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Higher-order derivatives of singular values in real rectangular matrices arise
naturally in both numerical simulation and theoretical analysis, with applications
in areas such as statistical physics and optimization in deep learning. Deriving
closed-form expressions beyond first order has remained a difficult problem within
classical matrix analysis, and no general framework has been available. To address
this gap, we present an operator-theoretic framework that extends Kato’s analytic
perturbation theory from self-adjoint operators to real rectangular matrices, thereby
yielding general n-th order Fréchet derivatives of singular values. As a special case,
we obtain a closed-form Kronecker-product representation of the singular-value
Hessian, not previously found in the literature. This framework bridges abstract
perturbation theory with matrix analysis and provides a systematic tool for higher-

order spectral analysis.
© 2025 The Authors. Published by Elsevier Inc. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Singular values lie at the core of modern matrix analysis, encapsulating key spectral information such as

operator norm, conditioning, effective rank, and underpinning applications across numerical linear algebra,

data science, control theory, and mathematical physics [6,37,9,32]. In random matrix theory, singular values

govern limiting laws such as Marchenko—Pastur distributions [18], edge fluctuations described by Tracy—

Widom laws [33], and fine-scale local statistics such as local eigenvalue spacings [19]. In physics and deep

learning, higher-order derivatives of singular values are indispensable for rigorous analysis in stochastic

dynamical settings, where systems are subject to noise and random perturbations [21].
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For example, let 8; € R™*™ be a parameter matrix with r non-zero singular values oy, 09,...,0.. Its
dynamics are characterized by an adapted It6é process [10]

dVeC(Gt) = tht + Dtth, (1)

where vec(-) denotes the vectorization operator, Gy € R™" is the drift term, D; € R™™*™" is the diffusion

coefficient, and dW; is a high-dimensional Wiener process in R™". Let

¢t = d(01,02,...,0.)(t) (2)

denote a spectral functional of the singular values of 8, then applying It6’s lemma shows that the rigorous
analysis of the spectral dynamics of d¢; requires the second-order derivatives of singular values [21]. Such
induced dynamics arise naturally in both physics and deep learning. In physics, the von Neumann entropy
— a measure of the statistical uncertainty within a quantum system — is a spectral functional of singular
values [7], and widely used in the study of quantum entanglement [20]. In deep learning, the Lipschitz
continuity of neural networks is a spectral functional of the largest singular value [16]. For more general
non-Gaussian drivers in stochastic dynamics, such as Lévy processes, higher-order derivatives of singular
values are indispensable for rigorous analysis and for deriving sharp bounds [1].

Although first-order derivatives of singular values are well known in the literature [34,30,31], explicit
closed-form expressions for second- and higher-order derivatives are largely absent from the literature. A
unified, highly procedural, and systematic framework for their derivation has been lacking, since direct
approaches via matrix analysis are challenging due to the intricate interplay among local spectral structures
(e.g., spectral gaps), left and right singular subspaces, and the associated null spaces.

To bridge this gap, we present an operator-theoretic framework for deriving arbitrary higher-order deriva-
tives of singular values in a highly procedural approach. Our approach treats matrices as bounded linear
operators on Hilbert spaces and extends Kato’s analytic perturbation theory [11] beyond the self-adjoint
setting. The key step is to embed a non-self-adjoint real rectangular matrix into a self-adjoint operator via
the Jordan-Wielandt embedding (i.e., Hermitian dilation trick) [36,30,28]. We then analyze the asymptotic
expansions of the resulting eigenvalues by extending Kato’s results in eigenvalue expansions, relate these
eigenvalue expansions to Fréchet derivatives of singular values, and express the Fréchet derivative tensors
with Kronecker-product representation.

1.1. Perturbation theory

Classical perturbation theory has developed along several independent traditions. For example, analytic
operator-theoretic perturbation theory [24,11] treats holomorphic families of operators on Banach or Hilbert
spaces, using resolvents, Riesz projectors, and contour integrals to prove the existence of analytic eigenvalue
and eigenspace branches and to derive expansion formulas, including trace identities for eigenvalue clusters.
Matrix perturbation theory [30,9,3] focuses on the finite-dimensional case and derives explicit perturba-
tion formulas via algebraic tools such as characteristic polynomials, Schur forms, and Sylvester equations,
typically without explicitly invoking the operator-theoretic machinery. Rayleigh—Schrodinger perturbation
theory [23,27,26] in quantum mechanics provides basis-dependent expansions in terms of matrix elements
and energy gaps; these coincide with the analytic expansions under discreteness and gap assumptions, but
are often presented in physics as formal series rather than within Kato’s framework. Despite their differences
in tool and emphasis, these frameworks are mathematically consistent and recover the same perturbative
corrections in overlapping regimes.
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Fig. 1. Theoretical Framework for Infinitesimal Spectral Variations. We extend Kato’s analytic perturbation theory for self-adjoint operators
to derive arbitrary-order singular-value derivatives [11]. For a rectangular matrix A, we introduce its Jordan—Wielandt embedding
T (Theorem 1.2), a block self-adjoint operator that encodes perturbations across all subspaces (i.e., left-singular, right-singular,
left-null, and right-null). By extending Kato’s asymptotic eigenvalue expansions to this embedding and expressing them in explicit
closed form — computing and simplifying with residue theorem — yields the nth-order expansions of singular values of A. These
expansions are then related to Fréchet derivatives, given by analytic perturbation theorem (Theorem 4.1). Finally, by specializing
to explicit matrix-layout conventions, we obtain a systematic and constructive procedure for computing arbitrary-order singular-
value derivatives of rectangular matrices. Our method is highly procedure for deriving arbitrary-order singular-value derivatives.

1.2. Schematic overview

A schematic overview of the framework is illustrated in Fig. 1. To apply Kato’s framework for self-adjoint
operators, we first embed a non-self-adjoint A € R™*" (since A # AT) into a self-adjoint operator T using
the Jordan—Wielandt embedding (i.e., Hermitian dilation) [36,30,6,14,2,9,28], taking:

O A m-Tn mrn
Ti=| 1 | € RUFWxH, (3)

It is immediate that 7 is self-adjoint, since:

o Al" [o A

T _ _
T =147 o] =|a7 o

Il
<
—
=
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This embedding preserves the complete information regarding the spectrum of A. The spectrum of A is
stated in Theorem 1.1 (Matrix Singular Value Decomposition (Full Form)), and the spectrum of T relates
to the spectral structure of A as stated in Theorem 1.2 (Spectrum of Jordan-Wielandt Embedding).

Theorem 1.1 (Matriz Singular Value Decomposition (Full Form)). Let A € R™*™ be a real rectangular
matriz. Then A admits a full singular value decomposition (SVD) [9,30] by:

A=UxVT, (5)
U=[U U] e R™™, V=[V, Vo] e R™", (6)
o ; -
o9 | o
Y= } mx(n=r) , (7)
|
|

where o1 > o9 > -+ > o, > 0 are the non-zero singular values, U, € R™*" and V. € R™ " contain
the corresponding left and right singular vectors, and Uy and Vy span the left and right null spaces of A,
respectively.

Theorem 1.2 (Spectrum of Jordan—Wielandt Embedding). The spectrum of A € R™*™ and the spectrum of
its Jordan—Wielandt embedding [36,50,1/,2,9,28]:

O A m-Tn m-Tn

T = |:AT O:| ER( Fr)x( +)7 (8)
are directly related. Given the SVD of A as stated in Theorem 1.1, the spectrum of A relates to the spectrum
of T by:

1 [y 1 [y
Tl—=|."|)=0al—7=]|."|], 9
(&) - (G ®

and:

T l]) =Gl w

respectively, where the factor % ensures normalization and hence orthonormality of the eigenvectors. Thus,
each singular value o; of A corresponds to a pair of eigenvalues:

/\§+) = 0y, )\57) = —0;, (11)

with eigenvectors constructed directly from the singular vector pair (u;,v;). The null spaces are also preserved
in this embedding:

ker(T) = { [%ﬂ} fu; € ker(AT)} o { L}OJ Loy € ker(A)} . (12)

Remark 1.3. The use of the Jordan-Wielandt embedding to transfer results on Hermitian eigenvalues to
singular values of rectangular matrices is well-known in the literature [30,6,14,2,9]. For instance, Stewart
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and Sun employ the construction in their analysis of singular-value perturbations, using it to extend Weyl—-
type inequalities [35,8] and sensitivity bounds from Hermitian eigenvalues to singular values [30]. Li and
Li also use the embedding to transfer perturbation bounds for Hermitian eigenvalues to singular values of
rectangular matrices [14]. Similarly, Horn and Johnson present the Hermitian dilation as a standard device
in matrix analysis for proving variational characterizations and interlacing properties of singular values
[9]. Unlike these works, which use the Hermitian dilation mainly as a device to transfer known eigenvalue
results, our framework exploits it to develop explicit operator-theoretic expansions that yield closed-form
higher-order Fréchet derivatives of singular values.

Next, starting from the eigenvalue expansion of reduced resolvent of operator 7 and applying the residue
theorem to simplify, we derive the asymptotic eigenvalue expansion of 7 up to n-th order under holomorphic
perturbations (Theorem 3.3). By relating the n-th order term of this expansion with the corresponding n-th
order Fréchet derivative, we obtain explicit expressions for higher-order derivatives of singular values. Finally,
we deploy the n-th order Fréchet derivative with matrix layout conventions. In particular, the first-order
case (n = 1) recovers the well-known Jacobian of singular values; while the second-order case (n = 2) yields
the singular-value Hessian with Kronecker-product representation, which has not appeared previously in the
literature. By bridging the abstract operator-theoretic expansions with matrices, our framework provides a
toolkit for arbitrary-order singular-value analysis.

1.8. Contributions
This paper makes the following contributions:

1. Spectral Variations in Rectangular Matrices. We present an operator-theoretic framework for analyz-
ing n-th order spectral variations in real rectangular matrices (see Fig. 1). This framework provides a
systematic procedure for deriving higher-order derivatives of singular values in real rectangular matrices.

2. Singular-Value Hessian. Specializing to n = 2 yields the second-order derivative (Hessian) of singular
values, expressed in a Kronecker-product representation that, to the best of our knowledge, has not
appeared previously in the literature. This result is particularly essential for analysis of induced spec-
tral stochastic dynamics, where second-order derivatives arise naturally in It6 calculus for stochastic
differential equations (SDEs) driven by Wiener processes.

2. Fréchet derivative and layout convention

Deploying results from abstract operator theory in matrix settings requires explicit layout conventions,
particularly for the representation of derivatives. Before commencing the theoretical analysis, this section
introduces the conventions fundamental to our framework. Section 2.1 introduces matrix layout and the
differentiability condition; Section 2.3 presents general Fréchet derivatives for matrix-to-matrix maps to-
gether with their tensor representations; and Section 2.4 specializes to Fréchet derivatives of matrix-to-scalar
functionals and their vectorized Kronecker-product representation [12].

2.1. Matrixz and spectral decomposition

Let
A A o A,

A221 A2:2 Az,n
A= . . _ ) e R™X" (13)

Amr Amz o Amn
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be a real rectangular matrix of rank r = rank(A), where A; ; denotes its (¢, j)-th entry. The A admits a full
SVD as stated in Theorem 1.1. Specially, the reduced or truncated SVD of A is given as:

A = Zokukv;, (14)
k=1

where r = rank(A), and ug and vy are the left and right singular vectors associated with singular value
or > 0.

Lemma 2.1 (Essential Matriz Identities). Let x € R be a scalar, and real matrices A, B, C' and V be of
such sizes that one can form their products. Then the following identities hold [8,9,15]:

vec(z) = x,

tr(z) =z,

vec(BVAT) = (A® B) vec(V),
(AeB)T = AT @ BT,

tr(ABC) = tr(CAB) = tr(BCA).

AN SR

2.2. Differentiability condition

To ensure the existence of higher-order differentiability of non-zero singular values and associated singular

R™*™ are simple (i.e., each non-

vectors, we further assume that the non-zero singular values of A €
zero singular value has multiplicity one), as stated in Assumption 2.2 (Simplicity Assumption of Non-Zero
Singular Values). This simplicity assumption is essential for ensuring that non-zero singular value o; > 0 of A
and associated singular vectors u; and v; depend smoothly on the entries of A, in fact yielding u;, v;, 0; € C*
(i.e. maps are infinitely continuously differentiable). Under this assumption, non-zero singular values and

their associated singular vectors vary smoothly with perturbations of A.

Assumption 2.2 (Simplicity Assumption of Non-Zero Singular Values). We assume that the non-zero singular
values of A are simple, i.e.,

o; #o; forall i#j, (15)
[11,9].

If this assumption fails, a non-zero singular value may have multiplicity greater than one; singular values
then remain continuous but may fail to be differentiable at points of multiplicity, and the associated singular
subspaces are well defined whereas individual singular vectors are not unique. In such settings, higher-order
derivatives generally do not exist in the classical context, and analysis must instead be carried out in terms
of spectral projectors or within the framework of subdifferential calculus [4,13].

2.83. Matriz Fréchet derivative as multilinear operator

We regard matrix Fréchet derivatives as multilinear operators [25,37]. A definition for general Fréchet
differentiable real matrix-to-matrix maps and their tensor representation are in Definition 2.3 (a-Times
Continuously Fréchet Differentiable Matrix Map). The existence and uniqueness of the Fréchet derivative
are stated in Theorem 2.4 (Uniqueness of a-Times Fréchet Derivative [25,29]).
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Definition 2.3 (a-Times Continuously Fréchet Differentiable Matriz Map). Let
F: R™™ — R (16)

be a-times continuously Fréchet differentiable (i.e., F' € C'%) [25,29,9]. The a-th Fréchet derivative of F is
a multilinear map:

DYF : (R™*™)* — RS¥, (17)

Writing F; ; for the (4, j)-th component of F' and A, , for the (p, ¢)-th entry of A, with:

1<i<s, 1<j5<t, 1<p<m, 1<qg<n, (18)
then the a-th derivative D®F' at matrix A is a tensor, defined by:
0°F; j(A)
D®F(A)|. . = 2 € R. 19
[ ( )L,J;plm-upaqa 6Ap1q1 "'8Ap,,qa ( )
The action of tensor D*F(A) on directions Hy, ..., H, € R™*™ is obtained component-wise by contract-
ing tensor D*F'(A) with the indices on Hy,..., Hy:
0°F; j(A)
D*F(A)[Hy,...,H,]|, . = = H -+ (Hy . 20
[ (A)[Hq, ..., ]]z,] OApiqy -+ O Apqe (H1)pig: - (Ha)paga (20)

Moreover, for H € R™*™ the F' at A admits a multivariate Taylor expansion:

«
1
F(A+H)=Y = D°FA)H,....H +o(|H|*),  (|H|—0), (21)
— B! ———
p=0 B times
where || - || is any norm on R™*" (e.g., the Frobenius norm).

Theorem 2.4 (Uniqueness of a-Times Fréchet Derivative [25,29]). Suppose F € C* is differentiable up to
order a. Then DF exists, is a symmetric a-linear map, and is unique. That is, there is no other a-linear
operator satisfying the defining Taylor-remainder condition. This theorem ensures the uniqueness of the
derivatives of singular values under the differentiability condition, as stated in Assumption 2.2 (Simplicity
Assumption of Non-Zero Singular Values).

2.4. Representation convention for matriz-valued functionals

We focus on the derivatives of singular values, which are matrix-valued functionals. To obtain matrix
representations to facilitate concrete applications, we specialize the general matrix-to-matrix maps of Defi-
nition 2.3 to matrix-valued functionals. In general, the a-th Fréchet derivative is a higher-order tensor. To
express such tensors in matrix form, we employ vectorization (with a column-major convention) together
with the Kronecker-product representation [12,17], as established in Corollary 2.5 (Vectorized Kronecker-
Product Representation of Fréchet Derivative). As complementary conventions, we also introduce explicit
matrix layouts for the Jacobian in Section 2.4.1 (Representation convention for Jacobian of matrix-valued
functional) and for the Hessian in Section 2.4.2 (Representation convention for Hessian of matrix-valued
functional).
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Corollary 2.5 (Vectorized Kronecker-Product Representation of Fréchet Derivative). Let
fiR™™ SR (22)

be a-times continuously Fréchet differentiable (i.e., f € C%). For directions Hy,...,H, € R™*™ the
multilinear action D*f at A € R™*™ 4s given by the Frobenius tensor inner product [12,17]:

Df(A)[Hy,...,Hy) = (Df(A),Hi ® - ® Hy) (23)
= (vec (D f(A)),vec(H; ® --- ® Hy)) (24)
= vec (Df(A))" vec(H; ® -+~ @ H,), (25)

where @ represents Kronecker product (i.e., tensor product) and:
vec : R™*™ i R™" (26)
represents the vectorization operator with the column-major convention [12].

This vectorization is particularly useful for representing arbitrary-order derivatives of matrix-valued
functionals in matrix form.

2.4.1. Representation convention for Jacobian of matriz-valued functional

Representing the Jacobian of matrix-valued functionals in matrix form is standard in the literature [9]. For
clarity, we introduce a matrix layout as a complementary representation for the Jacobian of matrix-valued
functionals. Let

FiR™™ 5 R (27)

be a first-order Fréchet differentiable functional. Then the differential of f admits:

df = Df(A)[dA] = (Df(A), dA) = (ﬁ)TdA (25 aa (28)
’ 0A 0A ’
where g—£ and infinitesimal variation dA € R™*™ are piece-wisely defined as:
ofr o _of . of
A1 OA, A1
aof of of
of _ | 94y 94, T 94, (29)
04 | IR
of of . of
A1  OAmo A
with denominator layout convention, and:
dA;1 dAip - dAin
dAz;  dAzp -+ dAz,
dA = : . . (30)

dAmy dApms - dApa
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2.4.2. Representation convention for Hessian of matriz-valued functional
The Hessian of a matrix-valued functional is naturally a higher-order tensor; for instance, it is a fourth-
order tensor for matrix-valued functionals [12]. Let

fiR™™ 5 R (31)
be a twice Fréchet differentiable functional. Since
D*f = D(DY), (32)

to obtain a matrix representation of D?f, we first consider the representation layout of the first-order
derivative for a matrix-to-matrix map F : R™*" — R**!, We then apply vectorization together with this

layout to express the second-order derivatives of matrix-valued functionals in matrix form.
Let

F:R™" oy RSX (33)

be a first-order Fréchet differentiable matrix-to-matrix map. Then there exists:

O vec(F)
ZVelt) cgexa p— d g=st 34
Dvec(A) € p=mn and q= st, (34)
piece-wisely defined as:
dvec(F)1 dvec(F)a dvec(F)q
O vec(A)y dvec(A) dvec(A)r
dvec(F) dvec(F) dvec(F)q
avec(F) N 8vec(A); aveC(A)z T dvec(A)2 (35)
Ovec(A) : : _ :
dvec(F)1 dvec(F)> . dvec(F)q
Ovec(A)p  Ovec(A), dvec(A)p

by using denominator layout convention on vec(F') and vec(A) [9]. Then the Hessian of the matrix-valued
functional f can be defined as:

0 of
Ovec(A) vee ((‘9A> (36)
with vectorized representation.

Relating Vectorized Representation to D?f. We now relate this vectorized representation to D?f. By
Corollary 2.5 (Vectorized Kronecker-Product Representation of Fréchet Derivative), consider:

D?*f[dA,dA] = (D?f,dA ® dA), (37)

and use the following identities from Lemma 2.1 (Essential Matrix Identities):
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1. vec(x) = =z,
2. vec(BVAT) = (A® B) vec(V),

then it yields:

D?f[dA,dA] = (D?f,dA ® dA) (38)
= vec(D?f) Tvec(dA ® dA) (39)
= vec(dA) (D2 f) Tvec(dA). (40)
Relating
0 of
Ovec(A) vee (8_A> (41)
with D2 f yields:
I ar\]"
D?f = [8vec(A) vec (&4)} ) (42)
such that:
D?f[dA, dA] = vec(dA) T [(%ef(A)vec (2};)} vec(dA). (43)

3. Refined asymptotic eigenvalue expansion

Kato’s monograph [11] establishes the existence of asymptotic eigenvalue expansions and, in partic-
ular, provides a closed-form expression for the weighted mean of eigenvalue coefficients, as stated in
Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expansions [11, Ch. II, §2.2]). Nevertheless, Kato’s
formulation is expressed with an infinite summation of contour integrals involving the perturbed resolvent
and does not yield explicit, constructive formulas for the individual coefficients, which limits its direct ap-
plicability in our setting. Building on the analytic foundations laid by Kato, and by employing explicit
Neumann expansions of resolvents together with the residue theorem, we refine this framework to derive an
explicit, closed-form formula for arbitrary-order eigenvalue coefficients of holomorphic families of bounded
self-adjoint operators. Our main result, Theorem 3.3 (Refined Closed-Form Asymptotic Expansion of Sim-
ple Isolated Eigenvalue in Self-Adjoint Operator), goes beyond Kato’s weighted mean by furnishing a fully
constructive representation of each eigenvalue coefficient. The overall scheme is illustrated in Fig. 1.

Definition 3.1 (Space of Bounded Linear Operators). Let
L(X)={T:X — X | Xis a Banach space and T is a bounded linear operator} (44)
be the Banach space of bounded linear operators.

Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expansions [11, Ch. II, §2.2]). Let

T(z)=TO + i ZTU e £(X) (45)

Jj=1
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be a holomorphic family of bounded operators on a Banach space X [11, Ch. II, §2.1, Eq (2.1)]. Suppose
MO s an isolated eigenvalue of T©) of algebraic multiplicity m.

Let
R(z) = (T(x) —zI)~" (46)
be the perturbed resolvent, let
P(z) = L j{R(z)dz (47)
o 2mi ’
r
be Riesz projector, and define
~ > 1 )
T =3 "(-1p! 5 jﬁ 2) T R(z)--- R(2) T R(2) (2 — A?) dz, (48)
p=1 i1+ +zp—n T
i;>1

where T is a small contour enclosing only X9 and no other spectrum [11, Ch. II, §2.1, Eq (2.18)]. Then
the weighted mean of the perturbed eigenvalues is:

a 1
Az) == - tr(T(m)P(x)), (49)
admits the expansion
Az) =20 4 Z " A (50)
n=1
[11, Ch. II, §2.1, Eq (2.21)], and:
A = 1 (T (51)

[11, Ch. II, §2.1, Eq (2.22)].

Sketch to refine Kato’s result Following Kato’s analytic framework, we also begin with the perturbation
series T (x) of a self-adjoint operator 7. Kato’s monograph establishes eigenvalue expansions via contour
integrals of the resolvent and provides a closed-form expression for the weighted mean of eigenvalues, but
it does not supply explicit constructive formulas for the individual coefficients. Our approach departs at
this point: we expand the resolvent explicitly through its Neumann series, apply the residue theorem on the
contour integrals, and simplify the resulting expressions. This yields a closed-form asymptotic eigenvalue
expansion for 7 with computable coefficients. Unlike Kato’s result, our expansion is formulated in terms of
the finite summation of the series of unperturbed resolvent, which enables systematic computation and, in
particular, facilitates the subsequent derivation of singular-value Fréchet derivatives. As a special case, it
also recovers the classical Rayleigh—Schrédinger corrections of quantum mechanics [23,27,26].

Theorem 3.3 (Refined Closed-Form Asymptotic Expansion of Simple Isolated Eigenvalue in Self-Adjoint
Operator). Let

T(z)=TO +§:xﬂ' TV e L(X) (52)

Jj=1
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be a holomorphic family of bounded operators on a Banach space X, where T©) denotes the unperturbed
operator and x € C is the perturbation parameter.

Unperturbed Reduced Resolvent. Define the unperturbed reduced resolvent [25,11,37] of 7O
SO — (7O - )\(0)])_1 (I — w© (w®)*), (53)

where A is a simple eigenvalue of T(© and w(®) is the associated normalized eigenvector (i.e., |[w® ||y = 1).

Theorem Claim. Then there exists a unique holomorphic branch A(x) of eigenvalues of T (x). It admits the
power series:

Mz) = f: " A (54)
n=0

and for each integer n > 1,

n

A7) = Z(_l)p—l Z (w©®, T 5O 7iz) §O). . GO Tin) (0], (55)
p=1 i1+ tip=n
ij>1

Proof 3.4. We begin by presenting a compact and explicit proof of Theorem 3.2 (Kato’s Weighted Mean of
Eigenvalue Expansions [11, Ch. II, §2.2]) in the case of a simple eigenvalue of a self-adjoint operator, which
does not exist in Kato’s monograph. Since A\(9) is a simple eigenvalue of 7(°), analytic-perturbation theory
ensures there exists a unique eigenvalue branch A(z). Let

R(z) = (T (x) — =)~ (56)
be the resolvent of operator T (z), which encapsulates the full spectral information of 7 (z), and let
S(z) = R(z)( — P(x)) (57)

be the associated reduced resolvent S(z) (i.e., the regular part of the resolvent), where P(z) is the Riesz—
Dunford contour integral [5,11], that is:

P(z)=—— 7{R(z) dz = —% (T(x) —2I)  dz, (58)
r r

where T is a small contour enclosing only A(®) and no other eigenvalues. Hence the projection:

T(z)P(z) = —% [I + zR(z)]dz = 2%” —zR(2)dz = A\(z) P(x), (59)
r r

holds true since the resolvent R(z) for a simple eigenvalue admits the Laurent expansion [11, Ch. I, §5.3,
Eq (5.18)]

R(z) = % +8(2)+ R(z), R(z)=> (2- M) (5(2))", (60)

where R(z) is the analytic regular remainder of z, and the residue of —zR(z) at z = A(z) is
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Res.—z(2)(—2R(2)) = [z — M@)][=2R(2)] |:=x(2)= M) P(z).

Contour Integral of Perturbed Eigenvalue Series A(z). Starting from the identity in Equation (59),

T(x)P(z) = Ax)P(x)

then substituting P(z) from Equation (59) yields:

Az) — 2O = tr((T(x) — A7) (f% f{ R(2) dz))

- _QLM, tr ((T(z) = NYT)R(2)) dz.

Considering the resolvent identity:

(T(x) —2D)R(z) =1

and:
(T(@) = XOD)R(z) = (T(x) = 21 + 21 = XOT)R(z)
:(T ) — 2L+ ( z—)\(o)) (2)
= (T(x) — 2I)R(2) + (2 = AV)R(2)
=TI+ (2= A"R(2),
it yields:
/\(x)—)\(o)——ﬁ tr ((T(x) — AOT)R(2)) d
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Resolvent Expansion. To expand the resolvent R(z), define the unperturbed resolvent R(®)(z):

then this identity holds:

Note that:
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1
=5 tr ((z — A(O))R(Z)P(O)) dz.
r

RO(z) = (TO — 217",

(TO — 2RO (z) = I.

T(x) =20 =T© — 21 + ijT(j)

j=1

=T —2I+1) 2/TW

j=1

=T — 21 +(TO - 2RV (2) Z 2?7

= (TO — < I+ RO ZImi)

so that the operator Neumann series of R(z) expands as:

-1

R(z) = (T (z) — 21)

-1
00

= |(TO = 2D (1+ RO () oI TV)

J=1

© () N i 7D (7O _ )7
(I+R0(z)j§_:1:r3TJ) (70~ =1)
(1 + RO(2) i 2 TU)) T ROz
j=1
(

I—(—RO(z Z:EJT(] )_1R<°>(z)

Neumann series

i<_ (<o> nyfrm) RO(2).

k=0

Asymptotic Eigenvalue Expansion. Expanding the term in Equation (93):

yields:

(R(O) Z JUJT(J))

(91)

(92)

(94)
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O \Fk .
(R<°>(z)zxﬂ7<f>) = > @t RO T RO(z) . RO (z) T (95)
j= 01,00 >1
= D @R ROG) Ry (2), (96)
i1 yeenyipg>1

where R;, (z) represents an operator composition series:

Ri (z) = T RO (2)... RO (z) 70, (97)
Substituting Equation (96) into Equation (93) yields:
D (-1F D0 @t ROG)R, () RO(2) (98)
k=0 i1y >1

(—DF > @t ROG)R;, () RO (2). (99)

k=0 i1 yenin>1

Substituting Equation (99) into the contour integral for A(x) — A(?) in Equation (81):

Mz) — A0 = f% ?{tr ((z = XO)R(2)PO) dz, (100)
T
T
yields:
= 1
() — () R CAO\RO (NR. (RO () PO
A =37 (1) | Z m?ftr((z ADRO R, (2)RO)(2)P )dz (101)
k=0 11+l;11k n T
= 1
=3 (1)t - }{ i JRO)(2)R,, (:)RO(2) POz, (102)
k=0 Q14 —;zlk =n ’/TZF

which recovers Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expansions [11, Ch. II, §2.2]).

Contracting and Relabeling Indices. We refine Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expan-
sions [11, Ch. II, §2.2]) further, with the aim of obtaining a constructive, computable and basis-dependent
formulation. Note that only the multi-indices satisfying:

1+t =n (103)
contribute to the coefficient of £™, and since the terms with:
k=0 or k>n (104)

for n > 1 vanish, we contract the summation to the admissible subset of indices. For clarity, we denote this
contracted index set by p C k:

n

AW =Nt 3 % tr((zfA(O))R(O)(z)Rip(z)R(O)(z)P(O))dz. (105)

p=1 P14 Fip=n T
i;>1
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Applying Cauchy’s Residue Theorem Applying Cauchy’s residue theorem via Riesz—Dunford functional
calculus [5] for Equation (105) yields:

n

AW =317t S Res._yo [tr((z A RO ()R, (z)R(O)(z)P(O)ﬂ. (106)
p=1 i1+ tip=n
i;>1
Simplifying Residue. We now aim to compute the residue:

Res,_ o) [tr((z — AOYRO ()R, (2)R©) (z)P(O))} . (107)

Note that near z = A\(9), the Laurent expansion of the unperturbed resolvent R(O)(z) for a simple eigenvalue
A0 admits [11, Ch. I, §5.3, Eq (5.18)]:

p(0)

R(O)(z) _ YO

+50 4 ROV, RO Z "(S©@)" (108)

where P = (@) (x)* 5O = RO)(2)(I — P©) is the unperturbed reduced resolvent of R(®)(z), and
R(O)(z) is the analytic regular remainder of z. Substitute R(?’)(z) into the trace product:

tr((z —ANRO ()R, ()R (z)P(O)), (109)
and consider that in the expanded trace product:

1. the terms P S0 = 50 p©) — () vanish,
2. the terms with higher-order poles vanish, since the denominators are constant operators.

Then only the term with simple pole survives:

Res._yo [tr((z = AO) RO () Ry, (2) RO (2) PO |

PO)7(1) §(0) ... g(0)7(ip) p(0)
= — 20 (0)
Res,_ o [tr((z AP 00— )2 P )] (110)
PO)7(E1) §(0) ... §(0)7(ip) p(0)
— (0)
= Res,_» [tr( 0 P )} (111)
PO (1) g(0) ... §0)7(ip) p(0)
= (2 =) tr( > — \(0) P(O)) YO (112)
— tr( POTi1) g0) . .. g(0)7(in) p(0) p(O)) (113)
— tr (Tw SO ... gO)7(i) p(0) p(0) p(O)) (114)
- tr(Tm)S(m . 5<o>7<ip>p<o>), (115)
since PO p0) = p(0),
Producing Theorem Claim. Substituting the residue from Equation (115) into Equation (106) yields:
A =3t Y tr(Tm)S(m . S(U)T(ip)p(o)) (116)

p=1 Q14 Fip=n
i;>1
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Il
—~
|
[t
~—
T
—

Z br (T(h) SO ... GO 7 (in)y,,(0) (wm))*) (117)
p=1 i1+ tip=n

ij>1

Z tr((w(o))*T(il)S(O) o S(O)T(ip)w(0)> (118)

p=1 i14-+ip=n
121

Il
—~
\
[t
~—
T
=

Il
—~
\
[t
~—
T
—

3 <w<o>’ (1) §(0) 7 (i2) G(0) . .. G(0) (i) ;,(0) > (119)
p=1 i1t +ip=n
i 2>1

which is basis-dependent and expressed in terms of unperturbed reduced resolvent. O

Remark 3.5. By refining Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expansions [11, Ch. II, §2.2]),
Theorem 3.3 (Refined Closed-Form Asymptotic Expansion of Simple Isolated Eigenvalue in Self-Adjoint Op-
erator) provides an explicit, closed-form representation of the coefficients A in the eigenvalue perturbation
series. Classical analytic perturbation theory [11] guarantees the existence of such expansions and gives re-
cursive characterizations of the coefficients, but does not furnish constructive closed forms. In contrast,
our formulation expresses each A" in terms of finitely many operator products involving the perturbation
operators 7U) and the unperturbed reduced resolvent S(©), making the coefficients directly computable. As
a validation, for n = 1,2,..., the expansion specializes to the familiar Rayleigh—Schrédinger corrections of
quantum mechanics [23,27,26].

4. Infinitesimal higher-order spectral variations

Guided by the scheme in Fig. 1, and under Assumption 2.2 (Simplicity Assumption of Non-Zero Singular
Values), we exploit the spectral correspondence between a rectangular matrix A € R™*™ and its Jordan—
Wielandt embedding 7 as established in Theorem 1.2 (Spectrum of Jordan-Wielandt Embedding). This
allows us to derive arbitrary—order Fréchet derivatives of the singular values of A from the asymptotic
eigenvalue expansions of 7. The argument proceeds by first establishing the correspondence between the
perturbation series and Fréchet derivatives as stated in Theorem 4.1 (Analytic Perturbation for Holomorphic
Operators), and then applying this relation to obtain higher—order derivatives of singular values as stated
in Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation).

Theorem 4.1 (Analytic Perturbation for Holomorphic Operators). Let X be a Banach space and let T (x) :
U C C — L(X) be a holomorphic family — i.e., type (A) in the sense of Kato’s framework [11], defined in a
neighborhood of 0 in the operator norm. Then T is C*° in the Fréchet sense at 0 and admits the convergent
operator—norm erpansion:

oo

T) = Y 00T, el <p. (120)

n=0
where p is the distance from 0 to the boundary of U. In particular, if one writes the perturbation series as:
T(x)=TO+> anT, (121)
n=1

then the coefficients agree with the Fréchet derivatives, namely:

T = L D"T(0), n>1 (122)
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Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation). Let
AeR™*" (123)
be a real rectangular matriz under Assumption 2.2 (Simplicity Assumption of Non-Zero Singular Values).

Matrix Perturbation Series. Let

(o)
Ax) = Zx’“ AR ¢ gmxn (124)
k=0

be holomorphic perturbed operator near © = 0 with unperturbed matriz A®) = A.
The unperturbed matriz A admits a full SVD:

AO) = O50) ()T (125)

as defined in Theorem 1.1 (Matriz Singular Value Decomposition (Full Form)), where ordered r = rank(A)
non-zero singular values are given, under Assumption 2.2 (Simplicity Assumption of Non-Zero Singular
Values), as:

(0)

o> 6l > 560 >0, (126)

u,io) and v,io) are singular vectors associated with singular value (f,(vo), and:

U ermxm -y ¢ grxn (127)

. . 0 0
are orthogonal matrices. For brevity, we also use o; = ag , U =, and v; = fuf ).

Jordan—Wielandt Perturbation Series Embedding. Using Theorem 1.2 (Spectrum of Jordan—Wielandt Em-
bedding), we embed the perturbation series A(x) into T (z) to construct a Jordan—Wielandt embedding:

[0 AW
T(x) = [A(x)T 0 ] . (128)
This embedding admits a perturbation series:
o . .
T(x)=)Y a/TY (129)
j=0

at x near zero, with the unperturbed operator:
(0)
7O = { 0.4 ] , (130)

and the perturbations:

. ®)
TU):[ 0.4 } j>1 (131)
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The non-zero eigenvalues )\Eio) of T are therefore:

/\E+O) = Jrai(o) )\E_O) = —UZ(O), fori=1,...r, (132)

)

associated with eigenvectors:

(0) (0)
o 1 ju o _ 11w 133
w; V2 lvgo)] oW V2 [—vfo) ’ (133)
and null eigenvectors,
07
(1510) = |:u6 ) (fOTj:’I“—Fl,--' 7m)a (134)
and:
© _ [ 0] ,
b =, o (orj=r+l..-.n) (135)
ko
Since w,(jo) and w,(c_o) are eigenvalues of TO), hence the identities hold:
7—(0 (+0 )‘S'_O)wl(q—i_()) — T(O)’UJ](:_O) — O—]EO)w](:_O)v (136)
and:
T(O)w,(c_o) = )\;_O)w,i_o) — T(O)w,i_o) = 701(60)10’(6—0)' (137)

Unperturbed Reduced Resolvent in Embedding. By definition, the spectral ewpanswn of the reduced resolvent
(+0) (0)

operator associated with the eigenvalue A"’ = o’ and associated eigenvector wk Of T (x) is given as:
-1
s = (TO—o1)  (1-F"), P = w7, (138)

which admits the spectral expansion:

r (+0),, (FO)\T r (=0)/, (=0T m (0) (0) n 0) b(O
(0) _ w;(w; ) w, " (w; ) a; ( )
Sy = Z (0) (0) + Z (0) O Z o Z - (139)
i=1, izk % — O i=li#tk —0i T O j=r+1 Jk j=r+1
Theorem Claim. For each integer n > 1,
n
:Z(_l)p—l Z (wl (+0) 7-21)5 (0)(iz) | Sl(gO)T(ip)wl(<:+0)>' (140)
p=1 i1+ tip=n
i;>1

By Theorem /.1 (Analytic Perturbation for Holomorphic Operators), the Fréchet derivative of the singular
value is unique and given by:

D"oi[dA,--- ,dA] = n! lim (J:" a,(cn)) , (141)

z—0

where:

dA = lim zAD. (142)
z—0
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Remark 4.3 (Schematic Procedure of Computing Higher-Order Singular-Value Derivatives). The suggested
schematic procedure of computing arbitrary higher-order singular-value derivatives is as follows:

e Procedure I — Construct Infinitesimal Perturbation — constructs an infinitesimal perturbation by dA =
limg o zAM),

« Procedure II — Specialize n to Obtain Derivative Operator — specialize n in ¢(™), and obtain derivative
operator Do), = nlo(™,

o Procedure IIT — Map Derivative Operator Layout — map D" o [dA, - - ,dA] to Kronecker-product rep-
resentation or specific layout.

Proof 4.4. By Theorem 3.3 (Refined Closed-Form Asymptotic Expansion of Simple Isolated Eigenvalue in
Self-Adjoint Operator), one eigenvalue Ag(z) of 7 (z) admits an asymptotic expansion:

(@) =D amaL. (143)
n=0

By Theorem 1.2 (Spectrum of Jordan—Wielandt Embedding), for n > 1, choosing a positive eigenvalue

branch 0,20) yields the asymptotic singular-value expansion of A(x):

OIE:n) _ Z(_l)pq Z <w}(€+0)77~(i1)51(€0)7ﬂ(i2) . S£0>T(ip)w£+0)>. (144)
p=1 i1+ tip=n
i;>1

By Theorem 4.1 (Analytic Perturbation for Holomorphic Operators), D"y, admits:

D"oy = n!o,(cn), (145)
and its action is given by:
D"o4[dA, -+ ,dA] = n! lim "o, (146)
where
dA = lim zAM. o (147)

Remark 4.5. Thanks to Kato’s perturbation theory for linear operators, our framework for deriving singular-
value derivatives rests on a rigorous analytic foundation and provides a procedural and systematic method-
ology, resting on a rigorous foundation, and going beyond the ad hoc approaches commonly found in classical
matrix analysis. In the latter, derivatives are typically obtained through differential identities or perturba-
tion arguments without a fully rigorous treatment of differentiability. For instance, Horn and Johnson [9]
present differential identities for spectral functions, but these do not constitute a unified framework for
higher-order derivatives.

5. Special case (n = 1): closed-form singular-value Jacobian

We now show that Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation) can recover the well-
known singular-value Jacobian, stated in Lemma 5.1 [30,17].
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Lemma 5.1 (Closed-Form Singular-Value Jacobian). The Jacobian of a singular value is well-known in the
literature [30,17] in the form:

do

which immediately admits an equivalent result with Kronecker-product presentation:
Doy [dA] = (v, @ ug) Tvec(dA). (149)

Traditional Method in Matrix Analysis. In classical matrix analysis [30,17], the derivation of singular-value
derivatives often begins with the identity

o = uj Avy, (150)
and then applies the trace identity
op = tr(u, Avy), (151)

to compute doy and its derivatives. However, this approach is largely ad hoc and does not scale systematically
to higher-order derivatives or more general operator settings.

Proof 5.2. We follow the schematic procedure suggested by Remark 4.3 (Schematic Procedure of Computing
Higher-Order Singular-Value Derivatives) to recover this first-order singular-value Jacobian by specializing
n =1 in Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation).

Procedure I — Construct Infinitesimal Perturbation. We construct a perturbation series on A:
Alz) = A4+ zAD, A0 = 4 (152)
so it yields:
dA = lim zAW, (153)

Procedure IT - Specialize n to Obtain Derivative Operator. Specializing n = 1 in Theorem 4.2 (Higher-Order
Infinitesimal Spectral Variation) yields:

oV = (w0, 7Oy, (154)
Simplifying First-Order Term. Consider:
T - [<A<9>>T o |l % [t 1)
— - () ]
— (M, 7Oy = % [ Ay 4] (AD) T (157)
— (W TOWFOY = ] AWy, (158)

— oV =l AWy (159)
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Procedure IIT — Map Derivative Operator Layout. By Theorem 4.1 (Analytic Perturbation for Holomorphic
Operators), we have:

Doy [dA] = oV [dA4] (160)
= lim oNzAW (161)
= ilLI%) ul z Ay (162)
= uy dAv, € R. (163)

Using following identities from Lemma 2.1 (Essential Matrix Identities):

1. tr(z) = =z,
2. vec(BVAT) = (A® B) vec(V),
3. (A B)T =AT®BT,
4. tr(ABC) = tr(CAB) = tr(BCA),
yields:
Do[dA] = tr(u] dAvy) (164)
= tr(vpu, dA) (165)
= (v ® ug) " vec(dA), (166)
and:
dop, T T

6. Special case (n = 2): closed-form singular-value Hessian

Explicit closed-form expressions for the singular-value Hessian of rectangular matrices are, to the best
of our knowledge, not available in the literature. Such a result is essential for applications in stochastic
analysis, for example when applying Itd’s lemma to stochastic differential equations (SDEs) or stochastic
partial differential equations (SPDEs) driven by Wiener processes [21]. We now derive the singular-value
Hessian for general real rectangular matrices, under Assumption 2.2 (Simplicity Assumption of Non-Zero
Singular Values), as stated in Lemma 6.1 (Closed-Form Singular-Value Hessian), represented in the layout:

vec(dA) " (%C(A) vec <%)) vec(dA), (168)

by specializing Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation) to the case n = 2.

Lemma 6.1 (Closed-Form Singular-Value Hessian). The Hessian of a singular value is given as:

9 80'k Ok .
_ 9 dor\ _ | | 1
Jvec(A) Vec<aA) ‘ Z o2 — o7 (v @ u;) (Ve @ ug) + (169)
i#k,i<m
left
Y. g mew mew) + (170)

J#kg<n "k TJ

right



R. Luo et al. / J. Math. Anal. Appl. 556 (2026) 130236 23

o
Z ﬁ [(vk ®@u) (v ® up) '+ (v ® ug) (v ® ul)T} (171)
14k, I<r Tk ~ 9

left-right interaction

with Kronecker-product representation.
Proof 6.2. We follow the schematic procedure suggested by Remark 4.3 (Schematic Procedure of Computing
Higher-Order Singular-Value Derivatives) to derive this second-order singular-value Hessian by specializing
n = 2 in Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation).
Procedure I — Construct Infinitesimal Perturbation. We construct a perturbation series on A:

A@) = A+zAD, A0 = 4, (172)
so it yields:

dA = lim zAWD, (173)
r—

Procedure IT - Specialize n to Obtain Derivative Operator. Specializing n = 2 in Theorem 4.2 (Higher-Order
Infinitesimal Spectral Variation) yields:

2
DS S O, TS T . SO ) a7
p=1 i1 i =2
i;>1

= U,(f’pzl) + 0,(62’]0:2) (175)

where
U}(glpzl) — <wl(€+0),7'(2)w]i+0)>, (176)

and

aéz,p:m — _<w](€+0)’7(1)5120>T(1>w1<€+0>>, (177)

Computing Term o,(f’pzl). We first compute the term with p = 1 (0,22’17:1)). By Theorem 4.2 (Higher-Order
Infinitesimal Spectral Variation), we substitute:

(2) 1
@) _ 0 A (+0) _ L fuy
T [(A(Q))T 0 ] and w,, 7 [Uk} (178)
into:
T@ w0 (179)
it yields:
(2),,,(+0) _ 0 A(Q) ) L Uk | L A(Q)’Uk
THwy = {(A@))T 0 V2 k| V2 (AP Ty | (180)
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Substituting
2
T@ 0 _ % [(Afg);gku k] (181)
into:
U,(f’p:l) = (w,(j_o), ’T(Q)w,(fo)) (182)
yields:
o 2= = (Y, TPw ) (183)
= 2 [ A®u+ (o) T(AO) T (184)
= u) A®y, (185)
In the construction of dA, there is:
A® =0, (186)
so that:
o,(f’p:l) =u] A®y;, = 0. (187)
Sketch of Computing Term U,(f’p =2, We compute the term with p = 2:
o277 = (w0, TO SO T w0 (188)
To simplify, we first compute:
ST+ (189)
(2,p=2)

then substitute this result into Equation (188) to produce complete o,

Computing Contributions in S IEO)T(l)w,i+O) in a,(f’p =2), By Theorem 4.2 (Higher-Order Infinitesimal Spectral
Variation), the unperturbed reduced resolvent is defined as:

r (+0) (+0) ( ONT m _(0) (0)\T n OO T
0 _ w7 (w; )" a;”(a;") i (657)
= oo RON (o) + Z (0) Ol 2. © 2 o (190
i=li#k i i=lizk ~—9i — Og j=r+1 Ok j=r+1 Ok

By Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation), substituting non-null eigenvectors of
the unperturbed embedding 7(©):

1 ’ _ 1
wz(+0) = ﬁ {ZZ:| ) wz( 0= 7 {ulz)z] ) (191)

and null eigenvectors of the unperturbed embedding 7(©):

o =[a]. w-[2) am
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into Sl(€0) yields:

Ui T,,T Ui T T
T 1| v; [U’z v; } T 1| —v; |:’U/7 - ]
$7 =3 5 + 2 :
k 5 5
o;—0 2 -0, — 0
i=1,i%k ¢ Y% i=1,i%k k
positive eigenspaces negative eigenspaces

S I e P %

left-null eigenspaces right-null eigenspaces

where:

25

(193)

1. contributions in positive eigenspaces (S ](€+0)) represents the contribution in the subspaces associated with

(+0),
w; s
2. contributions in negative eigenspaces (S,(;O)) represents the contribution in the subspaces associated
with wgfo);

3. contributions in left-null eigenspaces (.S ,io’a)) represents the contribution in the subspaces associated with

i),

4. contributions in right-null eigenspaces (S ,io’b)) represents the contribution in the subspaces associated

with 0",

(+0) into:

Substituting w;,
S(O Ty (+0

yields:

1 (1)
SJ(CO)T (+0) S(O 7o L [U ] -~ S(o) [( A vk } ’

&
g

then apply the explicit S,(CO) on this result:

O (1), (+0) _ g 1 [ AWy, (+0) | o(=0) , a(0,a) , o(0b)y L
ST Sk\f{(A“))Tuk =S+ S, T+ ST+ S, )f(

and discuss the contributions in terms of subspaces:

1. Contributions in Positive Eigenspaces. To compute

g L[ AWy 7§ o) 1 a0y
v (A Tw ] T 4 “p  Ti—Ok V2 (AMD) Ty
consider:
oy, L[ AWy |1 . L[ AWy
(w; ) /2 [( 1)) up [ Ui ] V2 (A(l))Tuk

\/_
:%{ TAWy, 40T (A Ty ]

(194)

(195)

(196)

(197)

(198)
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Note the identity:

so that:

i

N
(w; )" 7

Ui

AQ

 (AD) Ty

{( A(;;gkuk} -

1

2

=uy AWy; e R,

[uiTA(l)vk + ukTA(l)vi] .

Therefore the contributions in positive eigenspaces are given as:

1
S(+0) L
V2

A(l)vk o
Tulc -

(AM)

2. Contributions in Negative Eigenspaces.

To compute:

_o) 1
S( 0) *
VG
consider:
(wi™7T
Note the identity:
so that:
(w(+0))T

it

Al

Vk _
Tuk

AWM,

7

i=1,i#k

Z 1

i= lz;ék

D

i=1,i#£k

% [(A(l)) Uk] N %

")

?

oi— 0ok V2

r w§+0)(w(+0))‘|’ 1 A
(A1)

TA(1 Vg, +uTA Doy,

(Uz - Uk)

A(l)vk
—oi—or V2 [(AD)Tu

Vg
Tuk
U
Vi ’

1 Al
ol =71 75 o
= % [u AWy, — T(A(l))Tuk] .

AWMy 1

A(l))Tuk 2
_ b
V2

v (AN Ty, = uf AV, e R

| = 5 [ A~ uf 4]

u AWy, — u,;'—A(l)vi

2(—0; — op)

Therefore the contributions in negative eigenspaces are given as:

o 1
g0 L
V2

|

Al
(AM)

o | _
Tuk: -

i=1,i%k

Pt

i=1,i#k

u] AV vy —ul Ay,

2(—0; — ok)

|

i wg_O)(wg_O))Ti AWy
—oi—or 2 [(AD)T

)k
ug,

Us
_Ul ‘

|

Usg
—v;

J
)Uk
T

|

(199)

(200)
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(202)

(203)

(204)

(205)

(206)

(207)

(208)

(209)
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3. Contributions in Left-Null Eigenspaces.
To compute:

gow L[ AWy ) 5 aV (@7 1T Ay,
V2 -2
consider:
o T 1 ADy, 1 1 ¢ o 1 AWy,
(a; ") - [( N | = 514 0 (AD) Ty

1
= iujTA(l)vk

Therefore the contributions in left-null eigenspaces are given as:

m 0), (0

o) L [ AWy, ] - e [ AWy, ]
COVRLAD ] T S e VR (AT T

moq u;'—A(l)vk

e
j:rﬂ‘/§ Tk 0

4. Contributions in Right-Null Eigenspaces.
To compute:

oo L [ AWy, ] i b )" ()) 1 [ A ]
7 (AT 2 \/5 (AM) Ty,
consider:
75 |ty = 7510 ] Lz ity
:; T(AM)Ty
ziu;A(l)vj.

Therefore the contributions in right-null eigenspaces are given as:

sev e ]=- > b”<b”>1[ A |
FoVR (AM) Ty, Pt Ok V2 (A Ty,
__ Z 1 )'l) |:O:|
5 TH\f v;

Computing Inner-Product Contributions in (wy, 7 S, 7TMwy,). Since the term:
SO Tt

is computed above, to further derive:

27

(210)

(211)

(212)

(213)

(214)

(215)

(216)

(217)

(218)

(219)
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o = TS0
we compute the inner-product contributions in (wy, 7™M S, T(Mw,,) with respect to subspaces:

1. Inner-Product Contributions in Positive Eigenspaces. Consider:
Z(+0) . 7—(1)51(6+0)7—(1)w](c+0)

= T(l) i L . u;rA(l)Uk + u;CrA(l)vi |:UZ:|

i=1,i%k V2 2(0; — ox) V5
- i 1wl AW+ uf AWy, [ AWy, }
i=1itk V2 2(o; — o) (AD)Ty

so that:

(wi, 20 Z <L { kDT 1wl AW+ uf AWy, [ Ay, ]
2 | Vk \/i 2(Ui — O'k) (A(l))Tui

u] AWy + uTA(
2(0; — ok)

[ AP+ o] (AT

Il

i

i
0

L

ol
/—'\
\_/
[ V]

= Z o —on) ;—A(l)vk + u;—A(l)vi] [u,IA(l)vi + u:A(l)vk]
i=1,i#k o Ok
" 2
= Z u;rA(l)vk + uzA(l)vl}
i=1 z;ék - Ok
r 1 r 2 2
= Z S [u;—A(l)vk} + 2u] AV vpul AWy, + [u,;rA(l)vi} .
it Mo — o) |

2. Inner-Product Contributions in Negative Eigenspaces. Consider:
7(=0) ._ T(l)S,i_O)T(l)w(+0)

— 7 zr: 1 uf AW —uf AWy, [ u; }

i=1,i#k V2 2(—0i — o%) —Yi
_ z": L U;—A(l)fyk — u;—A(l)’Ui |:A(1)(_,Ul):|
i=1,i7k V2 2(—0i — ok) (A) Ty
so that:
1w AWy, — ] AWy,
(wp, 20y = 1w AWy, —uf AWMy, [UZA(l)(_Ui) n U};F(A(Q)Tui}
T 2 2(—0i — o)
i=1,i#k
- 1
= S [uiTA(l)vk - U/IA(l)vl} [—(uk)TA(l)vi + 'UJ;'FA(UU]C}
=, A(—0; — o)
i=1,i#k
r 1 . )
= = | AMy, —y S AW }
; 4(—0; — o) {ul Uk — Uk i
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T

_ 1 TAam, 12 o T A, T A, o [T A, 17
= Z Py —— H%A vk} 2u; A vgu, A U1+{ukA vz} .

i=1,i%k
3. Inner-Product Contributions in Left-Null Eigenspaces. Consider:

a (0,a) (+0)
70 = TGPV Ty

j=r+1

i 1 ul AWy [ 0 ]

_J=T+1 5 on (A(l))Tu] )
so that:
s 1 uTA( v
(wi, ZO0) 3 © a0+ o7 (AM) Ty

j=r+1 Ok

s 1 uTA(l)vkuTA(l)vk
J=r+1 Tk

4. Inner-Product Contributions in Right-Null Eigenspaces. Consider:

7(0b) . T(1)S](€0,b)T(1)w(+0)

j=r+1
_ Z 1 Uy T AWy, [A(l)v ]
_ 0 ,
j=r+1 Tk
so that:
" 1wl AWy,
(wy,, ZO0)) L WY [ugA(l)vj + v - 0}
Ok
j=r+1

"1 [ul AOy)?

:,Z —5 -

Combining Terms. Since

thus,

= — _— uiAlvk2+2uiAlvkukAlvi+ ukAlv,;Z
41)T<> T AWy T 4 T 4(1)

+ Z B Hu;A(l)vkr —2u] AWyl AV, + [u;A(l)%} 1

4(—0; — og)
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(245)
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m n

-3 i [uJTA“)vkr— > % [ukTA“wjr

j=r+1 j=r+1

=—| 3 (0 +4U(k)2_ (0;-)— o)) HuiTA(l)vkr . {u;—A(l)Uz}T

0y — 0}

+1 Z 01+ 0k) + (0s = Uk)u:A(l)vkugA(l)vi

i=1,i#k o} - oj
m 1 T 2 n 1 2
_ = [uTa® } _ _{TAu) }
_z: 20 [uﬂ Uk _z: 20 Uk Y
j=r+1 j=r+1
1 - O |: T 2 1 " O 2
- T Ay, ] +:3 [UTAu)U.]
7 9 | k 5 2 |Uk i
2 Tk oy — O; 2 vy oy — 0;
1 — o;
+ 3 Z " A(1 Uk’U,TA( Jy; + = Z - u;—A(l)vkuzA(l)vi
i=1,itk F ¢ k
1 o (o (1) 2 1 i Ok
T3 2 g [%A wf +3 2 oy A
j=r+1 k J j=r+1 k J
combme indices 1 Z |: TA(l)rUk] 2
#k O'k — 0
+ 5 2Uk 5 [uzA(l)vl]
ik O ;i
1 — o
i T (1) T (1)
— A A
+ 2 ; o2 — O’k Uitk
+ 1 s gi T AWy AC
2 & o2 —o2 F

(250)

(251)

(252)

(253)

(254)

(255)

(256)

(257)

(258)

(259)

(260)

Procedure III — Map Derivative Operator Layout. Use following identity from Lemma 2.1 (Essential Matrix

Identities):
1. vec(BVAT) = (A® B) vec(V),
consider:

2
lin%) z? {uiTA(l)vk} = 1im uiTxA(l)vkuiTxA(l)vk
z—

[ TdAvk] [u;rdAvk]

[v,;rdAul] [u:dAvk]
= vec [Uk dAul-] vec [quAvk]

= (u] ®v) ) vec(dA) (v ®u; ) vec(dA)
= [(u] ®v])vec(dA)] " [(v] ®u))vec(dA)]
vec(dAT) (vp @ ug) (v ® u;) | vec(dA).
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Similarly,
2
li_r)% ? [ugA(l)vZ} = vec(dAT) (v; @ ug) (v; ® uk)—r vec(dA),

lim 2%u; AW veu AV = lim w 2 AV vpu] 2AD;
z—0 z—0

= lim u; dAvpu, dAv;

z—0
= vec(dAT) (vr ® w;) (v; @ uy,) | vec(dA),
and:

lirr%) wgu;—A(l)viu;'—A(l)vk = limO u;—acA(l)viuZTxA(l)vk
xr—r r—r

= lim v} dAv;u; dAvy,
0 © :

= vec(dAT) (v; @ up) (v @ u;) | vec(dA).

Producing Lemma Claim. Hence,
D20y [dA,dA] = vec(dA)T%C(A) vec (%> vec(dA)
=2 lim x2a£2)
z—0 ’

= E hmox2 {ug—A(l)vk}
— U z—
z;ék

25

i#k k

11m x {ukTA(l)vz} ’

T A1), T 4(1)
+Za _U ili%xu AV vpuy, A

2. T 4(1) 1)
+Za—a ilinqu vuA V-

Re-labeling indices yields the claim:

D20y [dA, dA]

o
= Vec(dA)T Z ﬁ (v ® u;) (Vg ® Uz‘)—r
itki<r Kk i

left

Ok T
+ oy oo (0 @) (v @ up)
j#kg<n kT

right

left-right interaction

0102 [(vk®w)(vz®uk)T+(vl®uk)(vk®ul)T} vee(d4). O
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7. Numerical experiments

We conduct numerical experiments to validate the correctness of the derived special casesn = 1 and n = 2.
Matrix entries are sampled from A(0,1) and U(0, 1), respectively. Ground truth is obtained numerically
via PyTorch’s auto—differentiation framework [22]. The error € is computed by the fo-norm

€ = || Rours — Rgtll2, (284)

where R,ys denotes the result from our theoretical computation and Ry the ground truth from auto-
differentiation. Singular values are indexed by k = 1,2,...,r in the reported results. To facilitate the
visualization and computation, we choose the dimensions 6 x 10 in all experiments.

Reproducibility. The random seed is fixed to 1 for reproducibility. All experimental code is available at
https://github.com/roisincrtai/highorder spectral variation analysis.

Results of Singular-Value Jacobian. Fig. 2 reports the results for the singular-value Jacobian. Matrix entries
are sampled i.i.d. from A(0,1) and U(0, 1), respectively. The derivative matrices are visualized using the
viridis color map. For each singular-value index k, results are shown in pairs: the left panel gives the
theoretical computation from Lemma 5.1, while the right panel shows the numerical ground truth obtained
from PyTorch’s auto—differentiation framework. The reported errors are zero across all experiments.

Results of Singular-Value Hessian. Fig. 3 reports the results for the singular-value Hessian. Matrix entries are
sampled i.i.d. from A(0,1) and U(0, 1), respectively. The derivative matrices are visualized using the viridis
color map. For each singular-value index k, results are shown in pairs: the left panel gives the theoretical
computation from Lemma 6.1, while the right panel shows the numerical ground truth obtained from
PyTorch’s auto—differentiation framework. The observed errors between theoretical results and numerical
ground-truth are on the order of 10~!#, confirming that they are numerically negligible (Fig. 4).

8. Conclusion

By viewing matrices as compact linear operators and extending Kato’s perturbation theory for self-adjoint
operators, we present a unified operator-theoretic framework for obtaining closed-form, arbitrary-order
derivatives of singular values in real rectangular matrices. In contrast to the ad hoc methods of classical ma-
trix analysis, our approach is systematic and procedural, allowing the derivation of singular-value derivatives
of any order. The key step is the Jordan-Wielandt embedding, which maps a real rectangular matrix, usually
non-self-adjoint, to a self-adjoint operator, thereby encapsulating its complete spectral information. Based
on Kato’s framework, we establish a general framework for deriving higher-order singular-value derivatives.
Specializing to first order (n = 1) recovers the classical singular-value Jacobian, while specializing to second
order (n = 2) yields a Kronecker-product representation of the singular-value Hessian that, to the best of
our knowledge, has not previously appeared in the literature. Beyond these cases, the framework extends
to arbitrary order. Higher-order singular-value derivatives are indispensable for analyzing induced spectral
dynamics in statistical physics and deep learning.
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Fig. 2. Numerical Experiments for Singular-Value Jacobian. This experiment compares the singular-value Jacobian derived from our
framework with that obtained via PyTorch’s auto—differentiation. The error € is measured as the £2-norm between the theoretical
and ground-truth results. The error is measured to be zero in these experiments, indicating no difference between the theoretical
and ground-truth results. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 3. Numerical Experiments for Singular-Value Hessian. This experiment compares the singular-value Hessian derived from our frame-
work with that obtained via PyTorch’s auto—differentiation. The error € is measured as the £2-norm between the theoretical and
ground-truth results. The maximum error is measured to be less than 1.3 x 107'% in these experiments, indicating the difference
between the theoretical and ground-truth results is negligible.
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Fig. 4. Errors for Singular-Value Hessian. Random matrix entries are sampled i.i.d. from A(0,1) and U[0, 1], respectively. For each
singular-value index k = 1,2, ..., r, the error € is computed over 500 trials and visualized using an unnormalized histogram density.
All reported errors are below 6 x 10~ ** in these experiments.
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