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Abstract

Protein language models have revolutionized structure prediction, but their
nonlinear nature obscures how sequence representations inform structure
prediction. While sparse autoencoders (SAEs) offer a path to interpretabil-
ity here by learning linear representations in high-dimensional space, their
application has been limited to smaller protein language models unable to
perform structure prediction. In this work, we make two key advances: (1)
we scale SAEs to ESM2-3B, the base model for ESMFold, enabling mech-
anistic interpretability of protein structure prediction for the first time,
and (2) we adapt Matryoshka SAEs for protein language models, which
learn hierarchically organized features by forcing nested groups of latents
to reconstruct inputs independently. We demonstrate that our Matryoshka
SAEs achieve comparable or better performance than standard architec-
tures. Through comprehensive evaluations, we show that SAEs trained
on ESM2-3B significantly outperform those trained on smaller models for
both biological concept discovery and contact map prediction. Finally, we
present an initial case study demonstrating how our approach enables tar-
geted steering of ESMFold predictions, increasing structure solvent acces-
sibility while fixing the input sequence. To facilitate further investigation
by the broader community, we open-source our code, dataset, pretrained
models, and visualizer.

1 Introduction

Machine learning-based protein structure prediction models have achieved remarkable suc-
cess by leveraging vast amounts of sequence data (Jumper et al., 2021; Lin et al., 2022),
building on the success of previous sequence homology-based methods (Marks et al., 2011;
Kamisetty et al., 2013). However, their nonlinear nature obscures how sequence information
informs structure prediction.

Previous interpretability studies on transformer-based protein language models (PLMs) have
demonstrated PLMs learn structural information despite only training on sequences. Rao
et al. (2021) and Vig et al. (2021) showed that the attention map learns to predict residue-
residue contacts. Zhang et al. (2024) show PLMs predict structure primarily by memorizing
and retrieving patterns of coevolving residues. However, these works have yet to establish
causal relationships between internal mechanisms and predictions.

Sparse autoencoders (SAEs) offer a promising direction for understanding language models
by learning interpretable linear representations (Templeton et al., 2024; Gao et al., 2024).
Prior works (Simon and Zou, 2024; Adams et al., 2025) train SAEs to uncover thousands
of biologically interpretable features in ESM2 models, but these studies focused on smaller
variants rather than ESM2-3B, the language model underlying ESMFold’s structure predic-
tion.

Our work advances protein model interpretability by scaling SAEs to ESM2-3B (the base
model for ESMFold) and also adapting Matryoshka SAEs (Nabeshima, 2024; Bussmann
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Figure 1: a) Matryoshka Sparse Autoencoder (SAE) architecture for training on ESM2 hid-
den layer representations, showing nested sparse feature organization. b) SAE intervention
framework for ESMFold, comparing normal operation (left) where all ESM2 hidden rep-
resentations flow to the structure trunk, versus intervention (right) where only a modified
layer 36 representation is used while ablating all other layers.

et al., 2024) to learn hierarchically organized features that align with protein structure’s
multi-scale nature.

We structure the paper as follows: In Section 2, we present scaling SAEs to ESM2-3B and
Matryoshka SAEs for hierarchical features. Section 3 shows Matryoshka SAEs match or
exceed L1 and TopK in language modeling and structure prediction. Section 4 evaluates
ESM2-3B’s performance on biological concept discovery and contact prediction. Section
5 presents feature steering to control protein structure properties. Code, models, and a
visualizer will be released upon publication.

2 Methods

2.1 Setup

Problem Statement. Given token embeddings x ∈ Rd from a transformer-based PLM,
our SAE encodes x into a sparse, higher-dimensional latent representation z ∈ Rn where
d << n, and decodes it to reconstruct x by minimizing the L2 loss L = |x− x̂|22. We enforce
sparsity on z through methods detailed in Appendix I.1.

Models and Training. We train SAEs on layers 18 and 36 of ESM2 (Lin et al., 2022),
focusing on the 3 billion parameter ESM2-3B model which provides representations for
ESMFold. During training, embeddings are normalized to enable hyperparameter transfer
between layers, with biases scaled during inference following Marks et al. (2024). Our
training data consists of 10M sequences randomly selected from UniRef50, constituting 2.5
billion tokens. See Appendix I.3 for details.

2.2 Matryoshka SAEs

Proteins exhibit inherent hierarchical organization across scales, from local amino acid pat-
terns to molecular assemblies. We employ Matryoshka Sparse Autoencoders (SAEs), which
learn nested hierarchical representations through embedded features of increasing dimen-
sionality (Fig. 1a) (Nabeshima, 2024; Bussmann et al., 2024).

Our implementation follows Bussmann et al. (2024), Marks et al. (2024), and Gao et al.
(2024) in dividing the latent dictionary into nested groups where earlier groups capture
abstract features while later groups encode granular details. For mathematical details of
the encoding, decoding, and loss computation, see Appendix D.
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(a) CE loss reconstruction across sparsity
levels for TopK, Matryoshka (Matry), and
L1 regularized autoencoders. Matryoshka re-
quires similar or less active latents to achieve
good reconstruction.

Comparison RMSD (Å)

Exp vs. ESMFold (baseline) 3.1 ± 2.5
Exp vs. ESMFold (full ablation) 15.1 ± 5.9
Exp vs. ESMFold (only layer 36) 2.9 ± 2.1
Exp vs. SAE (layer 36) 3.2 ± 2.6
ESMFold vs. SAE (both L36) 3.1 ± 4.4

(b) Backbone RMSD (Å) comparing exper-
imental structures (Exp), ESMFold predic-
tions, and SAE reconstructions. Keeping
layer 36 or using SAE preserves accuracy,
while full ablation degrades performance.

3 Evaluations on Downstream Loss

We evaluate our SAEs on language modeling and structure prediction for ESM2-3B and
ESMFold respectively to assess how well they preserve performance on downstream tasks.

3.1 Language Modeling

Setup. We report the average difference in cross-entropy loss ∆CE between the logits from
the original and SAE reconstructed PLM. We evaluate on a heldout test set of 10k sequences
randomly sampled from Uniref50 on layer 18 of ESM2.

Results. Figure 2a shows the impact of different autoencoder architectures on downstream
language modeling performance across sparsity levels. For architecture details, see Appendix
I.2. At low sparsity (L0 < 10), all approaches - TopK, Matryoshka, and L1 regularization
- show similar degradation (∆CE ≈ 2.5–3.0). As sparsity increases, TopK and Matryoshka
SAEs maintain better performance compared to L1 regularization, with ∆CE approaching
0 for sparsity levels above 100.

3.2 Structure Prediction

Setup. By scaling SAEs to ESM2-3B, we can now evaluate how well our SAE represen-
tations preserve ESMFold’s structure prediction capabilities. We focus on reconstructing
ESM2’s hidden representations that feed into ESMFold. Since ESMFold uses representa-
tions from all layers but our SAE reconstructs only one layer, we ablate all other layers to
isolate reconstruction effects. This ablation maintains performance on the CASP14 test set
(see Fig. 2b).

Data. We evaluate structure prediction on the CASP14 dataset, a diverse challenging
benchmark held out from ESMFold during training. After filtering for computational con-
straints and prediction quality (see Appendix F), we analyze 17 protein targets.

Results. Our experiments demonstrate effective preservation of structural information. In
Fig. 2b, we see that comparing experimental structures to ESMFold predictions shows an
RMSD of 3.1 ± 2.5 Å without ablation. While full ablation of ESM2 embeddings signif-
icantly degrades performance (RMSD 15.1 ± 5.9 Å), both keeping only layer 36 (RMSD
2.9 ± 2.1 Å) and using our SAE reconstruction (RMSD 3.2 ± 2.6 Å) maintain comparable
performance. The similarity between ESMFold and SAE predictions (RMSD 3.1 ± 4.4 Å)
confirms preservation of structural information. We also see that in Fig. 7, with only 8 to
32 active latents, SAEs can reasonably recover structure prediction performance.

These results show our SAE effectively compresses model representations while maintaining
both sequence-level and structural prediction capabilities across sparsity levels.
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(a) Number of high-performing feature-
concept pairs (F1 > 0.5) across model scales
and architectures, broken down by concept
type.

(b) Correlation plot on long-range contact
accuracy measured by Precision at L/2 (P
@ L/2) between ESM2 and SAE reconstruc-
tions on 8M and 3B subject model sizes.

Figure 3: Analysis of feature-concept relationships and long-range contact accuracy.

4 Further Evaluations

4.1 Swiss-Prot Concept Discovery

We evaluate feature interpretability through alignment with Swiss-Prot annotations follow-
ing Simon and Zou (2024)’s methodology (details in Appendix E.1), analyzing 30,871,402
amino acid tokens across 476 biological concepts. Features capturing concepts (F1 ¿ 0.5)
are identified using domain-level recall with post-hoc [0,1] activation normalization across
architectural variants.

Comparing ESM2-3B versus ESM2-8M models (dictionary size 20,480, sparsity k=100),
3B variants substantially outperform their 8M counterparts. The 3B Matryoshka and TopK
models identify 233 concepts (48.9%) with F1 > 0.5, generating 2,677 and 2,461 high-quality
feature-concept pairs respectively. In contrast, 8M Matryoshka and TopK variants capture
only 72 (15.1%) and 95 (20.0%) concepts, with 287 and 844 pairs respectively. Performance
gains are particularly pronounced in protein domains (76% versus 19.5-28.1% coverage).
Head-to-head comparisons show 3B models achieve higher F1 scores on over 400 concepts
(mean improvement 0.25), while architectural differences within each scale remain minimal
(Figure 6, details in Appendix E.2).

4.2 Contact Map Prediction

Background. Following Zhang et al. (2024), we evaluate our SAEs’ ability to capture
coevolutionary statistics through contact map prediction using the Categorical Jacobian.
Details in Appendix G. This provides an unsupervised test of whether our compressed
representations preserve the structural information encoded in the original model.

Results. We assess contact prediction accuracy using the precision at L/2 metric (P @ L/2),
which measures the fraction of correctly predicted contacts among the top L/2 predicted
long-range contacts, where L is the protein sequence length. Figure 3b shows the corre-
lation between contact prediction accuracy of ESM2 and our SAE reconstructions across
different model scales. The 3B model demonstrates consistently higher precision compared
to the 8M model, with reconstructions closely tracking the original ESM2 predictions. This
suggests that larger language models capture more robust coevolutionary signals that can
be effectively compressed by our approach.
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5 Case Study: SAE Feature Steering on ESMFold

5.1 SAEs on ESMFold Help Identify Structural Features

Building on previous work by Simon and Zou (2024), we investigated whether targeted
feature manipulation of ESM2-3B could induce coordinated changes in both sequence com-
position and predicted structure through ESMFold’s pipeline. Using our Matryoshka SAE
trained on ESM2-3B, we identified a feature strongly correlated with residue hydrophobic-
ity. Following the feature steering methodology of Templeton et al. (2024) and detailed in
Appendix Section H, we steer this feature (α = -0.275) and observe significant changes in
predicted protein surface accessibility of myoglobin (PDB ID: 1MBN) while maintaining
structural integrity (Figure 4a).

Steering increased total Solvent Accessible Surface Area (SASA) by 31.5% (from 8,369.5

to 11,009.3 Å
2
) with minimal structural disruption (RMSD 2.76 Å) in the expected range

of Figure 2b. Feature intervention affected both sequence-level predictions via steering
toward more hydrophilic residues and direct structural predictions of ESMFold (Figure
9). Critically, steering the hidden representation at layer 36 alone was sufficient to induce
significant structural changes consistent with increased hydrophilicity, even when providing
ESMFold with the correct input sequence (Figure 4b). Further details found in Appendix
Section H.2 and feature validation in Appendix Section H.3.

6 Discussion

(a) Structural visualization of feature steering effect on myo-
globin with α= -0.275 on selected feature. Bottom row sur-
face representation is colored by computed SASA, with blue
as low, white as medium, and red as higher SASA.

(b) Solvent accessible surface area
(SASA) changes under different
steering conditions.

Figure 4: Feature steering and SASA analysis.

This work advances PLM interpretability by scaling SAEs to ESM2-3B, extending recent
work using SAEs to interpret PLMs to the structure prediction task (Simon and Zou (2024);
Adams et al. (2025)). Through a combination of increasing subject model size, leveraging
the Matryoshka architecture, and targeted interventions on ESMFold’s structure predic-
tions, we present the first work applying mechanistic interpretability to protein structure
prediction. A key limitation is that our focus is exclusively on how PLM-derived sequence
representations inform structure prediction. Looking ahead, we aim to establish formal
connections between SAE sequence representations and equivariant representations of geo-
metric data. Additional limitations and future directions can be found in Appendix B and
C, respectively.
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7 Appendix

A Related Work

Recent work has focused on mechanistically interpreting protein language models (PLMs)
to understand how they achieve remarkable success in protein modeling and design. Early
interpretability studies examined PLM internals, with Vig et al. (2021) and Rao et al.
(2021) discovering that attention patterns encode structural relationships between amino
acids. Later work extended these findings, showing attention could identify functionally
important regions like allosteric sites (Kannan et al. (2024); Dong et al. (2024)).

Building on this attention-based analysis, Zhang et al. (2024) provided key mechanistic
insights by showing that PLMs primarily learn by storing and looking up coevolutionary
patterns preserved through evolution, rather than learning fundamental protein physics.
By analyzing what sequence features influence contact predictions through a ”categorical
Jacobian” method, they demonstrated that PLMs memorize statistics of co-evolving residues
analogous to classic evolutionary models.

Sparse autoencoders (SAEs) have emerged as a powerful new tool for interpreting these
models. Simon and Zou (2024) developed InterPLM, extracting thousands of interpretable
features from ESM-2 that correspond to known biological concepts like binding sites, struc-
tural motifs, and functional domains. Their work revealed that most biological concepts
exist in superposition within the model’s neurons, as SAEs vastly outperformed individual
neurons at capturing these concepts. Concurrently, Adams et al. (2025) explored different
SAE training approaches and evaluated their biological relevance through novel downstream
tasks. In this work, we scale SAE training and evaluation to ESM2-3B and introduce Ma-
tryoshka SAEs (Bussmann et al. (2024); Nabeshima (2024)) with hierarchical encoding to
steer ESMFold’s structure prediction capabilities for the first time.

B Additional Limitations

Below we outline additional limitations of our work. First, as mentioned earlier, although
we take an important step toward mechanistic interpretability of protein structure predic-
tion, our focus is exclusively on how PLM-derived sequence representations inform structure
prediction. The interpretability of ESMFold’s structure prediction head is left for future in-
vestigation. Second, our interventions on ESMFold were restricted to single-feature manipu-
lations on embeddings from individual layers rather than exploring combinations of features
or cross-layer interactions. Third, our analysis is limited to the 8M and 3B models of ESM2;
evaluating a broader range of model sizes could reveal whether SAE performance eventually
plateaus. Fourth, ESMFold is no longer state-of-the-art compared to newer diffusion-based
protein structure prediction methods Abramson et al. (2024); Wohlwend et al. (2024); Wat-
son et al. (2023).

Fifth, recent work suggests that SAEs can learn different features even when trained on
the same data, implying that our results may be sensitive to both initialization and the
specific UniRef50 sample used (Paulo and Belrose (2025)). Sixth, our structural steering
experiments focused primarily on surface accessibility, leaving other potential structural
properties unexplored, and the observed hydrophobicity effects might be achievable through
simpler approaches such as steering smaller PLMs or using supervised linear probes. Sev-
enth, for Matryoshka SAEs, we do not report how the number of groups and group size
choices impact results. Finally, although our ablation studies demonstrate preservation of
structural information, we have not fully characterized how interactions among SAE features
might affect ESMFold’s folding mechanism. We anticipate that future work leveraging our
open-source models developed with substantial computational resources will address these
limitations and yield further insights for the community.
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C Future Work

Connections to Geometric Representations. This work, while taking a significant
step towards interpreting protein structure prediction, focuses primarily on learning linear
representations of sequence information. Future work could establish formal connections
between SAE sequence representations and equivariant representations of geometric data
(Thomas et al., 2018; Geiger and Smidt, 2022; Lee et al., 2023), particularly investigating
how the linear overcomplete basis learned by SAEs map to irreducible representations of
geometric transformations in the context of protein structure prediction.

Theoretical Analysis of Matryoshka SAEs. Additionally, theoretical analysis drawing
from ordered autoencoding (Rippel et al., 2014; Xu et al., 2021) and information bottleneck
methods (Tishby et al., 2000) applied to protein structure prediction could improve our
understanding of multi-scale feature learning in biological sequences. Such analysis may
provide deeper insights into how hierarchical feature representations emerge and interact
within the context of protein language models.

D Matryoshka SAE Implementation Details

The Matryoshka SAE architecture builds upon previous ones through nested groups of in-
creasing size. This progressive constraint naturally encourages the emergence of a feature
hierarchy - earlier groups must capture high-level, abstract features to achieve reasonable re-
construction with limited capacity, while later groups can encode more granular details. The
key innovation lies in their group-wise decoding process, where each group must reconstruct
the input using only its allocated subset of latents.

When processing a protein token embedding x ∈ Rd from a PLM, the encoding process
follows as:

z = BatchTopK(Wencx+ benc) (1)

where Wenc ∈ Rn×d is the encoder weight matrix, benc ∈ Rn is the encoder bias, and
BatchTopK enforces sparsity by keeping only the B ∗K highest activations in each batch.
This enforces average sparsity while allowing the number of active latents per token to vary.

The decoding process is:

x̂(m) = W
(m)
dec z[1:m] + bdec (2)

Here, z[1:m] represents the first m components of the latent vector, W
(m)
dec ∈ Rd×m is the

decoder weight matrix restricted to its first m columns, and bdec ∈ Rd is the decoder bias.
Each group m must reconstruct the input using only its allocated subset of latents. The
total loss combines reconstruction errors across all group sizes M :

L(x) =
∑
m∈M

∥x− x̂(m)∥22 + αLaux (3)

where α weights any auxiliary regularization terms. We use the auxiliary loss term from
Marks et al. (2024) and Gao et al. (2024) to reduce dead latents.

E Swiss-Prot Evaluation

E.1 Background of Swiss-Prot Evaluation

Swiss-Prot is the gold standard manually curated section of the UniProt Knowledge Base,
containing expert-annotated protein sequences with detailed information about their struc-
ture, function, modifications, and key biological regions (Poux et al. (2017); Consortium
(2024)). Through extensive experimental validation and literature review, Swiss-Prot pro-
vides high-quality annotations that span from individual catalytic sites to complete func-
tional domains. Following Simon and Zou (2024), we evaluate whether learned features align
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with these known biological concepts using a modified F1 score that handles the mismatch
between precise feature activations and broader protein annotations present in Swiss-Prot.
This approach calculates precision at the amino acid level but recall at the domain level,
enabling systematic comparison between learned features and known biological concepts.

E.2 Performance of SAE Models on F1 Concept Evaluation

Model Scale vs Architecture: At 3B scale, architectural differences have minimal impact,
with both Matryoshka and TopK identifying 233 concepts and showing only small variations
in high-quality feature-concept pairs (2,677 vs 2,461). At 8M scale, architectural differences
are more pronounced though still modest, with TopK outperforming Matryoshka (95 vs 72
concepts). However, the scale effect dominates these architectural differences - both 3B
variants substantially outperform both 8M variants across all concept types.

Category Total Concepts Concepts with F1 > 0.5 (%)

3B MatK 3B TopK 8M MatK 8M TopK

Domains 256 193 (75.4%) 195 (76.2%) 50 (19.5%) 72 (28.1%)
Regions 55 19 (34.5%) 20 (36.4%) 10 (18.2%) 13 (23.6%)
Motifs 37 6 (16.2%) 5 (13.5%) 2 (5.4%) 3 (8.1%)
Zinc Fingers 15 5 (33.3%) 5 (33.3%) 2 (13.3%) 2 (13.3%)
Other Features 10 5 (50.0%) 3 (30.0%) 4 (40.0%) 1 (10.0%)
Targeting Peptides 5 5 (100.0%) 5 (100.0%) 4 (80.0%) 4 (80.0%)

Total 476 233 (48.9%) 233 (48.9%) 72 (15.1%) 95 (20.0%)

Table 1: Concept coverage comparison across model scales and architectures. We report
the number (percentage) of concepts with F1 scores exceeding 0.5 for each model variant,
broken down by concept category.

Figure 5: Distribution of highest F1 scores achieved for each concept across models.

The boxplot distribution reveals a clear separation between model scales (5. The 3B models
show broader distributions with medians around 0.4 and numerous concepts achieving scores
above 0.6. In contrast, 8M models show compressed distributions with medians below 0.1,
indicating substantially weaker concept capture across the board.

The comparison heatmaps demonstrate relative performance between model variants by
comparing their best-performing features for each concept. The left heatmap shows the
number of concepts where each row model achieves a higher F1 score than the column model,
while the right heatmap shows the average F1 score difference (Figure 6). The 3B models
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Figure 6: Left: Number of concepts where the row model achieves a higher maximum
F1 score for a given concept than the column model. Right: Average score difference of
the highest F1 scores for a given concept between models (row minus column) across all
concepts. Each cell compares the best-performing feature for each concept between model
pairs. Darker blue indicates stronger performance advantage for the row model.

outperform 8M variants on approximately 400 concepts, with an average F1 improvement
of 0.25. Within each scale, architectural variants show minimal differences (average F1
difference < 0.01), suggesting model scale rather than architecture drives concept capture
ability.
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F Structure Prediction

F.1 CASP14 Dataset

For computational efficiency, we filtered the CASP14 dataset to exclude sequences longer
than 700 residues to enable single-GPU evaluation. We further filtered out targets where
ESMFold predictions showed RMSD > 10 Å compared to the experimental structure, re-
sulting in 17 of the original 34 targets

Data. We downloaded the CASP14 targets dataset from the CASP14 website here.

After filtering, we benchmark on these targets: [T1024, T1025, T1026, T1029, T1030, T1032,
T1046s1, T1046s2, T1050, T1054, T1056, T1067, T1073, T1074, T1079, T1082, T1090].

F.2 Sparsity Sweep

We report the difference in RMSD on the above CASP14 dataset between ESMFold and
SAE reconstructions across sparsity levels for Matryoshka SAEs. In Figure 7, we see that
with only 23 to 25 active latents, SAEs can reasonably reconstruct structure prediction
performance. These results raise questions on how much information is required per token
for structure prediction.

Figure 7: CASP14 ∆RMSD Results Across Sparsity Levels K for Matryoshka SAE Archi-
tecture

G Contact Map Prediction

Motivation. Zhang et al. (2024) introduced the Categorical Jacobian calculation to extract
coevolutionary signals from protein language models in an unsupervised manner via masked
language modeling. Given that SAEs also learn through unsupervised training, we adapt
this approach for contact map prediction to evaluate whether SAEs preserve coevolutionary
patterns and structural information learned by ESM2.

Data. We randomly sampled 50 proteins from the evaluation dataset in Zhang et al.
(2024) due to computational constraints. As shown in Fig. 8, our results replicate the
authors’ findings, demonstrating superior contact map accuracy across nearly the entire
sample. Based on these consistent results, we believe our conclusions would generalize to
the complete dataset.

Hyperparameters. In Fig 3b, our SAEs were trained on layer 36 with TopK architecture
with expansion factors 16x for ESM2-8M (dict size 10240) and 8x for ESM2-3B (dict size
20480). We did not rerun for the Matryoshka architecture given TopK’s similar language
modeling reconstruction performance and how computationally expensive it is.
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Figure 8: Contact Map Accuracy for Cat. Jacobian on ESM2 8M vs 3B, N=1412/1431

H ESMFold Steering Case Study

H.1 Feature Steering Background

Following the method described in Templeton et al. (2024), each target feature is repre-
sented by its corresponding decoder vector (d(i) = Wdec[i, :]), which is normalized to unit
norm during training, and an intervention is performed by adding a scaled version of this
vector to the hidden state (hl ← hl+α ·d(i)) to amplify or suppress that feature’s contribu-
tion. In our approach, we apply a maximum activation scaling factor during training and
subsequently scale the encoder and decoder biases at inference. This means our effective
steering coefficient, reported in all figures and results, is given by α′ = norm factor · α,
ensuring consistent steering effects across different model configurations.

H.2 Details of Feature Steering Case Study

Figure 9: Plot of sequence GRAVY scores overlaid with sequence similarity with increased
feature steering
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Our intervention framework employed two complementary approaches: (1) examining
sequence-level changes through standard ESMFold predictions, and (2) directly intervening
on hidden representations while maintaining the true input sequence in an ablated version
that isolated intervention effects. This design allowed us to dissect how structural informa-
tion flows through the model. The ablated model showed minimal performance differences
(Figure 2b).

The feature (f/2) was identified in the first group of a Matryoshka SAE trained on hid-
den layer 36 (dictionary size 10,240, group fractions [0.002, 0.0156, 0.125, 0.8574], sparsity
k=20), showing strong correlation with residue hydrophobicity. We selected the Matryoshka
SAE architecture as its hierarchical encoding tends to capture broader concepts in earlier
groups, which we hypothesized would enable more robust steering across diverse proteins.
We applied the steering methodology from Templeton et al. (2024), adding the decoder vec-
tor with coefficient α = -0.275. SASA was computed using FreeSASA Mitternacht (2016)
with default parameters. The observed RMSD of 2.76 Å aligns with typical deviations for
ESMFold with layer 36 LM head ablation, while ablating other ESM2 layer representations
resulted in RMSD of 0.191 compared to regular ESMFold (Figure 2b).

As shown in Figure 9, steering progressively decreased sequence GRAVY scores, indicating a
shift toward hydrophilic residues. When modified sequences were processed through default
ESMFold, we observed even larger SASA increases, consistent with replacing hydrophobic
core residues with hydrophilic ones. This effect manifested through two distinct mechanisms:
direct biasing of the structure module toward more exposed conformations (even with correct
sequence information), and shifting sequence predictions toward more hydrophilic residues
when allowed to influence the sequence module. Notably, structural changes persisted even
when preserving the original sequence, suggesting ESMFold’s predictions are influenced by
hidden representations corresponding to the modified sequence despite having access to
correct sequence information.

H.3 Validation of Case Study Feature Steering Directionality and
Specificity

Scalar Modified SASA SASA Change Modified GRAVY GRAVY Change

0.069 8369.55 0.00% -0.3588 0.00%
0.208 8351.58 -0.21% -0.0595 +83.42%
0.346 8568.43 +2.38% 0.6569 +283.08%
0.554 8616.49 +2.95% 1.3046 +463.60%
0.693 9719.28 +16.13% 1.5255 +525.17%

Table 2: Positive steering control results showing changes in SASA and GRAVY scores
relative to baseline values.

Feature Metric Scalar Values

-0.069 -0.346 -0.693

Feature 5 (Group 1) δSASA 0.00% +0.38% -0.54%
δGRAVY 0.00% +40.40% +52.34%

Feature 39 (Group 2) δSASA 0.00% 0.00% 0.00%
Feature 1381 (Group 3) δSASA 0.00% 0.00% 0.00%
Feature 7921 (Group 4) δSASA 0.00% 0.00% 0.00%

δGRAVY 0.00% 0.00% 0.00%

Original δSASA +128.44% +137.12% +112.89%
Experiment δGRAVY -417.34% -446.21% -356.69%

Table 3: Comparison of random feature controls with original experiment, showing percent-
age changes relative to unsteered (scalar=0) values.
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We performed positive steering control experiments to validate the directional behavior of
our feature, applying scalar values from 0.069 to 0.693. As predicted, steering the feature
positively resulted in a systematic increase in hydrophobicity (GRAVY score) while main-
taining structural stability at moderate steering strengths. The modified sequence GRAVY
scores increased from -0.36 to 1.53, reflecting enhanced hydrophobic content, while SASA
values remained stable (≤ 3% change) until the highest scalar values where minor structural
perturbations emerged.

Additionally, to assess the specificity of identified feature, we performed negative steering
experiments on randomly selected features from each Matryoshka group (features 5, 39,
1381, and 7921). Unlike our target feature, random features showed minimal response to
steering, with three features showing no changes (≤ 0.1% variation) across all metrics and
one feature (Feature 5) showing only minor variations incomparable to the dramatic shifts
observed in our main experiment.

I Implementation Details

I.1 SAE Implementation Details

For each token of a protein sequence, a transformer encoder-based PLM outputs an embed-
ding x in each layer ℓ. To learn meaningful representations, sparsity constraints are imposed
on the latent vector z. This sparsity can be achieved either through L1 regularization terms
in the loss function or through specialized activation functions that directly restrict the num-
ber of non-zero elements. In practice, the number of active (non-zero) elements K satisfies
K ≪ d≪ n, preventing degenerate solutions such as the identity map.

Training and Normalization. During training, we normalize our embeddings to have
average unit L2 norm, enabling hyperparameter transfer between layers. This normalization
is reversed during inference by scaling the biases according to the procedure detailed in
Marks et al. (2024). This approach ensures consistent performance across different layers
while maintaining the model’s representational capacity.

I.2 Code

For all SAE implementations, we use Marks et al. (2024). For our L1 regularized SAEs,
we follow Conerly et al. (2024). For TopK, we follow Gao et al. (2024). In Fig 2a, we
standardize hyperparameters with an expansion factor of 8x (dict size 20480) and batch size
2048 and use best learning rate.

I.3 Data Curation

Following the approach outlined in the InterPLM paper, we first process the UniRef50
FASTA file by iterating over each protein sequence. We remove any sequence that exceeds
1022 tokens, as ESM-2 cannot process longer inputs. From the remaining sequences, we
randomly select a predetermined number of proteins to create our working dataset. This
dataset is then divided into shards of 1000 sequences each, facilitating efficient handling
during training.

I.4 Optimizing the Dataset and Training Procedure

After generating embeddings with ESM-2, the activations are stored as tensors representing
entire shards. We then use Litdata’s optimize function to iterate through each tensor and
split it into fixed-size batches. The optimized dataset achieves speedup by reducing stream-
ing I/O overhead to AWS S3 during training. Additionally, the optimized dataset uses
Litdata’s StreamingDataset and StreamingDataloader where we shuffle the batches during
training, while also leveraging PyTorch Lightning for multi-GPU training support.
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