediction
of X. ; as a classification task. For categorical columns, we directly utilize the original class
labels as targets. For numerical columns, following the methodology in MotherNet, we perform
discretization by sorting the values, randomly selecting quantiles as boundaries, and binning
the data to convert continuous values into categorical indices. These tasks expose cross-feature
dependencies and provide transferable supervision.

* Proxy-Based Fine-tuning. For each proxy target, multiple predictor subsets yield diverse
tasks. Support and query sets are drawn from the same samples across these tasks, enabling
in-context training. As detailed in subsection 3.6 and algorithm 1, the model is optimized with a
classification loss for proxy prediction and a consistency loss to align different tasks sharing the
same prediction target.

e Inference. During inference, we follow the weakly supervised anomaly detection setting
described above. As shown in Algorithm 5, the labeled anomalies in Dy, are directly incorporated
into the few-shot support set used to condition the fine-tuned TICL model. Specifically, we first
apply the unsupervised detector A to all instances in Dy to obtain anomaly scores and identify
a subset of samples that are deemed normal. We then uniformly sample K instances from
this normal subset and treat them as pseudo-labeled normal data. These pseudo-normals are
then combined with the labeled anomalies to construct the support set S = Dy, U {xEP ), 0} ..
Feeding this support set into the fine-tuned TICL model Ty, the model generates the downstream
MLP parameters, which are then used to evaluate fy for each test instance.
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Figure 1: Overview of ProFiT, covering both training and inference. (a) Training pipeline: Given
unlabeled tabular data, one feature is randomly selected as the prediction target, while two partially
overlapping feature subsets are sampled from the remaining features to construct proxy tasks. For
each task, rows are sampled to form paired inputs. Cross-entropy loss is applied to ensure prediction
accuracy, and a Jensen—Shannon divergence term enforces consistency between the two proxy
predictions. (b) Proxy-task sampling: Target features are selected based on inter-sample correlations
to avoid trivial shortcuts or unlearnable cases caused by irrelevant features. (c) Inference stage: A
small set of labeled samples is used as positives, while negatives are sampled from the unlabeled
pool to form a support set. The model then predicts the downstream task using this constructed
support-query setting.

Our core idea is to learn latent representations associated with the raw data through proxy tasks. By
averaging over a diverse set of such tasks, the resulting representation preserves sufficient latent
information to generalize to downstream tasks with unknown but predictable labels, thereby offering
both practical effectiveness and theoretical guarantees for anomaly detection. In subsection 3.3
and subsection 3.4, we present our theoretical analysis, offering guarantees for the proposed method
under limited-sample scenarios.

3.3 CONSISTENCY AND GENERALIZATION OF THE PROXY-TASK FRAMEWORK

Let X € R"*9 be the training data and D = {1,...,d} denote the set of all column indices. A
proxy-task is defined by a triple 7 = (X, S, ¢) where S C D is a feature index setand ¢t € D\ Sisa
target index. For a given proxy-task 7, we denote

X € RIS yi = P(X. 1) € RY,

where 1, is a transformation function applied to the ¢-th feature: it is the identity mapping if X. ;
is categorical, and a rank-based (quantile) discretizer if X. ; is continuous. A downstream task is
denoted 7% = (X, S, t*) with t* ¢ D, representing an unknown but predictable label not included in
the feature set. We assume proxy-tasks are drawn from a distribution @) over index pairs (5, t).

To enable this transfer across labels, we adopt a standard multi-view latent-factor assumption. Under
this assumption, there is a latent factor (or factors) shared among multiple “views” (e.g. feature
subsets or labels) such that learning in one view carries over to others.

Assumption 3.1 (Latent factor model (Shanmugam, 2001) for task). There exists a latent u € U C
R", where r < d such that, conditional on u, columns are independent: X; 1. X _; | u. Each column
satisfies X; = g;(u, €;) with independent noise €;. Specifically, for any 7 = (X, S,t), we have
Yt J_ XS | u.
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Assumption 3.2 (Downstream compatibility). The unseen downstream label is also generated from
uand y* L X* | u.

Remark 3.3. These two assumptions play complementary roles: (i) Assumption 3.1 defines a shared
latent space Uf; (ii) Assumption 3.2 links downstream labels to the same /. Together, they justify that
solving diverse proxy-tasks learns a representation transferable to unseen labels.

To further elucidate the generalization mechanism of our proxy tasks, we now make precise how
solving diverse proxy tasks enables transfer. We start with a excess risk identity that connects
representation quality to conditional mutual information, thereby formalizing the generalization
mechanism of proxy tasks.

Lemma 3.4. Let f be a representation encoder and consider a fixed proxy-task 7 = (X, S, t). Under
log-loss, the Bayes-optimal risk of any predictor h on f(Xg) equals the conditional entropy:

inf B —log h(f(Xs))ly:l] = H(y:| f(Xs))-

Define the excess risk of f on T by

Ap(r) == H(ye| f(Xs)) — H(yt| Xs).

where H(-) denotes Shannon entropy and I(-,-) denotes mutual information. Then A;(T) =
I(y; Xs | f(Xs)) > 0, under Assumption 3.1, Ap(1) = I(y;u | f(Xg)).

Averaging across tasks 7 ~ (), we obtain the task-averaged excess:
Af = Erg[Af(7)] = Ernol(ysu | f(Xs)). M

Minimizing A in the training of proxy task therefore encourages f(X) to be a sufficient statistic
for the latent factor u. Since downstream labels also depend on u (Assumption 3.2), the learned
representation is naturally suited for transfer. We now formalize this intuition, for any downstream
task 7* = (X, S*, t*), let h’ denote a predictor that achieves the lowest possible error of the learned

representation f(Xg« ), then:

Theorem 3.5 (Sufficiency-driven transfer). Under Assumption 3.1 and Assumption 3.2,
Ree(fh5) = RED® = Ap(r*) < T(Q,7%) - Ay, )

where the term RT*2% is the Bayes risk, the theoretical minimum error achievable for task 7*,
representing the task’s inherent difficulty. I'(Q,7*) > 1 is a compatibility constant measuring how

well the proxy-tasks sampled from Q) align with the latent directions relevant to t*.

In short, Theorem 3.5 shows that a representation minimizing proxy-task risk generalizes reliably to
downstream tasks, with at most a bounded loss gap. Appendix C contains the proofs of Lemma 3.4
and Theorem 3.5.

3.4 TRANSFER BOUNDS FOR FINITE SAMPLE TASKS

The population result in subsection 3.3 shows that task-averaged sufficiency of the representation
transfers to unseen labels. We now analyze the realistic and finite sample setting to guide the design
of our method. We posit that each proxy target is generated by a (possibly nonlinear) factor model

vi = gi(u) + €, 3)

where g; : R — R is differentiable and €, specifies the observation model p;(y | g:(u)). Let F¢(u)
denote the Fisher information matrix (FIM) with respect to u for task £. We summarize information
coverage across proxy tasks by the task and latent averaged FIM

Mg = ET~Q’u~p(U)[Ft(u)]’ @

and write {4 := Apin(Mg). The scalar p > 0 quantifies coverage: larger 1 means no latent direction
is systematically neglected by Q.
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Theorem 3.6 (Transfer in Non-linear Models). If the Average FIM is positive definite, i.e. Mg = ul,
with p > 0, then for any downstream task 7%,

11—
Af(’T*) S ;Af (5)

In words, the worst-case gap of the learned representation on any unseen label is controlled by the
task-averaged excess on proxy-tasks, scaled by 1/ . The constant 1/ is a concrete counterpart of
the abstract transfer constant in Theorem 3.5.

Theorem 3.6 controls the representation-induced part of the downstream excess. In practice, however,
the proxy observation models and the downstream one may have different Bayes risks (irreducible
noise). To make this explicit, decompose

dise(Q,7) i= [ Hr+ (y* [ 1) — ErngHr(y:[ ) |-
This term is zero when observation models are matched or calibrated in difficulty. We now pass
from distribution-level quantities to their empirical counterparts. Training on M proxy tasks with n

samples by empirical risk minimization yields parameters 6 and encoder f the following theorem
gives the finite-sample analogue of our transfer bound.

Theorem 3.7 (End-to-end transfer under nonlinear mechanisms (finite-sample)). With probability at
least 1 — 0,

~

~ , 1/~ ~ -
Roe (1) — RBY® < ;(LQ(H)—HQ—i-Gen(M,n,(S)) + disc(Q, 7). ©)

Empirical Excess Generalization Gap Task Mismatch

Were, EQ — ﬁQ is the empirical proxy excess (empirical log-loss minus the empirical conditional-

entropy baseline H (vt | Xg), both averaged over tasks/samples); Gen(M,n, ) is a high-probability
(> 1 — §) bound on the distribution—empirical gap for the proxy risk.

The proofs of Theorem 3.6 and Theorem 3.7 can be found in Appendix C.

3.5 SAMPLING STRATEGY

To construct an informative and compact feature set of proxy task, we adopt a sampling strategy
based on the minimum Redundancy and Maximum Relevance (mRMR) principle. Across tasks, target
coordinates t € D are sampled approximately uniformly over D; for a fixed target coordinate ¢t € D
and candidates D = D\ {t}. Let C € R¥*9 be the absolute correlation matrix between features (with
C,,; = 0). We build a compact proxy set S C D of size k = k(d) by a greedy mRMR procedure:

« Initialization: The first feature added to S is the one most strongly correlated with the target

v* = argmax Cy ¢.
veD

* Greedy step: For each v € D \ S, score it according to

score(v) = Cy ¢ — |S| Z Cou,
u€es
and add the v with the largest score to S. Repeat until |S| = k or no candidates remain. Where
the first term reflects the relevance to the target, and the second term penalizes redundancy with
the already selected features.

« Fill (optional): If | S| < k, sample the remainder uniformly from D \ S.

The resulting subset S maintains high target relevance while suppressing internal redundancy, thereby
promoting diversity and informativeness of the constructed proxy tasks. In practice, increasing the
number of sampled proxy tasks M tightens the end-to-end transfer bounds via concentration and

averaging effects: (i) the empirical average information ]/\4\@ concentrates to Mg, which increases

the observed coverage i = /\min(]\/J\Q) and stabilizes transfer and (ii) this sampling reduces task
mismatch disc(Q, 7*) by aligning proxy-task difficulty via more predictable and calibrated views of
t. Together, these effects reduce the gap to the Bayes risk.
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3.6 TRAINING OBJECTIVE

We optimize a two-part objective tailored to proxy-task adaptation: a cross entropy supervision
loss and a cross-subset consistency loss measured by the Jensen—Shannon (JS) divergence. These
two components are controlled by distinct coefficients, respectively capturing label alignment and
representation stability across feature projections.

Cross-entropy on proxy tasks For any proxy-task sample (xs;, yf ), S;) € (X, S, t), the classifi-
cation cross-entropy is

:\H

M
Q T M Z
=

which directly aligns predlctlons with proxy labels and contracts the cond1t10nal entropy at the task
level. Here we instantiate LQ in Theorem 3.7 by the CE risk, so LCE(e) HQ is exactly that term;

Z cu(xi, 7", 85:0), (7)

since HQ is constant w.r.t. #, minimizing LCE is equivalent to minimizing the empirical excess.

Cross-subset consistency via JS divergence We minimize the expected JS divergence between
two logits (predictive distributions) for the same (x;, t) under independently sampled subsets S7, Sa:

M

1 R 3
LEO) = 75~ > Es, somstey) [ Doslpol- | xi51) ol | xi,52)) .

j=1"i=1

This consistency regularizer explicitly controls the variability of predictions under view perturbations
(changing ), improving algorithmic stability and prediction smoothness. In the finite-sample bound
of Theorem 3.7, this translates into a tighter generalization gap term, i.e., it reduces Gen(M, n, §).

The final empirical risk minimization objective during training is
L(0) = AceLg” + A\jsLis . ®)

Here Acg, Ajs > 0 independently modulate the two losses. This design jointly lowers conditional
risk on proxy tasks, improves robustness to feature-subset perturbations, thereby enhancing transfer to
unseen labels and distributions downstream. The full training algorithm is presented in Appendix D.

4 EXPERIMENTS

Datasets We select 35 real world tabular datasets widely used in anomaly detection tasks, Sourced
from ODDS (Rayana, 2016) and ADbench (Han et al., 2022). These datasets span various domains,
including healthcare, internet services, finance, etc. They feature a combination of numerical and
categorical attributes and exhibit diverse statistical properties, with sizes ranging from 129 to 619,326
samples, dimensions from 3 to 1,555, and anomaly ratios from 0.03 % to 39.91 %. A detailed
statistical summary for each dataset can be found in Table 3, which shows the number of samples, the
dimension, and the number of anomalies of each dataset used.

Evaluation Metrics For our evaluation protocol, we follow the settings RoSAS (Xu et al., 2023b).
Each dataset is partitioned into training and test subsets at a 7:3 ratio. A constraint is imposed on the
training data, where the number of {5,10,20,30} labeled anomalies are utilized; should the number
of available anomalies be less than this threshold, all are included. Evaluation is performed on the
held-out test set and the performance of the models is assessed based on two primary metrics: the
Area Under the Precision-Recall Curve (AUCPR) and the F1-score.

Baselines To evaluate the performance of our method on real-world datasets, we benchmark it
against 8 state-of-the-art baselines for anomaly detection. These include two classic unsupervised
methods, iForest (Liu et al., 2008) and DeepSVDD (Ruff et al., 2018), and six weakly supervised
methods: DevNet (Pang et al., 2021a), DeepSAD (Ruff et al., 2020), FeaWAD (Zhou et al., 2022),
PReNet (Ren et al., 2019), RoSAS (Xu et al., 2023b), and READ (Shou et al., 2025). The imple-
mentation of baselines is sourced from PyOD library (Zhao et al., 2019), DeepOD library (Xu et al.,
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2023a) or their official code repository. To ensure a fair comparison, all baseline methods share the
same experimental conditions, including but not limited to training-test splits, data preprocessing
pipelines, and evaluation metrics. Every experiment runs three times and we report the mean results
throughout this paper.

Implementation Details We fine-tune the tabular in-context learning model, MotherNet, using
our proposed ProFiT framework. The fine-tuning process runs for 100 epochs, with each epoch
comprising 256 iterations and a batch size of 64 per iteration. For each proxy task, we sample
between min (100, len(datasets)/2) and min(200, len(datasets)) instances. Among them, 70% are
designated as the support set, while the remaining 30% constitute the query set. Regarding the
targets of proxy tasks, categorical features are retained through identity mapping, whereas numerical
features are ranked and discretized into categorical variables based on quantile intervals. Fine-tuning
is performed using the AdamW optimizer, with an initial learning rate of 3 x 10~°, which is gradually
decayed following a cosine annealing schedule across epochs. In our experiments, we set A\cg = 1
and \js = 20 in Equation 8. At the inference stage, iForest (Liu et al., 2008) is employed to generate
pseudo-labels (A in algorithm 5) for normal samples.

4.1 MAIN RESULTS

Table 1 summarizes the experimental results on 35 benchmark datasets, where the number of labeled
anomalies is 5 (owing to space limits, we provide only the dataset-wise average F1 score. The
complete per-dataset F1 results are available in Appendix I for the complete AUCPR and F1 results
of different shot settings). Overall, our method achieves the best or second-best performance on
the vast majority of datasets, and significantly outperforms all baselines in terms of average metrics.
In particular, compared to the previous state-of-the-art method READ, our approach improves
the average AUCPR by more than 7.5% and the average F1 score by over 5.6%. We report the
average performance of different methods across multiple datasets under varying numbers of labeled
anomalies, and present the results as boxplots in Figure 2. The boxes represent the interquartile
range, the whiskers denote the overall spread, and the red triangles indicate the median values. As
shown, our method consistently achieves higher median performance in most cases, with a more
compact distribution, demonstrating notable stability and robustness. This suggests that the proposed
approach is not only effective under a single experimental condition but also advantageous in more
comprehensive scenarios across diverse datasets and labeling scales.

4.2 ABLATION STUDIES

Effectiveness of Proxy-based Fine-tuning To assess the effectiveness of the proposed unsupervised
fine-tuning method, we compare its performance improvements over MotherNet across multiple
datasets, measured by AUCPR and F1 score. As shown in Figure 3, although slight performance drops
are observed on a few datasets, our unsupervised fine-tuning method consistently enhances MotherNet
on the majority of datasets (see Appendix J for the complete results). On several particularly
challenging benchmarks, the method achieves gains exceeding 8%. These results demonstrate that
unsupervised fine-tuning enables the model to better capture task-specific data distributions, thereby
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Figure 2: Boxplot comparison of different methods in terms of AUCPR and F1 score.
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Table 1: The AUCPR and average F1 performance of all methods across different datasets.

Dataset | READ DevNet DeepSAD PReNet RoSAS FeaWAD iForest DeepSVDD | ProFiT
ALOI 0.0408  0.0407 0.0528 0.0313  0.0358 0.0433 0.0352 0.0421 0.0382
Annthyroid 0.6104 0.5812 0.1905 0.172 0.4675 0.3565 0.3393 0.1917 0.6664
Breastw 0.7778  0.9909 0.8555 0.5598  0.5196 0.988 0.9841 0.8743 0.9902
Cardio 0.5009 0.5981 0.1849 0.2274  0.2997 0.7015  0.5551 0.6053 0.5007
Cardiotocography | 0.4658  0.529 0.288 0.2804  0.3671 0.657 0.4312 0.4359 0.7123
Celeba 0.0973  0.0558 0.0548 F 0.0961 0.1807  0.0739 0.0762 0.0302
Census 0.1118  0.0828 0.1096 T 0.1078 0.1425  0.0812 0.0829 0.1403
Donors 09115 0.1678 0.2219 T 0.7604 0.5568 0.1306 0.2046 0.9423
Fault 0.3877  0.3591 0.4609 0.3801  0.3997 0.2767 0.4068 0.3387 0.4366
Http 0.9991 0.9869 0.9834 F 0.9985 0.8631 0.9884 0.379 0.9842
InternetAds 0.5112  0.3477 0.2379 0.2443  0.3273 0.6082  0.5318 0.2836 0.6529
Tonosphere 0.7171  0.7581 0.8432 0.6458  0.6126 0.4734  0.8121 0.7265 0.8367
Landsat 0.3706  0.4383 0.3236 0.2562  0.3356 0.3073 0.1825 0.3059 0.3676
Letter 0.1435  0.1669 0.1945 0.1709  0.2216 0.1024  0.1284 0.1136 0.0751
Magic 0.5742  0.4155 0.558 0.4305 0.549 0.5036  0.6351 0.6445 0.4848
Mammography 0.4277  0.3769 0.1447 0.1645  0.2984 0.4525 0.2295 0.201 0.5183
Mnist 0.4766  0.2058 0.2193 0.1347  0.2513 0.6529  0.2667 0.2937 0.3292
Optdigits 0.9882 0.9752 0.27 0.253 0.7037 0.2894  0.0583 0.0257 0.8951
PageBlocks 0.5515 04734 0.3994 0.2195  0.2468 0.4109 0.5231 0.5431 0.4816
Pendigits 0.9355 0.7879 0.2745 0.3967  0.9518 0.6667 0.2044 0.1068 0.8186
Pima 0.4356  0.5485 0.3954 0.4224  0.3408 0.4882  0.5318 0.546 0.6497
Satellite 0.5806 0.5624 0.37 0.5217  0.4425 0.2667 0.6895 0.5706 0.8066
Satimage-2 0.8665 0.9198 0.3248 0.487 0.5777 0.8795 0.879 0.1916 0.8741
Shuttle 0.7531  0.5455 0.294 0.2274  0.7531 0.938 0.9783 0.9121 0.9736
Skin 0.7703  0.6931 0.2785 T 0.9235 0.4775 0.2609 0.1852 0.7938
Smtp 0478 0.1739 0.3423 0.2469  0.1744 0.4761 0.006 0.3423 0.4331
SpamBase 0.6511  0.6263 0.3945 0.4313 0.573 0.3606  0.5061 0.3929 0.8387
Thyroid 0.9034 0.8619 0.2156 0.5686  0.7702 0.4178 0.559 0.274 0.9236
Vertebral 0.613  0.3034 0.4718 0.6375  0.5487 0.2713 0.1241 0.1047 0.6621
WBC 1.0 0.9167 0.9167 0.7 0.3618 0.9167 1.0 1.0 1.0

WDBC 0.7143 1.0 0.5119 0.6884  0.6979 1.0 0.8333 0.8095 1.0

Wilt 0.38 0.5067 0.085 0.2315  0.7442 0.0421 0.0469 0.0366 0.4468
Wine 1.0 1.0 1.0 1.0 1.0 1.0 0.2143 0.1288 1.0

WPBC 0.3837 0.3731 0.5251 0.4074  0.4717 0.3059 0.2583 0.2774 0.4325
Yeast 0.4335  0.4468 0.3386 0.4159  0.4237 0.367 0.3107 0.3103 0.3710
Average 0.5875 0.5376 0.3809 0.3851  0.4958 0.4983 0.4227 0.3588 0.6316
Average Rank 3.2286 4.2 5.8286 7.0 4.8286 4.6286  5.4286 6.0 2.8571
Average F1 0.5876  0.5224 0.3620 0.3679  0.4872 0.4554  0.3908 0.3302 0.6148
Average F1 Rank | 2.9429 4.0571 5.8 6.6 4.4286 4.6 5.4286 5.8286 2.6857

7 Indicates that no result was available within 12 hours.

(a) AUC-PR (b) F1 Score

Figure 3: Performance improvement before and after fine-tuning

substantially improving its anomaly detection capability, while further confirming the practicality
and robustness of the proposed approach.

Beyond the overall improvements, we further analyze the conditions under which our unsupervised
fine-tuning method is most effective. Our investigation reveals that the gains brought by ProFiT are
closely related to two factors: the presence of meaningful latent factor structure and the richness
of the feature space. ProFiT yields the most substantial improvements on datasets that exhibit both
clear latent structure and sufficient feature dimensionality (e.g., Lymphography, WPBC), enabling
proxy tasks to effectively exploit the underlying relationships. When latent structure is present but
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the feature dimensionality is very small (e.g., breastw, Skin), the improvement is limited due to the
restricted expressiveness of proxy-task modeling. Conversely, even in the absence of strong latent
structure, datasets with many features (e.g., InternetAds, Backdoor, Census) still benefit from ProFiT,
as the high dimensionality supports diverse and informative proxy-task construction. In contrast,
datasets lacking both latent structure and sufficient features (e.g., ALOI, Shuttle) show minimal gains.
Overall, these findings clarify the applicability of our method and show that ProFiT is particularly
effective when either latent structure or feature richness provides adequate signal for unsupervised
fine-tuning. The detailed data analysis can be found in Appendix E.

Table 2: Performance comparison AUCPR, avg F1, avg Rank of all methods across different numbers
of anomalies K

# Labeled Metric READ DevNet DeepSAD PReNet RoSAS FeaWAD iForest DeepSVDD  ProFiT
PR 0.5875  0.5376 0.3809 0.3851  0.4958  0.4983  0.4227 0.3588 0.6316

K—5 rank 3.2286 42 5.8286 7.0 48286  4.6286  5.4286 6.0 2.8571
F1 0.5876  0.5224 0.362 03679 04872  0.4554  0.3908 0.3302 0.6148
Rank 29429 4.0571 5.8 6.6 4.4286 4.6 5.4286 5.8286 2.6857
PR 0.6343  0.5914 0.4430 0.4176  0.5559 0.5151  0.4227 0.3588 0.6393
K =10 Rank 29429 3.6571 5.4571 7.0 4.7429 4.5429 6.0 6.4857 3.0857
F1 0.6203  0.5651 0.4274 0.3888  0.4985 0.4926  0.3948 0.3338 0.6170
Rank  2.7429 3.4571 5.5143 7.0571 43714 40286  5.8286 6.2 2.8286
PR 0.6864  0.6395 0.5241 0.4989 0.6116  0.5581 0.4227 0.3616 0.6969
K =20 Rank  2.6571 3.5143 5.4857 6.7714  4.0286  4.5429  6.5429 72 2.8286
F1 0.6677  0.6267 0.4986 04711  0.5879 0.5335  0.3948 0.3338 0.6674
Rank  2.6571 3.2286 5.6286 6.4857 4.0286  4.3429 65714 7.0857 2.4571
PR 0.6309  0.5759 0.6910 0.6690  0.5891 0.5509  0.4227 0.3588 0.7033
K =30 Rank  4.1143 4.7714 2.9429 4.1429  5.0857 57429  6.6571 7.3714 2.7429
F1 0.6186  0.5504 0.6739 0.6339  0.5666  0.4925  0.3948 0.3338 0.6789
Rank  3.7143 4.6 2.7429 3.6286  4.9429 6.0 6.8 7.0571 2.6857

Different Numbers of Labeled Anomalies To further evaluate the robustness and generalization
ability of our method, we conduct ablation analysis under different numbers of labeled anomalies
(K = 5,10,20,30). As shown in Table 2, iForest and DeepSVDD are unsupervised methods,
and their performance does not vary with the number of labeled samples. In contrast, existing
weakly-supervised methods perform poorly under low-shot settings, while our method consistently
outperforms all baselines across different shots. Particularly in the extremely low-shot case (K = 5),
our method achieves significantly higher AUCPR and F1 scores than other weakly-supervised
anomaly detection methods, demonstrating strong few-shot generalization ability. As K increases,
the performance of our method continues to improve, and it still maintains the best AUCPR and F1
under the high-shot setting (K = 30), indicating its robustness with sufficient supervision.

5 CONCLUSION

We introduced ProFiT, an unsupervised fine tuning framework that adapts pretrained tabular in
context learning models to anomaly detection when labels are scarce by training on automatically
constructed proxy tasks. By predicting a held out feature from mRMR selected and correlated feature
subsets and enforcing cross subset consistency with a Jensen—Shannon divergence regularizer, ProFiT
learns representations that align with target domain structure without additional anomaly labels. Our
analysis explains why proxy task learning transfers: we derive a regret identity that links proxy
risk to conditional entropy, prove sufficiency driven transfer with bounded excess risk, and provide
finite sample bounds that highlight the role of information coverage across tasks. Empirically, across
35 benchmarks, ProFiT surpasses weakly-supervised and unsupervised baselines as well as vanilla
TICL, with notable gains in average AUCPR and F1 score, and stable improvements among different
labeled anomalies. These results show that adaptation using only unlabeled data can narrow the
distribution gap that limits pretrained tabular models in practice. Looking forward, ProFiT suggests
directions such as adaptive proxy task scheduling, integration with limited supervision, and extensions
to settings with concept drift or multi table relational structure.

10
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Ethics Statement. This study uses only publicly available datasets. No private, sensitive, or
personally identifiable information is involved, and therefore no ethics approval was required.

Reproducibility Statement. We have made efforts to ensure the reproducibility of our work. The
complete proof process of the theoretical results can be found in the Appendix C. For the experimental
part, all datasets used in this study are publicly available, and details regarding dataset access and
processing are provided in the supplementary materials (with dataset downloads referenced from
Han et al. (2022) and (Rayana, 2016)). The source code implementing our methods will be released
publicly upon acceptance.
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A USE OF LLMs

In this paper, we employed a Large Language Model (LLM) to assist with text polishing and
expression refinement. Specifically, we used LLM, whose primary role was to improve the fluency of
language, enhance the academic style of writing, and increase the readability of the text.

It should be emphasized that:

1. The use of LLM in this paper was strictly limited to language refinement and expression
optimization. All research ideas, experimental design, data analysis, and conclusions were
independently carried out by the researchers.

2. All model-generated content was reviewed and, where necessary, modified by the authors to
ensure appropriateness within the research context and compliance with academic standards.

3. The model was not used for data fabrication or manipulation of experimental results. The
scientific validity and originality of the research remain entirely the responsibility of the
research team.

B DATASETS DETAILS

Datasets We select 35 real world tabular datasets widely used in anomaly detection tasks, Sourced
from ODDS (Rayana, 2016) and ADbench (Han et al., 2022). These datasets span various domains,
including healthcare, internet services, finance, etc. They feature a combination of numerical and
categorical attributes and exhibit diverse statistical properties, with sizes ranging from 129 to 619,326
samples, dimensions from 3 to 1,555, and anomaly ratios from 0.03 % to 39.91 %. A detailed
statistical summary for each dataset can be found in Table 3, which shows the number of samples, the
dimension, and the number of anomalies of each dataset used.

C OMITTED PROOFS

In this section, we present the proofs of Theorem 3.5, Theorem 3.6, and Theorem 3.7.

We begin with a lemma:
Lemma C.1. For random variables (y,u,Z),

I(yiu|2) = BaDialply |w.2) |ply |2))| = inf Bzl Diclply |w.2)] aly | 2))]

Equivalently,
I(y;u|Z)) = Sup Eyuz[6(y,u,Z)] — Ey z[log Eu[exp{¢(y,u, 2)} | v, Z]],

where ¢ ranges over integrable scoring functions for anomaly detection.

Proof. The first two equalities are the conditional KL form of I(-;- | -) and the optimal choice of
baseline (- | Z). The last line follows from the Donsker—Varadhan variational representation of KL,
applied conditionally on (Z,y). O

C.1 PROOF OF LEMMA 3.4

Proof. Let f be a representation encoder that maps inputs X to latent representations f(X). For
a fixed pseudo-task 7 = (X, S, t) with log-loss, consider predictors h that take the representation
f(Xs) as input and output a probability distribution over the target values y;. The best achievable
performance of such a predictor is

inf B[ —logh(f(Xs))ly]] = H(y: | f(Xs))-

where H(-) denotes Shannon entropy and I(-, -) denotes mutual information, define the excess risk of

fonrTas
Ap(r) == H(ye | f(Xs)) — H(y: | Xs),

14
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Table 3: Statistics of the benchmark datasets

Dataset Instances Dimensions Anomalies Anomaly Ratio (%)
ALOI 49534 27 1508 3.04 %
Annthyroid 7200 6 534 7.42 %
Breastw 683 9 239 34.99 %
Cardio 1831 21 176 9.61 %
Cardiotocography 2114 21 466 22.04 %
Celeba 202599 39 4547 2.24 %
Census 299285 500 18568 6.20 %
Donors 619326 10 36710 593 %
Fault 1941 27 673 34.67 %
Http 567498 3 2211 0.39 %
InternetAds 1966 1555 368 18.72 %
Ionosphere 351 32 126 35.90 %
Landsat 6435 36 1333 20.71 %
Letter 1600 32 100 6.25 %
Magic 19020 10 6688 35.16 %
Mammography 11183 6 260 2.32 %
Mnist 7603 100 700 9.21 %
Optdigits 5216 64 150 2.88 %
PageBlocks 5393 10 510 9.46 %
Pendigits 6870 16 156 2.27 %
Pima 768 8 268 34.90 %
Satellite 6435 36 2036 31.64 %
Satimage-2 5803 36 71 1.22 %
Shuttle 49097 9 3511 7.15 %
Skin 245057 3 50859 20.75 %
Smtp 95156 3 30 0.03 %
SpamBase 4207 57 1679 39.91 %
Thyroid 3772 6 93 247 %
Vertebral 240 6 30 12.50 %
WBC 223 9 10 4.48 %
WDBC 367 30 10 2.72 %
Wilt 4819 5 257 5.33 %
Wine 129 13 10 7.75 %
WPBC 198 33 47 23.74 %
Yeast 1484 8 507 34.16 %

which measures the information loss caused by compressing X g into f(Xg). By the chain rule of
mutual information (MacKay, 2003),

Ap(m) = I(y; Xs | f(Xs)) > 0.

Under the latent factor assumption (Assumption 3.1), we have H(y; | Xs) = H(y: | u), so the
excess risk reduces to

Ap(r) = H(y: | f(Xs)) = H(yt [ 0) = I{ys;u | f(Xs))-
O

This highlights a key point: the performance gap of f is exactly the task-relevant information about u
that f(X) fails to preserve.

C.2 PROOF OF THEOREM 3.5

Proof. By Theorem 3.4 and Assumption 3.2,
Ree(f.h5) = RENS = H(y" | f(Xs2)) = Hy" |w) = I(y"su | f(Xs)) = Ap(77).

15
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We compare A ¢(7*) with the Q-average A . Using Lemma C.1,
Ap(m7) = iél*fE[DKL( p(y* | u, f(Xs+)) H (-] f(Xs))] -
An analogous expression holds for each 7 = (X, S, t). If the proxy-task sampling @ sufficiently
covers the latent directions relevant to t*, there exists a finite constant
I *. Xgx
F(Qﬂ'*) := sup (y au‘f( S ))

o Erl(ysul f(Xs))

such that (y*;u | f(XS*)) < T(Q.7%) ErnoI(ysiu | f(Xs)). Hence
Ree(foh}) = RS = Ap(r%) < T(Q, %) - By

When @ richly excites all latent directions, I'(Q, 7*) is close to 1. [

€ [1,00)

C.3 PROOF OF THEOREM 3.6

Proof. Assume the factor model y; = g:(u) + €; with Fisher information F;(u) for u. Fix Z :=
f(Xs). For regular observation models (e.g., smooth exponential families), a local second-order
expansion of the conditional log-likelihood gives, for some estimator i(Z) and some G between u
and u(7),

Dxu(ply: | w, 2) [ p(ye | 2)) 2 5 (u—0(2)) Fy(@) (u—(2)).

Taking expectations over (u, Z) and optimizing the choice of 11 yields a constant (absorbed into the
information scale) such that

Ilyiu| Z) > E|(u—a(2)) E[F:(w) | Z] (u-a(2)].
Averaging over 7 ~ ( and exchanging expectations,
Ap=Ernql(yiu| 2) = B(u=i(2)" (BregulFi(w)]) (u-a(2))| = B(u—a(2)" Mq (u-a(2))].
By Mg = ul,,
A = pE[lu-a(2)]3].
For the target task 77,

Ap(r*) =1(y*u| f(Xs+)) S Effu—a(f(Xs))II3].
Using the same 1 on both sides and combining with the previous lower bound,

1 —
Af(T*) S ;Af

C.4 PROOF OF THEOREM 3.7 (FINITE-SAMPLE END-TO-END TRANSFER)

Proof. Let 6 and fbe obtained by empirical risk minimization over m proxy tasks with n samples
each.

(i) Empirical excess. By the regret identity, the empirical cross-entropy risk EQ (0) differs from
the empirical conditional-entropy baseline H exactly by the empirical excess:

EQ(H) — ﬁQ = empirical proxy excess.

(ii) Generalization gap. Let Ly (6) denote the population cross-entropy risk. Standard uniform
convergence (e.g., PAC-Bayes or localized Rademacher) gives with probability at least 1 — §:

LQ(@) —Hg < ZQ(@) — fIQ + Gen(M,n,0).
In a PAC-Bayes form with prior p = N/ (6, 0®I) and posterior approximated by a point mass at HA,

Dxr(dllp) +1og(1/6) 16 — 6olI3/(202) + log(1/6)
Mn Mn ’

Gen(M,n,d) <

Thus, with probability > 1 — 4,
Eo[I(yiu| f(Xs))] = Lo(0) — Hg < Lq(0) — Hg + Gen(M,n,9).
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(iii) From average to target task; accounting for mismatch. Decompose the target risk gap into
a representation-induced part and an irreducible mismatch:

~

Roe (F07) = RV = (Hoo(y* | F) = Heo (v | W) + (e (5" | 0) = ErngHo (1 | W) -

Ag(r*) disc(Q,7*)

Apply Theorem 3.6 to the first term:

1 -~ 1/~ ~ =
Af(r) < - Brollyiu | FXs) < - (Za(@) - fig + Gen(M,n,3)).
Combining both parts completes the proof:

—~ 1/ o~ -~
R (f,h*) — RBaves < ; (LQ(G) —Hg + Gen(M,n,é)) + disc(Q, 7).

T*

D TRAINING AND INFERENCE ALGORITHM

Algorithm 1: ProFiT: Unsupervised Proxy-Task Fine-tuning for Tabular Anomaly Detection

Input: Unlabeled train samples X = {x;}V, € RV*4; feature set D = {1,...,d}; TICL
model 7Ty; maximal subset size ky,ax; proxy tasks per epoch M loss weights Aoy, Ajs;
minibatch size n; learning rate 7; identity mapping or quantile function €; S2 keep ratio
Pkeep; Minimal Jaccard distance §; maximal refinement trials 7,5

Output: Fine-tuned model 7y.

1 Precompute absolute correlation matrix C € R94*d of features (set C;; = 0).
2 for epoch=1,2,... do

LCE — 0, LJS 0

for j = 1to M do

Sample a target feature ¢ ~ Unif (D).

(S1,S52,k) <~ BUILDTWOSUBSETS(C, t, D, kmax, Pkeep, 0 Tmax)-
Sample indices Z C {1,..., N} with |Z| = n.

foreach i € 7 do

) G (X 0);
Pol- | %5, 51) = To(x"); pa- | x4, 8a)  To(x\"?);

1

® N & e W

11 Cglculate the loss £ by Eq. (8).
2z | Update 6 «— 0 —nVyL.

13 return 7.
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Algorithm 2: BUILDTWOSUBSETS for a target feature ¢

Input: Correlation matrix C; target index ¢; feature set D; procedure BUILDS 1; keep ratio pieep

Qutput: Two subsets Sp, S and their size k.
(S1,k) + BUILDS1(C,t,D)
C«+ D\ {t}
Sort 57 in descending order of C; ; and denote the ordered list by S i"m’d.
keep,, «— max (1, min(k — 1, [ preepk]))
keep « first keep,, elements of S5°rted.
need < k — keep,,
R <« C\ keep
if need > 0 then

| add <~ MRMRSELECT(C, ¢, R, need)
else

| add + 0

if |add| < need then
E <+ R\ add
if £ # () then
| Randomly sample min(|€|, need — |add|) indices from £ and append to add.

So < keep U add
if |S2| < k then
E+C\ S,
if £ # () then
| Randomly sample & — | S| indices from £ and add to S5.

return Sq, So, k.

Algorithm 3: BUILDS1 for a target feature ¢

Input: Correlation matrix C; target index ¢; feature set D; procedure CHOOSEK (D)
Qutput: Subset S; and its size k.
cand < D\ {t}
k + CHOOSEK(|D])
S1 <+ MRMRSELECT(C, ¢, cand, k)
if |S1| < k then

€ < cand \ 51

if £ # () then

| Randomly sample & — |.S;| indices from & and add to S;.

return Sy, k
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Algorithm 4: MRMRSELECT for a target feature ¢

Input: Correlation matrix C; target index ¢; candidate set R; subset size k

Output: Selected subset S.
if |R| = 0 or k = 0 then

| return ()
Compute relfv] < C, , forallv € R.
Let O be R sorted in descending order of rel.
S« {ofnj}
for i = 2 to min(k, |O|) do
best <~ None, best_score <+ —oco
foreach v € O do
if v € S then

| continue

redundancy <« mean(CU’u TuE S)

score <— C,, ; — redundancy
if score > best_score then
L best < v, best_score < score

ifibest = None then
| S« S U {best}

return S

Algorithm 5: ProFiT Inference with TICL 7y and Pseudo-Normals from Unsupervised Detector

Input: Fine-tuned TICL 7Ty; unsupervised anomaly detector .4; labeled anomalies
Dy, = {(x1,1)}£; unlabeled pool Dy = {x,}_;; pseudo-normal count k; test set

o =

_ test | Vi
Drest = {Xj }3251(
test N(esK

Output: Anomaly scores {s(x}*)};5.

for x; in Dy do

L a; < A(x;)

3 qo.s < Percentile({a;} Y, 80)

IS

[

)

o e 3

1

1=

1

oy

C+{xi€Dy|a;<qs}
Select K samples {x 15,

Assign pseudo-labels: {(x\,0)}<_,
S ¢ {Dr U{(x”, 0},

uniformly at random from C (without replacement)

Obtain downstream MLP parameters: ¢ < Ty(S)

for j =1,..., N¢y do
[ s(xi) = MLP4(x)

return {s(xt,eSt)}le[

J J=

E EFFECTIVENESS OF PROFIT

As shown in Figure 3, beyond the overall improvements, we further analyze the conditions under
which our unsupervised fine-tuning method is most effective. As shown in Figure 3, beyond the
overall improvements, we further analyze the conditions under which our unsupervised fine-tuning
method is most effective. To quantify the extent to which a dataset exhibits underlying latent factors,
we compute two correlation-based statistics. First, we measure the original correlation, defined as the
mean absolute pairwise correlation of the raw feature correlation matrix. Second, after extracting
latent factors using Factor Analysis and reconstructing the data, we obtain the residual matrix and
compute the residual correlation, i.e., the mean absolute pairwise correlation of the residual features.
Based on these two quantities, we define the latent factor strength as

IFS —1— residual correlation

original correlation’
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which reflects the proportion of the original feature dependence that can be explained by latent
factors.

As shown in Table 4, our investigation reveals that the gains brought by ProFiT are closely related
to two factors: the presence of meaningful latent factor structure and the richness of the feature
space. ProFiT yields the most substantial improvements on datasets that exhibit both clear latent
structure and sufficient feature dimensionality (e.g., Lymphography, WPBC), enabling proxy tasks
to effectively exploit the underlying relationships. When latent structure is present but the feature
dimensionality is very small (e.g., breastw, Skin), the improvement is limited due to the restricted
expressiveness of proxy-task modeling. Conversely, even in the absence of strong latent structure,
datasets with many features (e.g., InternetAds, Backdoor, Census) still benefit from ProFiT, as the
high dimensionality supports diverse and informative proxy-task construction. In contrast, datasets
lacking both latent structure and sufficient features (e.g., ALOI, Shuttle) show minimal gains. Overall,
these findings clarify the applicability of our method and show that ProFiT is particularly effective
when either latent structure or feature richness provides adequate signal for unsupervised fine-tuning.

Table 4: Relation between performance improvement, latent factor strength, and feature dimensional-
ity across datasets

Datasets Dim Original Corr Residual Corr LFS F1Impr. PR Impr.
Lymphography 18 0.1680 0.1075 36.01% 0.0278 0.0554
WPBC 33 0.2905 0.1290 55.59% 0.0334 0.0435
Breastw 9 0.6019 0.1372 77.21% 0.0000 0.0000
Skin 3 0.6961 0.4181 39.94% 0.0000 0.0000
InternetAds 1555 0.0183 0.0183 0.00% 0.0825 0.1031
Backdoor 196 0.1061 0.1392 -31.20%  0.0879 0.0414
Census 500 0.0297 0.0273 8.08% 0.0179 0.0199
ALOI 27 0.0946 0.0870 8.03% -0.0017 0.0002
Shuttle 9 0.1885 0.1778 5.68% 0.0204 -0.0032

F ANALYSIS OF NORMAL SAMPLE PSEUDO-LABELING

In the anomaly detection task, the number of abnormal samples is generally much lower than that
of normal samples. We conducted experiments on 35 datasets to investigate the impact of different
pseudo-labeling strategies for normal samples. The results, shown in Table 5, demonstrate that the
ProFiT fine-tuned model significantly improves upon the baseline MotherNet model, regardless of
the pseudo-labeling strategy used for normal samples. This shows that ProFiT is robust to different
pseudo-labeling methods.

1. IForest Topk: This strategy uses iForest to select the K samples with the lowest anomaly
scores from the unlabeled data. While these samples have the highest confidence, their
diversity is limited, leading to relatively lower model performance.

2. TForest RandomK 80%: This approach randomly selects K samples from the lowest
80% of the anomaly scores. Although it may introduce noise, the diversity of samples
significantly improves, resulting in a substantial boost in model performance.

3. Random: This method selects K samples directly from all unlabeled samples, without any
filtering. Interestingly, this random sampling outperforms the other methods, including the
iForest-based approaches, in terms of average performance. This highlights the robustness of
the model to different pseudo-labeling strategies and emphasizes the importance of sample
diversity over strict accuracy.

Furthermore, we attempted to extend our method to an Unsupervised approach, where both normal and
abnormal samples were pseudo-labeled using IForest. This approach led to a significant performance
drop. The reason is that abnormal samples are much fewer than normal samples in the dataset, and
accurate pseudo-labeling is crucial for guiding the model. When using an unsupervised detector, the
accuracy of the labeled abnormal samples is too low, which negatively impacts model performance.
In contrast, the large number of normal samples in the dataset can tolerate the noise introduced by the
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unsupervised pseudo-labeling process without significantly affecting model performance. Therefore,
accurate labeling of abnormal samples is essential for effective model performance, while normal
sample diversity plays a significant role in improving robustness.

Table 5: Performance (F1 and PR) of different pseudo-labeling strategies for support set selection on
MotherNet and ProFiT.

F1 PR
Method MotherNet ProFiT MotherNet ProFiT
[Forest Topk 0.5677 0.5573 0.5904 0.6085
IForest RandomK 80% 0.6696 0.6770 0.6954 0.7084
Random 0.7014 0.7128 0.7354 0.7475
Unsupervised 0.3402 0.3260 0.3660 0.3610

G EXTENSION TO OTHER TASK

ProFiT is not limited to the unsupervised fine-tuning setting used for anomaly detection. In principle,
the method can be applied to a broader range of representation learning scenarios. We primarily chose
the anomaly detection setup due to the support—query nature of TICL models, which naturally aligns
with settings involving extremely limited labeled data. This makes anomaly detection a representative
and meaningful testbed for evaluating the benefits of our fine-tuning paradigm.

To assess the generality of our approach, we further evaluated ProFiT on several general-purpose
tabular classification benchmarks. In addition to the anomaly detection tasks reported in the main
paper, we selected a subset of datasets from the CC70 benchmark suite and conducted corresponding
experiments. As shown in Table 6, the results show that ProFiT consistently improves performance
on standard tabular classification tasks as well. These findings suggest that the proposed method
possesses a certain degree of task generality beyond anomaly detection, and can potentially serve as a
more universal fine-tuning strategy for tabular representation models.

Table 6: F1 score and AUCPR on general classification tasks before and after applying ProFiT.

Dataset F1 PR
MotherNet ProFiT MotherNet ProFiT
PC4 0.3333 0.3889 0.3687 0.4584
KC2 0.4545 0.4545 0.4304 0.4735
KC1 0.3438 0.3438 0.3672 0.4150
PCl1 0.4286 0.4286 0.5169 0.5304
BankMarketing 0.4178 0.4178 0.3786 0.3852
Nomao 0.7584 0.7422 0.7494 0.7948
Dresses Sales 0.4762 0.6667 0.5124 0.6795
Credit Approval 0.8462 0.7692 0.8673 0.8688
Sick 0.5217 0.6957 0.5638 0.7406
Bioresponse 0.6029 0.6029 0.5840 0.5974
Spambase 0.6868 0.6923 0.7911 0.8087
PhishingWebsites 0.8920 0.8920 0.9488 0.9563
Tic Tac Toe 0.7460 0.7302 0.7146 0.7327
Average 0.5776 0.6019 0.5995 0.6493

H SEMI-SUPERVISED TAD BASELINES

We additionally evaluate our method against two representative semi-supervised tabular anomaly
detection approaches: MCM Yin et al. (2024) and DRL Ye et al. (2025). Both baselines are
implemented using their official code releases and recommended hyperparameters. To ensure a
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Table 7: F1 and PR comparison of DRL, MCM, and ProFiT across datasets.

Dataset \ F1 Score PR

‘ DRL MCM ProFiT ‘ DRL MCM ProFiT
ALOI 0.0286 0.0813 0.0308 | 0.0291 0.0531 0.0382
Annthyroid 0.2023 0.2428 0.7168 | 0.1752 0.2196  0.6664
Breastw 0.8767 0.9589 0.9589 | 0.9543 0.9856 0.9902
Cardio 03214 04107 0.5893 | 0.3125 0.4347 0.5007
Cardiotocography | 0.4326 0.4894  0.6099 | 0.3816 0.4290 0.7123
Celeba 0.1302 0.0756  0.0455 | 0.0605 0.0522 0.0302
Census 0.0380 0.0656 0.1608 | 0.0678 0.0784  0.1403
Donors 0.0311 0.0331 0.8600 | 0.1097 0.0862 0.9423
Fault 0.4545 0.4976 0.4258 | 0.4756 0.4973 0.4366
Http 0.0161 0.0587 0.9882 | 0.2509 0.6029 0.9842
Ionosphere 0.8108 0.1081 0.7838 | 0.8688 0.2408 0.8367
Landsat 0.2481 0.1830 0.3659 | 0.2580 0.2018 0.3676
Letter 0.3939 0.1515 0.0303 | 0.4104 0.1175 0.0751
Magic 0.4753  0.6408 0.4852 | 0.5635 0.7203 0.4848
Mammography | 0.2000 0.3294 05412 | 0.1310 0.2244  0.5183
Mnist 0.5519 04057 0.3632 | 0.5544 0.3898 0.3292
Optdigits 0.0000 0.0000 0.8140 | 0.0256 0.0407 0.8951
PageBlocks 0.2986 0.2500 0.5417 | 0.3227 0.2168 0.4816
Pendigits 0.0455 0.1818 0.7273 | 0.0326 0.0911  0.8186
Pima 0.4684 0.5316  0.6329 | 0.4667 0.5193  0.6497
Satellite 0.5497 0.5304 0.6619 | 0.5864 0.6771 0.8066
Satimage-2 0.6087 0.7391  0.8696 | 0.5295 0.7007 0.8741
Shuttle 0.9159 0.9039 0.9510 | 0.8728 0.7982 0.9736
Skin 0.1923  0.0022 0.7826 | 0.2504 0.1595 0.7938
Smtp 0.6154 0.6154 0.4615 | 0.4399 0.5982 0.4331
SpamBase 0.5172  0.5960 0.7636 | 0.5508 0.6046  0.8387
Thyroid 0.3704 0.4444 0.8889 | 0.3293 0.3547 0.9236
Vertebral 0.0000 0.0000 0.6364 | 0.1589 0.1270  0.6621
WBC 0.3333  0.0000 1.0000 | 0.4250 0.2619 1.0000
WDBC 0.6667 1.0000 1.0000 | 0.7292 1.0000 1.0000
Wilt 0.1190  0.0000 0.5714 | 0.1162 0.0399  0.4468
Wine 0.0000 1.0000 1.0000 | 0.2250 1.0000 1.0000
WPBC 0.3333  0.2000 0.3333 | 0.3444 03076 0.4325
Yeast 03312 0.3052 0.3701 | 0.3181 0.3090 0.3710
Average ‘ 0.3405 0.3539 0.6165 ‘ 0.3626  0.3865 0.6310

consistent comparison, we adopt the same data splits and set the contamination level to match the
true anomaly ratio of each dataset.

Semi-supervised TAD methods are commonly designed for scenarios in which only normal samples
are available during training. Consequently, their performance tends to rely on clean training data
and may degrade substantially when the training set contains anomalous instances. In our evaluation
setting, the contamination levels are identical to the natural anomaly ratios of the datasets, which
introduces a degree of noise that these methods are not optimized to handle.

Across the benchmark, ProFiT, using five labeled anomalies per dataset, achieves stronger perfor-
mance than MCM and DRL on most datasets. Detailed results are provided in Table 7. These
observations indicate that the proposed proxy-based fine-tuning strategy remains effective under
weak supervision and naturally contaminated training conditions.
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I ADDITIONAL RESULTS

In Table 8 we display the F1 performance of ours method and comparing methods. Tables 9 to 14
show the AUCPR and F1 performance on different number of labeled anomalies, which is the detailed
results of Table 2.

Table 8: F1 score and average Rank of all methods across different datasets, the numbers of labeled
anomalies is 5.

Dataset READ DevNet DeepSAD PReNet RoSAS FeaWAD iForest DeepSVDD \ ProFiT
ALOI 0.0571  0.0659 0.0879 0.0286  0.0615 0.0571 0.033 0.0593 0.0308
Annthyroid 0.6185 0.6705 0.2197 0.1792  0.5376 0.289 0.3006 0.2081 0.7168
Breastw 0.7361  0.9589 0.7945 0.4521 04247 0.9589 0.9315 0.7917 0.9589
Cardio 0.4643 0.5714 0.125 0.2321  0.3393 0.6786  0.5179 0.5893 0.5893
Cardiotocography  0.5319  0.5248 0.2766 0.234 0.3688 0.5957  0.4397 0.4823 0.6099
Celeba 0.1659 0.1071 0.1134 ¥ 0.1848 0.2456 0.119 0.1155 0.0455
Census 0.1469  0.0876 0.1619 ¥ 0.1715 0.1762 0.056 0.0708 0.1608
Donors 0.8793 0.1519 0.2694 ¥ 0.6569 0.6098  0.1016 0.2094 0.86
Fault 0.3971  0.311 0.4641 0.3397 04115 0.2105 0.4019 0.3254 0.4258
Http 0.9985 0.9854 0.981 ¥ 0.992 0.0127  0.9854 0.0 0.9882
InternetAds 0.4737  0.3053 0.2632 0.2105  0.3579 0.5579  0.4842 0.3263 0.5579
Tonosphere 0.7297  0.6757 0.7297 0.5405  0.5405 0.4324  0.7027 0.5946 0.7838
Landsat 0.3885 0.4185 0.3484 0.2306  0.3559 0.2581 0.1654 0.2581 0.3659
Letter 0.2121 0.2424 0.2424 0.3333  0.2121 0.0303 0.1818 0.1515 0.0303
Magic 0.541  0.3883 0.5035 0.4447  0.5306 0.5138  0.5395 0.5904 0.4852
Mammography 0.4941 0.4588 0.2588 0.2706  0.4235 0.4706  0.2471 0.3059 0.5412
Mnist 04811 0.2358 0.2406 0.1226  0.2877 0.5849 0.316 0.3255 0.3632
Optdigits 0.9535 0.9302 0.2326 0.2558  0.6279 0.2326  0.0465 0.0 0.814
PageBlocks 0.5417 0.4306 0.4097 0.2222  0.2708 0.3264  0.4306 0.5069 0.5417
Pendigits 0.8636 0.7727 0.2727 0.3409  0.9091 0.6136  0.3182 0.0 0.7273
Pima 0.4304  0.519 0.3165 0.3924  0.3418 0.5063 0.5316 0.5316 0.6329
Satellite 0.5721  0.5817 0.3349 0.4872  0.4359 0.1827  0.5849 0.4744 0.6619
Satimage-2 0.7826  0.8696 0.3043 0.5217  0.5217 0.8696  0.8696 0.2609 0.8696
Shuttle 0.7116  0.4861 0.2957 0.1543 0.72 0.9187  0.9529 0.9492 0.951
Skin 0.8048  0.6602 0.2745 ¥ 0.9014 0.5854  0.1214 0.0581 0.7826
Smtp 0.6154 0.2308 0.4615 0.4615  0.2308 0.6154 0.0 0.4615 0.4615
SpamBase 0.5576  0.5535 0.3778 0.4101  0.4808 0.3313 0.5192 0.398 0.7636
Thyroid 0.8889 0.7778 0.2593 0.5926  0.6667 0.4074  0.6296 0.2593 0.8889
Vertebral 0.5455 0.2727 0.2727 0.5455  0.4545 0.3636 0.0 0.0 0.6364
WBC 1.0 0.6667 0.6667 0.3333  0.3333 0.6667 1.0 1.0 1.0
WDBC 0.6667 1.0 0.3333 0.6667  0.6667 1.0 0.6667 0.6667 1.0
Wilt 0.4286 0.5119 0.0595 0.2381  0.7262 0.0 0.0119 0.0 0.5714
Wine 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0
WPBC 0.4 0.4 0.4 0.4 0.4667 0.2667 0.2 0.2667 0.3333
Yeast 0.487 0.461 0.3182 0.3961 0.4416 0.3701 0.2727 0.3182 0.3701
Average 0.5876 0.5224 0.362 0.3679  0.4872 0.4554  0.3908 0.3302 0.6148
Average Rank 2.9429 4.0571 5.8 6.6 4.4286 4.6 5.4286 5.8286 2.6857

7 Indicates that no result was available within 12 hours.
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Table 9: AUCPR and average Rank of all methods across different datasets, the numbers of labeled
anomalies is 10.

Dataset READ DevNet DeepSAD PReNet RoSAS FeaWAD iForest DeepSVDD \ ProFiT
ALOI 0.0404  0.0442 0.0779 0.0388  0.0352 0.0357  0.0352 0.0421 0.0315
Annthyroid 0.6962  0.5295 0.22 0.3671  0.6738 0.2122  0.3393 0.1917 0.4782
Breastw 0.7079  0.757 0.8183 0.6128  0.5862 0.223 0.9841 0.8743 0.9924
Cardio 0.9008 0.8285 0.3372 0.4417  0.5687 0.7718  0.5551 0.6053 0.8093
Cardiotocography  0.5864 0.5741 0.3273 0.3439  0.4998 0.6942 04312 0.4359 0.6384
Celeba 0.1642  0.0386 0.0806 ¥ 0.1138 0.2192  0.0739 0.0762 0.2309
Census 0.0942  0.0502 0.1084 ¥ 0.0885 0.1347  0.0812 0.0829 0.1555
Donors 0.6831 0.2024 0.2561 ¥ 0.5906 0.458 0.1306 0.2046 0.6770
Fault 0.4908  0.4992 0.48 0.4417  0.4684 0.417 0.4068 0.3387 0.4262
Http 0.9988 0.9908 0.9928 ¥ 0.9985 0.9985 0.9884 0.379 0.9853
InternetAds 0.2723  0.3615 0.3101 0.2325  0.2797 0.4218  0.5318 0.2836 0.3787
Ionosphere 0.7203  0.9435 0.8801 0.7149  0.6438 0.6635  0.8121 0.7265 0.9653
Landsat 0.5439 0.4283 0.4004 0.2817  0.4895 0.1688  0.1825 0.3059 0.2755
Letter 0.3446 0.2816 0.357 0.3019  0.3296 0.0782  0.1284 0.1136 0.0995
Magic 0.5715 0.4718 0.5518 0.3535  0.4072 0.5331 0.6351 0.6445 0.7202
Mammography 0.4968 0.4076 0.1122 0.2042  0.3421 0.4366  0.2295 0.201 0.3948
Mnist 0.5431 0.5125 0.3084 0.1524  0.5086 0.7266  0.2667 0.2937 0.7319
Optdigits 0.9738  0.9989 0.3838 0.302 0.7482 0.8064  0.0583 0.0257 0.9777
PageBlocks 0.5753  0.5934 0.3472 0.2724  0.3555 0.7253  0.5231 0.5431 0.5958
Pendigits 0.964 009511 0.8129 0.397 0.9451 0.0373 0.2044 0.1068 0.8193
Pima 0438  0.4538 0.4645 0.4167  0.4709 04518  0.5318 0.546 0.6329
Satellite 0.6918  0.8211 0.4552 0.3913  0.5146 0.5371 0.6895 0.5706 0.7992
Satimage-2 0.8864 0.8873 0.6293 0.6171  0.7966 0.877 0.879 0.1916 0.8797
Shuttle 0.956  0.9756 0.6493 0.2961  0.9059 0.9573 0.9783 0.9121 0.9557
Skin 0.9822 0.8602 0.3098 + 0.9654 0.3354  0.2609 0.1852 0.8401
Smtp 0.4772  0.1427 0.0888 0.2309  0.0541 0.5984 0.006 0.3423 0.5414
SpamBase 0.8297 0.6862 0.3963 0.4545  0.6015 0.8341  0.5061 0.3929 0.6590
Thyroid 0.8699  0.8237 0.2154 0.5044  0.7658 0.8764 0.559 0.274 0.8798
Vertebral 0.6297 0.3738 0.4761 0.6071  0.6894 0.1369  0.1241 0.1047 0.6004
WBC 1.0 0.8667 0.9167 0.6667  0.4603 1.0 1.0 1.0 1.0

WDBC 0.9167 1.0 0.8667 0.8333 09167 1.0 0.8333 0.8095 1.0

Wilt 0.3712  0.5305 0.0941 0.3659  0.8232 0.0549  0.0469 0.0366 0.2691
Wine 1.0 1.0 1.0 1.0 1.0 1.0 0.2143 0.1288 1.0

WPBC 0.3244  0.3546 0.4058 0.3509 0.3714 0.2422  0.2583 0.2774 0.5412
Yeast 0.4577 0.4572 0.374 0.3334  0.4476 0.3657  0.3107 0.3103 0.3925
Average 0.6343  0.5914 0.4430 0.4176  0.5559 0.5151 0.4227 0.3588 0.6393
Average Rank 29429 3.6571 5.4571 7.0 4.7429 4.5429 6.0 6.4857 3.0857

¥ Indicates that no result was available within 12 hours.

J  ABLATION DETAILS

Tables 15 to 20 present the AUCPR and F1 score of MotherNet and ProFiT fine-tuning under different
numbers of labeled anomalous samples.
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Table 10: F1 score and average Rank of all methods across different datasets, the numbers of labeled
anomalies is 10.

Dataset READ DevNet DeepSAD PReNet RoSAS FeaWAD iForest DeepSVDD ‘ ProFiT
ALOI 0.0615  0.0703 0.1033 0.0396  0.0505 0.0527 0.033 0.0593 0.033
Annthyroid 0.6532 0.5954 0.2832 0.3642  0.6532 0.2601 0.3006 0.2081 0.4509
Breastw 0.6377 0.6712 0.7808 0.4658 0.5139 0.0274  0.9315 0.7917 0.9589
Cardio 0.8036 0.6964 0.3393 0.3929  0.5179 0.6071 0.5179 0.5893 0.6964
Cardiotocography  0.5603  0.5532 0.3121 0.305 0.4539 0.6099  0.4397 0.4823 0.5319
Celeba 0.2393  0.0609 0.1337 ¥ 0.2246 0.2701 0.119 0.1155 0.2988
Census 0.143  0.0555 0.1482 ¥ 0.1641 0.1343 0.056 0.0708 0.1919
Donors 0.7378 0.2378 0.2413 ¥ 0.6079 0.4887  0.1016 0.2094 0.7379
Fault 0445  0.5024 0.4593 0.4417  0.4593 0.3301 0.4019 0.3254 0.4641
Http 0.9927  0.9869 0.981 ¥ 0.9985 0.9963 0.9854 0.0 0.9912
InternetAds 0.3158 0.3368 0.2632 0.2421  0.2842 0.4632  0.4842 0.3263 0.3789
Ionosphere 0.6486  0.8649 0.8378 0.5946  0.5946 0.6486  0.7027 0.5946 0.8649
Landsat 0.4862 0.3258 0.396 0.2581 0.4511 0.1754  0.1654 0.2581 0.3509
Letter 0.3636  0.3333 0.4242 0.303 0.3333 0.0606  0.1818 0.1515 0.1212
Magic 0.5583 0.4412 0.5 0.3468  0.3765 0.4896  0.5395 0.5904 0.6042
Mammography 0.5412 0.4588 0.2689 0.3176  0.3882 0.4588  0.2471 0.3059 0.3882
Mnist 0.5 0.5047 0.3302 0.1368  0.5472 0.6698 0.316 0.3255 0.6415
Optdigits 0.9302 0.9767 0.3488 0.3023  0.6047 0.8372  0.0465 0.0 0.9535
PageBlocks 0.5486 0.5694 0.3333 0.2847  0.3958 0.625 0.4306 0.5069 0.6042
Pendigits 0.9318 0.9318 0.7727 0.3864  0.9091 0.0227  0.3182 0.0 0.7045
Pima 0.4177  0.443 0.4557 0.3671  0.4304 0.5443 0.5316 0.5316 0.6076
Satellite 0.641 0.7115 0.4231 0.3446 0.492 0.4327  0.5849 0.4744 0.7244
Satimage-2 0.8696 0.8696 0.6522 0.6087  0.7826 0.8696  0.8696 0.2609 0.8696
Shuttle 0951  0.9575 0.5961 0.2634  0.8429 0.9529  0.9529 0.9492 0.9455
Skin 0.921 0.8454 0.2994 ¥ 0.9361 0.2916  0.2609 0.1852 0.7945
Smtp 0.6154 0.0 0.1538 0.4615 0.0 0.6154 0.0 0.4615 0.5385
SpamBase 0.7636  0.6061 0.3737 0.4182  0.5495 0.7939  0.5192 0.398 0.604
Thyroid 0.8519 0.8519 0.2593 0.6296  0.8148 0.8519  0.6296 0.2593 0.7778
Vertebral 0.6364 0.3636 0.4545 0.5455  0.5455 0.0 0.0 0.0 0.6364
WBC 1.0 0.6667 0.6667 0.3333  0.3333 1.0 1.0 1.0 1.0

WDBC 0.6667 1.0 0.6667 0.6667  0.6667 1.0 0.6667 0.6667 1.0

Wilt 0.4524  0.5952 0.119 0.3333  0.7262 0.0357  0.0119 0.0 0.2619
Wine 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0

WPBC 0.3333 0.2 0.2 0.2 0.2667 0.2667 0.2 0.2667 0.4667
Yeast 0.4935  0.4935 0.3831 0.3117  0.4675 0.3571 0.2727 0.3182 0.4026
Average 0.6203 0.5651 0.4274 0.3888  0.5252 0.4926  0.3948 0.3338 0.6170
Average Rank 2.7429 3.4571 5.5143 7.0571 43714 4.0286  5.8286 6.2 2.8286

7 Indicates that no result was available within 12 hours.
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Table 11: AUCPR and average Rank of all methods across different datasets, the numbers of labeled
anomalies is 20.

Dataset READ DevNet DeepSAD PReNet RoSAS FeaWAD iForest DeepSVDD ‘ ProFiT
ALOI 0.0491 0.0454 0.0651 0.0412  0.0491 0.0481 0.0352 0.0421 0.0452
Annthyroid 0.7412  0.6686 0.3531 0.3866  0.6879 0.3571 0.3393 0.1917 0.7841
Breastw 0.8009  0.9958 0.8481 0.5802 0.724 0.9743 0.9841 0.8743 0.9827
Cardio 0.9013 0.8524 0.4797 0.5166  0.6203 0.8847  0.5551 0.6053 0.8058
Cardiotocography  0.7429  0.8304 04213 0.4193  0.4881 0.7129  0.4312 0.4359 0.6522
Celeba 0.2198 0.0238 0.0732 ¥ 0.1176 0.2173 0.0739 0.0762 0.2451
Census 0.2003  0.0688 0.0999 ¥ 0.1574 0.2152  0.0812 0.0829 0.2537
Donors 0.965 0.3928 0.7455 ¥ 0.7033 0.6194  0.1306 0.2046 0.8912
Fault 0.568  0.5813 0.4847 0.4567  0.5717 0.4299  0.4068 0.3387 0.6689
Http 0.9987 0.9897 0.9927 ¥ 0.9985 0.9993  0.9884 0.379 0.9853
InternetAds 0.5291 0.6 0.4516 0.4529 04797 0.5371 0.5318 0.2836 0.8166
Ionosphere 0.8051 0.8872 0.9246 0.8045  0.7577 0.8036  0.8121 0.7265 0.8847
Landsat 0.5601 0.516 0.3655 0.3703  0.5063 0.3498  0.1825 0.3059 0.2897
Letter 0.3568  0.319 0.5015 0.3157 04311 0.1297  0.1284 0.1136 0.1542
Magic 0.6849  0.5497 0.5584 0.365 0.5521 0.6265 0.6351 0.6445 0.7501
Mammography 0.5206  0.369 0.1748 0.3394 04173 0.4788  0.2295 0.201 0.4518
Mnist 0.6706  0.5323 0.2591 0.2275  0.4319 0.6958  0.2667 0.2937 0.7868
Optdigits 0.9929  0.9969 0.5844 0.3338  0.9395 0.0814  0.0583 0.0257 0.9853
PageBlocks 0.7517 0.5676 0.407 0.3945  0.5557 0.6732  0.5231 0.5431 0.7465
Pendigits 0.9667 0.9638 0.6168 0.8006  0.9495 0.6224  0.2044 0.1068 0.6598
Pima 0.508  0.6763 0.5373 0.4815  0.5604 0.5936  0.5318 0.546 0.6590
Satellite 0.7136  0.7846 0.6053 0.4264  0.5524 0.6263 0.6895 0.5706 0.8105
Satimage-2 0.8979  0.9017 0.5909 0.7791  0.8189 0.8783 0.879 0.1916 0.8494
Shuttle 0.9567 0.9586 0.8314 0.3964 0.9615 0.9552  0.9783 0.9121 0.9833
Skin 0.7328 0.8383 0.5576 ¥ 0.8926 0.4551 0.2609 0.2852 0.7565
Smtp 0.4769 0.3301 0.3318 0.2763  0.0702 0.476 0.006 0.3423 0.3112
SpamBase 0.625  0.5953 0.4457 0.4701 0.615 0.5796  0.5061 0.3929 0.8998
Thyroid 0.8507 0.9199 0.519 0.7945  0.9515 0.7437 0.559 0.274 0.9049
Vertebral 0.5911  0.251 0.4853 0.6152 0.65 0.1989  0.1241 0.1047 0.6801
WBC 1.0 0.9167 0.8095 0.7 0.4321 0.9167 1.0 1.0 1.0

WDBC 1.0 1.0 1.0 1.0 1.0 1.0 0.8333 0.8095 1.0

Wilt 0.815 0.7543 0.3973 0.4935 0.8749 0.0624  0.0469 0.0366 0.9115
Wine 1.0 1.0 1.0 1.0 1.0 1.0 0.2143 0.1288 1.0

WPBC 0.4307 0.3081 0.4392 0.3606  0.4993 0.2278  0.2583 0.2774 0.4134
Yeast 0.4011 0.3981 0.3862 0.3679  0.3879 0.3628  0.3107 0.3103 0.3725
Average 0.6864 0.6395 0.5241 0.4989 0.6116 0.5581 0.4227 0.3616 0.6969
Average Rank 2.6571 3.5143 5.4857 6.7714  4.0286 45429  6.5429 7.2 2.8286

7 Indicates that no result was available within 12 hours.
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Table 12: F1 score and average Rank of all methods across different datasets, the numbers of labeled
anomalies is 20.

Dataset READ DevNet DeepSAD PReNet RoSAS FeaWAD iForest DeepSVDD ‘ ProFiT
ALOI 0.0637  0.0659 0.1011 0.0505  0.0879 0.0681 0.033 0.0593 0.0703
Annthyroid 0.6879  0.6647 0.3699 0.3815  0.6532 0.3237  0.3006 0.2081 0.7399
Breastw 0.726  0.9589 0.7671 0.4521  0.6759 0.9589  0.9315 0.7917 0.9589
Cardio 0.8214 0.75 0.4286 0.4821 0.5893 0.7857  0.5179 0.5893 0.6964
Cardiotocography  0.6809  0.7234 04184 0.3333  0.4894 0.7234  0.4397 0.4823 0.6596
Celeba 0.2827  0.0308 0.133 ¥ 0.1819 0.2771 0.119 0.1155 0.2954
Census 0.2557  0.074 0.1473 ¥ 0.24 0.2739 0.056 0.0708 0.2999
Donors 0.9537 0.3806 0.6845 ¥ 0.6776 0.6822  0.1016 0.2094 0.8565
Fault 0.5311  0.5455 0.4833 0.3923  0.5885 0.4593 0.4019 0.3254 0.6077
Http 0.9985 0.9883 0.9723 ¥ 0.9985 0.9985  0.9854 0.0 0.9919
InternetAds 0.4632 0.5474 0.3895 0.3895  0.4421 0.4737  0.4842 0.3263 0.7263
Ionosphere 0.7027  0.7838 0.8108 0.7297  0.6757 0.7297  0.7027 0.5946 0.8378
Landsat 0.594  0.6216 0.3333 0.3158  0.5338 0.2456  0.1654 0.2581 0.3308
Letter 0.3939  0.3939 0.4848 0.4242  0.4545 0.1212  0.1818 0.1515 0.2121
Magic 0.5983 0.5311 0.5119 0.33 0.5104 0.542 0.5395 0.5904 0.6655
Mammography 0.5765 0.4118 0.3206 0.4118 0.4706 0.4941 0.2471 0.3059 0.5176
Mnist 0.6509 0.6038 0.2972 0.217 0.4623 0.6226 0.316 0.3255 0.7547
Optdigits 0.9767 0.9535 0.5116 0.3023  0.8372 0.0 0.0465 0.0 0.9767
PageBlocks 0.7153  0.6389 0.3819 0.4514  0.5347 0.6181 0.4306 0.5069 0.6319
Pendigits 0.9091  0.9545 0.6136 0.7955 09318 0.5909  0.3182 0.0 0.6136
Pima 0.557  0.6709 0.4684 0.4304 0.5316 0.5443 0.5316 0.5316 0.5949
Satellite 0.6218  0.7356 0.5481 0.3798 0.5128 0.524 0.5849 0.4744 0.6907
Satimage-2 0.8696  0.8696 0.6087 0.7391  0.7826 0.8696  0.8696 0.2609 0.7826
Shuttle 0.9686 0.9769 0.8142 0.3595  0.9806 0.9464  0.9529 0.9492 0.9584
Skin 0.8336  0.8307 0.4928 ¥ 0.8987 0.5103 0.2609 0.1852 0.7878
Smtp 0.6154 0.5385 0.4615 0.5385 0.0 0.6154 0.0 0.4615 0.3077
SpamBase 0.5596  0.4808 0.3919 0.3879  0.5677 0.5758  0.5192 0.398 0.8081
Thyroid 0.7778  0.8889 0.4815 0.7778  0.8519 0.6667  0.6296 0.2593 0.8148
Vertebral 0.4545  0.1818 0.3636 0.5455  0.4545 0.1818 0.0 0.0 0.6364
WBC 1.0 0.6667 0.6667 0.3333  0.3333 0.6667 1.0 1.0 1.0

WDBC 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.6667 1.0

Wilt 0.7381 0.7024 0.3571 0.4643  0.7857 0.0119  0.0119 0.0 0.8095
Wine 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0

WPBC 0.4 0.3333 0.2667 0.3333  0.4667 0.2 0.2 0.2667 0.3333
Yeast 0.3896  0.4351 0.3701 0.3831  0.3766 0.3701 0.2727 0.3182 0.3896
Average 0.6677 0.6267 0.4986 04711  0.5879 0.5335 0.3948 0.3338 0.6674
Average Rank 2.6571 3.2286 5.6286 6.4857  4.0286 43429 65714 7.0857 2.4571

7 Indicates that no result was available within 12 hours.
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Table 13: AUCPR and average Rank of all methods across different datasets, the numbers of labeled
anomalies is 30.

Dataset READ DevNet DeepSAD PReNet RoSAS FeaWAD iForest DeepSVDD ‘ ProFiT
ALOI 0.0582 0.0443 0.0325 0.0397  0.0506 0.0474  0.0352 0.0421 0.0366
Annthyroid 0.6872  0.3153 0.7898 0.6371  0.3669 0.5817  0.3393 0.1917 0.8269
Breastw 0.9358  0.978 0.9523 0.9959  0.9403 0.7888  0.9841 0.8743 0.9781
Cardio 0.7212  0.9035 0.8771 0.8462 0.5113 0.5929  0.5551 0.6053 0.9196
Cardiotocography  0.5998  0.6261 0.7352 0.6988  0.3796 0.536 0.4312 0.4359 0.8151
Celeba 0.2123  0.0363 0.1019 ¥ 0.1494 0.1985 0.0739 0.0762 0.2436
Census 0.105  0.1717 0.1914 ¥ 0.0999 0.1716  0.0812 0.0829 0.2588
Donors 0.8137  0.9598 0.5913 ¥ 0.9672 0.6787  0.1306 0.2046 0.9751
Fault 0.5335 0428 0.5662 0.556 0.49438 0.4479  0.4068 0.3387 0.5282
Http 0.9985  0.9997 0.9991 ¥ 0.9863 0.9985 0.9884 0.379 0.9851
InternetAds 0.3046  0.5899 0.5448 0.4438  0.3446 0.3174  0.5318 0.2836 0.5838
Ionosphere 0.8187 0.7768 0.8817 0.9646  0.9431 0.853 0.8121 0.7265 0.9478
Landsat 0454  0.2015 0.5131 0.5299 0.4195 0.2812  0.1825 0.3059 0.3406
Letter 0.5554  0.0613 0.5936 0.4468  0.6766 0.5716  0.1284 0.1136 0.2896
Magic 0.5499 0.5811 0.6002 0.5818 0.5722 0.3953 0.6351 0.6445 0.7665
Mammography 0.4894  0.446 0.5073 0.3895 0.2314 0.3682  0.2295 0.201 0.4195
Mnist 0.6346  0.556 0.7627 0.6489  0.3368 0.2661 0.2667 0.2937 0.7401
Optdigits 0.9704  0.9325 0.9984 0.9962 0.675 0.5771 0.0583 0.0257 0.9795
PageBlocks 0.5465 0.6985 0.718 0.5446  0.5126 0.4025 0.5231 0.5431 0.6651
Pendigits 0.9764 0.1976 0.9692 0.9681 0.7529 0.8827  0.2044 0.1068 0.7104
Pima 0.5468 0.5476 0.5891 0.6702  0.5319 0.466 0.5318 0.546 0.6678
Satellite 0.5335 0.6737 0.7508 0.805 0.6106 0.4393 0.6895 0.5706 0.8375
Satimage-2 0.8439  0.8798 0.8985 0.9054  0.8539 0.7976 0.879 0.1916 0.8734
Shuttle 0.98 0.9536 0.9552 0.9696  0.7924 0.6203 0.9783 0.9121 0.9628
Skin 0.8139  0.8941 0.7763 ¥ 0.9137 0.5164  0.2609 0.1852 0.8943
Smtp 0.0708 0.6164 0.3599 0.209 0.6194 0.2549 0.006 0.3423 0.0315
SpamBase 0.5873  0.4547 0.7026 0.7109  0.4445 0.407 0.5061 0.3929 0.9024
Thyroid 0.8102 0.8925 0.8923 0.8674  0.6363 0.7103 0.559 0.274 0.9112
Vertebral 0.7003  0.1785 0.7021 0.3461  0.6552 0.7401 0.1241 0.1047 0.7536
WBC 0.4321 09167 1.0 0.9167  0.8095 0.7 1.0 1.0 1.0

WDBC 1.0 1.0 1.0 1.0 1.0 1.0 0.8333 0.8095 1.0

Wilt 0.8772 0.0611 0.8122 0.5717 0.5104 0.8383 0.0469 0.0366 0.8831
Wine 1.0 1.0 1.0 1.0 1.0 1.0 0.2143 0.1288 1.0

WPBC 0.4522  0.2425 0.3951 0.3736  0.4816 0.4249  0.2583 0.2774 04718
Yeast 0468  0.3402 0.4263 0.435 0.3465 0.4104  0.3107 0.3103 0.4176
Average 0.6309 0.5759 0.6910 0.6690  0.5891 0.5509  0.4227 0.3588 0.7033

Average Rank 4.1143  4.7714 2.9429 4.1429  5.0857  5.7429  6.6571 7.3714 2.7429

7 Indicates that no result was available within 12 hours.
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Table 14: F1 score and average Rank of all methods across different datasets, the number of labeled
anomalies is 30.

Dataset READ DevNet DeepSAD PReNet RoSAS FeaWAD iForest DeepSVDD ‘ ProFiT
ALOI 0.0879  0.0681 0.044 0.0571  0.0945 0.0879 0.033 0.0593 0.0352
Annthyroid 0.7052  0.2948 0.7283 0.6301  0.3699 0.6243 0.3006 0.2081 0.7861
Breastw 0.8493  0.9589 0.8904 0.9589 0.8767 0.6986  0.9315 0.7917 0.9589
Cardio 0.6964  0.7857 0.8036 0.7143  0.4286 0.5357  0.5179 0.5893 0.8214
Cardiotocography  0.5674  0.6454 0.6525 0.7021  0.3688 0.4894  0.4397 0.4823 0.7801
Celeba 0.2891 0.0825 0.2099 ¥ 0.2099 0.2792 0.119 0.1155 0.2778
Census 0.1685 0.1913 0.2496 0.1396  0.1409 0.0 0.056 0.0708 0.3088
Donors 0.8721  0.9057 0.5532 ¥ 0.9264 0.8038  0.1016 0.2094 0.8834
Fault 0.5455  0.4402 0.5455 0.5646 0.445 0.4067  0.4019 0.3254 0.4689
Http 0.9971  0.9985 0.9956 0.9854  0.9839 0.0 0.9854 0.0 0.9912
InternetAds 0.3158 0.5474 0.4947 0.3895 0.3474 0.2947  0.4842 0.3263 0.5684
Ionosphere 0.7297  0.7297 0.8378 0.8919 0.8378 0.7838  0.7027 0.5946 0.8649
Landsat 04612 0.2231 0.5038 0.5238  0.4085 0.2506  0.1654 0.2581 0.3534
Letter 0.5758 0.0 0.6061 0.4545  0.6667 0.5152  0.1818 0.1515 0.303
Magic 0.5464 0.5627 0.586 0.5677  0.5272 0.3622  0.5395 0.5904 0.6853
Mammography 0.5294  0.4706 0.5529 0.4941  0.2706 04118  0.2471 0.3059 0.4471
Mnist 0.5943  0.5755 0.717 0.6321  0.3632 0.2311 0.316 0.3255 0.6981
Optdigits 0.9535  0.907 0.9767 0.9767 0.6977 0.5349  0.0465 0.0 0.9535
PageBlocks 0.5417 0.6319 0.6736 0.5833  0.5278 0.4375 0.4306 0.5069 0.6528
Pendigits 0.9545 0.2273 0.9318 0.9545 0.75 0.8636  0.3182 0.0 0.5909
Pima 0.557 0.5316 0.5443 0.5823 0.481 0.4684  0.5316 0.5316 0.5949
Satellite 0.4984 0.5321 0.7147 0.7612  0.5929 0.367 0.5849 0.4744 0.7179
Satimage-2 0.7826  0.8696 0.8696 0.8696  0.8261 0.7391 0.8696 0.2609 0.8696
Shuttle 0.9695 0.9445 0.9538 0.9658 0.7218 0.5712  0.9529 0.9492 0.9233
Skin 0.8701  0.9065 0.7449 ¥ 0.9472 0.6651 0.2609 0.1852 0.8169
Smtp 0.0 0.6154 0.4615 0.0 0.5385 0.0769 0.0 0.4615 0.4615
SpamBase 0.5374 0.4323 0.6687 0.6545 04 0.402 0.5192 0.398 0.8384
Thyroid 0.7778 0.8519 0.8889 0.9259  0.5556 0.7778  0.6296 0.2593 0.8148
Vertebral 0.5455  0.0909 0.5455 0.3636  0.6364 0.6364 0.0 0.0 0.6364
WBC 0.3333  0.6667 1.0 0.6667  0.6667 0.3333 1.0 1.0 1.0

WDBC 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.6667 1.0

Wilt 0.8571  0.0595 0.7857 0.5476 0.5 0.8214  0.0119 0.0 0.7976
Wine 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0

WPBC 0.4667 0.2 0.4 0.2667 0.4 0.3333 0.2 0.2667 0.4

Yeast 0474 0.3182 0.4545 0.461 0.3247 0.4351 0.2727 0.3182 0.461
Average 0.6186 0.5504 0.6739 0.6339  0.5666 0.4925 0.3948 0.3338 0.6789
Average Rank 3.7143 4.6 2.7429 3.6286  4.9429 6.0 6.8 7.0571 2.6857

7 Indicates that no result was available within 12 hours.
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Table 15: AUCPR and F1 before and after ProFiT. the number of labeled anomalies is 1.

D \ F1 Score \ AUC PR
ataset

| MotherNet ~ ProFiT | MotherNet ProFiT
ALOI 0.0242 0.0264 0.0313 0.0311
Annthyroid 0.1156 0.0906 0.1597 0.1321
Backdoor 0.1961 0.1627 0.1753 0.1596
Breastw 0.2887 0.2887 0.3451 0.3451
Cardiotocography 0.5426 0.5035 0.5906 0.5263
Census 0.0908 0.0805 0.0791 0.0838
Cover 0.0734 0.1352 0.0451 0.0725
Donors 0.4619 0.4619 0.3276 0.3276
Fault 0.2823 0.3038 0.3341 0.3370
InternetAds 0.1825 0.1649 0.1821 0.1909
Tonosphere 0.5676 0.5676 0.6789 0.5808
Letter 0.1010 0.0707 0.0985 0.0673
Lymphography 0.1667 0.1667 0.2203 0.2110
Mnist 0.1274 0.1557 0.1146 0.1288
PageBlocks 0.1042 0.1296 0.1097 0.1492
Satellite 0.2447 0.3072 0.2679 0.3379
Shuttle 0.1325 0.1017 0.1836 0.1189
Skin 0.4577 0.4577 0.4602 0.4602
Vowels 0.0476 0.0238 0.1065 0.0253
WPBC 0.2667 0.1333 0.2890 0.2126
Average | 0.2237 0.2166 |  0.2400 0.2249

Table 16: AUCPR and F1 before and after ProFiT. the number of labeled anomalies is 2.

D \ F1 Score \ AUC PR
ataset

| MotherNet  ProFiT | MotherNet ~ ProFiT
ALOI 0.0315 0.0234 0.0325 0.0329
Annthyroid 0.3237 0.2871 0.3148 0.2594
Backdoor 0.4032 0.4261 0.3834 0.3384
Breastw 0.9521 0.9521 0.9835 0.9835
Cardiotocography 0.4184 0.4752 0.4349 0.4636
Census 0.1168 0.1772 0.0958 0.1399
Cover 0.2911 0.3589 0.2657 0.3350
Donors 0.2746 0.2746 0.3241 0.3241
Fault 0.4083 0.4067 0.4337 0.4358
InternetAds 0.2596 0.2351 0.2588 0.2362
Ionosphere 0.3694 0.2883 0.4252 0.3491
Letter 0.0404 0.0505 0.0772 0.0827
Lymphography 0.1667 0.1667 0.2558 0.2057
Mnist 0.1179 0.0723 0.1156 0.0972
PageBlocks 0.375 0.4028 0.3281 0.3938
Satellite 0.4316 0.4087 0.5166 0.4799
Shuttle 0.5342 0.5702 0.5968 0.6063
Skin 0.6751 0.6751 0.6944 0.6944
Vowels 0.3810 0.3571 0.4262 0.4104
WPBC 0.2444 0.3556 0.3407 0.3729
Average | 0.3408 0.3482 |  0.3652 0.3621
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Table 17: AUCPR and F1 before and after ProFiT. the number of labeled anomalies is 4.

D \ F1 Score \ AUC PR
ataset

| MotherNet ~ ProFiT | MotherNet ProFiT
ALOI 0.0505 0.0418 0.0377 0.0336
Annthyroid 0.5260 0.5395 0.5123 0.5404
Backdoor 0.6112 0.7279 0.6398 0.7152
Breastw 0.9589 0.9589 0.9854 0.9854
Cardiotocography 0.5626 0.5816 0.5829 0.5919
Census 0.1286 0.1938 0.1023 0.1565
Cover 0.6005 0.6559 0.6580 0.6923
Donors 0.5640 0.5640 0.6336 0.6336
Fault 0.3732 0.4083 0.3919 0.4068
InternetAds 0.3018 0.3649 0.2943 0.4107
Tonosphere 0.7658 0.7658 0.7420 0.8153
Letter 0.0404 0.0606 0.0755 0.0892
Lymphography 0.5 0.6667 0.6778 0.8611
Mnist 0.2531 0.1965 0.2386 0.2219
PageBlocks 0.4398 0.3889 04115 0.3770
Satellite 0.6277 0.6378 0.7005 0.7189
Shuttle 0.9156 0.9489 0.9173 0.9413
Skin 0.7905 0.7905 0.7587 0.7587
Vowels 0.3810 0.4286 0.4030 0.4479
WPBC 0.3111 0.3556 0.3566 0.3909
Average | 0.4851 0.5138 | 0.5060 0.5394

Table 18: AUCPR and F1 before and after ProFiT. the number of labeled anomalies is 8.

D \ F1 Score \ AUC PR
ataset

| MotherNet  ProFiT | MotherNet ~ ProFiT
ALOI 0.0330 0.0308 0.0347 0.0336
Annthyroid 0.6397 0.6590 0.6685 0.6750
Backdoor 0.6772 0.7599 0.7207 0.6875
Breastw 0.9589 0.9589 0.9884 0.9884
Cardiotocography 0.6217 0.5768 0.7026 0.6771
Census 0.1824 0.2054 0.1345 0.1624
Cover 0.7488 0.8010 0.8471 0.8948
Donors 0.7454 0.7454 0.8140 0.8140
Fault 0.4705 0.4801 0.4589 0.4766
InternetAds 0.3509 0.5333 0.3581 0.5675
Ionosphere 0.7838 0.8198 0.8184 0.8682
Letter 0.1111 0.1515 0.1216 0.1394
Lymphography 0.5 0.5 0.6389 0.6865
Mnist 0.5047 0.5425 0.5368 0.5631
PageBlocks 0.6204 0.6134 0.6836 0.6558
Satellite 0.6544 0.6410 0.7612 0.7606
Shuttle 0.8669 0.9547 0.9284 0.9553
Skin 0.7864 0.7864 0.7952 0.7952
Vowels 0.5714 0.6190 0.5864 0.6191
WPBC 0.3556 0.4889 0.3854 0.5232
Average | 0.5592 0.5934 | 0.5992 0.6272
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Table 19: AUCPR and F1 before and after ProFiT. the number of labeled anomalies is 16.

D \ F1 Score \ AUC PR
ataset

| MotherNet ~ ProFiT | MotherNet ProFiT
ALOI 0.0381 0.0359 0.0383 0.0399
Annthyroid 0.6667 0.6744 0.7133 0.7263
Backdoor 0.5352 0.7274 0.5750 0.7810
Breastw 0.9589 0.9589 0.9926 0.9926
Cardiotocography 0.6572 0.6336 0.6834 0.6844
Census 0.2504 0.2173 0.1926 0.1785
Cover 0.8517 0.8772 0.9381 0.9537
Donors 0.8394 0.8394 0.8973 0.8973
Fault 0.5199 0.5199 0.5305 0.5407
InternetAds 0.4281 0.5509 0.4194 0.5675
Tonosphere 0.8018 0.8468 0.8907 09114
Letter 0.1515 0.1616 0.1523 0.1617
Lymphography 0.5 0.5 0.6389 0.6778
Mnist 0.6572 0.7060 0.7238 0.7617
PageBlocks 0.6597 0.6227 0.6990 0.6806
Satellite 0.7051 0.6998 0.8179 0.8197
Shuttle 0.9473 0.9455 0.9681 0.9633
Skin 0.7953 0.7953 0.7865 0.7865
Vowels 0.6429 0.6905 0.7248 0.7643
WPBC 0.4222 0.3778 0.4054 0.5153
Average | 0.6014 0.6190 | 0.6394 0.6702

Table 20: AUCPR and F1 before and after ProFiT. the number of labeled anomalies is 32.

D \ F1 Score \ AUC PR
ataset

| MotherNet  ProFiT | MotherNet ~ ProFiT
ALOI 0.0344 0.0432 0.0378 0.0426
Annthyroid 0.6994 0.7071 0.7346 0.7465
Backdoor 0.6011 0.7474 0.6894 0.7501
Breastw 0.9589 0.9589 0.9879 0.9879
Cardiotocography 0.7329 0.7376 0.8050 0.8029
Census 0.2954 0.2978 0.2469 0.2496
Cover 0.8405 0.8624 0.9274 0.9440
Donors 0.8642 0.8642 0.9321 0.9321
Fault 0.5502 0.5678 0.5683 0.5842
InternetAds 0.4982 0.6667 0.5341 0.6928
Ionosphere 0.8649 0.9189 0.9392 0.9631
Letter 0.2828 0.3030 0.2420 0.2478
Lymphography 0.5 0.5 0.5833 0.7056
Mnist 0.7343 0.7547 0.8133 0.8237
PageBlocks 0.6782 0.6713 0.7017 0.7506
Satellite 0.7276 0.7254 0.8457 0.8448
Shuttle 0.9680 0.9658 0.9918 0.9816
Skin 0.7996 0.7996 0.8283 0.8283
Vowels 0.7857 0.7857 0.8754 0.8580
WPBC 0.4222 0.5111 0.5273 0.5505
Average | 0.6419 0.6694 |  0.6906 0.7143
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