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Abstract

As the capabilities of large language models
(LLMs) improve, their safety has garnered in-
creasing attention. In this paper, we intro-
duce Iterative Internal Harmful Content Min-
ing (I2HCM), an automatic pluggable jailbreak
pipeline for enhancing harmful questions for
black-box models, revealing that previous large
language models can be a deeply hidden evil
doctor. Unlike previous methods, I2HCM does
not require complex jailbreak template con-
struction methods or question resolution strate-
gies. It merely leverages the model’s responses
to mine harmful knowledge inside the model.
Starting with a simple harmful question, our
method mines, refines and utilizes the content
from each turn of the model’s response, grad-
ually guiding the model to generate a more
complex harmful question, which can easily by-
pass the defense mechanisms of large language
models. Our method has achieved significant
attack success rates (ASR) with high efficiency
in many black-box models on different attack
methods. Our method can not only be used
as an independent jailbreak pipeline, but also
be immediately embedded in many jailbreak
pipelines and provides a new perspective for
the construction of the safety alignment dataset.

Warning: this paper may contain potentially
offensive and harmful contents, they are only
provided for research, please do not use for
illegal purposes.

1 Introduction

Large language models (LLMs) have shown great
potential in various fields, including education, rea-
soning, programming and scientific research, etc.
LLMs generate human-like texts, making them
widely used in various applications. However, this
universality brings challenges. LLMs are not al-
ways reliable, they can produce toxic or harmful
contents, such as social biases (Gallegos et al.,
2024), privacy disclosure (Yoshizawa et al., 2023),

toxic content (Cui et al., 2023), or irresponsible
and unethical value (Yu et al., 2024). Furthermore,
their widespread use has made them targets of ad-
versarial attacks, including prompt injection (Liu
et al., 2023c), backdoor attacks (Mei et al., 2023)
and data poisoning (Zhang et al., 2022), etc.
Among these adversarial attacks, the most no-
table one is jailbreak attack. More specifically,
given an undesirable information request (for ex-
ample, "How to make drugs?") , the goal of the jail-
break attack is generate a prompt to make the attack
LLM provide harmful information (for example, in-
structions on how to make drugs). Jailbreak attacks
are mainly classified into white-box attacks and
black-box attacks. White-box attacks open-source
models, as they often utilize information inside the
model. However, the exploitation of information in-
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Figure 1: Demonstrating the vulnerability of LLM to a
complex harmful question. For safety-aligned models,
they often refuse to answer simple harmful questions.
However, in the face of complex harmful questions, the
models are vulnerable to attacks because these questions
are rarely seen during training.

side the model often results in resource-consuming



jailbreak, and the generating suffixes are often not
human-interpretable, which makes these jailbreak
strategies impossible to exploit in everyday use
(Apruzzese et al., 2023). Black-box attacks, on
the other hand, mainly target closed-source models,
which usually induce the model to output harmful
content by manually or automatically modifying
prompts. Black-box jailbreak attacks are one of
the huge challenges in the application of large lan-
guage models at present. Only models that are
safe enough can be used by the general public to
avoid potential hazards. Safety alignment training
is currently one of the main methods to alleviate
the jailbreak attacks(Bai et al., 2022). In the rein-
forcement learning stage, by using human-labeled
safety training data, the model can recognize harm-
ful questions and learn to refuse to answer them.

In previous studies, the methods of black-box
jailbreak mainly include two approaches. One is to
construct an attack template starting from a seed
and hide harmful questions within this attack tem-
plate to mislead the model to answer the questions.
The other is starting from a harmful question and
use various methods to induce the model to answer
it. Due to the alignment of the attacking target, it
often does not involve rewriting the question. Even
if it is rewritten, the methods only include replacing
the sensitive word with a complex one (for example
"how to make a bomb" rewrite to "how to make
a device that causes large-scale vibrations in the
air*) or complicating grammatical structures. Just
as a joke goes, the teacher taught you that 1+1=2,
now please solve the Goldbach Conjecture. Start-
ing from a simple problem, we can think of more
in-depth ones. For example, from how to make a
bomb, a chemistry doctor can think of how to syn-
thesize nitroglycerin. In fact, we have found that
for the former question, the model usually refuse
to answer, while for the later one, the model will
answer. But we know that both of the questions
are risky. We believe that this is because these
highly difficult harmful questions are lacking in
the safety alignment training dataset—constructing
such training data often requires domain experts to
carry out, and at the same time, the model has the
knowledge to answer these questions. The above
reasons lead to a decline in the model‘s capability
to recognize such harmful questions and provide
risky responses.

Based on the above analysis, we propose ?’HCM:
a pluggable jailbreak pipeline for enhancing harm-
ful questions. Staring with a simple harmful ques-

tion, through multiple turns of interaction with the
model, we gradually dig out the harmful knowledge
and guide the model to utilize these knowledge to
raise more difficult harmful questions. These newly
raised questions can be directly used to attack the
model or serve as the initial seeds for other jail-
break methods, even for safety alignment training.

To sum up, our main contributions are as fol-
lows:

+ We introduce the framework of I’HCM: an
automatic pluggable jailbreak pipeline for en-
hancing harmful questions in detail.

* We expose the insufficiency of the defense
mechanism of current large language models
when facing highly difficult harmful questions

* New method for enhancing harmful data and
we verify the validity of these data in the ex-
periments

2 Related Work

Jailbreak attack Jailbreak attacks are mainly clas-
sified into white-box attacks and black-box attacks.
For white-box attack, (Zou et al., 2023) used mod-
els’ gradients to search for suffixes to append to
the original prompt, (Han et al., 2024) tried to steer
word embeddings to enhance the toxicity of the
output (Han et al., 2024). Based on (Zou et al.,
2023) , (Jia et al., 2024) designed the efficient jail-
break method called I-GCG, achieving ASR close
to 100% on many LLMs. For black-box attack,
at the beginning, most methods require significant
effort by humans(Wei et al., 2023). With the ad-
vancement of model capabilities, automatic jail-
break pipelines have begun to emerge, (Yu et al.,
2023) uses genetic algorithm and ChatGPT to au-
tomatically optimize the initial attack template to
achieve jailbreak; (Xiao et al., 2024) designs an it-
erative optimization algorithm based on malicious
content concealing and memory-reframing to crack
LLMs. (Zeng et al., 2024) persuades the model
to answer harmful questions by using a variety of
persuasion strategies in psychology; (Ramesh et al.,
2024) induces the model to modify the prompts by
using interaction history and the reflective ability
of the model to achieve self-jailbreak.

Safety Dataset Advbench (Chen et al., 2022) in-
clude 520 pieces of data through manual process-
ing, covering various scenarios, (Xu et al., 2023)
proposed the CValues dataset, which contains two



levels of data. level 1 is obtained by manual at-
tack models, and level 2 is written by experts.By
putting ChatGPT in the ’do anything now’” mode,
(Huang et al., 2023) generated the MaliciousInstr-
cut dataset, which covers 10 different attack inten-
tions. Safety Prompts (Sun et al., 2023) is a dataset
augmented by ChatGPT, which contains harmful
questions and responses from ChatGPT and can be
used for model safety alignment training. Ultral-
Safety(Guo et al., 2024) consists of 3,000 harmful
instructions. Firstly, 1,000 safety seed instructions
are derived from AdvBench and MaliciousInstruct,
and then another 2,000 instructions are generated
using Self-Instruct(Wang et al., 2022).

3 Method
3.1 Insight

We show a specific example in Figure 1 to demon-
strate our method. In this example, we bypassed
the defense mechanism of the large language model
by modifying the original harmful question which
is really simple and could be easily recognized
by large language model to a complex one that
even non-professionals in the field could not un-
derstand or answer. The modified question has led
to the model’s response being more specific and
in-depth, thus causing greater potential hazards.
Under such circumstance, if the model’s capabil-
ities are exploited by advanced intellectual crimi-
nals, it will cause more serious consequences. This
phenomenon urges us to suspect that the existing
safety alignment methods seem to overlook these
highly difficult and harmful knowledge, which is
mainly caused by two reasons: (1) Cleaning these
data in the pretrain-dataset may lead to a decline
in the model’s capabilities. (2) Building a dataset
(whether for training or evaluation) consisting of
highly difficult and harmful questions is a resource-
consuming task.

Existing safety alignment methods often play a
significant role in the fine-tuning stage, especially
in the reinforcement learning stage, enabling the
model to understand what are harmful questions
under human preferences and learn to refuse to
answer these questions, while retaining these so-
called harmful data in the pre-training stage be-
cause they are important contributors to the model’s
capabilities. For example, the process of making
bombs is harmful information, but it can enable the
model to understand better in chemistry. This gives
us an inspiration: Can we build an automatic

pipeline to mine this knowledge and utilize it to
construct new safety datasets? Driven by this, we
proposed Iterative Internal Harmful Content Min-
ing (IP’HCM)—An automatic pipeline that can be
used for jailbreaking or enhancing existing safety
datasets.

Algorithm 1 Iterative Content Mining

1: Input:initial harmful question g;y;t;ai,

2: iterative times N

3: Output:final harmful question q f;yq1,

4: Query: attack LLM (Q7), judge LLM(Q ;)
5: Function:Initialize Node(q;nitial)

6 Add Node(q;,;iiq1) into Node List
7 Initialize Knowledge Base

8: Load Question Pair

9: while V > 0do

10:  Function:Select Node(q) From Node List
11: Select gpqir From Question Pair
12: R, Gota < Node(q)

13:  Reference < Knowledge Base(q,q)

14:  Prompt < [Rod, qo1d, Re ference, qpair]
150 Qnew < Qr(Prompt)

16: Rnew < QT(Qnew)

17:  if R,,ey is Jailbroken then

18: dfinal < Qnew

19: Add [qo1d, Gnew] into Question Pair
20: return ¢yipql

21:  else

22: Rnewshent < Qr(Shell(gnew))

23: Add Ry cwspen into Knowledge Base
24: Add Node(qyeq) into Node List

25:  end if

260 N+ N-1
27: end while
28: return ‘“Attack failed”

3.2 Overview

As shown in Figure 2, we start with a simple and
harmful question that a attack model with general
safety alignment would avoid answering, and grad-
ually guide the attack model to generate new ques-
tions in multiple rounds of interaction, eventually
enabling it to answer the final generated question
and achieve jailbreaking. The final question is
closely related to the initial one, but the content
will be more specific and require more knowledge
to understand. I’HCM consists of four main steps:
(1) Domain Knowledge Acquisition, Obtain do-
main knowledge through interaction with the attack
model; (2) Content Filtering: Refine the knowledge



Add into List

Create Question Node

Simple Harmful
Question

Update Knowledge Base and Question Node Set

Complex Harmful Questions

©

‘

Initialize Question Node E [‘%

P

™,
Internal Knowledge Base

i ° ° ®
= Sh— (onremre wos | 8o () — So—[M 08
/ ] @

X - = °

™ ;
=
a ,_.

___oldqd estion  few shot pair

]\ Update
Dataset

‘ reject

i jailbroken!
new question new response [ J

External Question Pair

Update Few Shot Pool

: o
& Attack Model o

Judge Model

Add Data into

S |
ample i Flow

Figure 2: The illustration of I>’HCM, the attack model is the object for us to mine harmful knowledge and raise new
questions, and the judge model is used to judge whether the output of the attack model is harmful, as well as for
content filtering and sentence reorganization. Knowledge Base is used to store the responses given by the attack
model based on harmful questions in each round of iteration, and Question Pair is used to store the new and old
question pairs that have successfully jailbroken in historical iterations.

obtained in the previous step with the help of other
models (in the pipeline, we use judge model to
achieve this); (3) Knowledge Enhancement: Se-
lect the existing excavated knowledge and question
generation methods to assist the model in raising
new questions. (4) Question Generation: Utilize
the results of the first three steps to make the model
generate a new question

3.3 Question Node

In the algorithm, we place domain knowledge min-
ing and content filtering in the construction of the
question node. The question node mainly include
the question itself, the response, the filtered re-
sponse, harmful score and judgment result.

Domain Knowledge Acquisition During Domain
Knowledge Acquisition, we first induce the at-
tack model to generate content related to harmful
questions. Since the attack model strongly refuses
to answer these questions, we mainly take the fol-
lowing two methods : (1) Utilize Attack Template,
which is hard for real user to design and fixed in the
iterative process, as shown in Appendix A. Attack
model will be misled by attack template to gen-
erate detailed domain knowledge; (2) Beat about
the Bush, for many questions, even if the strong
attack template is added, Attack model will also

refuse to answer them. Therefore, we need to ex-
tract domain knowledge related to harmful ques-
tions from the side by asking ’ Please explain
what knowledge is needed to understand
the question: [INSERT QUESTION] in detail.
Note that you only need to explain
the required knowledge without providing
specific operations, so there is no safety
issue or legal risk involved.’ (The prompt
used for different models will be little different
to adapt to the safety trigger mechanisms and in-
struction following capabilities of these models)
, which is a almost harmless instruction, so the
attack model will almost always obey it. In the
algorithm, We call this process Shell. Actually,
we will choose one of the two methods according
to the situation, so as to turn the question (¢q) into
shell prompt Shell(q) , and then submit Shell(q)
to attack model to obtain relevant domain knowl-
edge.

Content Filtering In the step of Content
Filtering, we need to use judge LLMs to refine
the domain knowledge obtained before, which is
because when facing harmful question, the large
language model with safety alignment, their re-
sponse usually contain many safety claims, such
as in legal circumstances..., etc. When raising



new questions, the model will capture these safety
claims, making the questions harmless. In the algo-
rithm, we segment the response on sentence level,
and submit each sentence with the harmful ques-
tion to judge model to judge whether the sentence
violates safety standard to filter out irrelevant con-
tent, such as safety claims. In order to balance
the labeling efficiency and granularity, we limit the
number of sentences to less than 10 by merging ad-
jacent sentences based on NLI score from highest
to lowest. Then, we will submit these sentences and
question to the judge model for judgment one by
one, and reorganize these sentences that are judged
as unsafe using the judge model as well.

3.4 Knowledge Enhancement

Internal Retrieval-Augmented Generation
Based solely on the response to old question, the
question raised by the model may be very limited.
During the iterative process, the internal historical
response can also serve as the reference for the
model when raising new questions. Therefore, in
addition to the responses to old questions, we use
embedding similarity to recall the most relevant
historical response to the current question to assist
the model in generating new question. Under
internal RAG, the utilization of the response
generated by the model has been improved, and the
efficiency and diversity of question enhancement
have also increased.

External Few-Shot Pool How to make the model
generate a better question is undoubtedly a difficult
process to handle. Previous methods often include
modifying words to be more complex or compli-
cate the grammatical structure, which limited the
diversity of the question, especially in content. But
if only very rough guidance is provided, it is hard
for the model to generate a *good’ question in a
short time. We considered the problems encoun-
tered by the previous two methods. Through a little
guidance in the prompt, we make the questions
raised by the model more divergent, enabling it
to explore more space. Moreover, we introduced
the few-shot pool mechanism to provide the model
with a question pair, allowing it to perceive what a
good way to ask a new question based on old one
is, thereby improving the quality and efficiency of
the questions raised by the model.

3.5 Sample Policy

In our pipeline, there are three steps involving sam-
pling policy. (1) the selection of the question node

in each iteration round, (2) the selection of the ques-
tion pair, (3) the selection of the internal knowledge
based on old question.

(1) Node sample policy

[(1—a)h+ad

S Node(i)) = 1.28
core(Node(i)) X v

ey

Here, h represents the harmful score, calculated
by equation 10, d represents the diversity score,
calculated by equation 3, « is a hyperparameter
used to measure the weight, in the algorithm, we
set a to 0.25. g represents the number of gener-
ations, for example, if the initial question is the
Oth generation, the questions generated by it are
the first generation, and the questions generated
by the first generation are the second generation...
, vV represents the number of times each node is
selected, and e prevents the divisor from being 0,
In the algorithm, we set € to 0.001 .

~__ Score(Node(i))
P(Node(i)) = ZZ:O Score(Node(k)) 2
d(g:) = Y oreo Stm[(Emb(g;), Emb(gs)] 3)

n
Here, n represents the length of Node List, Emb

represents question’s embedding vector, Sim calcu-

lates the cosine similarity of two embeddings.

We sample one node from the Node List each
turn based on the probability calculated by equation
2 for question enhancement.

(2) Question Pair sample policy

Pair(i) = 1— [Sim(Emb(gi), Emb(qoia)) @
P(Pair(i)) Pair(i) )

- >op_ Pair(k)
The score of question pair calculated by equa-
tion 4, h represents harmful score, calculated by
equation 10, equation 4 indicates that a good ques-
tion pair refers to the difference between the new
question and the old one as little as possible while
making the new question as harmful as possible.
We sample 3 pairs from the Question Pair
each turn based on the probability calculated by
equation 5. In fact, in order to encourage explo-
ration, we will only adopt the external few-shot
pool with a probability of 0.5.
(3) Knowledge sample policy

Docs(i) = Sim[Emb(qea), Emb(R;)]  (6)



Reference = Top3(Docs) 7

We will calculate the embedding cosine similarity
between the old questions and each response R;
which is content filtering in the Knowledge Base.
And we finally select Top3 relevant response as the
reference.

3.6 Judge Model

The judge model in our pipeline is used for the
safety evaluation of the response from attack model
and filtration & reorganization in content filter-
ing. For safety evaluation, there are two methods-
overall and sentence level.

For overall:

Result = Judge LLM(Q, R) (8)

Here, Result is response from judge model, 0’
means R is safe, ’1’ means R is unsafe.
For sentence level:

Result(i) = Judge LLM(Q, S(7)) )

it Result(i)
n

h (10)

Here, S(i) is the set of sentences obtained by
segmenting R based on the NLI score mentioned in
Section 3.3. h is the harmful score, which is used
to evaluate the harmfulness of the responses at a
more precise level.

In fact, We tried two models as judge model.
Initially, it was gpt-40-mini. Finally, in order to
reduce costs, we fine-tuned Qwen-2.5-7b-instrcut.
The accuracy of both in our safety evaluation test
dataset have reached more than 95%.

4 Experiment

4.1 Experimental Setup.

Attack Models. For the attack models, in the
closed-source model, we choose the latest ver-
sion of Qwen-Turbo-2024-12-24 (Bai et al., 2023),
Claude 3.7 and GPT-4-Turbo-2024-04-09 (Achiam
et al., 2023). Meanwhile, we choose Qwen-2.5-7b-
instruct as a supplement to the open-source model.
Dataset and Metric. Following prior work (Chao
et al., 2023, Mehrotra et al., 2025), we use Ad-
vbench Subset and MaliciousInstruct in our exper-
iment. Advbench Subset consists of 50 harmful
questions that cover various safety domains. Mali-
ciousInstruct is a dataset containing 100 jailbreak

instructions, specifically designed for testing and
researching the safety and defense measures of
large language models. And we report attack suc-
cess rates (ASR) to estimate attack performance,
which refers to the percentage of success jailbreak
questions in 150 final questions generate from 150
initial ones. Since many prior works use advanced
large language model as a judge to evaluate whether
jailbreak occurs (Liu et al., 2023a, Xu et al., 2023,
Zhou et al., 2024), We calculate ASR based on the
overall judgment result from fine-tuned Qwen-2.5-
7b-instrcut. To estimate efficiency, we report the
average number of queries to the attack model. And
to better evaluate the responses, we also report the
harmful score mentioned in section 3.7 to assess
the quality of the responses.

Attack methods. To evaluate the performance of
our enhanced data on different attack methods, we
adopted the following approaches: Direct: we di-
rectly submit the final generated questions to the
model for response. Fixed Template: we manu-
ally design a simple and universal attack template
to bypass the model’s defense mechanism; IRIS:
an automated jailbreak pipeline based on model
reflection; TAP:a jailbreak method based on tem-
plate modification and tree-of thought reasoning;
GPTfuzzer Prompt:it consists of 76 jailbreak at-
tack templates automatically generated based on
genetic algorithm , we randomly choose 1 prompt
from the prompt set for each question. Since our
method is mainly aimed at the closed-source model,
so other attack methods that require fine-tuning the
model or utilizing the information inside the model
are excluded (Liu et al., 2023b, Zou et al., 2023,
Zeng et al., 2024, Xiao et al., 2024).
Hyperparameters. In our experiment, we set iter-
ative time N to 15. When determining whether the
response was jailbroken or not, in order to improve
efficiency, we used the fixed template attack. The
temperature of the judge model was set to 0, and
Top-p was set to 0.8. The temperature of the attack
model was set to 1. Top-p was set to 0.8.

Judge Model and Recall Model. To train the
judge model, we utilized the data distilled from
GPT-4-0613, consist of 1000 safety evaluation data
, 200 content filtering data and 200 sentence reor-
ganization data. We supervised fine-tuned Qwen-
2.5-7b-instrcut for 8 epochs using the llama factory
(Zheng et al., 2024) training framework. For the re-
call model, we chose BGE-M3 (Multi-Granularity,
2024), one of the best embedding representation
models at present.



Model

Method Metric Qwen-Turbo Claude-3.7 GPT-4-Turbo Qwen-2.5-7b  deepseek-v3
ASR 4%/12 % 6%/12 % 2%112 % 10%/22 % 2%/16 %
Direct Avg.Queries -/- -/- -/- -/- -/-
Harmful Score ~ 0.04/0.10 0.05/0.09 0.01/0.07 0.06/0.15 0.01/0.11
ASR 20%/84 % 32%/88%  20% / 88 % 32%1/92 % 28%1/84 %
Fixed Avg.Queries -/- -/- -/- -/- -/-
Harmful Score 0.14/0.76 0.22/0.76 0.15/0.74 0.25/0.84 0.22/0.73
ASR 78%/84 % 88%/88% 82%1/90 % 88%1/88% 76%/84 %
TAP Avg.Queries 24.5/22.8 28.8/27.5 22.5/19.2 16.4/17.2 24.2/20.2
Harmful Score 0.62/0.74 0.67/0.75 0.67/0.81 0.70/0.78 0.61/0.75
ASR 88%1/92 % 88%/88% 84%/84% 44%/68 % 82%/84 %
IRIS Avg.Queries 6.4/7.2 6.1/6.8 5.3/6.2 5.1/5.6 4.8/5.6
Harmful Score 0.69/0.84 0.69/0.82 0.69/0.80 0.33/0.58 0.66/0.77
ASR 24%/50%  28%/58 % 22% | 58 % 30%1/62 % 28%/54 %
GPTfuzzer  Avg.Queries -/- -/- -/- -/- -/-
Harmful Score 0.17/0.35 0.18/0.45 0.16/0.50 0.21/0.54 0.19/0.48

Table 1: Comparison of diffetrent attack methods for jailbreak attacks on the AdvBench Subset and MaliciousInstruct.
Attack success rates (ASR), the average number of queries (Avg.Queries) to the attack model and the harmful score
(Harmful Score) calculated by equation 1 are reported as metrics.For the result A/B, A represents the result under

the original data, and B represents the result under the enhanced data.

4.2 Main Result

Table 1 shows the performance of our enhanced
questions on different attack methods. Direct:The
models used in our experiment have all undergone
relatively good safety alignment training, so the at-
tack success rates (ASR) of the models before and
after enhancement are not high. However, the rela-
tive ASR of the enhanced data is still higher than
that of the original data (on average 10%), and the
harmful score of the responses is also higher than
that of the original responses. Fixed Template: We
manually designed an attack template that might
be used by users in daily life, shown in Appendix
A. Since enhanced data is usually complex, con-
cealed and difficult to understand, a simple fixed
attack template can cause the model to jailbreak.
In contrast, the original question is too brief and
simple, so it can be easily recognized by the model.
TAP:During the iterative optimization of the attack
template, TAP will prune. In fact, enhanced data
optimized the initial search space. When the max-
imum iteration round is fixed, the enhanced data
has improved the attack success rate (ASR) to a
certain extent. The increase in the average number
of queries can also support the previous conclusion.
IRIS:IRIS will continuously optimize the current
template by utilizing the model’s reflection ability.
Therefore, it performs poorly on small-parameter

models. Similar to TAP, enhanced data optimized
the initial search space, thus making it easier for
the model to reflect on some questions. However,
this can also lead to negative effects. Overly dif-
ficult questions require the model to spend more
time thinking. Therefore, the improvement of ASR
is not stable, and the average number of queries has
also increased, which indicates that the model has
spent more time reflecting on and modifying the
prompt. GPTfuzzer Prompt:Fixed templates are
easy to defend , so we used 76 templates automati-
cally generated by GPTfuzzer. Each template has a
question placeholder for the question insert. The re-
sult shows that our enhanced data performs well on
different attack templates, and ASR has increased
by an average of 30% in the five models.The harm-
ful score has also significantly increased.

4.3 Safety Alignment

To verify that our enhanced questions can im-
prove the model safety performance during the
fine-tuning stage, we fine-tuned the model using
our enhanced data.

Model. We use the Qwen-2.5-7b-base as the base
model which safety alignment ability is relatively
weak and is usually able to answer harmful ques-
tions. For the ?’HCM pipeline, we use Qwen-turbo
as the attack model.



Dataset.Since we use Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) to fine-tune
model, we need to construct our dataset with re-
ject and chosen pair. Firstly, we use ’HCM on
Abvbench 520 to get enhanced question, then use
Qwen-turbo to expand the enhanced dataset to 1000
by asking "Please output a question similar to the
following one :[INSERT QUESTION]", then we
submit each question directly to Qwen-2.5-7b-base
to get reject sample and submit each question with
prompt to get COT(Wei et al., 2022) chosen sam-
ple from gpt-4-0613. For Advbench 520, we also
adopted a similar approach. Eventually, we con-
structed two datasets consisting of 1, 000 samples.
We randomly selected 50 samples as the test set
and th rest as the training set.

Hyperparameters.. We used the llama factory to
full-parameter fine-tune Qwen-2.5-7b-base for 2
epochs on 8 NVIDIA A100 GPUs. We set learning
rate to 5e-6 and batch size to 1.

Table 2 shows the result.Compared with the un-
trained model, the safety of our model has been
improved by 14%, 18% and 14% respectively in
the three attack methods on the abvbench test set,
and has been improved respectively 46%, 40% and
12% on the enhanced test set. Compared with the
abvbench dataset, the enhanced dataset’s perfor-
mance is consistent with its on the Abvbench test
set, while outperforming on the enhanced test set.
After analysis of the training data samples, we find
that when we construct the COT sampling data,
they often contains the cognition of simple harm-
ful question and are more in-depth. Therefore, it
performs relatively well on both test sets.

Method Base Advbench  Enhanced
Direct 38%/18% 52%/34% 52%/64%
Fixed 24%/8%  36%/28% 42%/48 %

GPTfuzzer 18%/12% 28%/20% 32%/24 %

Table 2: We compare the defense capability of the model
(Qwen-2.5-7b-base) trained by DPO on the Abvbench
dataset and the enhanced dataset (Base is baseline). We
used 1-ASR (Advbench test set/Enhanced test set) to
measure the defense capability of the model and verified
its defense performance under three attack methods:
Direct, Fixed Template and GPTfuzzer Prompt.

4.4 Ablation Study

In the ablation experiment, we report the impor-
tance of Content Filtering, Internal RAG and Ex-
ternal Few-shot Pool, and result is shown in Table

3.The attack method we used is fixed template, the
metrics we report are ASR and Stop Turns. With-
out Content Filtering, the Avg.Queries (34.5% | on
average) and ASR (38.0% | on average) have de-
clined to a great extent, we consider this is mainly
because the unfiltered model’s response often con-
tain safety statement, and the safety-aligned models
tended to extract this part of the response to gen-
erate new questions. Without Internal RAG and
External Few-Shot Pool, the attack success rates
has become unstable(4.5% | on average) and the
efficiency has also declined(18.1% | on average).

Model
Step Qwen-Turbo GPT-4-Turbo
Baseline 84%/9.1 88%/5.3
Content Filter 46%/12.9 50%/8.2
Internal RAG 78%/10.2 84%1/6.2
Few-shot Pool 80%/10.5 84%/7.8

Table 3: In the ablation experiment, we choose Qwen-
Turbo and GPT-4-Turbo as the attack model, and re-
move three modules respectively. For the metrics, we
report ASR/Stop turns (Stop turns means when jailbreak-
ing,how many turns has the pipeline been operated).

5 Conclusion

We propose an automatic pluggable jailbreak
pipeline based on Iterative Internal Harmful Con-
tent Mining (I’ZHCM). I?’HCM reveals that large
language models are more likely to follow complex
and harmful instructions, and points out how to
effectively mine and utilize the harmful knowledge
in large language models to enhance existing safety
datasets. Based on the Advbench subset and Ma-
liciousInstruct, our method has achieved excellent
attack success rates (ASR) and attack efficiency
on five attack methods and many large language
models. Meanwhile, the data enhanced by I?’HCM
enables the model to obtain good defense capabil-
ity on both difficult and simple harmful questions.
This will effectively enhance the efficiency and va-
lidity of safety alignment training and patch the
vulnerability existing in the current models. We
believe that our research can, to a certain extent,
promote the development of safety data augmen-
tation and jailbreak attacks, and make future work
pay more attention to the previously overlooked
high-difficulty, obscure and harmful knowledge
fields.



Limitations

Our study reveals the risks of the advanced large
language models, but there are still some limita-
tions. Firstly, when inducing the model to generate
content related to harmful questions, the defense
mechanism of the model is often triggered. This
makes us to design different shells for different
models, which reduces the transferability of our
method. At the same time, due to the multiple
rounds of interaction with the model, how to opti-
mize the pipeline or design module to improve the
efficiency of question generation is a problem to be
solved (our current efficiency of question genera-
tion is approximately 92.5 seconds per question on
average).
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A Important Prompts Used in the
pipeline

Warning: The following pages contain the jail-
break attack templates that can cause harmful
or offensive output from the model.

In the following figures, we present the attack
templates and prompts used in Algorithm 1.



Figure 3: Attack template used for in Domain Knowledge Acquisition. We inject harmful question into seemingly
harmless instruction to induce the model to answer it. Other jailbreak methods can also be used to mine domain
knowledge in this step.

Figure 4: Prompt used for generating new question. In the prompt, we give the model summary of the response and
a keyword as anchor point. For the new questions to be generated, we make content and length requirements on the

output of the model, which makes the new question more difficult to answer and still have high relevance to the old
one.



Figure 5: The fixed attack template. We make small restrictions to encourage the model to answer harmful questions,
this template is more concise than the previous attack template, and similar templates often appear in real use.

Figure 6: The prompt we used in Beat about the Bush. We only let the model answer the knowledge domains
involved in harmful questions, which can avoid triggering the model’s defense mechanism.
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