
Automated Deep Learning for load forecasting

Julie Keisler1,2 Sandra Claudel1 Gilles Cabriel1 Margaux Brégère1,3

1
EDF R&D, Lab Paris-Saclay

2
INRIA Lille Nord Europe

3
LPSM, Sorbonne Université

Abstract Accurate forecasting of electricity consumption is essential to ensure the performance

and stability of the grid, especially as the use of renewable energy increases. Forecasting

electricity is challenging because it depends on many external factors, such as weather and

calendar variables. While regression-based models are currently effective, the emergence

of new explanatory variables and the need to refine the temporality of the signals to be

forecasted is encouraging the exploration of novel methodologies, in particular deep learning

models. However, Deep Neural Networks (DNNs) struggle with this task due to the lack of

data points and the different types of explanatory variables (e.g. integer, float, or categorical).

In this paper, we explain why and how we used Automated Deep Learning (AutoDL) to find

performing DNNs for load forecasting. We ended up creating an AutoDL framework called

EnergyDragon
1
by extending the DRAGON

2
package and applying it to load forecasting.

EnergyDragon automatically selects the features embedded in the DNN training in an

innovative way and optimizes the architecture and the hyperparameters of the networks.

We demonstrate on the French load signal that EnergyDragon can find original DNNs that

outperform state-of-the-art load forecasting methods as well as other AutoDL approaches.

1 Introduction

Currently, large-scale electricity storage is expensive and relies on inefficient systems. To ensure

the safety and smooth operation of the electricity system, it is critical to maintain a strict balance

between production and load at all times. Managing this balance relies primarily on the flexibility

of programmable power plants which can anticipate electricity demand and adjust their activity

accordingly. Load forecasting is essential to program these power plants and to ensure grid stability.

Every year, power system operators need forecasting models to provide them with load trends for

the coming year and to serve as the basis for short-term forecasts. These models are based on various

explanatory variables such as weather (temperature in particular has a strong impact on load) or

calendar variables (e.g. load tends to vary between weekdays and weekends). Historical load can be

used as a target to train these models for earlier periods, but the one-year forecast horizon makes

it unusable as a model input. For this reason, statistical and machine learning methods typically

used in time series forecasting are not efficient for this problem. Regression methods, on the other

hand, work very well. Over the year, these initial models are then “re-calibrated” with adaptive

online learning methods (e.g., online expert aggregation, see Gaillard (2015) or Kalman filter, see

Vilmarest (2022)) using the lagged data as it becomes available. For example, the re-calibration can

be used for day-ahead forecasting to help scheduling production resources for the next day. The

re-calibration part is beyond the scope of this paper, which focuses on the stationary model.

The models used in industry and winning load forecasting competitions (see Farrokhabadi et al.

(2022) for a recent one) are regression-based models such as Generalized Additive Models (GAMs)

or tree-based models. However, to improve performance and robustness, and to respond to new

1
Our code is available here: https://github.com/JulieKeisler/automl.git

2https://dragon-tutorial.readthedocs.io/en/latest/

AutoML 2024 © 2024 the authors, released under CC BY 4.0

mailto:julie.keisler@edf.fr
mailto:sandra.claudel@edf.fr
mailto:gilles.cabriel@edf.fr
mailto:margaux.bregere@edf.fr
https://github.com/JulieKeisler/automl.git
https://dragon-tutorial.readthedocs.io/en/latest/
https://creativecommons.org/licenses/by/4.0/

industrial challenges such as the integration of new data or the need to forecast at increasingly

finer time steps, interest is growing in deep neural networks (DNNs). This is a natural step, as

DNNs have proven to be highly effective in fields such as computer vision and natural language

processing (NLP). The literature on load forecasting with DNNs mainly approaches it from a time

series point of view, using recurrent networks on recently lagged load, which is not applicable

in our case. Moreover, DNNs are known to be poorly efficient on tabular regression (Grinsztajn

et al., 2022). In our case, the lack of available data (compared to computer vision or NLP datasets,

for example) is an additional challenge. The variables used as inputs to the models also have a

major impact on performance and may be different from those that work well for the regression

models. Nevertheless, we were able to create a DNN with a specific set of explanatory variables that

achieves good performance while being slightly below the state of the art. We turned to Automated

Deep Learning (AutoDL) to improve on this first model.

In this paper, we explain how we were able to effectively use AutoDL for load forecasting. We

tested several existing methods in the literature, which could not compete with the state-of-the-art,

and finally developed our own AutoDL framework: EnergyDragon. It uses the search space of the

DRAGON package (Keisler et al., 2024) (for DiRected Acyclic Graph Optimization), but includes

some innovations such as an original feature selection efficient for load forecasting and a faster

search algorithm. Our framework makes it possible to find DNNs that outperform the state of the

art in load forecasting by optimizing both their architectures and hyperparameters. We demonstrate

its performance on an industrial use case: French load. Finally, we designed EnergyDragon to be

understandable and appealing to load forecasting experts who may be new to deep learning. In

summary, our contributions are as follows:

• An explanation of our strategy for applying AutoDL to a real-world application, namely load

forecasting.

• The AutoDL framework EnergyDragon, an extension of DRAGON (Keisler et al., 2024) for load

forecasting applications.

• A new feature selection method, embedded in the training of DNNs, that is efficient for load

forecasting.

• An application of our results to a concrete use case: the French load forecasting. We show that

our approach outperforms the state-of-the-art and other AutoDL techniques.

We begin this paper by presenting in Section 2 why and how we applied AutoDL to load

forecasting and position ourselves with the literature. In Section 3, we introduce the design of En-

ergyDragon, an AutoDL framework for load forecasting. Finally, Section 4 details our experimental

results obtained on a real-world use case: the forecast of the French load. Section 5 concludes the

paper and presents further research opportunities.

2 Deep Learning and AutoDL for load forecasting

The load signal can be explained almost entirely by a set of explanatory variables that do not include

past data. Therefore performing models tend to be based on regression rather than time series

techniques. Multiple linear regressions (MLRs) can be used to calculate the relationships between

multiple variables. However, the relationships between load and some exogenous variables are

not linear and these models require the specification of functional forms for these variables. The

generalized additive models (GAMs) for example, model the nonlinear effects using a spline basis

(Pierrot and Goude, 2011). These models, highly accurate for load forecasting, are used in industry

and have won several competitions (see for example Nedellec et al. (2014)). In this paper, we are

interested in DNNs for load forecasting. Many existing works are based on a setting where past load

2

is immediately available and use time series techniques. For example, Sehovac and Grolinger (2020)

uses a sequence-to-sequence recurrent network on historical load with data every five minutes,

Rahman et al. (2018) and Mamun et al. (2019) use LSTM (Long-Short Term Memory) models on

lagged data and temperature for day-ahead forecasting. Novaes et al. (2021), Zhou et al. (2021a)

and L’Heureux et al. (2022) tried a transformer-based load forecaster using historical and calendar

data for residential load data. Other works, closer to our setting, use DNNs with more explanatory

variables or for longer forecast horizons. For example, Farsi et al. (2021) and He (2017) use parallel

LSTM/CNN (Convolutional Neural Network) models with different forecast horizons and features,

and del Real et al. (2020) forecasts the French load using temperature grids and calendar features as

inputs within a CNN. Among all the proposed models, we built a competitive DNN based on CNN

and MLP (Multi-Layer Perceptron) layers, called CNN/MLP in the following, whose architecture is

closed to Farsi et al. (2021) and He (2017) (we detail this architecture in Section A.1).

Finding better DNNs for a given task can be done with Automated Deep Learning. AutoDL is

a branch of Automated Machine Learning (AutoML) whose goal is to automatically find the best

possible DNN for a given problem. AutoDL itself consists of two subproblems, the search for the best

architecture, called Neural Architecture Search (NAS), and, for a fixed architecture, the search for

the best hyperparameters, called HyperParameters Optimization (HPO). NAS approaches require

the definition of a good search space representing all possible solutions. Most search spaces from

the literature (Hutter et al., 2019) offer to optimize architectures suitable for computer vision tasks

based on CNN layers, pooling layers, and skip connections. Closer to our setting, the AutoPytorch

framework has been introduced for tabular (Zimmer et al., 2021) and time series (Deng et al., 2022)

data. We tested this framework on our problem (see Section 4), which could not beat the CNN/MLP

model. Then, inspired by Chen et al. (2021) and their work on NAS for multivariate time series

forecasting, we used the DARTS (for Differential-Architecture Search, see the original paper Liu

et al. (2018b)) to relax our original architecture (our search space is given Section B). Encouraged

by the good results of DARTS, we further relaxed our search space using the DRAGON framework

proposed by Keisler et al. (2024), originally introduced for time series forecasting. Compared to the

DARTS approach, where the number of layers and the hyperparameters are fixed, the search space

defined by DRAGON is more flexible (see Section 3.1).

Based on this framework, we created EnergyDragon, which uses the search space of DRAGON,

but includes candidate operations specifically designed for load forecasting (see Section A.2) as well

as an innovative feature selection method. The CNN/MLP based architecture depends highly on the

input variables. Most AutoDL approaches do not address this issue, which is irrelevant in computer

vision or NLP. Surprisingly, neither does Auto-Pytorch, while Grinsztajn et al. (2022) identified the

lack of robustness of models to non-informative features as one of the reasons why DNNs perform

poorly on tabular data compared to tree-based models. Outside the AutoDL community, feature

selection is a widely discussed topic in the literature. Typical approaches include filter methods,

wrapper methods, and embedded methods (Li et al., 2017). Filter methods select features based

on statistical measures. Wrapper methods train the models with multiple subsets of features and

evaluate the features importance based on performance. They are more computationally expensive

than filter methods, but can be more efficient. Finally, embedded methods integrate feature selection

into the model training process by penalizing the contribution of less important features. In this

work, we took inspiration from the DARTS framework and developed our own embedded method,

which is described in detail in Section 3.2.

3 EnergyDragon
In this section, we describe EnergyDragon, our DNNs optimization framework for load forecasting.

Section 3.1 briefly presents the search space used, which is that of Keisler et al. (2024). Next,

the following subsections details our contributions to the original framework, adapting it to load

forecasting. In Subsection 3.2, we present the objective function. It covers not only network

3

evaluation, but also the feature selection. Due to the specific setting used for the load forecasting

task, different from the time series used in Keisler et al. (2024), we had to restrained the search space

defined Subsection 3.1 using a meta-architecture presented Subsection 3.3. Finally, Subsection 3.4

introduces our search algorithm, an asynchronous evolutionary algorithm.

3.1 Search Space

Input

𝑣1𝑣2

𝑣3

𝑣4

Output

(a) Architecture

Input

𝑣1

𝑣2

𝑣3

𝑣4

Output

1 1 1

1

1

1

11

(b) Adjacency matrix representation

Combiner

Layer Type

Params

Act. function

(c) Inside node 𝑣𝑖

Figure 1: DNN encoding as a directed acyclic graph (DAG), as proposed by Keisler et al. (2024).

The search space used in our framework was proposed by Keisler et al. (2024) and is defined as

Ω = (A×{Λ(𝛼), 𝛼 ∈ A}), whereA is the set of all considered architectures and Λ(𝛼) is the set of all
considered hyperparameters induced by the architecture 𝛼 . Each architecture 𝛼 ∈ A is represented

by a DAG Γ, where the nodes are the DNN layers and the edges are the connections between them

(see Figure 1a). The graph adjacency matrixM ∈ R𝑚×𝑚
is used to encode Γ, where𝑚 is the number

of nodes (see Figure 1b), along with a sorted list containing the node hyperparameters L, where
|L| = 𝑚. In summary, A = {Γ = (M,L)}. Each architecture 𝛼 ∈ A induces a hyperparameter

search space Λ(𝛼). The chosen hyperparameters of all layers from an architecture 𝛼 are placed

in a vector denoted as 𝜆 ∈ Λ(𝛼). As shown in Figure 1c, the layer type: convolution, recurrence,

identity, etc., belongs to the architecture search space A, but the layer type parameters: filter size,

output shape, etc., the combiner, and the activation function are part of Λ(𝛼). The combiner is a

function used to combine the multiple inputs of the node. The architecture search space allows

multiple input connections, and the incoming vectors can have different shapes. They are combined

by the combiner. See Keisler et al. (2024) for more information about this search space.

3.2 Objective function

Our objective is to find the DNN
ˆ𝑓 ∈ Ω having the lowest forecast error on a given load signal. We

consider a load dataset D, containing the load signal and the explanatory variables. For any subset

D0 = (𝑋0, 𝑌0), the forecast error ℓ𝑀𝑆𝐸 is defined as:

ℓ𝑀𝑆𝐸 : Ω ×D → R
𝑓 ×D0 ↦→ ℓ𝑀𝑆𝐸

(
𝑓 (D0)

)
= ℓ𝑀𝑆𝐸

(
𝑌0, 𝑓 (𝑋0)

)
= MSE

(
𝑌0, 𝑓 (𝑋0)

)
.

Where MSE is the Mean Squared Error. Each DNN 𝑓 ∈ Ω is parameterized by:

• 𝛼 ∈ Λ, its architecture, optimized by the framework.

• 𝜆 ∈ Λ(𝛼), its hyperparameters, optimized by the framework, where Λ(𝛼) is induced by 𝛼 .

• 𝜃 ∈ Θ(𝛼, 𝜆), the DNN weights, where Θ(𝛼, 𝜆) is generated by 𝛼 and 𝜆 and optimized by gradient

descent when training the model.

4

In the following, 𝑇 represents the number of days in the data set, 𝐻 the number of time steps

within a day, and 𝐹 the number of available explanatory variables. The data set D = (𝑋,𝑌)
consists of 𝑌 = {y𝑡 }𝑇𝑡=1

∈ R𝑇×𝐻 the target variable and 𝑋 = {x𝑡 }𝑇𝑡=1
= {x𝑖}𝐹𝑖=1

∈ R𝑇×𝐻×𝐹
the ex-

planatory variables. The optimization aims to find an optimal subset of explanatory variables:

𝑋 = {x𝑗 } 𝑗∈P ({1,...,𝐹 }) ⊆ 𝑋 . To do this, we introduce ∀𝑗 ∈ ⟦1, 𝐹⟧ : 𝑝 𝑗 ∈ {0, 1} such that

x𝑗 ∈ 𝑋 ⇔ 𝑝 𝑗 = 1 .

To use gradient descent to find the optimal features, our indicators 𝑝 = (𝑝1, . . . , 𝑝𝐹) are relaxed:
𝑤 = {sigmoid(𝑤 𝑗)}𝐹𝑗=1

∈ [0, 1]𝐹 with 𝑤 𝑗 ∈ R and 𝑝 𝑗 = 1𝑤𝑗>0 .

We partition our time indexes into three groups of successive time steps and split accordingly

D into three datasets: D𝑡𝑟𝑎𝑖𝑛 , D𝑣𝑎𝑙𝑖𝑑 , and D𝑡𝑒𝑠𝑡 . After choosing an architecture 𝛼 and a set of

hyperparameters 𝜆, the DNN 𝑓 𝛼,𝜆 is built and trained on D𝑡𝑟𝑎𝑖𝑛 . The training of 𝑓
𝛼,𝜆

is divided into

two parts. We consider 𝐸 = 𝐸𝑤 + 𝐸𝜃 as the total number of training epochs. The number of epochs

when the feature vector𝑤 and the weights 𝜃 are jointly optimized is called 𝐸𝑤 . Starting at epoch

𝐸𝑤 + 1,𝑤 is transformed to 𝑝 using the equation 𝑝 𝑗 = 1𝑤𝑗>0. Then 𝜃 is optimized until the end of

the training. Two different losses are used during the training. In the first part, when the current

epoch 𝑒 ≤ 𝐸𝑤 , an L1 penalty is added to ℓ𝑀𝑆𝐸 , like in the LASSO regression (Tibshirani, 1996), to

restrain the number of selected features. We define the joint model and features loss ℓ̃ as:

ℓ̃ : Ω × [0, 1]𝐹 ×D → R

𝑓
𝛼,𝜆

𝜃
×𝑤 ×D0 ↦→ ℓ𝑀𝑆𝐸

(
𝑓
𝛼,𝜆

𝜃
(D0)

)
+ 𝜖 ×

𝐹∑︁
𝑖=1

|𝑤𝑖 | .

When the current epoch 𝑒 < 𝐸𝑤 , the training dataset is used to select the best features:

�̂� ∈ argmin

𝑤∈[0,1]𝐹

(
min

𝜃 ∈Θ(𝛼,𝜆)

(
ℓ̃
(
𝑓
𝛼,𝜆

𝜃
,𝑤, (𝑋𝑡𝑟𝑎𝑖𝑛𝑤,𝑌𝑡𝑟𝑎𝑖𝑛)

)))
.

As 𝑒 = 𝐸𝑤 is reached, 𝑋𝑡𝑟𝑎𝑖𝑛�̂� is converted to 𝑋𝑡𝑟𝑎𝑖𝑛 and optimize the model weights during the

last epochs:

ˆ𝜃 ∈ argmin

𝜃 ∈Θ(𝛼,𝜆)

(
ℓ𝑀𝑆𝐸

(
𝑓
𝛼,𝜆

𝜃
, (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛)

))
.

The forecast error with the DNN parameterized by
ˆ𝜃 on D𝑣𝑎𝑙𝑖𝑑 is used to assess the performance of

the selected 𝛼 and 𝜆. The architecture and hyperparameters are optimized using:

(𝛼, ˆ𝜆) ∈ argmin

𝛼∈A

(
argmin

𝜆∈𝜆 (𝛼)

(
ℓ𝑀𝑆𝐸

(
𝑓
𝛼,𝜆

ˆ𝜃
, (𝑋𝑣𝑎𝑙𝑖𝑑�̂�, 𝑌𝑣𝑎𝑙𝑖𝑑)

)))
.

Finally, the framework output is ℓ𝑀𝐴𝑃𝐸 , the Mean Absolute Percentage Error. Given a load series

𝑌 = (y1 . . . y𝑛) and the predictions 𝑌 = (ŷ1, . . . 𝑦𝑛 , MAPE(𝑌,𝑌) = 1/𝑛∑𝑛
𝑖=1

��(y𝑖 − ŷ𝑖)/y𝑖
��
. The

MAPE is computed using the DNN with the best architecture, hyperparameters, weights and

features on the test dataset:

ℓ𝑀𝐴𝑃𝐸
(
𝑓
𝛼, ˆ𝜆

ˆ𝜃
, (𝑋𝑡𝑒𝑠𝑡�̂�, 𝑌𝑡𝑒𝑠𝑡)

)
.

Keisler et al. (2024) noticed that their DNNs were quite unstable. To fix this, our DNNs are

trained with a cyclic learning rate, as suggested by Huang et al. (2017), during the second part

of DNN training (when 𝐸𝑤 < 𝑒 ≤ 𝐸𝑤 + 𝐸𝜃 = 𝐸). When the learning rate is low, the neural

network reaches a local minimum. We store its weights at that moment, creating an intermediate

model. Immediately after that, the learning rate increases again, bringing the model out of the local

minimum. At the end of training, the forecasts of the best intermediate models are averaged.

5

3.3 Meta-Architecture

Input: x𝑡 ∈ R𝐻×𝐹

DNN: 𝑓
𝛼,𝜆

𝜃

2D DAG: Γ1 = 𝑓 𝛼1,𝜆1

Flatten

1D DAG: Γ2 = 𝑓 𝛼2,𝜆2

Feed-forward layer

Forecasted load: y𝑡 ∈ R𝐻

Figure 2: Daily meta-model for load

datasets.

Each DNN 𝑓 ∈ Ω should map an input 𝑋 ∈ R𝑏×𝐻×𝐹
into a

target 𝑌 ∈ R𝑏×𝐻 , where 𝑏 represents the size of the batch. The
generic search space defined Section 3.1 should be restrained

to architectures that map a two-dimensional input to a one-

dimensional output. Therefore, each model 𝑓 𝛼,𝜆 ∈ Ω consists

in two DAGs Γ1 and Γ2. The graph Γ1 is made of 2-dimensional

layers operations to treat the matrix 𝑋 and is parameterized

by 𝛼1 and 𝜆1. A flattened layer follows Γ1 to transform the 2-

dimensional latent representation into a 1-dimensional one. The

graph Γ2 is then made of 1-dimensional layers operations and

is parameterized by 𝛼2 and 𝜆2. We have 𝛼 = [𝛼1, 𝛼2] and 𝜆 =

[𝜆1, 𝜆2]. A final output layer maps the output shape of Γ2 to 𝐻 .

The operations that can be chosen at the nodes of Γ1 and Γ2 are

given Section C. A representation of the meta-model is displayed

in Figure 2.

3.4 Search Algorithm

For the purposes of this article, we have implemented an asyn-

chronous (or steady-state) evolutionary algorithm (SSEA) as our search algorithm. However, the

framework is implemented so that other search algorithms can be used. In our experiments (see

Section 4), SSEA is compared with simple random search (RS). Training a DNN is very expensive in

terms of time and computational resources. We have access to HPC (High-Performance Computing)

resources and exploit them by modifying the evolutionary algorithm used by Keisler et al. (2024)

into a steady-state version (see Liu et al. (2018a)). At the beginning of the algorithm, a set of 𝐾

random DNNs is generated. They will all have small architectures with a small number of layers𝑚.

The idea is to start the optimization with simple DNNs to reduce the chance of ending up with

overly complex, heavy and unstable DNNs. The weights of the initial features𝑤 can be initialized

to uniform random values, zeros, or ones. Then, each initial solution is trained and evalauted on

D𝑡𝑟𝑎𝑖𝑛 and D𝑣𝑎𝑙𝑖𝑑 to create our population of size 𝐾 . For a certain number of iterations 𝐵, once a

processus is free, two solutions from our population are chosen using a tournament selection. We

use the crossover and mutation operators suggested by Keisler et al. (2024) to create two offspring

that would be trained and evaluated by the free process. Then, for each offspring, if its loss ℓ𝑀𝐴𝑃𝐸
is less than the worst loss from the population, the offspring replaces the worst individual. Using

an asynchronous version instead of the classical one avoids waiting for a whole generation to be

evaluated and saves some time.

4 Experiments
In this section, EnergyDragon performance are evaluated on the French load from March 2019 to

March 2020, just before the first lockdown. We have used a rather old year because it is the last year

with a stable regime. Since this year, the French load has experienced large perturbations during the

COVID lockdowns or the energy crisis. Comparing the performance of steady-state models, which

is the subject of this article, over periods that are too volatile, without a re-calibration mechanism,

is irrelevant. This issue is further discussed Section 5.

4.1 Dataset

The dataset comes from the website of the French Transmission System Operator
3
(RTE) and

contains the French national load data at half-hourly intervals. Therefore, each day contains𝐻 = 48

3https://www.rte-france.com/eco2mix

6

https://www.rte-france.com/eco2mix

time steps. We trained our models from March 2015 to March 2019 and compare the performance

from March 2019 to March 2020 using the MAPE (ℓ𝑀𝐴𝑃𝐸). For this dataset thirty-four explanatory

variables can be used. The weather data contains the national temperature along with exponential

smoothing variants of parameters going from 0.7 to 0.998, wind and cloud cover. Calendar features

include the day of the week, the month, the year, if the day correspond to a public holidays or a

surrounding day.

4.2 Baseline

We compare our results to models at the state-of-the-art in load forecasting: a Generalized Additive

Model (GAM) used in the industry, the CNN/MLP model and to two AutoML/AutoDL approaches:

AutoPytorch (Zimmer et al., 2021) and a version of DARTS (Liu et al., 2018b) applied on the hand-

crafted DNN. AutoPytorch includes the hyperparameters tuning, model selection and ensembling

of simple regression models such as Random Forest, Support Vector Machine (SVM) or Catboost

for example, therefore they are not directly included in the baseline.

Generalized Additive Model. The GAMs are state of the art for load forecasting (see among others

Pierrot and Goude (2011) or Wood (2017)). The output𝑌 is explained as the sum of smooth functions

of the explanatory variables: 𝑌 = 𝑔1(𝑋1) + 𝑔2(𝑋2) + 𝑔3(𝑋3, 𝑋4) + . . . where the 𝑔𝑖 are linear or a
special type of piecewise polynomial functions called splines. The GAM developed for this use case

is instantaneous, meaning that a model is fitted for each of the 48 time steps of the day. For our

experiments, we chose a GAM that is used in the industry and therefore cannot reveal its explicit

formula. The GAM takes about twenty explanatory variables as input.

Deep Neural Networks. We included our CNN/MLP inspired by Farsi et al. (2021) and He (2017)

in our baseline. Unlike the GAM, a single model is used to predict the 48 time steps of the day.

The input variables are divided into two groups of about ten features. One group is processed by

parallel one-dimensional convolutions and the other by feed-forward layers. The branches are then

concatenated and processed by more feed-forward layers. The detailed architecture can be found

Section A.1. The model was trained with the Adam optimizer (Kingma and Ba, 2017) during 500

epochs.

AutoPytorch. We used the tabular regression API of AutoPytorch
4
. This framework combines an

AutoML pipeline for traditional regression models (e.g., RandomForest, CatBoost or LightGBM)

with the tuning of DNNs. The search-space used for the AutoDL part is made of MLPs, residual

connections and Normalization Layers. The framework does not allow us to map two-dimensional

inputs to one-dimensional targets, so each moment of the day was forecasted independently. The

hour of the day and the instant were added as explanatory variables. For a fair comparison, the

same global optimization budget was set for both AutoPytorch and EnergyDragon: 24 hours, and

the same budget by model: 15 minutes. Two versions are used in the baseline: with the traditional

regression baseline and with only the AutoDL part (fairer with EnergyDragon).

DARTS. We optimized the CNN/MLP architecture using the DARTS (Liu et al., 2018b) algorithm.

The search space is described in detail in Section B. In short, parts of the original architecture are

replaced with DARTS cells. Each cell is a DAG where the links represent candidate operations.

During optimization, multiple operations are considered for each link and are associated with a

probability of being selected. These probabilities are optimized by gradient descent. At the end of

the optimization, the operation with the highest probability is chosen in the final architecture. The

model weights and the operation probabilities are optimized alternatively, with 500 epochs for the

weights and 200 epochs for the probabilities, using the Adam optimizer Kingma and Ba (2017).

4https://github.com/automl/Auto-PyTorch/tree/master

7

https://github.com/automl/Auto-PyTorch/tree/master

EnergyDragon. For EnergyDragon (hereafter called ED),the global time budget is fixed to 24

hours. The features are optimized during 500 epochs and the weights during 200 epochs. For the

steady-state evolutionary algorithms, the initial population size is set to 𝐾 = 100. A DNN cannot be

trained for more than 15 minutes. The baseline compared five versions of ED. One with a random

search algorithm, called ED RS, the other versions use the steady-state evolutionary algorithm. ED

SSEA is implemented with the mutation operators of DRAGON but without the crossover, and ED

SSEA Crossover uses the crossover. Finally, ED SSEA CNN/MLP and ED SSEA Crossover CNN/MLP

include the MLP/CNN model in the initial population. This means that 99 models are randomly

initialized and the remaining one is the CNN/MLP model.

4.3 Results

Model MAPE RMSE (in MW)

GAM 1.398% 929.8

AutoPytorch 17.999% 10641.7

AutoPytorch with the traditional baseline 2.022% 1243.2

CNN/MLP (handcrafted DNN) 1.721% 1164.6

DARTS 1.600% 1085.6

ED RS 1.374% 902.3

ED SSEA 1.258% 851.4

ED SSEA Crossover 1.190% 837.8

ED SSEA Crossover CNN/MLP 1.182% 816.3

ED SSEA CNN/MLP 1.131% 803.4

Table 1: MAPE and RMSE of the different models from our baseline. The reference model is the GAM

and the best model is highlighted in bold.

We evaluated each algorithm from the baseline on the French load signal. Each version from

ED was run using 20 GPUs V100, and AutoPytorch using 2 Quadro RTX 6000 which are faster than

the V100. We used in total approximatively 336 GPU-hours. Each algorithm was run with a global

seed of 0 to ensure reproducibility. The results can be found in Table 1. In addition to the MAPE

function, the Root Mean Squared Error is (RMSE) is also reported. For all proposed versions, the

results of the EnergyDragon algorithms beat all other models from the baseline. The AutoPytorch

framework had the worst results, even with the traditional models. The lack of feature selection

may explain these results. Our CNN/MLP handcrafted model was slightly improved by the DARTS

framework, but both versions cannot compete with the reference model (GAM). Among the ED

results, the random search got the worst results, which demonstrates the performance of our search

algorithm (see D.3 for convergence plots). Although the CNN/MLP model does not outperform

the GAM, it is still useful to use it as an input for ED. In fact, both versions with and without

crossover with the CNN/MLP in the initial population outperformed the versions without. Finally,

the crossover helped to improve the performance of ED without the CNN/MLP as input, but the best

version of ED was with the CNN/MLP and without the crossover. The initial population of this last

algorithm already contains a good candidate (the CNN/MLP model), and therefore does not need

as much exploration (with the crossover) as the version without the CNN/MLP. The models found

by EnergyDragon for each setup can be found in Section D.1. The best version of EnergyDragon:

ED SSEA CNN/MLP improves the predictions of GAM by 19%. Figure 3 shows the forecast of GAM

and ED SSEA CNN/MLP for the last week of November. Forecasts from other algorithms can be

found in Section D.2. The forecast signals have similar shapes for GAM and ED SSEA CNN/MLP,

8

but GAM has a larger bias and overpredicts the load. More details on the experimental results can

be found in Section D, as well as another case study on the Norwegian load Section E.

2019-11-25 2019-11-26 2019-11-27 2019-11-28 2019-11-29 2019-11-30 2019-12-01 2019-12-02

50000

55000

60000

65000

70000

M
W

 v
al

ue
s

Ground truth GAM ED SSEA CNN/MLP

Figure 3: Load power forecasting for the last week of November 2019. The ground truth is displayed

in dotted line, the GAM forecast is drawn with a blue line whereas the forecast from the best

version of EnergyDragon (ED SSEA CNN/MLP) is drawn in yellow.

5 Conclusion

This paper explains how we applied AutoDL to a real-world application: load forecasting. The

existing works in the AutoDL community were not sufficient to be used directly in our case, and we

had to develop our ownAutoDL framework, EnergyDragon. This framework is able to automatically

select input features and optimize DNN architectures and hyperparameters to generate performing

models. We demonstrate on the French load signal that EnergyDragon is able to outperform a

state-of-the-art model in load forecasting: a generalized additive model used in the industry as

well as an AutoML framework designed for tabular regression: AutoPytorch. Future work should

focus on automatically re-calibrating the models found by EnergyDragon so that they can be

used for short-term forecasting in rather erratic periods. In addition, the industry requires the

interpretability of the forecasting models. DNNs are known to be black boxes, and to be accepted

as an industrial solution, we will have to work on finding ways to interpret their forecasts.

6 Broader Impact Statement

EnergyDragon automates the creation of powerful load forecasting models. It could be used for

load forecasting in different countries, which could be useful in the fight against climate change.

In fact, meeting the carbon neutrality targets of the Paris Agreement depends for many countries

on increasing the share of electricity in their energy mix through the massive deployment of

renewable energy. Load forecasting will be critical to managing these future power grids, which

will include many intermittent energy sources. Accurate load forecasts, combined with forecasts of

renewable energy production, will enable the activation of electricity flexibility and reduce the use

of high carbon-emitting peak generation resources. Smarter, more flexible power grids that can

accommodate large amounts of renewable energy are cited by Foley et al. (2020) as one of the most

important solutions to climate change. However, it should be noted that the non-interpretability of

DNNs can pose a risk to power system operators. It is difficult to predict in advance how they will

react to unknown situations and how to correct their load forecasts in such situations, which could

lead to operational disruptions or financial losses.

9

References
Acknowledgements.

Chen, D., Chen, L., Shang, Z., Zhang, Y., Wen, B., and Yang, C. (2021). Scale-Aware Neural

Architecture Search for Multivariate Time Series Forecasting. arXiv:2112.07459 [cs]. arXiv:

2112.07459.

Cordonnier, J., Loukas, A., and Jaggi, M. (2019). On the relationship between self-attention and

convolutional layers. CoRR, abs/1911.03584.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and Salakhutdinov, R. (2019). Transformer-xl:

Attentive language models beyond a fixed-length context. CoRR, abs/1901.02860.

del Real, A. J., Dorado, F., and Durán, J. (2020). Energy Demand Forecasting Using Deep Learning:

Application to the French Grid. preprint, ENGINEERING.

Deng, D., Karl, F., Hutter, F., Bischl, B., and Lindauer, M. (2022). Efficient automated deep learning

for time series forecasting. arXiv preprint arXiv:2205.05511.

Farrokhabadi, M., Browell, J., Wang, Y., Makonin, S., Su, W., and Zareipour, H. (2022). Day-ahead

electricity demand forecasting competition: Post-covid paradigm. IEEE Open Access Journal of
Power and Energy, 9:185–191.

Farsi, B., Amayri, M., Bouguila, N., and Eicker, U. (2021). On Short-Term Load Forecasting Using

Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach. IEEE Access,
9:31191–31212.

Foley, J., Wilkinson, K., Frischmann, C., Allard, R., Gouveia, J., Bayuk, K., Mehra, M., Toensmeier,

E., Forest, C., Daya, T., Gentry, D., Myhre, S., Mukkavilli, s. K., Yussuff, A., Mangotra, A., Metz, P.,

Wartenberg, A., Anand, C., Jafary, M., and Rodriguez, B. (2020). The Drawdown Review (2020) -
Climate Solutions for a New Decade.

Gaillard, P. (2015). Contributions à l’agrégation séquentielle robuste d’experts : travaux sur l’erreur
d’approximation et la prévision en loi. Applications à la prévision pour les marchés de l’énergie.
PhD thesis, Université Paris-Sud 11.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). Why do tree-based models still outperform

deep learning on tabular data? arXiv preprint arXiv:2207.08815.

He, W. (2017). Load Forecasting via Deep Neural Networks. Procedia Computer Science, 122:308–314.

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., andWeinberger, K. Q. (2017). Snapshot ensembles:

Train 1, get m for free. arXiv preprint arXiv:1704.00109.

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated machine learning: methods, systems,
challenges. Springer Nature.

Keisler, J., Talbi, E.-G., Claudel, S., and Cabriel, G. (2024). An algorithmic framework for the

optimization of deep neural networks architectures and hyperparameters. Journal of Machine
Learning Research, 25(201):1–33.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H. (2017). Feature selection:

A data perspective. ACM computing surveys (CSUR), 50(6):1–45.

10

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K. (2018a). Hierarchical

representations for efficient architecture search.

Liu, H., Simonyan, K., and Yang, Y. (2018b). Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055.

L’Heureux, A., Grolinger, K., and Capretz, M. A. (2022). Transformer-based model for electrical

load forecasting. Energies, 15(14):4993.

Mamun, A. A., Hoq, M., Hossain, E., and Bayindir, R. (2019). A Hybrid Deep Learning Model with

Evolutionary Algorithm for Short-Term Load Forecasting. In 2019 8th International Conference
on Renewable Energy Research and Applications (ICRERA), pages 886–891, Brasov, Romania. IEEE.

Nedellec, R., Cugliari, J., and Goude, Y. (2014). Gefcom2012: Electric load forecasting and backcasting

with semi-parametric models. International Journal of forecasting, 30(2):375–381.

Novaes, A. L. F., Araujo, R. A. d. M., Figueiredo, J., and Pavanelli, L. A. (2021). A New State-of-the-Art

Transformers-Based Load Forecaster on the Smart Grid Domain. arXiv:2108.02628 [cs]. arXiv:
2108.02628.

Pierrot, A. and Goude, Y. (2011). Short-term electricity load forecasting with generalized additive

models. Proceedings of ISAP power, 2011.

Rahman, A., Srikumar, V., and Smith, A. D. (2018). Predicting electricity consumption for commercial

and residential buildings using deep recurrent neural networks. Applied Energy, 212:372–385.

Sehovac, L. and Grolinger, K. (2020). Deep Learning for Load Forecasting: Sequence to Sequence

Recurrent Neural Networks With Attention. IEEE Access, 8:36411–36426.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin,

I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Vilmarest, J. D. (2022). State-Space Models for Time Series Forecasting. Application to the Electricity
Markets. (Modèles espace-état pour la prévision de séries temporelles. Application aux marchés
électriques). PhD thesis, Sorbonne University, Paris, France.

Wood, S. N. (2017). Generalized additive models: an introduction with R. CRC press.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., and Zhang, W. (2021a). Informer: Beyond

Efficient Transformer for Long Sequence Time-Series Forecasting. arXiv:2012.07436 [cs]. arXiv:
2012.07436.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., and Zhang, W. (2021b). Informer: Beyond

efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 11106–11115.

Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-pytorch: Multi-fidelity metalearning for

efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(9):3079–3090.

11

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We present the strategy to apply AutoDL on load forecasting

Section 2, we detail our framework and the features selection Section D and we attest that

our framework is efficient in our experiments Section 4.

(b) Did you describe the limitations of your work? [Yes] The conclusion Section 5 and the

broader impact statement Section 6 describe the limitations of our work.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] The broader

impact statement Section 6 details the potential negative societal impacts.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] he paper conforms to the guide-

lines

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] The same dataset was used for all

methods being compared. The training procedure was the same for all DNNs used in our

baseline, except for AutoPytorch which provides its own training function. We tried to

be as fair as possible for the ressources, but we could not parallelize AutoPytorch over 20

GPUs. Therefore we used more powerful GPUs (The Quadro RTX). We show Figure 15 the

EnergyDragon has a very fast convergence in any case.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] The Appendix gives details on our search

space.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [No] We did not want to launch

too many experiments. But we ran several versions of our framework and they all have

better results than the state-of-the-art. We think it is enough to attest the pertinence of our

approach.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [No] We do not reported the variance as we only launched each experiment once,

but we set the global seed to 0 to ensure reproducibility.

(e) Did you report the statistical significance of your results? [Yes] We report that our approach

improve by 10-20% the current state of the art.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] We used an

industrial use case.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] Section D.3 details the convergence of our algorithms through time.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] This information is given Section 4.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We ran various versions of our framework to show the impact of our search algorithm

12

https://2022.automl.cc/ethics-accessibility/

compare to a Random Search and the features selection (by including or not the handcrafted

model, more information Section D.4).

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] The code can be found in the supplementary

material. It requires an HPC environment with the package mpi4py.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] We provide a small example where you can randomly drawn some

DNNs and evaluate them on our data.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] We did.

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] We did.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] We did.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] We cite the creators from DRAGON and the

french TSO who provided the data used.

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A] Everything we used was open-source.

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The evaluation was performed using public dataset.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

The code in the supplementary material is open-source.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [N/A] We do not include new assets.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] We did not used crowdsourcing or conducted research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] We did not used crowdsourcing or conducted research

with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] We did not used crowdsourcing or conducted research

with human subjects.

7. If you included theoretical results. . .

13

(a) Did you state the full set of assumptions of all theoretical results? [N/A]We did not included

theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] We did not included

theoretical results.

14

A Handcrafted DNN for load forecasting: the CNN/MLP model

A.1 Architecture

Figure 4 shows the CNN/MLP architecture we have handcrafted for load forecasting. As described

in Section 4, the model has two inputs with different features. One is handled by two parallel

convolutions and the other by an MLP. The three branches are then concatenated and fed into

another MLP layer. The input data is a bit different than in EnergyDragon, where 𝑋EnergyDragon ∈
R𝐻×𝐹

. In the CNN/MLP model, the features are split into 𝑋Conv and 𝑋Feed, which contain 𝐹𝐶 and 𝐹𝐹
features, respectively, so that 𝐹𝐶 + 𝐹𝐹 = 𝐹 . Within 𝑋Conv and 𝑋Feed, the features are concatenated

into a one-dimensional vector, i.e. 𝑋Conv ∈ R𝐻𝐹𝐶 and 𝑋Feed ∈ R𝐻𝐹𝐹 .

Convolution

1D

Average

Pooling 1D

Flatten

Convolution

1D

Average

Pooling 1D

Flatten

MLP

Concatenation

MLP

Convolution input Feed input

Figure 4: CNN/MLP Architecture

To represent the CNN/MLP model in EnergyDragon and to include it in the initial population,

we had to make some adjustments. The input data is two-dimensional: 𝑋EnergyDragon ∈ R𝐻×𝐹
, so we

set the first DAG Γ1 to an identity layer and we apply the three branches to the flattened data. The

architecture of this new model is shown in Figure 5. The architecture shown with EnergyDragon

gives slightly worse results than the original one.

A.2 Self-attention

Before creating a fully automated framework for finding neural networks for load forecasting, we

searched for DNNs that might be interesting for our problem. The Transformer model (Vaswani

et al., 2017), which has recently achieved state-of-the-art results in several areas, naturally caught

our attention. We tried to use it on our problem, but without much success: we tried different

hyperparameters and the load prediction embedding from the Informer (Zhou et al., 2021b), but

we could not go below 4% of MAPE. However, one of the major innovations of the Transformer is

the self-attention layer. In the vanilla Transformer model, the attention layer is position-invariant,

meaning that no assumption is made about the order of the inputs, and the permutation of the input

data does not change the result. Therefore, in the original Transformer (Vaswani et al., 2017), the

absolute position 𝑃𝑑𝑎𝑡𝑎 of the data 𝑋𝑑𝑎𝑡𝑎 in the data set is added to the input data: 𝑋 = 𝑋𝑑𝑎𝑡𝑎 +𝑃𝑑𝑎𝑡𝑎 .
The attention scores can then be defined as:

𝐴 = 𝑋𝑊𝑄𝑊
𝑇
𝐾 𝑋

𝑇 = (𝑋𝑑𝑎𝑡𝑎 + 𝑃𝑑𝑎𝑡𝑎)𝑊𝑄𝑊
𝑇
𝐾 (𝑋𝑑𝑎𝑡𝑎 + 𝑃𝑑𝑎𝑡𝑎)𝑇 ,

15

Input Features

add,Identity,Identity

Flatten

add,MLP,50,ReLU

add,Conv1d,48,10,same,ReLU add,Conv1d,12,12,same,ReLU

concat,MLP,150,ReLU

add,AVGPooling1D,5,Identity add,AVGPooling1D,5,Identity 1

add,MLP,50,ReLU 1

MLP,48,Identity()

Figure 5: CNN/MLP Architecture represented with EnergyDragon.

where𝑊𝑄 and𝑊𝐾 are the query and key weights matrices from the original self-attention.

Later, Dai et al. (2019) introduced relative encoding in their Transformer XL. The idea is to

consider only the position difference between query and key instead of the absolute position. They

redefined the attention score between a query 𝑥𝑞 and a key 𝑥𝑘 ∈ 𝑋𝑑𝑎𝑡𝑎 :

𝐴𝑞,𝑘 = 𝑥𝑇𝑞𝑊
𝑇
𝑄𝑊𝐾𝑥𝑘 + 𝑥𝑇𝑞𝑊𝑇

𝑄�̂�𝐾𝑟𝑘−𝑞 + 𝑢𝑇𝑊𝐾𝑥𝑘 + 𝑣𝑇�̂�𝐾𝑟𝑘−𝑞 ,

where 𝑟𝑘−𝑞 is a coding of the relative position, 𝑢 and 𝑣 are new attention parameters optimized

by backpropagation. From this new attention formulation, Cordonnier et al. (2019) proved that by

setting some conditions, the attention layer can be forced to learn as a 2D convolutional layer.

We implemented the attention layers as defined by Cordonnier et al. (2019) for one- and

two-dimensional data, and set a parameter “initialization” to indicate whether the layer weights

should be initialized to perform a convolution, or if they should be randomized. We replaced the

convolutions from the CNN/MLP architecture with these self-attention layers, and compared the

performance of three different models: the original CNN/MLP architecture, a self-attention/MLP

architecture with the self-attention weights initialized as a convolution, and a self-attention/MLP

architecture with randomized self-attention weights. We compared the performance of these

models on our data for 10 different seeds. The results are shown in Figure 6. The models with

self-attention layers perform better than the original model, reducing the average MAPE from

1.60% for the original model to 1.51% and 1.48% for the convolution and random initializations,

respectively. This last model even reached a MAPE of 1.40%. We included this self-attention layer

in the search spaces of DARTS and EnergyDragon as detailed in Sections B and C.

B DARTS

Differential Architecture Search, also called DARTS, was introduced by Liu et al. (2018b), originally

for computer vision and NLP tasks. The cell-based search space is composed of either stacked cells

to form a convolutional network, or recursively connected cells to form a recurrent network. Each

16

Figure 6: MAPE on the RTE dataset for three versions of the CNN/MLP model trained with 10 different

seeds.

cell is defined as a DAG with 𝑁 nodes 𝑥 (𝑖)
(latent representations) and edges 𝑂 (𝑖, 𝑗)

connecting

the nodes (operations). Each DAG has two input nodes and one output. For convolutional cells,

the input nodes are the outputs of the two previous cells. For recurrent cells, the input nodes are

the input at the current step and the state carried over from the previous step. The cell output is

obtained by concatenating all intermediate nodes. An intermediate node is defined as the sum of

all previous latent representations after a candidate operation: 𝑥 (𝑗) =
∑
𝑖< 𝑗 𝑂

(𝑖, 𝑗) (𝑥 (𝑖)). The goal
of DARTS is to find the best operations between each node. The main idea introduced by DARTS

is the relaxation of the search space. A set of candidate operations O (e.g., convolution, linear, or

identity layers) is associated with each connection. Each candidate 𝑜 ∈ O is assigned a probability

parametrized by a real 𝛼𝑜 ∈ R of being part of the final architecture. The relaxed operation between

the nodes 𝑖 and 𝑗 can be defined as :

𝑜 (𝑖, 𝑗) =
∑︁
𝑜∈O

𝑒𝑥𝑝 (𝛼 (𝑖, 𝑗)
𝑜)∑

𝑜 ′∈O 𝑒𝑥𝑝 (𝛼
(𝑖, 𝑗)
𝑜 ′)

𝑜 (𝑖, 𝑗) .

At the beginning of the search, the parameters are uniformly initialized for all candidate operations.

Then, during model training, the 𝛼𝑜 and the network weights are updated alternately using gradient

descent. Finally, an argmax function is used to select the candidate operation with the higher

probability to build the final architecture. DARTS is a popular framework in the NAS community

because it is easy to implement and fast compared to other optimization techniques. It does not

require training all new solutions picked from the search space from scratch. The final architecture

is a subgraph of the meta-architecture. A drawback of this method is that there is no theoretical

guarantee that the optimal subgraph of an optimal meta-architecture is an optimal solution.

Inspired by the work of Chen et al. (2021), where DARTS is used to optimize a DNN for

multivariate time series forecasting, we applied DARTS to optimize the CNN/MLP architecture. As

in the CNN/MLP model, the general structure of the search space (see Figure 7a) consists of two

inputs. Each input is handled by a dedicated DARTS cell. The Conv cell (see figure 7b) replaces

the two convolutional branches of the CNN/MLP model. The first Feed cell replaces the first MLP

branch and the Second replaces the last MLP branch. Each cell has a maximum of 𝑁𝑐 = 4 nodes

and the candidate operations 𝑜𝑖, 𝑗 on each connection are those from the original architecture: e.g.,

Conv1d/Pooling layers for the Conv cell (see Figure 7b) or MLP/Identity layers for the Feed cells

(see Figure 7c). We also added zero operations and Attention layers as defined in Section A.2 to our

search space, with the same hyperparameters as the convolutional layers.

17

𝑋Conv ∈ R𝐻×𝐹𝐶 𝑋Feed ∈ R𝐻×𝐹𝐹

Conv Cell

Flatten

Feed Cell 1

Concat

Fully-connected

Layer

Feed Cell 1

Output

(a) General Structure

1

2

...

𝑁𝐶

𝑜1,2 𝑜1,𝑁𝐶

𝑜2,𝑁𝐶

(b) Conv Cell structure

1

2

...

𝑁𝑓

𝑜1,2 𝑜1,𝑁𝐹

𝑜2,𝑁𝐹

(c) Feed Cell Structure

Figure 7: DARTS Search Space for load forecasting.

C EnergyDragon search space details

The layers (operations) used in our search space are detailed Table 2. Most layers are adapted or

used in both Γ1 (two-dimensional data) and Γ2 (one-dimensional data), except for the Temporal

Attention and the Spatial Attention, which are specific to Γ1. Given an input data 𝑋 ∈ R𝐻×𝑓 ×𝑑
,

where 𝑓 and 𝑑 would be two latent dimensions within the DNN, the attention matrix is the same as

defined Section A.2:

Attention(𝑋) = softmax(𝑋𝑊𝑄𝑊
𝑇
𝐾 𝑋

𝑇 + 𝑋𝑊𝑄�̂�
𝑇
𝐾 𝛿𝑅 + 𝑢𝑊

𝑇
𝐾 𝑋

𝑇 + 𝑣�̂�𝑇
𝑘
𝛿𝑅)𝑋𝑊𝑂 + 𝑏𝑂 ,

with𝑊𝑄 and𝑊𝐾 the query and key weight matrices. In the Temporal Attention case,𝑊𝑄 ,𝑊𝐾 ∈
R𝐻×𝑑×𝑁ℎ×2

and in the Spatial attention case,𝑊𝑄 ,𝑊𝐾 ∈ R𝑓 ×𝑑×𝑁ℎ×2
, where 𝑁ℎ ∈ N+

is the head

number. The Temporal Attention computes attention scores between the time steps as depicted

Figure 8a, whereas the Spatial Attention computes attention scores between the features, as shown

Figure 8b.

D Additional experimental results

In the Section we give more information one the experimental results presented Section 4. The

Section D.1 detail the different architectures and hyperparameters found by the versions of Ener-

gyDragon presented Section 4. Section D.2 present the forecast of various algorithms from our

baseline over the last week of November. The EnergyDragon convergences over time are given

Section 15. Finally, Section D.4 discuss the features use by the GAM, the CNN/MLP and the different

versions of EnergyDragon.

18

Layer type Optimized hyperparameters

Identity -

Fully-Connected (MLP) Output shape Integer

Self-Attention (Section A.2)

Operation dimension [temporal, spatial] (Γ1 only)

Initialization type [convolution, random]

Heads number Integer

Output dimension Integer

1D/2D Convolution

Kernel size Integer

Output dimension Integer

1D/2D Pooling

Pooling size Integer

Pooling type [Max, Average]

1D/2D Normalization Normalization type [Batch, Layer]

Dropout Dropout rate Float

Table 2: Layers available and their associated hyperparameters in the EnergyDragon search space (for

Γ1 and Γ2).

𝑥1,1

𝑥1,2

𝑥1,3

𝑥1,4

𝑥2,1

𝑥2,2

𝑥2,3

𝑥2,4

𝑥3,1

𝑥3,2

𝑥3,3

𝑥3,4

𝑥4,1

𝑥4,2

𝑥4,3

𝑥4,4

𝑥5,1

𝑥5,2

𝑥5,3

𝑥5,4

𝑥6,1

𝑥6,2

𝑥6,3

𝑥6,4

(a) Temporal attention: the attention scores

are computed along the time axis. There is

no inter-variable interactions

𝑥1,1

𝑥1,2

𝑥1,3

𝑥1,4

𝑥2,1

𝑥2,2

𝑥2,3

𝑥2,4

𝑥3,1

𝑥3,2

𝑥3,3

𝑥3,4

𝑥4,1

𝑥4,2

𝑥4,3

𝑥4,4

𝑥5,1

𝑥5,2

𝑥5,3

𝑥5,4

𝑥6,1

𝑥6,2

𝑥6,3

𝑥6,4

(b) Spatial attention: the attention scores are

computed along the feature axis. There is

no intra-variable interactions

Figure 8: Spatial and Temporal Attentions vizualisation, applied on 𝑋 = {𝑥𝑡 }𝐻𝑡=1
= {𝑥𝑖 }𝐹𝑖=1

∈ R𝐻×𝐹
.

D.1 Models found by the algorithms

Respectively Figures 9, 10, 11, 12 and 13 represent the architectures and hyperparameters found

by ED RS, ED SSEA, ED SSEA Crossover, ED SSEA Crossover CNN/MLP and the best algorithm

ED SSEA CNN/MLP. The model found by the Random Search is very simple and based only

on the Spatial Attention layer defined in Section C, which computes attention scores between

the features. All the found architectures use the attention layers presented in Section A.2. This

confirms our first experiments showing that our self-attention layers is efficient for load forecasting.

The architectures found by the versions with crossover are more complex, with more layers and

connections than the versions without crossover. The appearance of many identity layers invites

us to think about pruning our graphs for future work on EnergyDragon. It seems that certain

nodes are not necessarily useful, and it might be a good idea to automatically remove them during

optimization to avoid ending up with architectures that are too complex or difficult to interpret.

The best architecture, which achieves a MAPE of 1.131% as shown in Figure 13, is quite simple.

19

Input Features

concat,SpatialAttention,27,25,conv,LeakyReLU

Flatten

concat,Conv1d,43,155,same,GELU

MLP,48,Identity()

Figure 9: Architecture found by ED RS. Best MAPE=1.374%.

Input Features

concat,Identity,SiLU

add,Conv2d,44,21,same,Identity

mul,SpatialAttention,23,21,conv,ReLU

concat,Identity,ReLU

mul,LayerNorm2d,Identity

Flatten

concat,Conv1d,46,439,same,Sigmoid

concat,Conv1d,5,28,same,SiLU

add,LayerNorm1d,GELU

MLP,48,Identity()

Figure 10: Architecture found by ED SSEA. Best MAPE=1.258%.

Finally, it is difficult to conclude whether including the CNN/MLP as input to EnergyDragon affects

the architecture found. Our intuition is that including the CNN/MLP probably has an influence on

the selected features. A deeper discussion can be found in Section D.4.

D.2 Weekly comparative visuals of all baseline forecasts

Forecasts from various models of our baseline for the last week of November can be found in

Figure 14. Most models have the same shape and, like GAM, overpredict during this week. AutoPy-

torch without the traditional baseline produces a constant signal as shown in Figure 14d, which

explains its poor MAPE and RMSE. We compare in Figure 14b the forecast of DARTS with the

output of the CNN/MLP model. Using DARTS allowed to improve the overprediction of CNN/MLP,

but DARTS is still higher than ED SSEA CNN/MLP as shown in Figure 14c.

20

Input Features

concat,MLP,20,ELU

mul,AVGPooling2D,2,3,ELU

concat,LayerNorm2d,ELU

concat,SpatialAttention,10,21,conv,LeakyReLU

add,SpatialAttention,11,5,random,LeakyReLU

add,Identity,Tanh

concat,Identity,ReLU

Flatten

mul,Identity,SiLU

add,Conv1d,36,208,same,LeakyReLU

concat,Attention1D,6,random,94,GELU

concat,MLP,387,ReLU

mul,Identity,Identity

concat,MaxPooling1D,23,SiLU

concat,Attention1D,5,conv,336,GELU

add,Conv1d,41,177,same,LeakyReLU

MLP,48,Identity()

Figure 11: Architecture found by ED SSEA Crossover. Best MAPE=1.190%.

D.3 EnergyDragon convergence

Figure 15 shows the loss of the best model over time for ED RS, ED SSEA, ED SSEA Crossover,

ED SSEA Crossover CNN/MLP, and ED SSEA CNN/MLP. We can see that most versions converge

to their best model in less than 10 hours, even if we let the algorithm run for another 10 hours.

The versions that include the CNN/MLP in their initial population converge much faster than the

version without. ED SSEA CNN/MLP, which gave the best result, converged in a little more than 4

hours.

D.4 Features

Part of the features used in our experiments cannot be revealed due to industrial confidentiality.

Therefore, we have renamed our 33 features from 𝑓0 to 𝑓33. Some are weather variables like

temperature or wind. Others are general calendar features: the month, the week of the day, or more

related to France, like the holidays or the time shift. We present in Figure 16 the features selected

by the models. The GAM use very different features compared to the other models, as stated in

21

Input Features

mul,Identity,Identity mul,AVGPooling2D,9,5,SiLU

concat,SpatialAttention,12,21,conv,LeakyReLUconcat,SpatialAttention,14,27,random,ReLU

concat,TemporalAttention,15,11,conv,ELU

add,Conv2d,2,53,same,ReLU

concat,Conv2d,2,53,same,ELU

Flatten

add,AVGPooling1D,1,LeakyReLU

add,MLP,385,LeakyReLU

add,MLP,385,LeakyReLU 1

add,AVGPooling1D,1,LeakyReLU 1

concat,Conv1d,5,252,same,Tanh

add,LayerNorm1d,ReLU

MLP,48,Identity()

Figure 12: Architecture found by ED SSEA Crossover CNN/MLP. Best MAPE=1.182%.

Input Features

add,SpatialAttention,18,21,conv,SiLU

add,MLP,17,LeakyReLU

Flatten

add,Conv1d,13,142,same,Identity

concat,Conv1d,28,472,same,SiLU

concat,MLP,386,Tanh

mul,Attention1D,9,conv,281,LeakyReLU

add,AVGPooling1D,30,GELU

MLP,48,Identity()

Figure 13: Architecture found by ED SSEA CNN/MLP. Best MAPE=1.131%

22

2019-11-25 2019-11-26 2019-11-27 2019-11-28 2019-11-29 2019-11-30 2019-12-01 2019-12-02

50000

55000

60000

65000

70000

M
W

 v
al

ue
s

Ground truth CNN/MLP ED SSEA CNN/MLP

(a) CNN/MLP vs ED SSEA CNN/MLP

2019-11-25 2019-11-26 2019-11-27 2019-11-28 2019-11-29 2019-11-30 2019-12-01 2019-12-02

50000

55000

60000

65000

70000

M
W

 v
al

ue
s

Ground truth CNN/MLP DARTS

(b) DARTS vs CNN/MLP

2019-11-25 2019-11-26 2019-11-27 2019-11-28 2019-11-29 2019-11-30 2019-12-01 2019-12-02

50000

55000

60000

65000

70000

M
W

 v
al

ue
s

Ground truth DARTS ED SSEA CNN/MLP

(c) DARTS vs ED SSEA CNN/MLP

2019-11-25 2019-11-26 2019-11-27 2019-11-28 2019-11-29 2019-11-30 2019-12-01 2019-12-02

50000

55000

60000

65000

70000

M
W

 v
al

ue
s

Ground truth without the traditional baseline ED SSEA CNN/MLP

(d) AutoPytroch vs ED SSEA CNN/MLP

2019-11-25 2019-11-26 2019-11-27 2019-11-28 2019-11-29 2019-11-30 2019-12-01 2019-12-02

50000

55000

60000

65000

70000

M
W

 v
al

ue
s

Ground truth Autopytorch with traditional baseline ED SSEA CNN/MLP

(e) AutoPytroch with the traditional baseline vs ED SSEA CNN/MLP

Figure 14: Comparison of the forecasts from various algorithm over the last week of November 2019.

23

0 2 4 6 8 10 12 14 16 18
TimeStamps (every 2 hours)

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024
M

AP
E

(%
)

RS SSEA SSEA Crossover SSEA Crossover CNN/MLP SSEA CNN/MLP

Figure 15: Loss of the best model over time for the different versions of EnergyDragon used in our

experiments Section 4.

Section 1. All versions of EnergyDragon selected a number of features close to the number of

features used by GAM and CNN/MLP. This means that our LASSO penalization is efficient. Finally,

the versions of EnergyDragon with CNN/MLP as input selected a number of features close to the

number used by CNN/MLP. As mentioned in Section D.1, this can explain the faster convergence

of the version with CNN/MLP as input.

24

f_0 f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9f_1
0
f_1

1
f_1

2
f_1

3
f_1

4
f_1

5
f_1

6
f_1

7
f_1

8
f_1

9
f_2

0
f_2

1
f_2

2
f_2

3
f_2

4
f_2

5
f_2

6
f_2

7
f_2

8
f_2

9
f_3

0
f_3

1
f_3

2
f_3

3

Features

GAM

ED RS

ED SSEA

ED SSEA Crossover

ED SSEA Crossover CNN/MLP

ED SSEA CNN/MLP

CNN/MLP

Figure 16: Features selected by the GAM, CNN/MLP and the various versions of EnergyDragon used in

our experiments. The features name cannot be revealed due to the industrial confidentiality,

and are renamed to 𝑓0, . . . , 𝑓33.

E Norwegian Use Case

In this Section, we present the results of a reduced baseline on another case study: the hourly

Norwegian Load for the year 2018.

E.1 Dataset

The dataset comes from the ENTSO-E (European Network of Transmission System Operators

for Electricity) transparency platform
5
and contains the Norwegian national load data at hourly

intervals. Each day contains 𝐻 = 24 time steps. We trained our models from 2014 to 2017 and

compare the performance to the year 2018 using the MAPE (ℓ𝑀𝐴𝑃𝐸). For this dataset, we have

access to 34 variables, including weather and calendar features. We have also anonymized these

features in the following plots.

E.2 Baseline

We reduced the full baseline presented in Section 4 by taking AutoPytorch with the traditional

baseline (AutoPytorch), an open-source regression model, the Generalized Additive Model (GAM),

and EnergyDragon with the steady-state algorithm, with and without the crossover (ED SSEA and

ED SSEA Crossover). The setup for each model from the baseline is the same as in Section 4.

E.3 Results

The results can be found in Table 3. They are similar to those found for the French use case.

AutoPytorch with the traditional baseline is the worst model, with a MAPE 41% higher than the

reference MAPE given by the GAM model. EnergyDragon was able to improve the GAM forecast

even without the inputs from the CNN/MLP model. As in the French case, the crossover helped the

5https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show?

25

https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show?

Model MAPE RMSE (in MW)

GAM 2.430% 474.0

AutoPytorch 3.429% 660.7

ED SSEA 2.196% 465.7

ED SSEA Crossover 2.019% 426.3

Table 3: MAPE and RMSE of the different models from our baseline on theNorwegian dataset. The

reference model is the GAM and the best model is highlighted in bold.

2018-11-25 2018-11-26 2018-11-27 2018-11-28 2018-11-29 2018-11-30 2018-12-01 2018-12-02

14000

16000

18000

20000

22000

M
W

 v
al

ue
s

Ground truth Autopytorch GAM ED SSEA ED SSEA Crossover

Figure 17: Norwegian load power forecasting for the last week of November 2018. The ground truth is

displayed in dotted line.

algorithm to converge to a better result. This last model produced the best result, improving the

GAM MAPE by 17%. The RMSE indicates that Norwegian residents consume less electricity than

French residents. The comparison of the forecast for all models can be found Figure 17. All models

got the correct curve shape, but except for the ED SSEA Crossover model, all models underestimated

the load.

E.4 EnergyDragon Results Analysis

Figure 18 and Figure 19 show the DNNs found by ED SSEA and ED SSEA Crossover respectively on

the Norwegian dataset. The conclusions of Section D.1 do not hold anymore, since the best model

found by ED SSEA Crossover does not use an attention layer. This dataset is a bit simpler, with

only 24 values per day, resulting in a smoother signal than the French load with 48 values per day,

and it can explain the use of Convolution layers instead of Attention layers to produce smoother

predictions. The two DNNs are very different, with no common substructures, but compared to the

french use case, the version with crossover did not produced an overly complicated DNN compared

to the version without crossover. The features selected by both versions of EnergyDragon can be

found Figure 20. The version without crossover selected 17 features, whereas the version with the

crossover selected 13 features. Both models only have 6 features in common. Finally, Figure 21

shows the loss of the best model found so far over time for ED SSEA and ED SSEA Crossover. Both

models converged in less than 5 hours, even if we let them run for another 20 hours. The crossover

version converged very quickly, in less than an hour and a half. This fast convergence can explain

the simple DNN compared to the DNNs obtained with the Crossover versions for the French use

case. This good DNN was found before the algorithm used too many successive crossovers.

26

Input Features

concat,LayerNorm2d,Identity mul,AVGPooling2D,8,2,Tanh

concat,MLP,49,Tanh

Flatten

add,Identity,Tanh

mul,MaxPooling1D,26,LeakyReLU

add,Attention1D,15,conv,418,LeakyReLU

add,Conv1d,22,504,same,Identity

add,MLP,99,Tanh

MLP,48,Identity()

Figure 18: Architecture found by ED SSEA on the Norwegian dataset. Best MAPE=2.196%.

Input Features

add,Dropout,0.5840846679917152,ReLU add,MLP,38,GELU

mul,AVGPooling2D,10,2,Sigmoid mul,LayerNorm2d,Tanh

concat,Conv2d,2,28,same,Tanh

Flatten

concat,Identity,ELU

concat,LayerNorm1d,ELUmul,Conv1d,17,380,same,ReLU

concat,MaxPooling1D,2,Identity

MLP,48,Identity()

Figure 19: Architecture found by ED SSEA Crossover on the Norwegian dataset. Best MAPE=2.019%.

f_0 f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9 f_1
0
f_1

1
f_1

2
f_1

3
f_1

4
f_1

5
f_1

6
f_1

7
f_1

8
f_1

9
f_2

0
f_2

1
f_2

2
f_2

3
f_2

4
f_2

5
f_2

6
f_2

7
f_2

8
f_2

9
f_3

0
f_3

1
f_3

2
f_3

3
f_3

4

Features

ED SSEA

ED SSEA Crossover

Figure 20: Features selected by ED SSEA and ED SSEA Crossover for the Norwegian dataset. The

features name cannot be revealed due to the industrial confidentiality, and are renamed to.

𝑓0, . . . , 𝑓34.

27

0 1 2 3 4
TimeStamps (every hour)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

M
AP

E

SSEA SSEA Crossover

Figure 21: Loss of the best model over time for the different versions of EnergyDragon on the Norwe-

gian dataset.

28

	Introduction
	Deep Learning and AutoDL for load forecasting
	EnergyDragon
	Search Space
	Objective function
	Meta-Architecture
	Search Algorithm

	Experiments
	Dataset
	Baseline
	Results

	Conclusion
	Broader Impact Statement
	Handcrafted DNN for load forecasting: the CNN/MLP model
	Architecture
	Self-attention

	DARTS
	EnergyDragon search space details
	Additional experimental results
	Models found by the algorithms
	Weekly comparative visuals of all baseline forecasts
	EnergyDragon convergence
	Features

	Norwegian Use Case
	Dataset
	Baseline
	Results
	EnergyDragon Results Analysis

