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Higher-order derivatives of singular values in real rectangular matrices arise 
naturally in both numerical simulation and theoretical analysis, with applications 
in areas such as statistical physics and optimization in deep learning. Deriving 
closed-form expressions beyond first order has remained a difficult problem within 
classical matrix analysis, and no general framework has been available. To address 
this gap, we present an operator-theoretic framework that extends Kato’s analytic 
perturbation theory from self-adjoint operators to real rectangular matrices, thereby 
yielding general n-th order Fréchet derivatives of singular values. As a special case, 
we obtain a closed-form Kronecker-product representation of the singular-value 
Hessian, not previously found in the literature. This framework bridges abstract 
perturbation theory with matrix analysis and provides a systematic tool for higher
order spectral analysis.

© 2025 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Singular values lie at the core of modern matrix analysis, encapsulating key spectral information such as 
operator norm, conditioning, effective rank, and underpinning applications across numerical linear algebra, 
data science, control theory, and mathematical physics [6,37,9,32]. In random matrix theory, singular values 
govern limiting laws such as Marchenko–Pastur distributions [18], edge fluctuations described by Tracy--
Widom laws [33], and fine-scale local statistics such as local eigenvalue spacings [19]. In physics and deep 
learning, higher-order derivatives of singular values are indispensable for rigorous analysis in stochastic 
dynamical settings, where systems are subject to noise and random perturbations [21].
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For example, let 𝜽t ∈ Rm×n be a parameter matrix with r non-zero singular values σ1, σ2, . . . , σr. Its 
dynamics are characterized by an adapted Itô process [10]

dvec(𝜽t) = Gtdt + DtdWt, (1)

where vec(·) denotes the vectorization operator, Gt ∈ Rmn is the drift term, Dt ∈ Rmn×mn is the diffusion 
coefficient, and dWt is a high-dimensional Wiener process in Rmn. Let

ϕt = ϕ(σ1, σ2, . . . , σr)(t) (2)

denote a spectral functional of the singular values of 𝜽t, then applying Itô’s lemma shows that the rigorous 
analysis of the spectral dynamics of dϕt requires the second-order derivatives of singular values [21]. Such 
induced dynamics arise naturally in both physics and deep learning. In physics, the von Neumann entropy 
— a measure of the statistical uncertainty within a quantum system �- is a spectral functional of singular 
values [7], and widely used in the study of quantum entanglement [20]. In deep learning, the Lipschitz 
continuity of neural networks is a spectral functional of the largest singular value [16]. For more general 
non-Gaussian drivers in stochastic dynamics, such as Lévy processes, higher-order derivatives of singular 
values are indispensable for rigorous analysis and for deriving sharp bounds [1].

Although first-order derivatives of singular values are well known in the literature [34,30,31], explicit 
closed-form expressions for second- and higher-order derivatives are largely absent from the literature. A 
unified, highly procedural, and systematic framework for their derivation has been lacking, since direct 
approaches via matrix analysis are challenging due to the intricate interplay among local spectral structures 
(e.g., spectral gaps), left and right singular subspaces, and the associated null spaces.

To bridge this gap, we present an operator-theoretic framework for deriving arbitrary higher-order deriva
tives of singular values in a highly procedural approach. Our approach treats matrices as bounded linear 
operators on Hilbert spaces and extends Kato’s analytic perturbation theory [11] beyond the self-adjoint 
setting. The key step is to embed a non-self-adjoint real rectangular matrix into a self-adjoint operator via 
the Jordan–Wielandt embedding (i.e., Hermitian dilation trick) [36,30,28]. We then analyze the asymptotic 
expansions of the resulting eigenvalues by extending Kato’s results in eigenvalue expansions, relate these 
eigenvalue expansions to Fréchet derivatives of singular values, and express the Fréchet derivative tensors 
with Kronecker-product representation.

1.1. Perturbation theory

Classical perturbation theory has developed along several independent traditions. For example, analytic 
operator-theoretic perturbation theory [24,11] treats holomorphic families of operators on Banach or Hilbert 
spaces, using resolvents, Riesz projectors, and contour integrals to prove the existence of analytic eigenvalue 
and eigenspace branches and to derive expansion formulas, including trace identities for eigenvalue clusters. 
Matrix perturbation theory [30,9,3] focuses on the finite-dimensional case and derives explicit perturba
tion formulas via algebraic tools such as characteristic polynomials, Schur forms, and Sylvester equations, 
typically without explicitly invoking the operator-theoretic machinery. Rayleigh–Schrödinger perturbation 
theory [23,27,26] in quantum mechanics provides basis-dependent expansions in terms of matrix elements 
and energy gaps; these coincide with the analytic expansions under discreteness and gap assumptions, but 
are often presented in physics as formal series rather than within Kato’s framework. Despite their differences 
in tool and emphasis, these frameworks are mathematically consistent and recover the same perturbative 
corrections in overlapping regimes.
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Kato’s framework [11] Our framework Functional and complex analysis

Perturbation Series

𝒯 (x) = ...

(see Section 3)

Resolvent Operator

R(z) = (𝒯 (x) − zI)−1

(see Section 3)

Riesz Projector

P (x) = − 1 
2π i

∮︂
Γ 

R(z)dz

where Γ is a small contour enclosing
only an isolated eigenvalue λ(0).

(see Section 3)

Perturbation Projection

𝒯 (x)P (x) = λ(x)P (x)

=⇒ λ(x) = ...

=⇒ equating coefficient of x
n

...

(see Section 3)

Theorem 3.3 (Refined Asymptotic Eigenvalue 
Expansion): Expanding λ(x) and applying 
residue theorem to further simplify yield

λ
(n) = · · ·

(see Section 3)

Operator Neumann series of R(z)
Residue Theorem

· · ·
(see Section 3)

Theorem 4.2 (Infinitesimal Spectral 
Variation): Applying Theorem 1.2 (Jordan--

Wielandt Embedding), Theorem 3.3
(Asymptotic Eigenvalue Expansion), and 
Theorem (4.1) (Analytic Perturbation 

for Holomorphic Operators) on 𝒯 (x) pro
duces the higher-order eigenvalue expansion

σ
(n)
k = · · ·

(see Section 4)

Theorem 1.2 (Jordan–Wielandt Embedding): 
Embed A into Jordan–Wielandt Embedding

𝒯 =
[︃

O A
A⊤ O

]︃
for capturing perturbations from all subspaces 
in a rectangular matrix A (see Section 1.2).

A rectangular matrix A is a 
non-self-adjoint linear operator.

(see Section 1.2).

Map the perturbed eigenvalue ex
pansion to Fréchet derivative by

D
n
σk[dA, · · · ] = n! lim 

x→0
x
n
σ

(n)
k

(see Section 4)

Specialize n (e.g. n = 1, 2, · · · ) 
and map the Fréchet derivative

D
n
σk[dA, · · · ]

to matrix layout convention.
(see Section 5 and Section 6)

Fréchet Derivative and Layout Convention
(see Section 2).

Fig. 1. Theoretical Framework for Infinitesimal Spectral Variations. We extend Kato’s analytic perturbation theory for self-adjoint operators 
to derive arbitrary-order singular-value derivatives [11]. For a rectangular matrix A, we introduce its Jordan–Wielandt embedding 
𝒯 (Theorem 1.2), a block self-adjoint operator that encodes perturbations across all subspaces (i.e., left-singular, right-singular, 
left-null, and right-null). By extending Kato’s asymptotic eigenvalue expansions to this embedding and expressing them in explicit 
closed form �- computing and simplifying with residue theorem �- yields the nth-order expansions of singular values of A. These 
expansions are then related to Fréchet derivatives, given by analytic perturbation theorem (Theorem 4.1). Finally, by specializing 
to explicit matrix-layout conventions, we obtain a systematic and constructive procedure for computing arbitrary-order singular
value derivatives of rectangular matrices. Our method is highly procedure for deriving arbitrary-order singular-value derivatives.

1.2. Schematic overview

A schematic overview of the framework is illustrated in Fig. 1. To apply Kato’s framework for self-adjoint 
operators, we first embed a non-self-adjoint A ∈ Rm×n (since A ̸= A⊤) into a self-adjoint operator 𝒯 using 
the Jordan–Wielandt embedding (i.e., Hermitian dilation) [36,30,6,14,2,9,28], taking:

𝒯 :=
[︃
O A
A⊤ O

]︃
∈ R(m+n)×(m+n). (3)

It is immediate that 𝒯 is self-adjoint, since:

𝒯 ⊤ =
[︃
O A
A⊤ O

]︃⊤
=
[︃
O A
A⊤ O

]︃
= 𝒯 . (4)
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This embedding preserves the complete information regarding the spectrum of A. The spectrum of A is 
stated in Theorem 1.1 (Matrix Singular Value Decomposition (Full Form)), and the spectrum of 𝒯 relates 
to the spectral structure of A as stated in Theorem 1.2 (Spectrum of Jordan–Wielandt Embedding).

Theorem 1.1 (Matrix Singular Value Decomposition (Full Form)). Let A ∈ Rm×n be a real rectangular 
matrix. Then A admits a full singular value decomposition (SVD) [9,30] by:

A = UΣV ⊤, (5)

U =
[︁
Ur U0

]︁ ∈ Rm×m, V =
[︁
Vr V0

]︁ ∈ Rn×n, (6)

Σ =

⎡⎢⎢⎢⎢⎢⎢⎣
σ1

σ2
. . .

σr

O r×(n−r)

O (m−r)×r O (m−r)×(n−r)

⎤⎥⎥⎥⎥⎥⎥⎦ , (7)

where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the non-zero singular values, Ur ∈ Rm×r and Vr ∈ Rn×r contain 
the corresponding left and right singular vectors, and U0 and V0 span the left and right null spaces of A, 
respectively.

Theorem 1.2 (Spectrum of Jordan–Wielandt Embedding). The spectrum of A ∈ Rm×n and the spectrum of 
its Jordan–Wielandt embedding [36,30,14,2,9,28]:

𝒯 :=
[︃
O A
A⊤ O

]︃
∈ R(m+n)×(m+n), (8)

are directly related. Given the SVD of A as stated in Theorem 1.1, the spectrum of A relates to the spectrum 
of T by:

𝒯
(︃

1 √
2

[︃
ui

vi

]︃)︃
= σi

(︃
1 √
2

[︃
ui

vi

]︃)︃
, (9)

and:

𝒯
(︃

1 √
2

[︃
ui

−vi

]︃)︃
= −σi

(︃
1 √
2

[︃
ui

−vi

]︃)︃
, (10)

respectively, where the factor 1 √
2 ensures normalization and hence orthonormality of the eigenvectors. Thus, 

each singular value σi of A corresponds to a pair of eigenvalues:

λ
(+)
i = σi, λ

(−)
i = −σi, (11)

with eigenvectors constructed directly from the singular vector pair (ui, vi). The null spaces are also preserved 
in this embedding:

ker(𝒯 ) =
{︃[︃

uj

0

]︃
: uj ∈ ker(A⊤)

}︃
⊕
{︃[︃

0
vk

]︃
: vk ∈ ker(A)

}︃
. (12)

Remark 1.3. The use of the Jordan–Wielandt embedding to transfer results on Hermitian eigenvalues to 
singular values of rectangular matrices is well-known in the literature [30,6,14,2,9]. For instance, Stewart
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and Sun employ the construction in their analysis of singular-value perturbations, using it to extend Weyl--
type inequalities [35,8] and sensitivity bounds from Hermitian eigenvalues to singular values [30]. Li and
Li also use the embedding to transfer perturbation bounds for Hermitian eigenvalues to singular values of 
rectangular matrices [14]. Similarly, Horn and Johnson present the Hermitian dilation as a standard device 
in matrix analysis for proving variational characterizations and interlacing properties of singular values 
[9]. Unlike these works, which use the Hermitian dilation mainly as a device to transfer known eigenvalue 
results, our framework exploits it to develop explicit operator-theoretic expansions that yield closed-form 
higher-order Fréchet derivatives of singular values.

Next, starting from the eigenvalue expansion of reduced resolvent of operator 𝒯 and applying the residue 
theorem to simplify, we derive the asymptotic eigenvalue expansion of 𝒯 up to n-th order under holomorphic 
perturbations (Theorem 3.3). By relating the n-th order term of this expansion with the corresponding n-th 
order Fréchet derivative, we obtain explicit expressions for higher-order derivatives of singular values. Finally, 
we deploy the n-th order Fréchet derivative with matrix layout conventions. In particular, the first-order 
case (n = 1) recovers the well-known Jacobian of singular values; while the second-order case (n = 2) yields 
the singular-value Hessian with Kronecker-product representation, which has not appeared previously in the 
literature. By bridging the abstract operator-theoretic expansions with matrices, our framework provides a 
toolkit for arbitrary-order singular-value analysis.

1.3. Contributions

This paper makes the following contributions:

1. Spectral Variations in Rectangular Matrices. We present an operator-theoretic framework for analyz
ing n-th order spectral variations in real rectangular matrices (see Fig. 1). This framework provides a 
systematic procedure for deriving higher-order derivatives of singular values in real rectangular matrices.

2. Singular-Value Hessian. Specializing to n = 2 yields the second-order derivative (Hessian) of singular 
values, expressed in a Kronecker-product representation that, to the best of our knowledge, has not 
appeared previously in the literature. This result is particularly essential for analysis of induced spec
tral stochastic dynamics, where second-order derivatives arise naturally in Itô calculus for stochastic 
differential equations (SDEs) driven by Wiener processes.

2. Fréchet derivative and layout convention

Deploying results from abstract operator theory in matrix settings requires explicit layout conventions, 
particularly for the representation of derivatives. Before commencing the theoretical analysis, this section 
introduces the conventions fundamental to our framework. Section 2.1 introduces matrix layout and the 
differentiability condition; Section 2.3 presents general Fréchet derivatives for matrix-to-matrix maps to
gether with their tensor representations; and Section 2.4 specializes to Fréchet derivatives of matrix-to-scalar 
functionals and their vectorized Kronecker-product representation [12].

2.1. Matrix and spectral decomposition

Let

A =

⎡⎢⎢⎣
A1,1 A1,2 · · · A1,n
A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n

⎤⎥⎥⎦ ∈ Rm×n (13)
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be a real rectangular matrix of rank r = rank(A), where Ai,j denotes its (i, j)-th entry. The A admits a full 
SVD as stated in Theorem 1.1. Specially, the reduced or truncated SVD of A is given as:

A =
r∑︂

k=1

σkukv
⊤
k , (14)

where r = rank(A), and uk and vk are the left and right singular vectors associated with singular value 
σk > 0.

Lemma 2.1 (Essential Matrix Identities). Let x ∈ R be a scalar, and real matrices A, B, C and V be of 
such sizes that one can form their products. Then the following identities hold [8,9,15]:

1. vec(x) = x,
2. tr(x) = x,
3. vec(BV A⊤) = (A⊗B) vec(V ),
4. (A⊗B)⊤ = A⊤ ⊗B⊤,
5. tr(ABC) = tr(CAB) = tr(BCA).

2.2. Differentiability condition

To ensure the existence of higher-order differentiability of non-zero singular values and associated singular 
vectors, we further assume that the non-zero singular values of A ∈ Rm×n are simple (i.e., each non
zero singular value has multiplicity one), as stated in Assumption 2.2 (Simplicity Assumption of Non-Zero 
Singular Values). This simplicity assumption is essential for ensuring that non-zero singular value σi > 0 of A
and associated singular vectors ui and vi depend smoothly on the entries of A, in fact yielding ui, vi, σi ∈ C∞

(i.e. maps are infinitely continuously differentiable). Under this assumption, non-zero singular values and 
their associated singular vectors vary smoothly with perturbations of A.

Assumption 2.2 (Simplicity Assumption of Non-Zero Singular Values). We assume that the non-zero singular 
values of A are simple, i.e.,

σi ̸= σj for all i ̸= j, (15)

[11,9].

If this assumption fails, a non-zero singular value may have multiplicity greater than one; singular values 
then remain continuous but may fail to be differentiable at points of multiplicity, and the associated singular 
subspaces are well defined whereas individual singular vectors are not unique. In such settings, higher-order 
derivatives generally do not exist in the classical context, and analysis must instead be carried out in terms 
of spectral projectors or within the framework of subdifferential calculus [4,13].

2.3. Matrix Fréchet derivative as multilinear operator

We regard matrix Fréchet derivatives as multilinear operators [25,37]. A definition for general Fréchet 
differentiable real matrix-to-matrix maps and their tensor representation are in Definition 2.3 (α-Times 
Continuously Fréchet Differentiable Matrix Map). The existence and uniqueness of the Fréchet derivative 
are stated in Theorem 2.4 (Uniqueness of α-Times Fréchet Derivative [25,29]).
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Definition 2.3 (α-Times Continuously Fréchet Differentiable Matrix Map). Let

F : Rm×n → Rs×t (16)

be α-times continuously Fréchet differentiable (i.e., F ∈ Cα) [25,29,9]. The α-th Fréchet derivative of F is 
a multilinear map:

DαF : (Rm×n)α → Rs×t. (17)

Writing Fi,j for the (i, j)-th component of F and Ap,q for the (p, q)-th entry of A, with:

1 ≤ i ≤ s, 1 ≤ j ≤ t, 1 ≤ p ≤ m, 1 ≤ q ≤ n, (18)

then the α-th derivative DαF at matrix A is a tensor, defined by:

[︁
DαF (A)

]︁
i,j ; p1q1 ... pαqα

= 
∂αFi,j(A) 

∂Ap1q1 · · · ∂Apαqα

∈ R. (19)

The action of tensor DαF (A) on directions H1, . . . , Hα ∈ Rm×n is obtained component-wise by contract
ing tensor DαF (A) with the indices on H1, . . . , Hα:

[︁
DαF (A)[H1, . . . , Hα]

]︁
i,j

= 
∂αFi,j(A) 

∂Ap1q1 · · · ∂Apαqα

(H1)p1q1 · · · (Hα)pαqα . (20)

Moreover, for H ∈ Rm×n, the F at A admits a multivariate Taylor expansion:

F (A + H) =
α ∑︂

β=0

1 
β! D

βF (A)[H, . . . ,H⏞ ⏟⏟ ⏞
β times

] + o
(︁∥H∥α)︁, (∥H∥ → 0), (21)

where ∥ · ∥ is any norm on Rm×n (e.g., the Frobenius norm).

Theorem 2.4 (Uniqueness of α-Times Fréchet Derivative [25,29]). Suppose F ∈ Cα is differentiable up to 
order α. Then DαF exists, is a symmetric α-linear map, and is unique. That is, there is no other α-linear 
operator satisfying the defining Taylor-remainder condition. This theorem ensures the uniqueness of the 
derivatives of singular values under the differentiability condition, as stated in Assumption 2.2 (Simplicity 
Assumption of Non-Zero Singular Values).

2.4. Representation convention for matrix-valued functionals

We focus on the derivatives of singular values, which are matrix-valued functionals. To obtain matrix 
representations to facilitate concrete applications, we specialize the general matrix-to-matrix maps of Defi
nition 2.3 to matrix-valued functionals. In general, the α-th Fréchet derivative is a higher-order tensor. To 
express such tensors in matrix form, we employ vectorization (with a column-major convention) together 
with the Kronecker-product representation [12,17], as established in Corollary 2.5 (Vectorized Kronecker
Product Representation of Fréchet Derivative). As complementary conventions, we also introduce explicit 
matrix layouts for the Jacobian in Section 2.4.1 (Representation convention for Jacobian of matrix-valued 
functional) and for the Hessian in Section 2.4.2 (Representation convention for Hessian of matrix-valued 
functional).
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Corollary 2.5 (Vectorized Kronecker-Product Representation of Fréchet Derivative). Let

f : Rm×n → R (22)

be α-times continuously Fréchet differentiable ( i.e., f ∈ Cα). For directions H1, . . . , Hα ∈ Rm×n, the 
multilinear action Dαf at A ∈ Rm×n is given by the Frobenius tensor inner product [12,17]:

Dαf(A)[H1, . . . , Hα] =
⟨︁
Dαf(A), H1 ⊗ · · · ⊗Hα

⟩︁
(23)

=
⟨︁
vec (Dαf(A)) , vec (H1 ⊗ · · · ⊗Hα)

⟩︁
(24)

= vec (Dαf(A))⊤ vec (H1 ⊗ · · · ⊗Hα) , (25)

where ⊗ represents Kronecker product ( i.e., tensor product) and:

vec : Rm×n ↦→ Rmn (26)

represents the vectorization operator with the column-major convention [12].

This vectorization is particularly useful for representing arbitrary-order derivatives of matrix-valued 
functionals in matrix form.

2.4.1. Representation convention for Jacobian of matrix-valued functional
Representing the Jacobian of matrix-valued functionals in matrix form is standard in the literature [9]. For 

clarity, we introduce a matrix layout as a complementary representation for the Jacobian of matrix-valued 
functionals. Let

f : Rm×n ↦→ R (27)

be a first-order Fréchet differentiable functional. Then the differential of f admits:

df = Df(A)[dA] = ⟨Df(A), dA⟩ =
(︂ ∂f 
∂A

)︂⊤
dA = tr

[︄(︃
∂f 
∂A

)︃⊤
dA
]︄
, (28)

where ∂f 
∂A and infinitesimal variation dA ∈ Rm×n are piece-wisely defined as:

∂f 
∂A

=

⎡⎢⎢⎢⎢⎣
∂f 

∂A1,1

∂f 
∂A1,2

· · · ∂f 
∂A1,n

∂f 
∂A2,1

∂f 
∂A2,2

· · · ∂f 
∂A2,n

...
...

. . .
...

∂f 
∂Am,1

∂f 
∂Am,2

· · · ∂f 
∂Am,n

⎤⎥⎥⎥⎥⎦ (29)

with denominator layout convention, and:

dA =

⎡⎢⎢⎣
dA1,1 dA1,2 · · · dA1,n
dA2,1 dA2,2 · · · dA2,n

...
...

. . .
...

dAm,1 dAm,2 · · · dAm,n

⎤⎥⎥⎦ . (30)
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2.4.2. Representation convention for Hessian of matrix-valued functional
The Hessian of a matrix-valued functional is naturally a higher-order tensor; for instance, it is a fourth

order tensor for matrix-valued functionals [12]. Let

f : Rm×n → R (31)

be a twice Fréchet differentiable functional. Since

D2f = D(Df), (32)

to obtain a matrix representation of D2f , we first consider the representation layout of the first-order 
derivative for a matrix-to-matrix map F : Rm×n → Rs×t. We then apply vectorization together with this 
layout to express the second-order derivatives of matrix-valued functionals in matrix form.

Let

F : Rm×n ↦→ Rs×t (33)

be a first-order Fréchet differentiable matrix-to-matrix map. Then there exists:

∂ vec(F )
∂ vec(A) ∈ Rp×q p = mn and q = st, (34)

piece-wisely defined as:

∂ vec(F )
∂ vec(A) =

⎛⎜⎜⎜⎜⎜⎝
∂ vec(F )1
∂ vec(A)1

∂ vec(F )2
∂ vec(A)1 · · · ∂ vec(F )q

∂ vec(A)1
∂ vec(F )1
∂ vec(A)2

∂ vec(F )2
∂ vec(A)2 · · · ∂ vec(F )q

∂ vec(A)2
...

...
. . .

...
∂ vec(F )1
∂ vec(A)p

∂ vec(F )2
∂ vec(A)p · · · ∂ vec(F )q

∂ vec(A)p

⎞⎟⎟⎟⎟⎟⎠ (35)

by using denominator layout convention on vec(F ) and vec(A) [9]. Then the Hessian of the matrix-valued 
functional f can be defined as:

∂

∂vec(A)vec
(︃
∂f 
∂A

)︃
(36)

with vectorized representation.

Relating Vectorized Representation to D2f . We now relate this vectorized representation to D2f . By 
Corollary 2.5 (Vectorized Kronecker-Product Representation of Fréchet Derivative), consider:

D2f [dA,dA] = ⟨D2f,dA⊗ dA⟩, (37)

and use the following identities from Lemma 2.1 (Essential Matrix Identities):
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1. vec(x) = x,
2. vec(BV A⊤) = (A⊗B) vec(V ),

then it yields:

D2f [dA,dA] = ⟨D2f,dA⊗ dA⟩ (38)

= vec(D2f)⊤vec(dA⊗ dA) (39)

= vec(dA)⊤(D2f)⊤vec(dA). (40)

Relating

∂

∂vec(A)vec
(︃
∂f 
∂A

)︃
(41)

with D2f yields:

D2f =
[︃

∂

∂vec(A)vec
(︃
∂f 
∂A

)︃]︃⊤
, (42)

such that:

D2f [dA,dA] = vec(dA)⊤
[︃

∂

∂vec(A)vec
(︃
∂f 
∂A

)︃]︃
vec(dA). (43)

3. Refined asymptotic eigenvalue expansion

Kato’s monograph [11] establishes the existence of asymptotic eigenvalue expansions and, in partic
ular, provides a closed-form expression for the weighted mean of eigenvalue coefficients, as stated in 
Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expansions [11, Ch. II, §2.2]). Nevertheless, Kato’s 
formulation is expressed with an infinite summation of contour integrals involving the perturbed resolvent 
and does not yield explicit, constructive formulas for the individual coefficients, which limits its direct ap
plicability in our setting. Building on the analytic foundations laid by Kato, and by employing explicit 
Neumann expansions of resolvents together with the residue theorem, we refine this framework to derive an 
explicit, closed-form formula for arbitrary-order eigenvalue coefficients of holomorphic families of bounded 
self-adjoint operators. Our main result, Theorem 3.3 (Refined Closed-Form Asymptotic Expansion of Sim
ple Isolated Eigenvalue in Self-Adjoint Operator), goes beyond Kato’s weighted mean by furnishing a fully 
constructive representation of each eigenvalue coefficient. The overall scheme is illustrated in Fig. 1.

Definition 3.1 (Space of Bounded Linear Operators). Let

ℒ(X) = { T : X ↦→ X | Xis a Banach space and T is a bounded linear operator} (44)

be the Banach space of bounded linear operators.

Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expansions [11, Ch.   II, §2.2]). Let

𝒯 (x) = 𝒯 (0) +
∞ ∑︂
j=1 

xj𝒯 (j) ∈ ℒ(X) (45)
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be a holomorphic family of bounded operators on a Banach space X [11, Ch. II, §2.1, Eq (2.1)]. Suppose 
λ(0) is an isolated eigenvalue of 𝒯 (0) of algebraic multiplicity m.

Let

R(z) = (𝒯 (x) − zI)−1 (46)

be the perturbed resolvent, let

P (x) = − 1 
2πi

∮︂
Γ 

R(z)dz, (47)

be Riesz projector, and define

ˆ︁𝒯 (n) =
∞ ∑︂
p=1 

(−1)p−1
∑︂

i1+···+ip=n
ij≥1

1 
2πi

∮︂
Γ 

R(z) 𝒯 (i1) R(z) · · ·R(z) 𝒯 (ip) R(z) (z − λ(0)) dz, (48)

where Γ is a small contour enclosing only λ(0) and no other spectrum [11, Ch. II, §2.1, Eq (2.18)]. Then 
the weighted mean of the perturbed eigenvalues is:

λ̂(x) := 1 
m

tr
(︁𝒯 (x)P (x)

)︁
, (49)

admits the expansion

λ̂(x) = λ(0) +
∞ ∑︂

n=1
xnλ̂(n) (50)

[11, Ch. II, §2.1, Eq (2.21)], and:

λ̂(n) = 1 
m tr

(︁ˆ︁𝒯 (n))︁ (51)

[11, Ch. II, §2.1, Eq (2.22)].

Sketch to refine Kato’s result Following Kato’s analytic framework, we also begin with the perturbation 
series 𝒯 (x) of a self-adjoint operator 𝒯 . Kato’s monograph establishes eigenvalue expansions via contour 
integrals of the resolvent and provides a closed-form expression for the weighted mean of eigenvalues, but 
it does not supply explicit constructive formulas for the individual coefficients. Our approach departs at 
this point: we expand the resolvent explicitly through its Neumann series, apply the residue theorem on the 
contour integrals, and simplify the resulting expressions. This yields a closed-form asymptotic eigenvalue 
expansion for 𝒯 with computable coefficients. Unlike Kato’s result, our expansion is formulated in terms of 
the finite summation of the series of unperturbed resolvent, which enables systematic computation and, in 
particular, facilitates the subsequent derivation of singular-value Fréchet derivatives. As a special case, it 
also recovers the classical Rayleigh–Schrödinger corrections of quantum mechanics [23,27,26].

Theorem 3.3 (Refined Closed-Form Asymptotic Expansion of Simple Isolated Eigenvalue in Self-Adjoint 
Operator). Let

𝒯 (x) = 𝒯 (0) +
∞ ∑︂
j=1 

xj 𝒯 (j) ∈ ℒ(X) (52)
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be a holomorphic family of bounded operators on a Banach space X, where 𝒯 (0) denotes the unperturbed 
operator and x ∈ C is the perturbation parameter.

Unperturbed Reduced Resolvent. Define the unperturbed reduced resolvent [25,11,37] of 𝒯 (0):

S(0) =
(︁𝒯 (0) − λ(0)I

)︁−1 (I − w(0)(w(0))∗), (53)

where λ(0) is a simple eigenvalue of 𝒯 (0) and w(0) is the associated normalized eigenvector ( i.e., ∥w(0)∥2 = 1).

Theorem Claim. Then there exists a unique holomorphic branch λ(x) of eigenvalues of 𝒯 (x). It admits the 
power series:

λ(x) =
∞ ∑︂

n=0
xn λ(n), (54)

and for each integer n ≥ 1,

λ(n) =
n ∑︂

p=1 
(−1) p−1

∑︂
i1+···+ip=n

ij≥1

⟨︁
w(0), 𝒯 (i1) S(0) 𝒯 (i2) S(0) · · ·S(0) 𝒯 (ip) w(0)⟩︁. (55)

Proof 3.4. We begin by presenting a compact and explicit proof of Theorem 3.2 (Kato’s Weighted Mean of 
Eigenvalue Expansions [11, Ch. II, §2.2]) in the case of a simple eigenvalue of a self-adjoint operator, which 
does not exist in Kato’s monograph. Since λ(0) is a simple eigenvalue of 𝒯 (0), analytic-perturbation theory 
ensures there exists a unique eigenvalue branch λ(x). Let

R(z) = (𝒯 (x) − zI)−1 (56)

be the resolvent of operator 𝒯 (x), which encapsulates the full spectral information of 𝒯 (x), and let

S(z) = R(z)(I − P (x)) (57)

be the associated reduced resolvent S(z) (i.e., the regular part of the resolvent), where P (x) is the Riesz--
Dunford contour integral [5,11], that is:

P (x) = − 1 
2πi

∮︂
Γ 

R(z) dz = − 1 
2πi

∮︂
Γ 

(︁𝒯 (x) − zI
)︁−1

dz, (58)

where Γ is a small contour enclosing only λ(0) and no other eigenvalues. Hence the projection:

𝒯 (x) P (x) = − 1 
2πi

∮︂
Γ 

[︁
I + zR(z)

]︁
dz = 1 

2πi

∮︂
Γ 

−zR(z)dz = λ(x) P (x), (59)

holds true since the resolvent R(z) for a simple eigenvalue admits the Laurent expansion [11, Ch. I, §5.3, 
Eq (5.18)]

R(z) = P (x) 
λ(x) − z

+ S(z) + R̂(z), R̂(z) =
∞ ∑︂

n=1

(︁
z − λ(x)

)︁n(︁
S(z)

)︁n+1
, (60)

where R̂(z) is the analytic regular remainder of z, and the residue of −zR(z) at z = λ(x) is
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Resz=λ(x)(−zR(z)) = [z − λ(x)][−zR(z)] |z=λ(x)= λ(x)P (x). (61)

Contour Integral of Perturbed Eigenvalue Series λ(x). Starting from the identity in Equation (59),

𝒯 (x)P (x) = λ(x)P (x) (62)

=⇒ tr
(︁𝒯 (x)P (x)

)︁
= tr

(︁
λ(x)P (x)

)︁
(63)

= tr
(︁
λ(x)

)︁
tr
(︁
P (x)

)︁
(64)

= λ(x) (65)

=⇒ λ(x) − λ(0) = tr
(︁𝒯 (x)P (x)

)︁− λ(0) (66)

= tr
(︁𝒯 (x)P (x)

)︁− tr
(︁
λ(0)P (x)

)︁
(67)

= tr
(︂(︁𝒯 (x) − λ(0)I

)︁
P (x)

)︂
, (68)

then substituting P (x) from Equation (59) yields:

λ(x) − λ(0) = tr
(︂(︁𝒯 (x) − λ(0)I

)︁(︁− 1 
2πi

∮︂
Γ 

R(z) dz
)︁)︂

(69)

= − 1 
2πi

∮︂
Γ 

tr
(︁
(T (x) − λ(0)I)R(z)

)︁
dz. (70)

Considering the resolvent identity:

(𝒯 (x) − zI)R(z) = I (71)

and: (︁𝒯 (x) − λ(0)I
)︁
R(z) =

(︂
𝒯 (x) − zI + zI − λ(0)I

)︂
R(z) (72)

=
(︂
𝒯 (x) − zI + (z − λ(0))I

)︂
R(z) (73)

= (𝒯 (x) − zI)R(z) + (z − λ(0))R(z) (74)

= I + (z − λ(0))R(z), (75)

it yields:

λ(x) − λ(0) = − 1 
2πi

∮︂
Γ 

tr
(︁
(T (x) − λ(0)I)R(z)

)︁
dz (76)

= − 1 
2πi

∮︂
Γ 

tr
(︁
I + (z − λ(0))R(z)

)︁
dz (77)

= − 1 
2πi

∮︂
Γ 

tr
(︁
(z − λ(0))R(z)

)︁
dz (78)

= − 1 
2πi

∮︂
Γ 

tr
(︁
(z − λ(0))R(z)

)︁
tr
(︁
1
)︁
dz (79)

= − 1 
2πi

∮︂
Γ 

tr
(︁
(z − λ(0))R(z)

)︁
tr
(︁
P (0))︁ dz (80)
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= − 1 
2πi

∮︂
Γ 

tr
(︁
(z − λ(0))R(z)P (0))︁ dz. (81)

Resolvent Expansion. To expand the resolvent R(z), define the unperturbed resolvent R(0)(z):

R(0)(z) =
(︁𝒯 (0) − zI

)︁−1
, (82)

then this identity holds:

(𝒯 (0) − zI)R(0)(z) = I. (83)

Note that:

𝒯 (x) − zI = 𝒯 (0) − zI +
∞ ∑︂
j=1 

xj𝒯 (j) (84)

= 𝒯 (0) − zI + I
∞ ∑︂
j=1 

xj𝒯 (j) (85)

= 𝒯 (0) − zI + (𝒯 (0) − zI)R(0)(z)
∞ ∑︂
j=1 

xj𝒯 (j) (86)

= (𝒯 (0) − zI)
(︂
I + R(0)(z) 

∞ ∑︂
j=1 

xj𝒯 (j)
)︂
, (87)

so that the operator Neumann series of R(z) expands as:

R(z) =
(︁𝒯 (x) − zI

)︁−1 (88)

=

⎡⎣(𝒯 (0) − zI)
(︂
I + R(0)(z) 

∞ ∑︂
j=1 

xj𝒯 (j)
)︂⎤⎦−1

(89)

=
(︂
I + R(0)(z) 

∞ ∑︂
j=1 

xj𝒯 (j)
)︂−1(︂

𝒯 (0) − zI
)︂−1

(90)

=
(︂
I + R(0)(z) 

∞ ∑︂
j=1 

xj𝒯 (j)
)︂−1

R(0)(z) (91)

=
(︂
I − (︁−R(0)(z) 

∞ ∑︂
j=1 

xj𝒯 (j))︁)︂−1

⏞ ⏟⏟ ⏞
Neumann series 

R(0)(z) (92)

=
∞ ∑︂
k=0

(−1)k
(︂
R(0)(z) 

∞ ∑︂
j=1 

xj𝒯 (j)
)︂k

R(0)(z). (93)

Asymptotic Eigenvalue Expansion. Expanding the term in Equation (93):

(︂
R(0)(z) 

∞ ∑︂
j=1 

xj𝒯 (j)
)︂k

(94)

yields:
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(︂
R(0)(z) 

∞ ∑︂
j=1 

xj𝒯 (j)
)︂k

=
∑︂

i1,...,ik≥1
x i1+···+ik R(0)(z) 𝒯 (i1) R(0)(z) · · ·R(0)(z) 𝒯 (ik) (95)

=
∑︂

i1,...,ik≥1
x i1+···+ik R(0)(z) Rik(z), (96)

where Rik(z) represents an operator composition series:

Rik(z) = 𝒯 (i1) R(0)(z) · · ·R(0)(z) 𝒯 (ik). (97)

Substituting Equation (96) into Equation (93) yields:

R(z) =
∞ ∑︂
k=0

(−1)k
∑︂

i1,...,ik≥1
x i1+···+ik R(0)(z)Rik(z)R(0)(z) (98)

=
∞ ∑︂
k=0

(−1)k
∑︂

i1,...,ik≥1
x i1+···+ik R(0)(z)Rik(z)R(0)(z). (99)

Substituting Equation (99) into the contour integral for λ(x) − λ(0) in Equation (81):

λ(x) − λ(0) = − 1 
2πi

∮︂
Γ 

tr
(︁
(z − λ(0))R(z)P (0))︁ dz, (100)

yields:

λ(n) =
∞ ∑︂
k=0

(−1)k
∑︂

i1+···+ik=n
ij≥1

− 1 
2πi

∮︂
Γ 

tr
(︂
(z − λ(0))R(0)(z)Rik(z)R(0)(z)P (0)

)︂
dz (101)

=
∞ ∑︂
k=0

(−1)k−1
∑︂

i1+···+ik=n
ij≥1

1 
2πi

∮︂
Γ 

tr
(︂
(z − λ(0))R(0)(z)Rik(z)R(0)(z)P (0)

)︂
dz, (102)

which recovers Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expansions [11, Ch. II, §2.2]).

Contracting and Relabeling Indices. We refine Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expan
sions [11, Ch. II, §2.2]) further, with the aim of obtaining a constructive, computable and basis-dependent 
formulation. Note that only the multi-indices satisfying:

i1 + · · · + ik = n (103)

contribute to the coefficient of xn, and since the terms with:

k = 0 or k > n (104)

for n ≥ 1 vanish, we contract the summation to the admissible subset of indices. For clarity, we denote this 
contracted index set by p ⊆ k:

λ(n) =
n ∑︂

p=1 
(−1)p−1

∑︂
i1+···+ip=n

ij≥1

1 
2πi

∮︂
Γ 

tr
(︂
(z − λ(0))R(0)(z)Rip(z)R(0)(z) P (0)

)︂
dz. (105)
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Applying Cauchy’s Residue Theorem Applying Cauchy’s residue theorem via Riesz–Dunford functional 
calculus [5] for Equation (105) yields:

λ(n) =
n ∑︂

p=1 
(−1)p−1

∑︂
i1+···+ip=n

ij≥1

Resz=λ(0)

[︂
tr
(︂
(z − λ(0))R(0)(z)Rip(z)R(0)(z)P (0)

)︂]︂
. (106)

Simplifying Residue. We now aim to compute the residue:

Resz=λ(0)

[︂
tr
(︂
(z − λ(0))R(0)(z)Rip(z)R(0)(z)P (0)

)︂]︂
. (107)

Note that near z = λ(0), the Laurent expansion of the unperturbed resolvent R(0)(z) for a simple eigenvalue 
λ(0) admits [11, Ch. I, §5.3, Eq (5.18)]:

R(0)(z) = P (0)

λ(0) − z
+ S(0) + R̂(0)(z), R̂(0)(z) =

∞ ∑︂
n=1

(︁
z − λ(0))︁n(︁S(0))︁n+1

, (108)

where P (0) = w(0)(w(0))∗, S(0) = R(0)(z)(I − P (0)) is the unperturbed reduced resolvent of R(0)(z), and 
R̂(0)(z) is the analytic regular remainder of z. Substitute R(0)(z) into the trace product:

tr
(︂
(z − λ(0))R(0)(z)Rip(z)R(0)(z)P (0)

)︂
, (109)

and consider that in the expanded trace product:

1. the terms P (0)S(0) = S(0)P (0) = 0 vanish,
2. the terms with higher-order poles vanish, since the denominators are constant operators.

Then only the term with simple pole survives:

Resz=λ(0)

[︂
tr
(︂
(z − λ(0))R(0)(z)Rip(z)R(0)(z)P (0)

)︂]︂
= Resz=λ(0)

[︂
tr
(︂
(z − λ(0))P

(0)𝒯 (i1)S(0) · · ·S(0)𝒯 (ip)P (0)

(λ(0) − z)2
P (0)

)︂]︂
(110)

= Resz=λ(0)

[︂
tr
(︂P (0)𝒯 (i1)S(0) · · ·S(0)𝒯 (ip)P (0)

z − λ(0) P (0)
)︂]︂

(111)

= (z − λ(0)) tr
(︂P (0)𝒯 (i1)S(0) · · ·S(0)𝒯 (ip)P (0)

z − λ(0) P (0)
)︂
|z→λ(0) (112)

= tr
(︂
P (0)𝒯 (i1)S(0) · · ·S(0)𝒯 (ip)P (0)P (0)

)︂
(113)

= tr
(︂
𝒯 (i1)S(0) · · ·S(0)𝒯 (ip)P (0)P (0)P (0)

)︂
(114)

= tr
(︂
𝒯 (i1)S(0) · · ·S(0)𝒯 (ip)P (0)

)︂
, (115)

since P (0)P (0) = P (0).

Producing Theorem Claim. Substituting the residue from Equation (115) into Equation (106) yields:

λ(n) =
n ∑︂

p=1 
(−1)p−1

∑︂
i1+···+ip=n

ij≥1

tr
(︂
𝒯 (i1)S(0) · · ·S(0)𝒯 (ip)P (0)

)︂
(116)
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=
n ∑︂

p=1 
(−1)p−1

∑︂
i1+···+ip=n

ij≥1

tr
(︂
𝒯 (i1)S(0) · · ·S(0)𝒯 (ip)w(0)(w(0))∗

)︂
(117)

=
n ∑︂

p=1 
(−1)p−1

∑︂
i1+···+ip=n

ij≥1

tr
(︂(︁

w(0))︁∗𝒯 (i1)S(0) · · ·S(0)𝒯 (ip)w(0)
)︂

(118)

=
n ∑︂

p=1 
(−1)p−1

∑︂
i1+···+ip=n

ij≥1

⟨︂
w(0), 𝒯 (i1)S(0)𝒯 (i2)S(0) · · ·S(0)𝒯 (ip)w(0)

⟩︂
, (119)

which is basis-dependent and expressed in terms of unperturbed reduced resolvent. □
Remark 3.5. By refining Theorem 3.2 (Kato’s Weighted Mean of Eigenvalue Expansions [11, Ch. II, §2.2]), 
Theorem 3.3 (Refined Closed-Form Asymptotic Expansion of Simple Isolated Eigenvalue in Self-Adjoint Op
erator) provides an explicit, closed-form representation of the coefficients λ(n) in the eigenvalue perturbation 
series. Classical analytic perturbation theory [11] guarantees the existence of such expansions and gives re
cursive characterizations of the coefficients, but does not furnish constructive closed forms. In contrast, 
our formulation expresses each λ(n) in terms of finitely many operator products involving the perturbation 
operators 𝒯 (j) and the unperturbed reduced resolvent S(0), making the coefficients directly computable. As 
a validation, for n = 1, 2, . . . , the expansion specializes to the familiar Rayleigh–Schrödinger corrections of 
quantum mechanics [23,27,26].

4. Infinitesimal higher-order spectral variations

Guided by the scheme in Fig. 1, and under Assumption 2.2 (Simplicity Assumption of Non-Zero Singular 
Values), we exploit the spectral correspondence between a rectangular matrix A ∈ Rm×n and its Jordan--
Wielandt embedding 𝒯 as established in Theorem 1.2 (Spectrum of Jordan–Wielandt Embedding). This 
allows us to derive arbitrary–order Fréchet derivatives of the singular values of A from the asymptotic 
eigenvalue expansions of 𝒯 . The argument proceeds by first establishing the correspondence between the 
perturbation series and Fréchet derivatives as stated in Theorem 4.1 (Analytic Perturbation for Holomorphic 
Operators), and then applying this relation to obtain higher–order derivatives of singular values as stated 
in Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation).

Theorem 4.1 (Analytic Perturbation for Holomorphic Operators). Let X be a Banach space and let 𝒯 (x) :
U ⊂ C → ℒ(X) be a holomorphic family �- i.e., type (A) in the sense of Kato’s framework [11], defined in a 
neighborhood of 0 in the operator norm. Then 𝒯 is C∞ in the Fréchet sense at 0 and admits the convergent 
operator–norm expansion:

𝒯 (x) = 
∞ ∑︂

n=0

xn

n! D
n𝒯 (0), |x| < ρ, (120)

where ρ is the distance from 0 to the boundary of U . In particular, if one writes the perturbation series as:

𝒯 (x) = 𝒯 (0) +
∞ ∑︂

n=1
xn 𝒯 (n), (121)

then the coefficients agree with the Fréchet derivatives, namely:

𝒯 (n) = 1 
n! D

n𝒯 (0), n ≥ 1. (122)
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Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation). Let

A ∈ Rm×n (123)

be a real rectangular matrix under Assumption 2.2 (Simplicity Assumption of Non-Zero Singular Values).

Matrix Perturbation Series. Let

A(x) =
∞ ∑︂
k=0

xk A(k) ∈ Rm×n (124)

be holomorphic perturbed operator near x = 0 with unperturbed matrix A(0) = A.
The unperturbed matrix A(0) admits a full SVD:

A(0) = U (0)Σ(0)(V (0))T , (125)

as defined in Theorem 1.1 (Matrix Singular Value Decomposition (Full Form)), where ordered r = rank(A)
non-zero singular values are given, under Assumption 2.2 (Simplicity Assumption of Non-Zero Singular 
Values), as:

σ
(0)
1 > σ

(0)
2 > . . . > σ(0)

r > 0, (126)

u
(0)
k and v(0)

k are singular vectors associated with singular value σ(0)
k , and:

U (0) ∈ Rm×m, V (0) ∈ Rn×n (127)

are orthogonal matrices. For brevity, we also use σi = σ
(0)
i , ui = u

(0)
i , and vi = v

(0)
i .

Jordan–Wielandt Perturbation Series Embedding. Using Theorem 1.2 (Spectrum of Jordan–Wielandt Em
bedding), we embed the perturbation series A(x) into 𝒯 (x) to construct a Jordan–Wielandt embedding:

𝒯 (x) =
[︃

0 A(x)
A(x)⊤ 0

]︃
. (128)

This embedding admits a perturbation series:

𝒯 (x) =
∞ ∑︂
j=0 

xj𝒯 (j) (129)

at x near zero, with the unperturbed operator:

𝒯 (0) =
[︃

0 A(0)

(A(0))⊤ 0

]︃
, (130)

and the perturbations:

𝒯 (j) =
[︃

0 A(j)

(A(j))⊤ 0

]︃
, j ≥ 1. (131)
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The non-zero eigenvalues λ(±0)
i of 𝒯 (0) are therefore:

λ
(+0)
i = +σ

(0)
i , λ

(−0)
i = −σ

(0)
i , for i = 1, . . . , r, (132)

associated with eigenvectors:

w
(+0)
i = 1 √

2

[︄
u

(0)
i

v
(0)
i

]︄
, w

(−0)
i = 1 √

2

[︄
u

(0)
i

−v
(0)
i

]︄
, (133)

and null eigenvectors,

a
(0)
j =

[︃
u

(0)
j

0

]︃
, (for j = r + 1, · · · ,m), (134)

and:

b
(0)
k =

[︃
0

v
(0)
k

]︃
, (for j = r + 1, · · · , n). (135)

Since w(+0)
k and w(−0)

k are eigenvalues of T (0), hence the identities hold:

𝒯 (0)w
(+0)
k = λ

(+0)
k w

(+0)
k =⇒ 𝒯 (0)w

(+0)
k = σ

(0)
k w

(+0)
k , (136)

and:

𝒯 (0)w
(−0)
k = λ

(−0)
k w

(−0)
k =⇒ 𝒯 (0)w

(−0)
k = −σ

(0)
k w

(−0)
k . (137)

Unperturbed Reduced Resolvent in Embedding. By definition, the spectral expansion of the reduced resolvent 
operator associated with the eigenvalue λ(+0)

k = σ
(0)
k and associated eigenvector w(+0)

k of 𝒯 (x) is given as:

S
(0)
k =

(︂
𝒯 (0) − σ

(0)
k I
)︂−1 (︂

I − P
(0)
k

)︂
, P

(0)
k = w

(+0)
k (w(+0)

k )⊤, (138)

which admits the spectral expansion:

S
(0)
k =

r∑︂
i=1, i̸=k

w
(+0)
i (w(+0)

i )⊤

σ
(0)
i − σ

(0)
k

+
r∑︂

i=1,i ̸=k

w
(−0)
i (w(−0)

i )⊤

−σ
(0)
i − σ

(0)
k

−
m ∑︂

j=r+1

a
(0)
j (a(0)

j )⊤

σ
(0)
k

−
n ∑︂

j=r+1

b
(0)
j (b(0)j )⊤

σ
(0)
k

. (139)

Theorem Claim. For each integer n ≥ 1,

σ
(n)
k =

n ∑︂
p=1 

(−1)p−1
∑︂

i1+···+ip=n
ij≥1

⟨w(+0)
k , 𝒯 (i1)S

(0)
k 𝒯 (i2) · · ·S(0)

k 𝒯 (ip)w
(+0)
k ⟩. (140)

By Theorem 4.1 (Analytic Perturbation for Holomorphic Operators), the Fréchet derivative of the singular 
value is unique and given by:

Dnσk[dA, · · · ,dA] = n! lim 
x→0

(︂
xn σ

(n)
k

)︂
, (141)

where:

dA = lim 
x→0

xA(1). (142)
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Remark 4.3 (Schematic Procedure of Computing Higher-Order Singular-Value Derivatives). The suggested 
schematic procedure of computing arbitrary higher-order singular-value derivatives is as follows:

• Procedure I -- Construct Infinitesimal Perturbation �- constructs an infinitesimal perturbation by dA =
limx→0 xA

(1),
• Procedure II -- Specialize n to Obtain Derivative Operator �- specialize n in σ(n), and obtain derivative 

operator Dnσk = n!σ(n),
• Procedure III -- Map Derivative Operator Layout �- map Dnσk[dA, · · · ,dA] to Kronecker-product rep

resentation or specific layout.

Proof 4.4. By Theorem 3.3 (Refined Closed-Form Asymptotic Expansion of Simple Isolated Eigenvalue in 
Self-Adjoint Operator), one eigenvalue λk(x) of 𝒯 (x) admits an asymptotic expansion:

λk(x) =
∞ ∑︂

n=0
xnλ

(n)
k . (143)

By Theorem 1.2 (Spectrum of Jordan–Wielandt Embedding), for n ≥ 1, choosing a positive eigenvalue 
branch σ(0)

k yields the asymptotic singular-value expansion of A(x):

σ
(n)
k =

n ∑︂
p=1 

(−1)p−1
∑︂

i1+···+ip=n
ij≥1

⟨w(+0)
k , 𝒯 (i1)S

(0)
k 𝒯 (i2) · · ·S(0)

k 𝒯 (ip)w
(+0)
k ⟩. (144)

By Theorem 4.1 (Analytic Perturbation for Holomorphic Operators), Dnσk admits:

Dnσk = n!σ(n)
k , (145)

and its action is given by:

Dnσk[dA, · · · ,dA] = n! lim 
x→0

xnσ
(n)
k , (146)

where

dA = lim 
x→0

xA(1). □ (147)

Remark 4.5. Thanks to Kato’s perturbation theory for linear operators, our framework for deriving singular
value derivatives rests on a rigorous analytic foundation and provides a procedural and systematic method
ology, resting on a rigorous foundation, and going beyond the ad hoc approaches commonly found in classical 
matrix analysis. In the latter, derivatives are typically obtained through differential identities or perturba
tion arguments without a fully rigorous treatment of differentiability. For instance, Horn and Johnson [9]
present differential identities for spectral functions, but these do not constitute a unified framework for 
higher-order derivatives.

5. Special case (𝒏 = 1): closed-form singular-value Jacobian

We now show that Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation) can recover the well
known singular-value Jacobian, stated in Lemma 5.1 [30,17].
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Lemma 5.1 (Closed-Form Singular-Value Jacobian). The Jacobian of a singular value is well-known in the 
literature [30,17] in the form:

∂σk

∂A 
= uk v

⊤
k , (148)

which immediately admits an equivalent result with Kronecker-product presentation:

Dσk[dA] = (vk ⊗ uk)⊤vec(dA). (149)

Traditional Method in Matrix Analysis. In classical matrix analysis [30,17], the derivation of singular-value 
derivatives often begins with the identity

σk = u⊤
k Avk, (150)

and then applies the trace identity

σk = tr(u⊤
k Avk), (151)

to compute dσk and its derivatives. However, this approach is largely ad hoc and does not scale systematically 
to higher-order derivatives or more general operator settings.

Proof 5.2. We follow the schematic procedure suggested by Remark 4.3 (Schematic Procedure of Computing 
Higher-Order Singular-Value Derivatives) to recover this first-order singular-value Jacobian by specializing 
n = 1 in Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation).

Procedure I -- Construct Infinitesimal Perturbation. We construct a perturbation series on A:

A(x) = A + xA(1), A(0) = A, (152)

so it yields:

dA = lim 
x→0

xA(1). (153)

Procedure II -- Specialize n to Obtain Derivative Operator. Specializing n = 1 in Theorem 4.2 (Higher-Order 
Infinitesimal Spectral Variation) yields:

σ
(1)
k = ⟨w(+0)

k , 𝒯 (1)w
(0)
k ⟩. (154)

Simplifying First-Order Term. Consider:

𝒯 (1)w
(+0)
k =

[︃
0 A(1)

(A(1))⊤ 0

]︃
· 1 √

2

[︃
uk

vk

]︃
= 1 √

2

[︃
A(1)vk

(A(1))⊤uk

]︃
(155)

 ==⇒
 

⟨w(+0)
k , 𝒯 (1)w

(+0)
k ⟩ =

(︃
1 √
2

[︃
uk

vk

]︃)︃⊤
· 1 √

2

[︃
A(1)vk

(A(1))⊤uk

]︃
(156)

 ==⇒
 

⟨w(+0)
k , 𝒯 (1)w

(+0)
k ⟩ = 1

2

[︂
u⊤
k A

(1)vk + v⊤k (A(1))⊤uk

]︂
(157)

 ==⇒
 

⟨w(+0)
k , 𝒯 (1)w

(+0)
k ⟩ = u⊤

k A
(1)vk (158)

 ==⇒
 

σ
(1)
k = u⊤

k A
(1)vk. (159)
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Procedure III -- Map Derivative Operator Layout. By Theorem 4.1 (Analytic Perturbation for Holomorphic 
Operators), we have:

Dσk[dA] = σ
(1)
k [dA] (160)

= lim 
x→0

σ
(1)
k xA(1) (161)

= lim 
x→0

uT
k xA

(1)vk (162)

= u⊤
k dAvk ∈ R. (163)

Using following identities from Lemma 2.1 (Essential Matrix Identities):

1. tr(x) = x,
2. vec(BV A⊤) = (A⊗B) vec(V ),
3. (A⊗B)⊤ = A⊤ ⊗B⊤,
4. tr(ABC) = tr(CAB) = tr(BCA),

yields:

Dσk[dA] = tr(u⊤
k dAvk) (164)

= tr(vku⊤
k dA) (165)

= (vk ⊗ uk)⊤vec(dA), (166)

and:

∂σk

∂A 
= (Dσk)⊤ = ukv

⊤
k . □ (167)

6. Special case (𝒏 = 2): closed-form singular-value Hessian

Explicit closed-form expressions for the singular-value Hessian of rectangular matrices are, to the best 
of our knowledge, not available in the literature. Such a result is essential for applications in stochastic 
analysis, for example when applying Itô’s lemma to stochastic differential equations (SDEs) or stochastic 
partial differential equations (SPDEs) driven by Wiener processes [21]. We now derive the singular-value 
Hessian for general real rectangular matrices, under Assumption 2.2 (Simplicity Assumption of Non-Zero 
Singular Values), as stated in Lemma 6.1 (Closed-Form Singular-Value Hessian), represented in the layout:

vec(dA)⊤
(︃

∂

∂ vec(A) vec
(︃
∂σk

∂A 

)︃)︃
vec(dA), (168)

by specializing Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation) to the case n = 2.

Lemma 6.1 (Closed-Form Singular-Value Hessian). The Hessian of a singular value is given as:

∂

∂ vec(A) vec
(︃
∂σk

∂A 

)︃
=

∑︂
i̸=k,i≤m

σk

σ2
k − σ2

i

(vk ⊗ ui) (vk ⊗ ui)⊤⏞ ⏟⏟ ⏞
left 

+ (169)

∑︂
j ̸=k,j≤n

σk

σ2
k − σ2

j

(vj ⊗ uk) (vj ⊗ uk)⊤⏞ ⏟⏟ ⏞
right 

+ (170)
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∑︂
l ̸=k,l≤r

σl

σ2
k − σ2

l

[︂
(vk ⊗ ul) (vl ⊗ uk)⊤ + (vl ⊗ uk) (vk ⊗ ul)⊤

]︂
⏞ ⏟⏟ ⏞

left-right interaction 

(171)

with Kronecker-product representation.

Proof 6.2. We follow the schematic procedure suggested by Remark 4.3 (Schematic Procedure of Computing 
Higher-Order Singular-Value Derivatives) to derive this second-order singular-value Hessian by specializing 
n = 2 in Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation).

Procedure I -- Construct Infinitesimal Perturbation. We construct a perturbation series on A:

A(x) = A + xA(1), A(0) = A, (172)

so it yields:

dA = lim 
x→0

xA(1). (173)

Procedure II -- Specialize n to Obtain Derivative Operator. Specializing n = 2 in Theorem 4.2 (Higher-Order 
Infinitesimal Spectral Variation) yields:

σ
(2)
k =

2 ∑︂
p=1 

(−1)p−1
∑︂

i1+···+ip=2
ij≥1

⟨w(+0)
k , 𝒯 (i1)S

(0)
k 𝒯 (i2) · · ·S(0)

k 𝒯 (ip)w
(+0)
k ⟩ (174)

= σ
(2,p=1)
k + σ

(2,p=2)
k (175)

where

σ
(2,p=1)
k := ⟨w(+0)

k , 𝒯 (2)w
(+0)
k ⟩, (176)

and

σ
(2,p=2)
k := −⟨w(+0)

k , 𝒯 (1)S
(0)
k 𝒯 (1)w

(+0)
k ⟩. (177)

Computing Term σ(2,p=1)
k . We first compute the term with p = 1 (σ(2,p=1)

k ). By Theorem 4.2 (Higher-Order 
Infinitesimal Spectral Variation), we substitute:

𝒯 (2) =
[︃

0 A(2)

(A(2))⊤ 0

]︃
and w

(+0)
k = 1 √

2

[︃
uk

vk

]︃
(178)

into:

𝒯 (2)w
(+0)
k , (179)

it yields:

𝒯 (2)w
(+0)
k =

[︃
0 A(2)

(A(2))⊤ 0

]︃
· 1 √

2

[︃
uk

vk

]︃
= 1 √

2

[︃
A(2)vk

(A(2))⊤uk

]︃
. (180)



24 R. Luo et al. / J. Math. Anal. Appl. 556 (2026) 130236 

Substituting

𝒯 (2)w
(+0)
k = 1 √

2

[︃
A(2)vk

(A(2))⊤uk

]︃
(181)

into:

σ
(2,p=1)
k = ⟨w(+0)

k , 𝒯 (2)w
(+0)
k ⟩ (182)

yields:

σ
(2,p=1)
k = ⟨w(+0)

k , 𝒯 (2)w
(+0)
k ⟩ (183)

= 1
2

[︂
u⊤
k A

(2)vk + (vk)⊤(A(2))⊤uk

]︂
(184)

= u⊤
k A

(2)vk (185)

In the construction of dA, there is:

A(2) = O, (186)

so that:

σ
(2,p=1)
k = u⊤

k A
(2)vk = 0. (187)

Sketch of Computing Term σ(2,p=2)
k . We compute the term with p = 2:

σ
(2,p=2)
k = −⟨w(+0)

k , 𝒯 (1)S
(0)
k 𝒯 (1)w

(+0)
k ⟩. (188)

To simplify, we first compute:

S
(0)
k 𝒯 (1)w

(+0)
k , (189)

then substitute this result into Equation (188) to produce complete σ(2,p=2)
k .

Computing Contributions in S(0)
k 𝒯 (1)w

(+0)
k in σ(2,p=2)

k . By Theorem 4.2 (Higher-Order Infinitesimal Spectral 
Variation), the unperturbed reduced resolvent is defined as:

S
(0)
k =

r∑︂
i=1,i̸=k

w
(+0)
i (w(+0)

i )⊤

σ
(0)
i − σ

(0)
k

+
r∑︂

i=1,i ̸=k

w
(−0)
i (w(−0)

i )⊤

−σ
(0)
i − σ

(0)
k

−
m ∑︂

j=r+1

a
(0)
j (a(0)

j )⊤

σ
(0)
k

−
n ∑︂

j=r+1

b
(0)
j (b(0)j )⊤

σ
(0)
k

. (190)

By Theorem 4.2 (Higher-Order Infinitesimal Spectral Variation), substituting non-null eigenvectors of 
the unperturbed embedding 𝒯 (0):

w
(+0)
i = 1 √

2

[︃
ui

vi

]︃
, w

(−0)
i = 1 √

2

[︃
ui

−vi

]︃
, (191)

and null eigenvectors of the unperturbed embedding 𝒯 (0):

a
(0)
j =

[︃
uj

0

]︃
, b

(0)
j =

[︃
0
vj

]︃
, (192)
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into S(0)
k yields:

S
(0)
k =

r∑︂
i=1,i ̸=k

1
2

[︃
ui

vi

]︃ [︁
u⊤
i v⊤i

]︁
σi − σk⏞ ⏟⏟ ⏞

positive eigenspaces 

+
r∑︂

i=1,i ̸=k

1
2

[︃
ui

−vi

]︃ [︁
u⊤
i − v⊤i

]︁
−σi − σk⏞ ⏟⏟ ⏞

negative eigenspaces 

−
m ∑︂

j=r+1

[︃
uj

0

]︃ [︁
u⊤
j 0
]︁

σ
(0)
k⏞ ⏟⏟ ⏞

left-null eigenspaces 

−
n ∑︂

j=r+1

[︃
0
vj

]︃ [︁
0 v⊤j

]︁
σ

(0)
k⏞ ⏟⏟ ⏞

right-null eigenspaces 

, (193)

where:

1. contributions in positive eigenspaces (S(+0)
k ) represents the contribution in the subspaces associated with 

w
(+0)
i ;

2. contributions in negative eigenspaces (S(−0)
k ) represents the contribution in the subspaces associated 

with w(−0)
i ;

3. contributions in left-null eigenspaces (S(0,a)
k ) represents the contribution in the subspaces associated with 

a
(0)
j ;

4. contributions in right-null eigenspaces (S(0,b)
k ) represents the contribution in the subspaces associated 

with b(0)j .

Substituting w(+0)
k into:

S
(0)
k 𝒯 (1)w

(+0)
k (194)

yields:

S
(0)
k 𝒯 (1)w

(+0)
k = S

(0)
k 𝒯 (1) 1 √

2

[︃
ui

vi

]︃
= S

(0)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
, (195)

then apply the explicit S(0)
k on this result:

S
(0)
k 𝒯 (1)w

(+0)
k = S

(0)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= (S(+0)

k + S
(−0)
k + S

(0,a)
k + S

(0,b)
k ) 1 √

2

[︃
A(1)vk

(A(1))⊤uk

]︃
, (196)

and discuss the contributions in terms of subspaces:

1. Contributions in Positive Eigenspaces. To compute

S
(+0)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
=

r∑︂
i=1,i̸=k

w
(+0)
i (w(+0)

i )⊤

σi − σk

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
, (197)

consider:

(w(+0)
i )⊤ · 1 √

2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1 √

2
[︁
u⊤
i v⊤i

]︁ · 1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1

2

[︂
u⊤
i A

(1)vk + v⊤i (A(1))⊤uk

]︂
. (198)
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Note the identity:

v⊤i (A(1))⊤uk = u⊤
k A

(1)vi ∈ R, (199)

so that:

(w(+)
i )⊤ · 1 √

2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1

2

[︂
u⊤
i A

(1)vk + u⊤
k A

(1)vi

]︂
. (200)

Therefore the contributions in positive eigenspaces are given as:

S
(+0)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
=

r∑︂
i=1,i ̸=k

w
(+0)
i (w(+0)

i )⊤

σi − σk

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
(201)

=
r∑︂

i=1,i ̸=k

1 √
2
· u

⊤
i A

(1)vk + u⊤
k A

(1)vi
2(σi − σk) 

[︃
ui

vi

]︃
. (202)

2. Contributions in Negative Eigenspaces.
To compute:

S
(−0)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
=

r∑︂
i=1,i̸=k

w
(−0)
i (w(−0)

i )⊤

−σi − σk

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
, (203)

consider:

(w(−0)
i )⊤ · 1 √

2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1 √

2
[︁
u⊤
i −v⊤i

]︁ · 1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1

2

[︂
u⊤
i A

(1)vk − v⊤i (A(1))⊤uk

]︂
. (204)

Note the identity:

v⊤i (A(1))⊤uk = u⊤
k A

(1)vi ∈ R (205)

so that:

(w(+0)
i )⊤ · 1 √

2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1

2

[︂
u⊤
i A

(1)vk − u⊤
k A

(1)vi

]︂
(206)

= 1 √
2
· u

⊤
i A

(1)vk − u⊤
k A

(1)vi
2(−σi − σk) 

[︃
ui

−vi

]︃
. (207)

Therefore the contributions in negative eigenspaces are given as:

S
(−0)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
=

r∑︂
i=1,i ̸=k

w
(−0)
i (w(−0)

i )⊤

−σi − σk

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
(208)

=
r∑︂

i=1,i ̸=k

1 √
2
· u

⊤
i A

(1)vk − u⊤
k A

(1)vi
2(−σi − σk) 

[︃
ui

−vi

]︃
. (209)
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3. Contributions in Left-Null Eigenspaces.
To compute:

S
(0,a)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= −

m ∑︂
j=r+1

a
(0)
j (a(0)

j )⊤

σk

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
, (210)

consider:

(a(0)
j )⊤ · 1 √

2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1 √

2
[︁
u⊤
j 0

]︁ · 1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1

2u
⊤
j A

(1)vk. (211)

Therefore the contributions in left-null eigenspaces are given as:

S
(0,a)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= −

m ∑︂
j=r+1

a
(0)
j (a(0)

j )⊤

σk

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
(212)

= −
m ∑︂

j=r+1

1 √
2
· u

⊤
j A

(1)vk

σk

[︃
uj

0

]︃
. (213)

4. Contributions in Right-Null Eigenspaces.
To compute:

S
(0,b)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= −

n ∑︂
j=r+1

b
(0)
j (b(0)j )⊤

σk

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
, (214)

consider:

(b(0)j )⊤ · 1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1 √

2
[︁
0 v⊤j

]︁ · 1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= 1

2v
⊤
j (A(1))⊤uk (215)

= 1
2u

⊤
k A

(1)vj . (216)

Therefore the contributions in right-null eigenspaces are given as:

S
(0,b)
k

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
= −

n ∑︂
j=r+1

b
(0)
j (b(0)j )⊤

σk

1 √
2

[︃
A(1)vk

(A(1))⊤uk

]︃
(217)

= −
n ∑︂

j=r+1

1 √
2
· u

⊤
k A

(1)vj
σk

[︃
0
vj

]︃
. (218)

Computing Inner-Product Contributions in ⟨wk, 𝒯 (1)Sk𝒯 (1)wk⟩. Since the term:

S
(0)
k 𝒯 (1)w

(+0)
k (219)

is computed above, to further derive:
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σ
(2,p=2)
k = −⟨w(+0)

k , 𝒯 (1)S
(0)
k 𝒯 (1)w

(+0)
k ⟩, (220)

we compute the inner-product contributions in ⟨wk, 𝒯 (1)Sk𝒯 (1)wk⟩ with respect to subspaces:

1. Inner-Product Contributions in Positive Eigenspaces. Consider:

Z(+0) := 𝒯 (1)S
(+0)
k 𝒯 (1)w

(+0)
k (221)

= 𝒯 (1)
r∑︂

i=1,i̸=k

1 √
2
· u

⊤
i A

(1)vk + u⊤
k A

(1)vi
2(σi − σk) 

[︃
ui

vi

]︃
(222)

=
r∑︂

i=1,i̸=k

1 √
2
· u

⊤
i A

(1)vk + u⊤
k A

(1)vi
2(σi − σk) 

[︃
A(1)vi

(A(1))⊤ui

]︃
, (223)

so that:

⟨wk, Z
(+0)⟩ =

∑︂
i̸=k 

(︃
1 √
2

[︃
uk

vk

]︃)︃⊤ 1 √
2
· u

⊤
i A

(1)vk + u⊤
k A

(1)vi
2(σi − σk) 

[︃
A(1)vi

(A(1))⊤ui

]︃
(224)

=
r∑︂

i=1,i ̸=k

(︃
1 √
2

)︃2

· u
⊤
i A

(1)vk + u⊤
k A

(1)vi
2(σi − σk) 

·
[︂
u⊤
k A

(1)vi + v⊤k (A(1))⊤ui

]︂
(225)

=
r∑︂

i=1,i ̸=k

1 
4(σi − σk)

[︂
u⊤
i A

(1)vk + u⊤
k A

(1)vi

]︂ [︂
u⊤
k A

(1)vi + u⊤
i A

(1)vk

]︂
(226)

=
r∑︂

i=1,i ̸=k

1 
4(σi − σk)

[︂
u⊤
i A

(1)vk + u⊤
k A

(1)vi

]︂2
(227)

=
r∑︂

i=1,i ̸=k

1 
4(σi − σk)

[︃[︂
u⊤
i A

(1)vk

]︂2
+ 2u⊤

i A
(1)vku

⊤
k A

(1)vi +
[︂
u⊤
k A

(1)vi

]︂2]︃
. (228)

2. Inner-Product Contributions in Negative Eigenspaces. Consider:

Z(−0) := 𝒯 (1)S
(−0)
k 𝒯 (1)w

(+0)
k (229)

= 𝒯 (1)
r∑︂

i=1,i̸=k

1 √
2
· u

⊤
i A

(1)vk − u⊤
k A

(1)vi
2(−σi − σk) 

[︃
ui

−vi

]︃
(230)

=
r∑︂

i=1,i ̸=k

1 √
2
· u

⊤
i A

(1)vk − u⊤
k A

(1)vi
2(−σi − σk) 

[︃
A(1)(−vi)
(A(1))⊤ui

]︃
, (231)

so that:

⟨wk, Z
(−0)⟩ =

r∑︂
i=1,i ̸=k

1
2 · u

⊤
i A

(1)vk − u⊤
k A

(1)vi
2(−σi − σk) 

[︂
u⊤
k A

(1)(−vi) + v⊤k (A(1))⊤ui

]︂
(232)

=
r∑︂

i=1,i ̸=k

1 
4(−σi − σk)

[︂
u⊤
i A

(1)vk − u⊤
k A

(1)vi

]︂ [︂
−(uk)⊤A(1)vi + u⊤

i A
(1)vk

]︂
(233)

=
r∑︂

i=1,i ̸=k

1 
4(−σi − σk)

[︂
u⊤
i A

(1)vk − u⊤
k A

(1)vi

]︂2
(234)
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=
r∑︂

i=1,i ̸=k

1 
4(−σi − σk)

[︃[︂
u⊤
i A

(1)vk

]︂2
− 2u⊤

i A
(1)vku

⊤
k A

(1)vi +
[︂
u⊤
k A

(1)vi

]︂2]︃
. (235)

3. Inner-Product Contributions in Left-Null Eigenspaces. Consider:

Z(0,a) := 𝒯 (1)S
(0,a)
k 𝒯 (1)w

(+0)
k (236)

= 𝒯 (1)
m ∑︂

j=r+1

(︄
− 1 √

2
· u

⊤
j A

(1)vk

σk

[︃
uj

0

]︃)︄
(237)

=
m ∑︂

j=r+1
− 1 √

2
· u

⊤
j A

(1)vk

σk

[︃
0

(A(1))⊤uj

]︃
, (238)

so that:

⟨wk, Z
(0,a)⟩ =

m ∑︂
j=r+1

−1
2 · u

⊤
j A

(1)vk

σk

[︂
u⊤
k · 0 + v⊤k (A(1))⊤uj

]︂
(239)

=
m ∑︂

j=r+1
−1

2 · u
⊤
j A

(1)vku
⊤
j A

(1)vk

σk
. (240)

4. Inner-Product Contributions in Right-Null Eigenspaces. Consider:

Z(0,b) := 𝒯 (1)S
(0,b)
k 𝒯 (1)w

(+0)
k (241)

= 𝒯 (1)
n ∑︂

j=r+1

(︃
− 1 √

2
· u

⊤
k A

(1)vj
σk

[︃
0
vj

]︃)︃
(242)

=
n ∑︂

j=r+1
− 1 √

2
· u

⊤
k A

(1)vj
σk

[︃
A(1)vj

0

]︃
, (243)

so that:

⟨wk, Z
(0,b)⟩ =

n ∑︂
j=r+1

−1
2 · u

⊤
k A

(1)vj
σk

[︂
u⊤
k A

(1)vj + v⊤k · 0
]︂

(244)

=
n ∑︂

j=r+1
−1

2 ·
[︁
u⊤
k A

(1)vj
]︁2

σk
. (245)

Combining Terms. Since

σ
(2,p=1)
k = 0, (246)

thus,

σ
(2)
k = σ

(2,p=2)
k (247)

= −
⎡⎣ r∑︂
i=1,i ̸=k

1 
4(σi − σk)

[︃[︂
u⊤
i A

(1)vk

]︂2
+ 2u⊤

i A
(1)vku

⊤
k A

(1)vi +
[︂
u⊤
k A

(1)vi

]︂2]︃
(248)

+
r∑︂

i=1,i ̸=k

1 
4(−σi − σk)

[︃[︂
u⊤
i A

(1)vk

]︂2
− 2u⊤

i A
(1)vku

⊤
k A

(1)vi +
[︂
u⊤
k A

(1)vi

]︂2]︃
(249)
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−
m ∑︂

j=r+1

1 
2σk

[︂
u⊤
j A

(1)vk

]︂2
−

n ∑︂
j=r+1

1 
2σk

[︂
u⊤
k A

(1)vj

]︂2⎤⎦ (250)

= −
⎡⎣ r∑︂
i=1,i ̸=k

(σi + σk) − (σi − σk)
4(σ2

i − σ2
k) 

[︃[︂
u⊤
i A

(1)vk

]︂2
+
[︂
u⊤
k A

(1)vi

]︂2]︃
(251)

+1
2

r∑︂
i=1,i ̸=k

(σi + σk) + (σi − σk)
σ2
i − σ2

k

u⊤
i A

(1)vku
⊤
k A

(1)vi (252)

−
m ∑︂

j=r+1

1 
2σk

[︂
u⊤
j A

(1)vk

]︂2
−

n ∑︂
j=r+1

1 
2σk

[︂
u⊤
k A

(1)vj

]︂2⎤⎦ (253)

= 1
2

r∑︂
i=1,i ̸=k

σk

σ2
k − σ2

i

[︂
u⊤
i A

(1)vk

]︂2
+ 1

2

r∑︂
i̸=k 

σk

σ2
k − σ2

i

[︂
u⊤
k A

(1)vi

]︂2
(254)

+ 1
2

r∑︂
i=1,i ̸=k

σi

σ2
k − σ2

i

u⊤
i A

(1)vku
⊤
k A

(1)vi + 1
2

r∑︂
i=1 

σi

σ2
k − σ2

i

u⊤
i A

(1)vku
⊤
k A

(1)vi (255)

+ 1
2

m ∑︂
j=r+1

σk

σ2
k − σ2

j

[︂
u⊤
j A

(1)vk

]︂2
+ 1

2

n ∑︂
j=r+1

σk

σ2
k − σ2

j

[︂
u⊤
k A

(1)vj

]︂2
(256)

combine indices =========== 1
2
∑︂
i̸=k 

σk

σ2
k − σ2

i

[︂
u⊤
i A

(1)vk

]︂2
(257)

+ 1
2
∑︂
i̸=k 

σk

σ2
k − σ2

i

[︂
u⊤
k A

(1)vi

]︂2
(258)

+ 1
2

r∑︂
i=1 

σi

σ2
i − σ2

k

u⊤
i A

(1)vku
⊤
k A

(1)vi (259)

+ 1
2

r∑︂
i=1 

σi

σ2
i − σ2

k

u⊤
k A

(1)viu
⊤
i A

(1)vk. (260)

Procedure III -- Map Derivative Operator Layout. Use following identity from Lemma 2.1 (Essential Matrix 
Identities):

1. vec(BV A⊤) = (A⊗B) vec(V ),

consider:

lim 
x→0

x2
[︂
u⊤
i A

(1)vk

]︂2
= lim 

x→0
u⊤
i xA

(1)vku
⊤
i xA

(1)vk (261)

=
[︁
u⊤
i dAvk

]︁ [︁
u⊤
i dAvk

]︁
(262)

=
[︁
v⊤k dAui

]︁ [︁
u⊤
i dAvk

]︁
(263)

= vec
[︁
v⊤k dAui

]︁
vec
[︁
u⊤
i dAvk

]︁
(264)

=
(︁
u⊤
i ⊗ v⊤k

)︁
vec(dA)

(︁
v⊤k ⊗ u⊤

i

)︁
vec(dA) (265)

=
[︁(︁
u⊤
i ⊗ v⊤k

)︁
vec(dA)

]︁⊤ [︁(︁
v⊤k ⊗ u⊤

i

)︁
vec(dA)

]︁
(266)

= vec(dA⊤) (vk ⊗ ui) (vk ⊗ ui)⊤ vec(dA). (267)
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Similarly,

lim 
x→0

x2
[︂
u⊤
k A

(1)vi

]︂2
= vec(dA⊤) (vi ⊗ uk) (vi ⊗ uk)⊤ vec(dA), (268)

lim 
x→0

x2u⊤
i A

(1)vku
⊤
k A

(1)vi = lim 
x→0

u⊤
i xA

(1)vku
⊤
k xA

(1)vi (269)

= lim 
x→0

u⊤
i dAvku

⊤
k dAvi (270)

= vec(dA⊤) (vk ⊗ ui) (vi ⊗ uk)⊤ vec(dA), (271)

and:

lim 
x→0

x2u⊤
k A

(1)viu
⊤
i A

(1)vk = lim 
x→0

u⊤
k xA

(1)viu
⊤
i xA

(1)vk (272)

= lim 
x→0

u⊤
k dAviu

⊤
i dAvk (273)

= vec(dA⊤) (vi ⊗ uk) (vk ⊗ ui)⊤ vec(dA). (274)

Producing Lemma Claim. Hence,

D2σk[dA,dA] = vec(dA)⊤ ∂

∂ vec(A) vec
(︃
∂σk

∂A 

)︃
vec(dA) (275)

= 2 lim 
x→0

x2σ
(2)
k (276)

=
∑︂
i̸=k 

σk

σ2
k − σ2

i

lim 
x→0

x2
[︂
u⊤
i A

(1)vk

]︂2
(277)

+
∑︂
i̸=k 

σk

σ2
k − σ2

i

lim 
x→0

x2
[︂
u⊤
k A

(1)vi

]︂2
(278)

+
r∑︂

i=1 

σi

σ2
i − σ2

k

lim 
x→0

x2u⊤
i A

(1)vku
⊤
k A

(1)vi (279)

+
r∑︂

i=1 

σi

σ2
i − σ2

k

lim 
x→0

x2u⊤
k A

(1)viu
⊤
i A

(1)vk. (280)

Re-labeling indices yields the claim:

D2σk[dA,dA]

= vec(dA)⊤

⎡⎢⎢⎢⎢⎣
∑︂

i̸=k,i≤r

σk

σ2
k − σ2

i

(vk ⊗ ui) (vk ⊗ ui)⊤⏞ ⏟⏟ ⏞
left 

(281)

+
∑︂

j ̸=k,j≤n

σk

σ2
k − σ2

j

(vj ⊗ uk) (vj ⊗ uk)⊤⏞ ⏟⏟ ⏞
right 

(282)

+
∑︂

l ̸=k,l≤r

σl

σ2
k − σ2

l

[︂
(vk ⊗ ul) (vl ⊗ uk)⊤ + (vl ⊗ uk) (vk ⊗ ul)⊤

]︂
⏞ ⏟⏟ ⏞

left-right interaction 

⎤⎥⎥⎥⎥⎦ vec(dA). □ (283)
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7. Numerical experiments

We conduct numerical experiments to validate the correctness of the derived special cases n = 1 and n = 2. 
Matrix entries are sampled from 𝒩 (0, 1) and U(0, 1), respectively. Ground truth is obtained numerically 
via PyTorch’s auto–differentiation framework [22]. The error ϵ is computed by the ℓ2-norm

ϵ = ∥Rours −Rgt∥2, (284)

where Rours denotes the result from our theoretical computation and Rgt the ground truth from auto--
differentiation. Singular values are indexed by k = 1, 2, . . . , r in the reported results. To facilitate the 
visualization and computation, we choose the dimensions 6 × 10 in all experiments.

Reproducibility. The random seed is fixed to 1 for reproducibility. All experimental code is available at 
https://github.com/roisincrtai/highorder_spectral_variation_analysis.

Results of Singular-Value Jacobian. Fig. 2 reports the results for the singular-value Jacobian. Matrix entries 
are sampled i.i.d. from 𝒩 (0, 1) and U(0, 1), respectively. The derivative matrices are visualized using the 
viridis color map. For each singular-value index k, results are shown in pairs: the left panel gives the 
theoretical computation from Lemma 5.1, while the right panel shows the numerical ground truth obtained 
from PyTorch’s auto–differentiation framework. The reported errors are zero across all experiments.

Results of Singular-Value Hessian. Fig. 3 reports the results for the singular-value Hessian. Matrix entries are 
sampled i.i.d. from 𝒩 (0, 1) and U(0, 1), respectively. The derivative matrices are visualized using the viridis 
color map. For each singular-value index k, results are shown in pairs: the left panel gives the theoretical 
computation from Lemma 6.1, while the right panel shows the numerical ground truth obtained from 
PyTorch’s auto–differentiation framework. The observed errors between theoretical results and numerical 
ground-truth are on the order of 10−14, confirming that they are numerically negligible (Fig. 4).

8. Conclusion

By viewing matrices as compact linear operators and extending Kato’s perturbation theory for self-adjoint 
operators, we present a unified operator-theoretic framework for obtaining closed-form, arbitrary-order 
derivatives of singular values in real rectangular matrices. In contrast to the ad hoc methods of classical ma
trix analysis, our approach is systematic and procedural, allowing the derivation of singular-value derivatives 
of any order. The key step is the Jordan–Wielandt embedding, which maps a real rectangular matrix, usually 
non-self-adjoint, to a self-adjoint operator, thereby encapsulating its complete spectral information. Based 
on Kato’s framework, we establish a general framework for deriving higher-order singular-value derivatives. 
Specializing to first order (n = 1) recovers the classical singular-value Jacobian, while specializing to second 
order (n = 2) yields a Kronecker-product representation of the singular-value Hessian that, to the best of 
our knowledge, has not previously appeared in the literature. Beyond these cases, the framework extends 
to arbitrary order. Higher-order singular-value derivatives are indispensable for analyzing induced spectral 
dynamics in statistical physics and deep learning.
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Fig. 2. Numerical Experiments for Singular-Value Jacobian. This experiment compares the singular-value Jacobian derived from our 
framework with that obtained via PyTorch’s auto–differentiation. The error ϵ is measured as the ℓ2-norm between the theoretical 
and ground-truth results. The error is measured to be zero in these experiments, indicating no difference between the theoretical 
and ground-truth results. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 3. Numerical Experiments for Singular-Value Hessian. This experiment compares the singular-value Hessian derived from our frame
work with that obtained via PyTorch’s auto–differentiation. The error ϵ is measured as the ℓ2-norm between the theoretical and 
ground-truth results. The maximum error is measured to be less than 1.3 × 10−14 in these experiments, indicating the difference 
between the theoretical and ground-truth results is negligible.
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Fig. 4. Errors for Singular-Value Hessian. Random matrix entries are sampled i.i.d. from 𝒩 (0, 1) and U [0, 1], respectively. For each 
singular-value index k = 1, 2, . . . , r, the error ϵ is computed over 500 trials and visualized using an unnormalized histogram density. 
All reported errors are below 6 × 10−14 in these experiments.
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