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ABSTRACT

We present a novel approach for conditional sampling of denoising diffusion prob-
abilistic models (DDPM) using noise-free guidance, which eliminates the need of
noise-finetuning, and can be applied to a wide range of guidance functions operat-
ing on clean data. We observe that the performance gap between previous clean
estimation (x̂0)-based methods and noised sample (xt)-based methods stems from
the incorporation of estimation deviation in the clean-estimation guidance process.
The former contrasts with noise-guided techniques where noise contamination is
addressed by a noise-finetuned classifier, leading to inconsistent and unreliable
guidance gradients from the inaccurate clean estimation. To tackle this issue, we
propose a two-fold solution: (1) implementing momentum-driven gradient filtering
to stabilize the gradient transmitted from the guidance function, ensuring coherence
throughout the denoising process, and adaptively adjusting the update stepsize
of pivot pixels to increase their resilience against detrimental gradients; and (2)
introducing a guidance suppression scheme to alleviate the impact of unreasonably
large weights assigned considering the significantly larger estimation deviation in
the early stage. Extensive experiments demonstrate the superiority of our method
on clean guided conditional image generation. Moreover, our method offers the
potential for reusing guidance on DDPM with other noise schedules and we apply
it to the arbitrary style transfer task, achieving state-of-the-art performance without
being limited to labeled datasets.

1 INTRODUCTION

Recent years have witnessed a flourish of deep generative models. With the help of powerful
architectures such as GAN (Goodfellow et al., 2020; Karras et al., 2019), VAE (Kingma & Welling,
2013; Vahdat & Kautz, 2020), and autoregressive models (Child et al., 2019), machines can learn from
existing real-world data and generate realistic images (Razavi et al., 2019), natural language (Brown
et al., 2020), and audio (Oord et al., 2016). Recently, a new class of generative models, denoising
diffusion probabilistic models (DDPM) (Ho et al., 2020), has started to make a splash across the
generation fields and has achieved state-of-the-art performance in many downstream applications (Luo
& Hu, 2021; Ramesh et al., 2022; Preechakul et al., 2022; Saharia et al., 2022c). On a Markov chain,
DDPM gains its generative power by adding noise to clean data and learning the reverse process to
denoise and generate new data. Compared with traditional generative models, it is training-stable and
allows for better generative diversity with higher fidelity and richer generative details.

In order to generate data with desired semantics using DDPM, great efforts have been made for
conditional sampling. Mainstream approaches can be broadly classified into four categories: 1) The
first kind (Dhariwal & Nichol, 2021; Song et al., 2020b) proposes to use the gradients of noised
guidance functions (e.g. noised classifiers or noised CLIP) for conditional sampling. However, it
introduces additional costs for training or finetuning the guidance functions on levels of noised data,
and is limited to only labeled datasets (Dhariwal & Nichol, 2021). 2) The second kind employs
classifier-free guidance (Ho & Salimans, 2022; Ramesh et al., 2022; Rombach et al., 2022b), which
performs implicitly guided sampling with the difference between the conditional and unconditional
scores to remove the extra classifier. This approach merges the separate training phases for classifiers
and diffusion models into one, while it doubles the sampling cost. Meng et al. (2023) proposes to
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Figure 1: Given arbitrary conditions on clean samples, our method guides diffusion models throughout
the denoising process using the clean estimation as a proxy. Gradient filtering and gradient suppression
schemes are proposed to solve the estimation deviation problems during the guidance process.

distill classifier-free guided diffusion model to reduce the sampling cost. However, it is still limited
to paired data, and requires retraining the entire diffusion model, rather than noised classifiers only,
for different types of guidance, thus placing extremely high demands on computational resources
and causing unavoidable inconveniences. 3) For the third kind, conditional sampling is achieved
through outline-based guidance, such as using strokes (Meng et al., 2021) or low-frequency image
component (Choi et al., 2021) as references for a conditional generation. Unfortunately, these
methods can only provide a rough guidance direction, limiting deeper and broader control over the
generated results. 4) The last kind (Kim et al., 2022) achieves conditional generation by finetuning
the diffusion model according to semantic requirements. This method requires frequent finetuning
for different inputs, imposing a computational burden.

Thus a natural question arises: can conditional sampling be achieved in a more general, lightweight,
and efficient way? Recently, Graikos et al. (2022) make a similar attempt and propose to treat DDPM
as plug-and-play priors. They formulate the generation process as a stochastic optimization problem,
constraining intermediate steps not to stray too far from the DDPM process while maximizing its
likelihood using a clean guidance function only. However, due to its approximation for the distribution
dependency between p(xt|x0) and p(xt−1|x0), their approach is difficult to generate realistic samples
on unaligned datasets like ImageNet. At the same time, other works (Crowson; Avrahami et al., 2022)
explore to leverage the clean estimation x̂0 for guidance. Although they are noise-training free, they
do not achieve comparable results to previous noise-guidance-based methods (Kim et al., 2022). Yu
et al. (2023) and Bansal et al. (2023) intend to improve the fidelity of clean guided DDPM samples
with time-travel strategies. However, this approach increases the sampling cost by multiple times and
leads to sub-optimal overall sampling quality due to insufficient data coverage.

Our key observation reveals that the estimation deviation of x̂0 is incorporated into the original
clean-estimation guidance process, which contrasts with the noise-guided methods where noise
contamination on xt is addressed by a noise-finetuned classifier. Consequently, the guidance gradient
from the inaccurate x̂0 is not entirely consistent and reliable, resulting in suboptimal outcomes.
Drawing inspiration from neural network training optimizers, we propose a momentum-driven
gradient filtering approach for clean estimation guided conditional DDPM. Specifically, we employ
first- and second-order momentum to stabilize the gradient transmitted from the guidance function,
ensuring coherence throughout the denoising process, and adaptively adjust the update stepsize of
pivot pixels to increase their resilience against detrimental gradients. Furthermore, we identify that in
original clean-estimation-based techniques, the early gradient is assigned unreasonable large weights
considering the substantially larger estimation deviation in the early stage. By rectifying this issue
using our proposed gradient suppression scheme, performance can be further enhanced. As shown
in Fig. 1, our method is simple and effective, and extensive experimental results demonstrate its
superiority on boosting the performance of downstream tasks.

In the following, we summarize our main contributions:

1) We introduce the momentum-driven filtering and the gradient suppression scheme to the clean
estimation guided conditional sampling for DDPM.

2) Our method utilizes clean guidance functions, eliminating the need for additional training. More-
over, it is versatile and applicable to a wide array of guidance functions on clean data and is not
limited to labeled datasets.

3) We demonstrate the feasibility and generalization capability of our framework with state-of-the-art
performance on several downstream tasks.
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2 RELATED WORK

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

DDPM represents a new class of generative models that offer better generation quality and diversity
compared to traditional methods like Generative Adversarial Networks (GAN)(Goodfellow et al.,
2020; Brock et al., 2018b; Karras et al., 2019) and Variational Autoencoder (VAE)(Kingma & Welling,
2013; Razavi et al., 2019; Vahdat & Kautz, 2020). Song et al. (2020a) introduced the Denoising
Diffusion Implicit Model (DDIM), which connects with score matching and inspires subsequent
sampling acceleration research (Bao et al., 2022a; Lu et al., 2022; Karras et al., 2022; Watson et al.,
2021; Liu et al., 2022). Efforts have also been made to enhance model generation capabilities, such
as learnable variance, cosine noise schemes and model architecture improvements by Dhariwal
& Nichol (2021), and generalizing the Gaussian noise schedule of DDPM to various degradation
schedules by Bansal et al. (2022). Daras et al. (2022) introduced momentum for unconditional
generation, signifying a focus on a consistent and stable generation process. DDPM has been used in
numerous downstream tasks such as text-to-image generation (Ramesh et al., 2022; Saharia et al.,
2022a; Rombach et al., 2022b), image super-resolution (Choi et al., 2021; Li et al., 2022a; Saharia
et al., 2022b), 3D point cloud generation (Luo & Hu, 2021), speech and text generation Chen et al.
(2020); Austin et al. (2021), image in-painting (Lugmayr et al., 2022; Song et al., 2020b), and video
generation (Ho et al., 2022a; Yang et al., 2022; Ho et al., 2022b).

2.2 CONDITIONAL SAMPLING FOR DDPM

Conditional sampling aims to generate data with desired semantics. Dhariwal & Nichol (2021)
employ gradient-based noised classifier guidance, enhancing DDPM’s generative capabilities, but
with added computational overhead for training classifiers on noised data. Ho & Salimans (2022)
introduce classifier-free guidance, removing extra classifiers and inferring the implicit guidance
from the gap between the conditional and unconditional predictions (Ramesh et al., 2022), enabling
large-scale model training (Ramesh et al., 2022; Nichol et al., 2021; Saharia et al., 2022a). However,
this approach doubles the sampling cost and supports only specific guidance types, with both methods
constrained to paired data (Dhariwal & Nichol, 2021). Our proposed method overcomes these
limitations, offering a new conditional sampling paradigm with reduced training burden.

Meng et al. (2021) and Choi et al. (2021) investigate lightweight conditional sampling methods based
on stroke and low-frequency components, but offer limited control over results. Graikos et al. (2022)
employ diffusion models as plug-and-play priors. Crowson explore clean estimation-based conditional
sampling, but their outcomes are not as comparable to the noise-guidance-based methods. Both Yu
et al. (2023) and Bansal et al. (2023) attempt to improve clean-estimation guidance using time-travel
strategies, inccuring multiple times more sampling cost. Our approach leverages momentum-driven
gradient filtering and gradient suppression mechanisms to improve clean-estimation guided DDPM
with no extra computation cost.

2.3 STYLE TRANSFER

Style transfer is a classic and influential task in image generation, with seminal works like NST (Gatys
et al., 2016) and AdaIN (Huang & Belongie, 2017) impacting other fields (Karras et al., 2019; Park
et al., 2019; Choi et al., 2020; Zheng et al., 2019). The task can be categorized into single model
single style (SMSS)(Johnson et al., 2016a; Ulyanov et al., 2016b;a), single model multiple styles
(SMMS)(Chen et al., 2017; Dumoulin et al., 2016), and single model arbitrary styles (SMAS)(Ghiasi
et al., 2017; Huang & Belongie, 2017; Park & Lee, 2019; Li et al., 2017b; Gatys et al., 2016; Chen
et al., 2021). The third category, also known as arbitrary or universal style transfer, is the most
challenging and our primary focus. Gatys et al. (2016) first apply neural networks to this task, using
Gram matrices of VGGNet-generated feature maps (Simonyan & Zisserman, 2014) to represent
image styles. Huang & Belongie (2017) propose the feed-forward AdaIN method, aligning mean and
variance of feature maps, while Li et al. (2017b) match Gram matrices of content and style images
for style transfer. Subsequent works (Deng et al., 2021a; Yao et al., 2019; Liu et al., 2021a; Wang
et al., 2020; Chen et al., 2021; Lu & Wang, 2022) improve transfer consistency and quality, but
generating realistic results remains challenging. Arbitrary style transfer, a classic task on unlabeled
datasets, brings inherent difficulties for previous DDPM methods. However, our approach effectively
addresses arbitrary style transfer, demonstrating potential for similar downstream tasks.
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3 BACKGROUND

Unconditional Sampling For a data distribution x0 ∼ q(x0), the forward process progressively
adds Gaussian noise to it until it converges to isotropic Gaussian xT ∼ N (0, I), given large enough
T and suitable noise schedule βt. The noised sample xt can be obtained from the Markov Chain:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

xt =
√
1− βtxt−1 +

√
βtϵt, (2)

or directly conditioned on the clean data x0, with αt = 1− βt and ᾱt = Πt
i=1αi:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (3)

xt =
√
ᾱtx0 +

√
1− ᾱtϵ̄t. (4)

In the reverse process, DDPM is trained to learn a parameterized Gaussian transition pθ(xt−1|xt)
to approximate the posterior q(xt−1|xt, x0) given by the Bayes Theorem. New samples can be
generated by iteratively denoising the random noise xT ∼ q(xT ) with:

pθ(xt−1|xt) = N (xt−1; µ̃θ(xt, t),Σθ(xt, t)), (5)

where µ̃θ(xt, t) = 1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)) and the variance Σθ(xt, t) can be fixed as βtI or

(1−ᾱt−1)βt

1−ᾱt
I (Ho et al., 2020), or learned by neural networks (Nichol & Dhariwal, 2021).

Conditional Sampling with Noised Guidance Given the powerful generative ability of DDPM, it
is natural to explore how to turn it from an unconditional model p(x0) to a conditional one p(x0|y).
Taking pθ(xt−1|xt, y) as the conditional reverse process, the conditional distribution follows:

pθ(x0:T |y) = p(xT )

T∏
i=1

pθ(xt−1|xt, y). (6)

Existing works bridge the conditional sampling with the unconditional sampling using:

pθ,ϕt
(xt−1|xt, y) = Zpθ(xt−1|xt)pϕt

(y|xt−1), (7)

where Z is a normalizing constant, and pϕt
(y|xt−1) represents the guidance function given xt−1.

In order to obtain pϕt
(y|xt−1), some previous works resort to extra noised neural networks, for

example, classifiers pϕt
(y|xt) on noised images (Dhariwal & Nichol, 2021; Song et al., 2020b)

or noise-finetuned CLIP (Liu et al., 2021b). By using gradients of the noised neural network, the
conditional sampling with guidance can be formulated as:

µ̃θ,t ← µ̃θ,t + sΣθ,t∇xt
log(pϕt

(y|xt)), (8)

where µ̃θ,t is the Gaussian mean and s is a scaling factor for guidance gradients.

4 METHODS

Noised-sample-based guidance requires training of an extra time-dependent model pϕ(y|xt, t) on the
same noise schedule as the diffusion model. In contrast, applying guidance on clean estimation(Bansal
et al., 2023; Yu et al., 2023) seamlessly incorporates any off-the-shelf model and broadens the range
of applicable guidance conditions to include nearly any objective function. However, these advantages
do not inherently yield performance comparable to the guidance on noised samples. We propose the
following plug-and-play methods that improve the performance of clean-estimation guidance. We first
outline the clean-estimation guidance approach in Sec. 4.1. Next, we present our key observations on
clean-estimation guidance that impact its performance and introduce our momentum-driven gradient
filtering approach and gradient suppression scheme in Sec. 4.2 and Sec. 4.3, respectively.

4.1 NOISE-FREE GUIDANCE VIA CLEAN ESTIMATION

When sampling from a pretrained DDPM ϵ̄θ,t(xt, t), a straightforward approach for applying guidance
on noised sample xt would be bearing extra costs to train a noise-robust model. Alternatively, a more
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flexible and efficient approach is taking the clean estimation x̂0(xt, t) as a proxy for noised samples.
Derived from Eq.4, the clean estimation for a noised sample xt can be computed in one step as:

x̂0(xt, t) =
1√
ᾱt

(xt −
√
1− ᾱtϵ̄θ,t(xt, t)). (9)

Instead of training a separate model to learn the log probability log pt(y|xt) of noised samples, we
can utilize the widely-used objective functions on clean data P(·) as guidance since they are now
conditioned on the clean samples. Similar to classifier guidance formulated as Eq. 8, guidance via
clean estimation can be achieved by:

µ̃θ,t ← µ̃θ,t + sΣθ,t∇xt
log(P(y, x̂0(xt, t))), (10)

where y represents a wide range of guidance functions applied to the regular clean samples. The
sole constraint on the guidance function P , which serves as an implicit premise for the proof of the
classifier guidance, is the consistency with a probability density function. For regular loss functions
that operate on clean samples, this requirement can be readily met using a negative exponential
mapping function. In the case of latent diffusion models (Rombach et al., 2022a), we integrate the
latent decoder into the guidance function to map the latent features to the pixel space before applying
the guidance on the clean images.

Although the clean-estimation guidance appears ingenious and practical thus far, it typically demon-
strates inferior sampling results compared to the noised guidance. We discovered that the primary
reason is that the guidance gradient is negatively affected by inaccurate clean estimations, particularly
those derived from the highly noised samples during the early stage of the denoising process.

4.2 MOMENTUM-DRIVEN GRADIENT FILTERING

The gradient of the guidance function on the clean estimation continues to direct the denoising
process of the noised samples, as ensured by the chain rule:

∂ log(P(y, x̂0))

∂xt
=

∂ log(P(y, x̂0))

∂x̂0
· ∂x̂0

∂xt
, (11)

which contains two terms. The first term is the partial derivatives of the log probability w.r.t the clean
estimation x̂0. The second term can be written as ∂x̂0

∂xt
= 1√

ᾱt

(
1−
√
1− ᾱt

∂ϵ̄θ,t(xt,t)
∂xt

)
, which only

depends on the DDPM model. Due to the inaccurate clean estimation, the first term is relatively
unstable during the denoising process. The noisy guidance can be confirmed by evaluating the
guidance gradients during the denoising process, as shown in Fig. 2(a). With only a clean classifier,
the guidance function P(y, x̂0) proves to be less reliable than the noise-robust classifier(Dhariwal &
Nichol, 2021). As a consequence, it can generate inaccurate guidance at certain timesteps, ultimately
leading to the degradation of the sample quality.

Base on this fact, our objective is to identify a method capable of filtering the noise present in
the gradient. An intuitive approach is the momentum algorithms that are heavily used in the
optimizers(Kingma & Ba, 2014). With mt = ηm ·mt+1+(1−ηm) ·gt, vt = ηv ·vt+1+(1−ηv) ·g2t
being the first- and second-order momentum of the historical gradient from T to t+ 1, we define our
momentum-driven gradient filtering as:

ḡt = λ · mt/(1− ηT−t+1
m )√

vt/(1− ηT−t+1
v ) + ε

, (12)

where the ηm, ηv are the weighting parameters of the momentum algorithms and λ indicates the
learning rate. More implementation details can be found in Appendix C.1.

As the filtering scheme involves both first- and second-order momentum, the impact of our
Momentum-driven Gradient Filtering approach is two-fold. As Fig. 2(b) shows, the first-order
momentum stabilizes the gradient by computing an exponentially weighted sum of the historical
gradients, making it less noisy and more robust to the inaccurate estimation of the clean samples.
The second-order momentum adaptively adjusts the update stepsize of each pixel according to the
history of the squared gradients. Throughout the sampling process, foreground pixels, which are
more sensitive to the guidance conditions, tend to be updated more frequently by the guidance
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(a) (b)
Figure 2: The cosine value of the angle between the gradient vector at timestep t and that at timestep
t+ 1. The lower the curve, the noisier the gradient direction. (a) shows the guidance gradient via
clean-estimation (blue) and its first term (orange), which is related to clean-estimation and relatively
unstable, causing noisy guidance. (b) shows the unprocessed gradient gt given by the clean-estimation
guidance and the filtered gradient ḡt by our proposed method. More samples are in Appendix C.2.

Figure 3: A randomly generated sample guided by the filtered gradient. We present its denoising
process (upper) and the corresponding second-order momentum (lower). More are in Appendix C.3.

gradients. These pixels are assigned with smaller learning rates to prevent them from being easily
misled by occasional inaccurate gradients. For instance, during the conditional generation process
of the image depicted in Fig. 3, the pixels exhibiting larger second-order momentum (i.e., smaller
stepsize) predominantly correspond to the foreground pixels on the sandpiper.

4.3 GRADIENT SUPPRESSION

As we observed, the norm of the guidance gradient is substantially larger in the early stage than in
the late stage. This effect is undesirable based on the subsequent derivation regarding the error of the
clean estimation.

Algorithm 1 Momentum-driven Noise-free guided
sampling, given a pretrained diffusion model
ϵ̄t,θ(xt, t) and a clean guidance function P .
Input: Conditions yi , gradient filter F
Output: Generated sample x0

1: Sample xT ∼ N (0, I)

2: for all t from T to 1 do
3: µ̃θ,t ← 1√

αt
(xt −

1−αt√
1−ᾱt

ϵ̄t,θ(xt, t))

4: Σθ,t ←
(1−ᾱt−1)(1−αt)

1−ᾱt
I or network prediction

5: x̂0 ← 1√
ᾱt

(xt −
√
1− ᾱt ϵ̄t,θ(xt, t))

6: gt ← ∇xt log(P(yi, x̂0))

7: update mt and vt
8: ḡt ← F (λ, gt,mt, vt)

9: g̃t ← Suppression(ḡt, t)

10: xt−1 ← sampled fromN (µ̃θ,t + sΣθ,tg̃t,Σθ,t)

11: end for
12: return x0

The perfect clean estimation x0 of a noised sam-
ple xt can be computed with the true noise z̄t
added during the forward process, as follow:

x0 =
1√
ᾱt

(xt −
√
1− ᾱtz̄t). (13)

Then the prediction error between the actual
prediction x̂0 = 1√

ᾱt

(
xt −

√
1− ᾱtϵ̄θ(xt, t)

)
and the prefect estimation is

x0 − x̂0 =

√
1

ᾱt
− 1(ϵ̄θ(xt, t)− z̄t). (14)

It is reasonable to regard the (ϵ̄θ(xt, t)−z̄t) term
as well-bounded, given it corresponds to the pre-
diction error of a 0-1 Gaussian noise vector by a
well-trained DDPM model. Thus, the prediction
error of the clean estimation mainly depends on the coefficient

√
1
ᾱt
− 1. The prediction error is
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much larger at the early stage of the denoising process than in the later stage. However, the unreliable
gradient in the early stage is assigned with unfairly large weights in the denoising process. It implies
the necessity to further suppress the gradient norm on the early stages even though it has already been
filtered. Illustrations and more analysis are shown in the supplementary. We thus suppress the early
gradient with a simple but effective linear scheme with hyperparameter k of suppression level:

g̃t = (1− t

kT
)ḡt. (15)

We conclude our improved clean-estimation guided sampling method as Algorithm. 1.

5 EXPERIMENTS

We first apply our proposed methods on clean-estimation guided conditional image generation
on ImageNet (Deng et al., 2009) to demonstrate the improvements achieved on sample quality.
Moreover, we guide the DDPM model to achieve arbitrary style transfer, a task unattainable by
classifier guidance, by capitalizing on the flexibility offered by clean-estimation guidance. Lastly, we
conduct a series of ablations on both tasks to verify the effectiveness of each part.

5.1 CLEAN GUIDED CONDITIONAL IMAGE GENERATION

Setup We evaluate our proposed methods with two strong diffusion backbone, ADM (Dhariwal &
Nichol, 2021) and DiT (Peebles & Xie, 2022). For fair comparison, we take the same UNet encoder
in Dhariwal & Nichol (2021) with a fixed time-embedding at t=0 to serve as the pretrained clean
classifier. Following previous works (Dhariwal & Nichol, 2021; Li et al., 2022b; Song et al., 2020b),
we evaluate the generation quality comprehensively using FID(Heusel et al., 2017), sFID(Nash et al.,
2021), precision, and recall (Kynkäänniemi et al., 2019), where FID and sFID are primary evaluation
metrics and precision and recall are secondary metrics. Additional details are in Appendix A.1.
Table 1: Comparison with exisiting methods on improving clean-estimation guidance on ImageNet
(256 × 256). All results are evaluated using the TensorFlow suite from Dhariwal & Nichol (2021) on
50K samples sampled with 250 DDPM steps. †Sampled with a pretrained noised classifier with a
fixed time-embedding t = 0. ‡Sampled with a clean classifier trained on clean samples, with less
than 2% seen samples for training the noised one.

Model FID↓ sFID↓ Prec↑ Rec↑
DiT + raw clean guidance 3.54 5.22 0.80 0.56
DiT + Plug-and-Play (Graikos et al., 2022) 182.59 279.56 0.10 0.08
DiT + ED-DPM (Li et al., 2022b) 4.41 5.41 0.84 0.50
DiT + Ours† 3.46 5.31 0.79 0.57
ADM + raw clean guidance 4.99 5.58 0.83 0.51
ADM + FreeDoM (Yu et al., 2023) 8.66 6.84 0.90 0.35
ADM + Plug-and-Play (Graikos et al., 2022) 117.01 34.17 0.23 0.20
ADM + ED-DPM (Li et al., 2022b) 5.98 5.93 0.87 0.42
ADM + Ours† 4.20 5.17 0.82 0.52
ADM + Ours‡ 4.21 4.94 0.80 0.53

Comparison Our proposed methods primarily focus on improving the sampling quality of clean-
estimation guidance technique. Plug-and-Play (Graikos et al., 2022) generates conditional samples
from white noise using conditional diffusion models as priors and clean classifiers as constraints,
yet struggling to generate realistic samples on unaligned datasets like ImageNet due to theoretical
approximations. FreeDoM (Yu et al., 2023) and Universal Guidance (Bansal et al., 2023) both
intend to improve the clean-estimation guidance with time-travel strategies. Nevertheless, these
approaches incur a significantly higher sampling cost and tend to over-amplify the guidance signal for
conditional image generation, resulting in high fidelity but low diversity. ED-DPM (Li et al., 2022b)
dynamically amplifies the guidance gradient to avoid gradient vanishing of the noised classifier. It
shows sub-optimal results when applied to clean guidance, as the EDS process can occasionally
amplify inaccurate gradients stemming from low-entropy predictions on incorrect clean-estimations.

As shown in Tab.A.5, our method achieves the best overall sampling quality of clean-guided diffusion
models with no additional training costs, compared to all other methods. Most importantly, our
proposed methods enable clean-estimation guided ADM to outperform noised-guided one on both

7



Under review as a conference paper at ICLR 2024

Table 2: The average metrics of inputs and stylized results of different methods. Lcontent and Lstyle

are calculated using a pretrained VGGNet to get perception measurement on the stylization quality.
Metrics Input Ours NST AdaIN WCT Linear AAMS MCCNet ReReVST AdaAttN IECAST CSBNet AesPA

Lcontent ↓ 0.00 4.70 8.39 7.37 14.60 5.63 8.56 8.18 5.55 8.14 6.48 6.08 7.66
Lstyle ↓ 16.14 1.54 2.15 4.35 2.75 4.95 7.32 2.84 5.68 3.43 7.25 3.33 5.25

FID (4.20 vs. 4.59) and sFID (5.17 vs. 5.25) while maintaining comparable precision and recall. To
ensure fair comparisons with prior works employing a noised classifier, we utilize their identical
pretrained noised classifier with a fixed time-embedding input t = 0 as a clean version. Comparable
results are attainable by training a clean classifier from scratch, requiring less than 2% (128 vs. 2.4
million samples seen by each classifier) of the training cost compared to a noise-finetuned variant.

5.2 ARBITRARY STYLE TRANSFER

In our approach, the guidance function operates on clean estimations, thereby enabling the application
of a broad range of objective functions as guidance conditions. This advancement unlocks a plethora
of novel opportunities for employing DDPM across various tasks and applications, encompassing, but
not limited to, inpainting, colorization, and semantic synthesis. We explore this feature by applying
guided diffusion models to the single model arbitrary style transfer task, which is challenging to
address using previous methods with DDPM.

Given style hint Is, arbitrary style transfer aims to migrate arbitrary styles from Is to content images
Ic. It stands for a huge class of guidance function P that is hard to anticipate using label-based
classifiers. Huang et al. (Huang & Belongie, 2017) use the mean and variance of feature maps
generated by a pretrained VGGNet (Simonyan & Zisserman, 2014) to represent the style information.
The differences between the content image Ic and the stylized image Ics is expressed as:

Lcontent =
∑
i

||ϕi(Ics)− ϕi(Ic)||2 (16)

where ϕi(·) denotes the feature map from the ith layer in VGGNet. Meanwhile, the style differences
against the style image Is can be denoted as:

Lstyle =
∑
i

||µ(ϕi(Ics))− µ(ϕi(Is))||2 +
∑
i

||σ(ϕi(Ics))− σ(ϕi(Is))||2 (17)

where µ(·) and σ(·) represent channel-wise mean and variance of the feature maps. Most existing
works only rely on the learned content and style priors from the pretrained VGGNet (Simonyan &
Zisserman, 2014), leading to unnatural artifacts. To incorporate prior knowledge of real artworks into
style transfer, we utilize the pretrained unconditional DDPM on the WikiArt (Phillips & Mackintosh,
2011) dataset. Then, We map the mixture of Lcontent and Lstyle to a p.d.f.-like function as the
guidance for conditional image generation: P = Ze−(λcLcontent+λsLstyle), where Z is a normalizing
constant and the ratio λc : λs denotes the weights for content and style loss in the guidance function.

Setup An unconditional ADM was trained on the WikiArt dataset (Phillips & Mackintosh, 2011),
utilizing a learning rate of 10−4 and a batch size of 8 for 1.2 million iterations with a resolution
of 2562. The network architecture and other settings adhere to the work conducted by Dhariwal et
al.(Dhariwal & Nichol, 2021). Furthermore, following the methodology presented in AdaIN(Huang
& Belongie, 2017), a pretrained VGG-19 model (Simonyan & Zisserman, 2014) was employed to
supply content and style guidance. Additional details can be found in Appendix.

Comparison We compare our method with several representative methods for arbitrary style transfer,
including NST (Gatys et al., 2016), AdaIN (Huang & Belongie, 2017), WCT (Li et al., 2017b),
Linear (Li et al., 2019), AAMS (Yao et al., 2019), MCCNet (Deng et al., 2021a), ReReVST (Wang
et al., 2020), AdaAttN (Liu et al., 2021a), IECAST (Chen et al., 2021), CSBNet (Lu & Wang, 2022)
and AesPA-Net (Hong et al., 2023). In line with many previous works (Deng et al., 2021b; Lu
& Wang, 2022; xin Zhang et al., 2022), we employ perceptual errors as the metric for assessing
the stylized quality of the generated output. A total of 28 content images and 62 style images are
randomly selected, resulting in the generation of 1,736 stylized images. Subsequently, we compute
the average perceptual content error (Lcontent) and style error (Lstyle) for the generated images,
with respect to the content and style images. As evidenced in Tab. 2, the stylized results produced
by our improved clean-estimation guided DDPM significantly outperform all other methods by a
considerable margin, highlighting the immense potential of proposed techniques.
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Figure 4: Qualitative comparisons of arbitrary style transfer methods.

For qualitative comparisons in Fig.4, our method can generate more consistent strokes in line with the
style images while preserving more content details compared to the other methods. NST employs an
iterative process to generate stylized outcomes from white noises, resulting in unremoved noise(4th
and 5th rows) and discrepant color schemes(4th row). Owing to the oversimplified mean and variance
matching, the stylized results of AdaIN display varying strokes from the given style(1st-3rd rows).
WCT struggles with preserving content structure and Linear exhibits halo effects surrounding the
primary content(3rd and 4th rows). AAMS exists dot-like artifacts and ReReVST is unsatisfactory
for certain style images(3rd and 5th rows). AdaAttN fails to transfer essential colors and patterns
in the given style images(3rd-5th rows). IECAST introduces eye-like artifacts(5th row) and shows
inconsistent color schemes. AesPA-Net displays blurriness in its content(3rd rows). MCCNet and
CSBNet can better balance style and content information but occasionally present grid-like artifacts.

5.3 ABLATION STUDIES

We conduct ablations on the critical components of our method with ADM backbone to verify their
effectiveness on both conditional image generation and arbitrary style transfer. As shown in Tab. 3,
the raw clean-estimation guidance technique exhibits a marked underperformance compared to the
noised-sample-based classifier guidance on the image generation task. By incorporating the proposed
first- and second-order momentum-based gradient filter, the sampling quality significantly improves.
Additionally, the gradient suppression scheme further refines the sampling quality, by diminishing
the impact of the unreliable early gradients.

Table 3: Ablation studies on two presented tasks, under different resolutions.

Model Image Gen.(256) Image Gen.(128) Image Gen.(64) Style Transfer.(256)
FID↓ sFID↓ FID↓ sFID↓ FID↓ sFID↓ Lcontent ↓ Lstyle ↓

Classifier Guidance(Dhariwal & Nichol, 2021) 4.59 5.25 2.97 5.09 4.141 5.731 - -

Raw clean-estimation guidance 4.99 5.58 3.15 5.58 7.04 12.73 5.09 1.58
Raw + 1st Momentum 4.93 5.46 3.10 5.55 4.42 8.07 4.91 1.53
Raw + 2nd Momentum 4.49 5.24 2.88 5.37 1.87 4.48 4.92 1.58
Raw + Filtering(1st & 2nd Momentum) 4.29 5.28 2.80 5.23 1.84 4.34 4.73 1.53
Raw + Filtering & Suppression 4.20 5.17 2.72 5.14 1.81 4.31 4.70 1.54

6 CONCLUSIONS

In this study, we seek to discover the key reason for the performance gap between clean-estimation
based guidance and noised-sample based guidance, based on which we propose two targeted ap-
proaches, momentum-driven gradient filtering and gradient suppression, to improve the consistency
and robustness of the clean guidance throughout the denoising process. In comparison to existing
methods, our approach incurs no additional training cost while delivering superior performance. It
also demonstrates considerable potential for various downstream tasks, offering a reduced training
burden and a significantly expanded range of guidance types.

1We conduct the evaluation using the code from the official repository on the samples generated by the
pre-trained DDPM and classifier, with the recommended parameters(Dhariwal & Nichol, 2021).
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In the main context, we highlight key observations regarding the performance degradation of clean-
estimation guidance. Consequently, we propose momentum-driven gradient filtering and gradient
suppression to offer more consistent guidance throughout the denoising process and mitigate the
negative effect of the detrimental guidance gradients at certain timesteps. To further clarify our
proposed methods, we detail the implementation and present additional results for two downstream
tasks in Sec. A and Sec. B, along with an additional discussion on our Momentum-driven Gradient
Filtering approach in Sec. C.

A CLEAN GUIDED CONDITIONAL IMAGE GENERATION

A.1 IMPLEMENTATION DETAILS

Diffusion Backbone and Settings For ADM (Dhariwal & Nichol, 2021) backbone, we utilize the
pretrained weights from its official repository (Prafulla et al.) on ImageNet, across all resolutions,
as our diffusion model backbone. Specifically, this backbone incorporates the learnable variance
scheme proposed by Nichol & Dhariwal (2021), along with a multi-resolution attention scheme and
BigGAN’s(Brock et al., 2018a) residual blocks for up/downsampling. All settings and hyperparame-
ters are kept the same except that we finetune the guidance scale, as the optimal choice shifts when
the gradient norm is modified. For DiT backbone, we also use the official pretrained weights for
latent diffusion models and for the latent decoder. We manually disable the classifier-free guidance
used by the DiT and take it as a pure conditional diffusion model. At each timesteps, we decode the
latent code estimation ẑ0 into pixel space and apply the clean guidance on it. The hyperparameters of
the momentum-driven gradient filtering are set as {λ : 0.001, ηm : 0.5, ηv : 0.75} in all experiments
without finetuning. We use relatively small ηm and ηv to ensure the sensitivity of the algorithm to
the current frame. All metric results for this task are computed on 50K randomly generated samples
using the evaluation script provided by Prafulla et al..

Classifier In this work, we implement two types of clean classifiers to ensure fair and comprehensive
comparisons with previous works that employ noised classifiers. For both ADM and DiT backbone,
we reuse the same pretrained noised classifiers provided by Prafulla et al. with a fixed time-embedding
input t = 0 as a clean classifier. The results are presented in Tab.A.5 and Tab.4. These noised
classifiers employ half of the UNet as the encoder and are trained with 500K iterations and a batch
size of 256 at 2562 resolution, 300K iterations and a batch size of 256 at 1282 resolution, and 300K
iterations and a batch size of 1024 at 642 resolution. Notably, we also trained a clean classifier at 2562
resolution from scratch, using the same architecture as the noised classifier. The clean classifier is
trained with 150K iterations and a batch size of 16, resulting in a total of 2.4 million (16× 1.5× 105)
clean samples seen during training, while the noised classifier requires 128 million (256× 5× 105)
samples for training.

Model FID↓ sFID↓ Prec↑ Rec↑
BigGAN-deep (Brock et al., 2018a) 6.02 7.18 0.86 0.35
LOGAN (Wu et al., 2019) 3.36 - - -

ADM (Dhariwal & Nichol, 2021) 5.91 5.09 0.70 0.65

ADM with noised guidance
ADM + noised classifier (Dhariwal & Nichol, 2021) 2.97 5.09 0.78 0.49

ADM with clean guidance only
ADM + Plug-and-Play (Graikos et al., 2022) 99.45 65.38 0.21 0.26
Ours 2.72 5.14 0.80 0.58

Model FID↓ sFID↓ Prec↑ Rec↑
BigGAN-deep (Brock et al., 2018a) 4.06 3.96 0.79 0.48
IDDPM (Wu et al., 2019) 2.92 3.79 0.74 0.62

ADM (Dhariwal & Nichol, 2021) 2.07 4.29 0.74 0.63

ADM with noised guidance
ADM + noised classifier (Dhariwal & Nichol, 2021) 4.14 5.73 0.84 0.54

ADM with clean guidance only
ADM + Plug-and-Play (Graikos et al., 2022) 98.25 43.94 0.26 0.33
Ours 1.81 4.31 0.77 0.60

Table 4: Sample quality comparison with state-of-the-art generative models on ImageNet 128 × 128
(left) and 64 × 64 (right). All the diffusion models are sampled using 250 DDPM steps.

A.2 EVALUATION METRICS

The Fréchet Inception Distance (FID), proposed by Heusel et al. (2017), offers a comprehensive
assessment that balances the diversity and fidelity of generation by comparing distribution differences
between the real and generated manifolds. sFID(Nash et al., 2021) can be viewed as a variant of
FID that captures the spatial relationships of images. Precision aims to measure the proportion of
generated images that fall within the real manifold, while recall calculates the proportion of real
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Figure 5: Qualitative comparison for the sampling results from 256× 256 ADM model.

images falling into the generated manifold. Consequently, we use FID and sFID as primary evaluation
metrics and precision and recall as secondary metrics to provide a comprehensive measurement.

A.3 ADDITIONAL COMPARISONS

We present the comparison results for ADM at the resolutions of 128× 128 and 64× 64 in Table 4.
We also provide a qulitative comparison with ED-DPM(Li et al., 2022b) and FreeDoM(Yu et al.,
2023) at the resolution of 256 × 256 in Fig. 5 For a smaller resolution of 642, we observed that
guiding the DDPM with the pretrained noised classifier provided by Prafulla et al. does not enhance
the sampling quality as it does for larger resolutions, such as 1282 and 2562. Employing only a
clean classifier, our proposed method allows the clean-estimation guidance to not only surpass the
performance of the noised guidance (Dhariwal & Nichol, 2021) but also achieve the best FID, while
providing comparable sFID, Precision, and Recall.

A.4 QUALITATIVE RESULTS

More qualitative results of different resolutions are provided in the Fig.6, Fig.7 and Fig.8.

A.5 SAMPLING COST

We made a comparison on the sampling cost on 256 × 256 ADM model. The inference time is
averaged on 10 denoising process running on an NVIDIA A100 GPU.

Model FID↓ sFID↓ inference time

ADM + raw clean guidance 4.99 5.58 54.16 seconds/sample
ADM + FreeDoM 8.66 6.84 259.95 seconds/sample
ADM + Plug-and-Play 117.01 34.17 57.12 seconds/sample
ADM + ED-DPM 5.98 5.93 54.39 seconds/sample
ADM + Ours 4.20 5.17 54.20 seconds/sample

B ARBITRARY STYLE TRANSFER

In this part, we introduce the settings of our method for arbitrary style transfer in Sec. B.1. Also, we
make a list of involved assets of this task in Sec. B.2.
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Figure 6: Qualitative results of our full pipeline at the resolution of 256× 256. (FID: 4.20)
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Figure 7: Qualitative results of our full pipeline at the resolution of 128× 128. (FID: 2.72)
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Figure 8: Qualitative results of our full pipeline at the resolution of 64× 64. (FID: 1.81)
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B.1 ARCHITECTURE & SETTINGS

We trained an unconditional diffusion model on the WikiArt (Phillips & Mackintosh, 2011) dataset,
with a learning rate of 0.0001 and a batch size of 8 for 1.2M iterations under the resolution of
2562. We still choose ADM (Dhariwal & Nichol, 2021) as the network architecture for the diffusion
model, which adopts a linear noise schedule and unlearnable variance scheme. For content and style
guidance, we use pretrained VGG-19 (Naoto) to obtain the encoded features of content and style
images, where we use features from layer ReLU4 1 and ReLU5 1 for Lcontent computation and
ReLU1 1, ReLU2 1, ReLU3 1, ReLU4 1 for Lstyle computation. λc and λs are set to 9000 and
18000 respectively.

B.2 INVOLVED ASSETS

For the task of arbitrary style transfer, we compared our method with NST (Gatys et al., 2016),
AdaIN (Huang & Belongie, 2017), WCT (Li et al., 2017b), Linear (Li et al., 2019), AAMS (Yao et al.,
2019), MCCNet (Deng et al., 2021a), ReReVST (Wang et al., 2020), AdaAttN (Liu et al., 2021a),
IECAST (Chen et al., 2021) and CSBNet (Lu & Wang, 2022). To make a strictly fair comparison
with previous works, in this paper, we use their open source codes and follow their default settings
for experiments. We use the WikiArt (Phillips & Mackintosh, 2011) dataset to train our diffusion
model. Their URLs are reported as:

• NST: https://github.com/anishathalye/neural-style
• AdaIN: https://github.com/naoto0804/pytorch-AdaIN
• WCT: https://github.com/irasin/Pytorch_WCT
• Linear: https://github.com/sunshineatnoon/LinearStyleTransfer
• AAMS: https://github.com/JianqiangRen/AAMS
• MCCNet: https://github.com/diyiiyiii/MCCNet
• ReReVST: https://github.com/daooshee/ReReVST-Code
• AdaAttN: https://github.com/Huage001/AdaAttN
• IECAST: https://github.com/HalbertCH/IEContraAST
• CSBNet: https://github.com/Josh00-Lu/CSBNet
• WikiArt dataset: https://www.kaggle.com/competitions/
painter-by-numbers/data?select=train.zip

B.3 EVALUATION METRICS

We follow the same optimization target and evaluation metrics as those employed in previous works,
such as (Deng et al., 2021b), (xin Zhang et al., 2022) and (Lu & Wang, 2022). Regarding recent
learning-free methods (e.g., WCT), these approaches actively match the features of content images to
style images by aligning the Gram matrices and minimizing their differences, while conscientiously
preserving the original information of the content features through a whiten-like operation. Matching
the Gram matrices amounts to optimizing the Lstyle, as demonstrated by prior research (Li et al.,
2017a). Additionally, the whiten operation, which aims to maintain content structures, corresponds to
minimizing the Lcontent.

C FURTHER DISCUSSIONS ON MOMENTUM-DRIVEN GRADIENT FILTERING

C.1 IMPLEMENTATION DETAILS

Inspired by the momentum-driven optimizers such as Adam(Kingma & Ba, 2014), our Momentum-
driven Gradient Filtering strategies utilize the first- and second-order momentum to improve the
consistency and robustness of the guidance gradient. We show the implementation details in Alg. 2
and Alg.3.

C.2 FIRST-ORDER MOMENTUM

In Figure 2, we have illustrated how the first-order momentum can stabilize the guidance gradient. To
further emphasize this effect, we present additional samples in Figure 9. Moreover, we highlight the
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Algorithm 2 Momentum-driven Gradient Filtering with only the 2nd momentum.
Input: Raw gradients via clean-estimation guidance: gt
Input: Learning rate: λ
Input: Exponential decay rates: ηm, ηv
Initialize: vT+1 ← 0, ε = 10−8

Yield: Gradients (after gradient filtering): ḡt
for all t from T to 1 do

vt = ηv · vt+1 + (1− ηv) · g2t
v̄t = vt/(1− ηT−t+1

v )
ḡt = λ · gt/(

√
v̄t + ε)

yield ḡt
end for

Algorithm 3 Momentum-driven Gradient Filtering with both the 1st and 2nd momentum.
Input: Raw gradients via clean-estimation guidance: gt
Input: Learning rate: λ
Input: Exponential decay rates: ηm, ηv
Initialize: mT+1 ← 0, vT+1 ← 0, ε = 10−8

Yield: Gradients (after gradient filtering): ḡt
for all t from T to 1 do

mt = ηm ·mt+1 + (1− ηm) · gt
vt = ηv · vt+1 + (1− ηv) · g2t
m̄t = mt/(1− ηT−t+1

m )
v̄t = vt/(1− ηT−t+1

v )
ḡt = λ · m̄t/(

√
v̄t + ε)

yield ḡt
end for

inconsistency and unreliability of clean estimations through a visualization of a few sub-sequences
from their denoising process in Figure 10. Particularly, in the first and second examples, the clean
estimations display inconsistent patterns(as marked by the red boxes) for the wings of the monarch
and the head of the sandpiper. The estimations in the third row are too blurry, making it challenging
for a clean classifier to provide a consistent and accurate prediction.

C.3 SECOND-ORDER MOMENTUM

The second-order momentum adaptively assign a relatively small stepsize for the pivot pixels to make
these pixels less vulnerable to the inaccurate gradients. We provide additional samples in Fig. 12
to demonstrate this effect. The figures reveal that foreground pixels, which are strongly related to
the guidance condition, are frequently updated and accumulate a larger second-order momentum
compared to background pixels during the denoising process. Consequently, the detrimental guidance
gradients resulting from occasional incorrect clean estimations exert a reduced negative effect on the
primary content within the generated samples.

Table 5: Sample quality comparison between the second-order momentum and a mere rescale on the
gradient norm. All diffusion models are sampled using 250 DDPM steps.

Model FID↓ sFID↓ Prec↑ Rec↑
ADM + rescale 5.26 5.72 0.86 0.45
ADM + 2nd 4.49 5.24 0.83 0.51

By assigning an adaptive stepsize for each pixel, the second-order momentum scales the gradient
as a side effect, maintaining an approximately equal norm throughout the denoising process, as
illustrated in Fig.11. As discussed in previous works(Li et al., 2022b), addressing the vanishing
gradient issue in classifier guidance by uniformly scaling the gradient across the entire image can
enhance sample quality for noised guidance. To validate the effectiveness of pixel-wise adaptive
stepsize adjustment using the second momentum, we conducted an experiment that scales the raw
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Figure 9: Additional random samples of the unprocessed gradient gt given by the clean-estimation
guidance and the filtered gradient ḡt by our proposed method. The cosine value of the angle between
the gradient vector at time step t and that at time step t + 1. The lower the curve, the noisier the
gradient direction.

Denoising

Figure 10: Random samples(left) and sub-sequences of their clean estimations(right) during the
denoising process. Particularly, in the first and second examples, the clean estimations display
inconsistent patterns(as marked by the red boxes) for the wings of the monarch and the head of the
sandpiper. The estimations in the third row are too blurry, making it challenging for a clean classifier
to provide a consistent and accurate prediction.

gradient norm to match the gradient filtered by the second-order momentum, based on the relative
ratio of their L1-norms. The results in Tab.5 show that scaling the gradient with a uniform factor does
not improve the sample quality for clean-estimation guidance. The reason for this is that it rescales
the gradients of all pixels indiscriminately, which can lead to more severe contamination when the
guidance gradient is inaccurate.
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Figure 11: Gradient norm of the denoising process of a randomly generated sample, including the
raw gradient via clean guidance gt and the gradient filtered by the second-order momentum ḡt. Both
curves are multiplied by the classifier scale.

D THEORETICAL DISCUSSIONS

Lemma 1. The clean estimation x̂0(xt, t) for a noised sample xt in discrete-time DPMs is actually
the mathematical expectation Ex0∼q(x0|xt)[x0].

Proof. Revisiting the forward and reverse processes of diffusion models from the perspective of the
score function, we have:

q(xt|x0) = N (xt|α(t)x0, σ
2(t)I) (18)

where t ∈ [0, T ], α(t) and σ2(t), (e.g. α(t) =
√
ᾱt, σ2(t) = 1− ᾱt in DDPM), determine the noise

schedule of a diffusion model. Its corresponding differential equation (SDE) (Lu et al., 2022) is
written as:

dxt = f(t)xtdt+ g(t)dωt (19)

where ωt is the standard Wiener process, and f(t) = dlogα(t)
dt , g2t = dσ2(t)

dt − 2dlogα(t)
dt σ2(t). Its

equivalent reverse processLu et al. (2022) is:

dxt = [f(t)xt − g2(t)∇xt
logq(xt)]dt+ g(t)dω̄t (20)

where the only unknown term is the score function s(xt) = ∇xt
logq(xt). In discrete-time DPMs (e.g.

DDPM), the negative scaled score function −σ(t)s(xt) is estimated using neural network ϵθ(xt, t)
parameterized by θLu et al. (2022). In general, the noise term ϵθ(xt, t) in discrete-time DPMs and
score function∇xt

logq(xt) follows the equationBao et al. (2022b) that:

s(xt) = ∇xt logq(xt) = −
ϵθ(xt, t)

σ(t)
(21)

Further, Ex0∼q(x0|xt)∇xt
logq(x0|xt) =

∫
∇xt

q(x0|xt)dx0 = ∇xt

∫
q(x0|xt)dx0 = 0, we have:

∇xt logq(xt) = ∇xt logq(xt) + Ex0∼q(x0|xt)∇xt logq(x0|xt)

= Ex0∼q(x0|xt)∇xt
logq(x0, xt)

= Ex0∼q(x0|xt)∇xt
logq(xt|x0)

= −Ex0∼q(x0|xt)
xt − α(t)x0

σ2(t)

(22)

Accordingly, we further have:

Ex0∼q(x0|xt)[x0] =
1

α(t)
(xt + σ2(t)∇xt logq(xt)) (23)
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Substituting DDPM’s noise schedule α(t) =
√
ᾱt and σ2(t) = 1− ᾱt into Eq. 23, and combining

with Eq. 21, we can get:

Ex0∼q(x0|xt)[x0] =
1

α(t)
(xt + σ2(t)∇xt

logq(xt))

=
1

α(t)
(xt − σ(t)ϵθ(xt, t))

=
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t))

≜ x̂0(xt, t)

(24)

Remark 1. The second-order momentum enables the magnitude of the guidance update invariant to
the scale of the gradient Kingma & Ba (2014); Qian (1999), thus helping normalize and regularize
the scale of guidance gradients.

Remark 2. According to Lemma 1, directly calculating guidance gradients using the mathematical
expectation Ex0∼q(x0|xt)[x0] brings unavoidable guidance gradient errors, which is caused by
|Ex0∼q(x0|xt)[x0]− x0|.

We formulate the gradient calculated using x̂0(xt, t) as gt, the ground-truth gradient calculated using
x0 as gRt , and the normalized gradients using 2nd momentum of time-step t0 as ĝt = gt/(

√
v̄t0 + ϵ)

and ĝRt = gRt /(
√
v̄Rt0 + ϵ), where t ∈ [t0, T ], then we can formulate the error as:

ĝt = ĝRt + et (25)
where et represents the gradient error.

Theorem 1. Assuming ĝt = ĝRt + et, et ∈ N (0, δ2t I), 1st momentum contribute to decreasing the
gradient error and minimizing its variance after normalizing gradient using 2nd momentum.

Proof. According to the momentum update rules: mt = ηmmt+1 + (1 − ηm)gt, vt = ηnvt+1 +
(1 − ηn)g

2
t , m̄t = mt/(1 − ηT−t+1

m ), m̄t = mt/(1 − ηT−t+1
m ), v̄t = vt/(1 − ηT−t+1

n ), ḡt =
λ · m̄t/(

√
v̄t + ε), and Eq 25, we can expand the processed gradient as:

ḡt =
λ(1− ηm)

1− ηT−t+1
m

T∑
i=t

ηi−t
m

gi√
v̄t + ϵ

=
λ(1− ηm)

1− ηT−t+1
m

T∑
i=t

ηi−t
m (ĝRi + ei) (26)

The gradient error using 2nd momentum only is Et = λet ∼ N (0, λ2δ2t I) and the gradient error
using both 1st and 2nd momentum is Ēt, where ēt merges T − t+ 1 Gaussians:

Ēt =
λ(1− ηm)

1− ηT−t+1
m

T∑
i=t

ηi−t
m ei = λēt ∼ N (0, λ2δ̄2t I)

δ̄2t =
(1− ηm)2

(1− ηT−t+1
m )2

T∑
i=t

η2i−2t
m δ2i

(27)

For the finite sequence {δ2t }Tt=0 = {δ2T , δ2T−1, ..., δ
2
0}, there exist an upper bound P =

maxT−1
i=0 {

δ2i+1

δ2i
}, and δ̄2t can be scaled up to:

δ̄2t ≤
(1− ηm)2

(1− ηT−t+1
m )2

T∑
i=t

η2i−2t
m P i−tδ2t ≜ f(ηm) (28)

Clearly, f(·) is a elementary function of ηm, and f ′(0) ≜ limηm→0+
f(ηm)−f(0)

ηm−0 = −2δ2t < −δ2t < 0

, f(0) ≜ f(ηm)|ηm=0 = δ2t > 0. According to the order-preserving properties of the limit,
∃ 0 < ζ < 1,∀ 0 < ηm ≤ ζ, f(ηm)−f(0)

ηm−0 < −δ2t < 0. Therefore, according to Eq. 28, we have:

δ̄2t ≤ f(ηm) < f(0) = δ2t , ∀0 < ηm ≤ ζ (29)
which demonstrates that for all ηm ∈ (0, ζ], error variance can be decreased. According to the
extreme value theorem of continuous functions, there exists an optimal η∗m ∈ (0, ζ] minimizing the
error variance that serves as a tuning target for the hyper-parameter ηm.
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E LIMITATIONS AND FUTURE WORKS

Although the current linear gradient suppression scheme demonstrates satisfactory performance
in conditional image generation tasks, it does not adequately account for the actual quality of the
guidance gradient. A more delicately designed suppression scheme might enhance the sampling
quality further. For instance, we observed that suppressing the early gradient concerning the deviation
of clean estimation yields superior performance for arbitrary style transfer. Moreover, the guidance
functions employed for arbitrary style transfer are relatively rudimentary. Since our proposed methods
permit arbitrary normalized objective functions as guidance, supplementary guidance conditions,
such as the additional regularizer (Johnson et al., 2016b; Li & Wand, 2016), stroke loss (Jing et al.,
2018), and MRFs constraints (Li & Wand, 2016), can be utilized concurrently to attain finer control
over the stylized outcomes.

As a general approach for enhancing clean-estimation guidance, our proposed methods can be applied
to improve the performance of numerous other clean-estimation-based techniques, such as those
presented in (Fei et al., 2023). Furthermore, it is compelling to explore the application of our methods
in various downstream tasks, including frame interpolation, novel view synthesis, and conditional 3D
asset generation, accompanied by diverse guidance conditions.
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Figure 12: Additional random samples of the denoising process (upper) guided via clean-estimation
and the corresponding second-order momentum (lower).
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