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ABSTRACT

Large language models (LLMs) with advanced step-by-step reasoning capabili-
ties have achieved remarkable performance in complex problem-solving through
chain-of-thought (CoT) reasoning. However, uniformly applying elaborate rea-
soning to all queries creates substantial computational inefficiency, as many prob-
lems can be solved directly without extended reasoning chains. Current hybrid
reasoning approaches rely on static hyperparameters and heuristic single-objective
optimization, leading to suboptimal trade-offs and poor adaptation to varying
task complexities. To address these limitations, we propose a multi-objective
adaptive generation optimization (MAGO) framework, which integrates multi-
objective optimization with dynamic adaptive weighting into hybrid reasoning.
MAGO optimizes three competing objectives simultaneously: accuracy (main-
taining solution correctness), efficiency (minimizing computational costs through
appropriate mode selection), and calibration (ensuring mode selection aligns with
model capabilities). The framework employs Pareto frontier maintenance with
correlation-aware optimization to automatically explore the full trade-off space,
avoiding the spatial constraints that limit fixed-weight approaches to narrow cone-
shaped regions of the objective space. Unlike existing methods requiring manual
hyperparameter tuning, MAGO’s Pareto optimization dynamically adapts weights
based on task complexity and training progress, achieving principled and adaptive
decision-making across varying problem complexities. Comprehensive evalua-
tion on mathematical reasoning benchmarks including AIME, Minerva Algebra,
MATH-500, and GSM-8K shows 2.2× to 3× token-efficiency gains and relative
accuracy improvements of 0.6% to 9.4% over heuristic baselines, while remain-
ing competitive with the strongest task-specific models. Additional experiments
on CommonsenseQA and MedQA further confirm the framework’s generalizabil-
ity beyond mathematics, achieving 1 to 2% higher accuracy and approximately
2× efficiency improvement without additional fine-tuning.

1 INTRODUCTION

Recent breakthroughs in step-by-step reasoning capabilities have enabled LLMs to achieve unprece-
dented performance in complex problem-solving. Reasoning-enabled models such as DeepSeek-
R1 (DeepSeek-AI, 2025) and Claude (Anthropic, 2025) employ CoT reasoning (Wei et al., 2022) to
decompose complex problems into manageable sub-steps, thereby simulating human cognitive pro-
cesses (Nye et al., 2021; Jung et al., 2022). This paradigm has proven particularly effective in math-
ematical reasoning (Hendrycks et al., 2021; Cobbe et al., 2021) and logical inference tasks (Saha
et al., 2020; Wang et al., 2023).

However, uniformly applying elaborate reasoning to all queries creates significant efficiency prob-
lems in practical deployment scenarios. Large-scale deployment scenarios must handle diverse
query types ranging from simple factual questions requiring direct answers to complex multi-step
problems necessitating extensive reasoning (Rajpurkar et al., 2018; Khashabi et al., 2020). Indis-
criminate use of reasoning models for all inputs leads to substantial computational waste, as rea-
soning models generate hundreds to thousands of tokens for problems that could be solved with
direct answers, resulting in 5 to 20 times higher resource consumption compared to non-reasoning
approaches (Kaplan et al., 2020; Hoffmann et al., 2022; Suzgun et al., 2022; Fu et al., 2023).
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Figure 1: (A) Traditional single-objective approaches and (B) MAGO’s multi-objective framework.

To address the substantial computational costs and resource consumption inherent in reasoning-
enabled models, current research has concentrated on several key directions to improve infer-
ence efficiency. Hybrid reasoning mode selection approaches develop systems that dynamically
choose between detailed reasoning and concise response generation through learnable control mech-
anisms (Fang et al., 2025; Zelikman et al., 2024; Raposo et al., 2024), utilizing specialized optimiza-
tion algorithms for adaptive mode switching. Test-time compute scaling techniques allocate com-
putational resources dynamically during inference to optimize the trade-off between accuracy and
efficiency (Snell et al., 2024; Zhang et al., 2025; Lyu et al., 2025), enabling models to achieve bet-
ter performance through adaptive inference-time computation rather than larger model parameters.
Token-budget-aware reasoning methods explicitly incorporate computational cost constraints into
the reasoning process (Han et al., 2024), developing frameworks that balance reasoning depth with
predefined computational budgets. However, these methods often produce suboptimal solutions that
excel in one aspect (such as accuracy or efficiency) while sacrificing others.

To address these challenges, we propose the MAGO framework, a theoretically grounded approach
that reformulates hybrid reasoning as a multi-objective optimization problem. MAGO incorporates
dynamic weight adaptation mechanisms that adjust with training progress and implements Pareto
frontier maintenance (Deb et al., 2002; Miettinen, 1999) with correlation-aware weight selection to
support more refined reasoning decisions. This method eliminates the need for manual hyperpa-
rameter tuning while achieving mathematically sound trade-offs among three competing objectives:
accuracy (maintaining solution correctness), efficiency (minimizing computational costs), and deci-
sion calibration (ensuring mode selection aligns with the model’s actual capabilities) (see Figure 1).
The main contributions of this paper are as follows:

• We identify two performance gaps in existing hybrid reasoning systems: (1) static weight
configurations lead to model under-performance across different scenarios, and (2) strong
correlations between objectives cause multi-objective optimization to under-perform.

• We propose MAGO, a multi-objective optimization framework addressing these gaps
through: (1) reformulating hybrid reasoning as a multi-objective optimization problem,
(2) using Pareto optimization for dynamic weight selection, and (3) achieving end-to-end
integration from training to deployment with zero inference overhead.

• Our framework achieves 2.2x to 3x computational efficiency improvements while simulta-
neously improving accuracy by 0.6% to 9.4% across mathematical reasoning benchmarks.
Cross-domain evaluation on CommonsenseQA and MedQA demonstrates generalizability
beyond mathematics without fine-tuning.

2 MOTIVATION

In this section, we introduce static weight challenges and multi-objective optimization challenges.

Challenge #1: Static Weight. Current hybrid reasoning approaches (Fang et al., 2025; Shao et al.,
2024) rely on fixed hyperparameters that fail to adapt to varying task complexities across different
queries and training datasets. We make a series of attempts across various α values on mathematical
reasoning benchmarks to explore this limitation. The results reveal three critical limitations of static
weighting schemes. First, different α values cause severe mode selection imbalances (Figure 2A): α
= 0.0001 leads to over 90% short-mode usage, sacrificing accuracy on complex problems, while α =
0.01 results in over 80% think-mode usage, negating efficiency gains. Second, optimal α varies sig-
nificantly across datasets (Figure 2B), and no single fixed weight achieves consistent performance
across diverse problem types. Third, exhaustive hyperparameter search for optimal α values is
computationally prohibitive, requiring independent model training for each configuration with costs
scaling linearly with search space size. These limitations demonstrate that static approaches can-
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Figure 2: Static weight limitations in hybrid reasoning optimization. (A) Mode selection imbalance
across control weight α values with accuracy performance. (B) Dataset-specific α sensitivity across
mathematical reasoning benchmarks. (C) Fixed weight search constraints in objective space. (D)
Cone-shaped optimization limitations in multi-objective landscape.

not accommodate the inherent variability in problem complexity and dataset characteristics while
remaining computationally feasible. More details can be found in Appendix A.1.

Challenge #2: Multi-objective Optimization. The hybrid reasoning problem involves three com-
peting objectives: accuracy, efficiency, and decision calibration. These objectives exhibit interde-
pendencies creating optimization challenges. High accuracy often requires longer reasoning chains,
creating tension with efficiency goals. Decision calibration considerations may favor conservative
mode selection strategies, potentially affecting both accuracy and efficiency outcomes (Song et al.,
2024; Wilde et al., 2024; Albeaik et al., 2024). Traditional single-weight approaches constrain
optimization to narrow regions within the objective space, as illustrated in Figure 2C. Fixed weight
values restrict the search trajectory to predetermined directions, preventing exploration of alternative
regions with superior solutions. This spatial constraint confines optimization to limited cone-shaped
regions (Figure 2D), missing optimal solutions in unexplored objective space areas. The limita-
tion becomes pronounced when objectives exhibit different gradient scales and convergence rates,
causing premature convergence to spatially constrained local optima rather than exploring the full
solution landscape. More details can be found in Appendix A.2.

3 BACKGROUND

In this section, we present reinforcement learning and multi-objective pareto optimization.

Reinforcement Learning. GRPO (Shao et al., 2024) provides the foundation for training hy-
brid reasoning models through reinforcement learning. In this framework, x represents an in-
put query or problem that requires the model to generate a response. Given control tokens
C = {<short>,<think>}, the hybrid reasoning model is parameterized as a policy πθ:

πθ(c, a|x) = πθ(c|x) · πθ(a|x, c), (1)

where c ∈ C denotes the reasoning mode selection and a represents the generated response sequence.
The sequence ai = (ai,0, . . . , ai,Ti) has length Ti + 1, where ai,0 ∈ C is the control token and
(ai,1, . . . , ai,Ti) form the response (Shao et al., 2024).

The standard GRPO objective treats all tokens uniformly through a single normalization factor:

JGRPO(θ) = Ex,ai

 1

G

G∑
k=1

 1

Tk + 1

Lk,0(θ) +

Tk∑
j=1

Lk,j(θ)

− βDKL[πθ(·|x)∥πref(·|x)]

 ,

(2)
where Lk,0(θ) and Lk,j(θ) represent control and response token losses, respectively. This creates
two imbalances: the control token is overshadowed by Tk response tokens, and longer sequences
suppress control gradients via the shared normalization 1

Tk+1 . DeGRPO (Fang et al., 2025) intro-
duces separate normalization and a weight parameter α to balance mode selection against response
accuracy, preventing mode collapse. More details can be found in Appendix A.3.
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Multi-objective Pareto Optimization. Multi-objective optimization addresses problems with
multiple competing objectives that cannot be simultaneously optimized. Rather than seeking a single
optimal solution, the goal of Pareto optimization is to find the set of Pareto-optimal solutions:

P = {x∗ ∈ X : ∄x ∈ X , f(x) ⪯ f(x∗), f(x) ̸= f(x∗)}, (3)

where f(x) = [f1(x), f2(x), . . . , fm(x)] represents the objective vector, and ⪯ denotes Pareto dom-
inance (Deb et al., 2023; Feng et al., 2021). Traditional single-objective approaches using fixed
weight combinations

∑
i λifi(x) often fail to capture the full trade-off space, as they restrict opti-

mization to predetermined directions in the objective space. Multi-objective methods enable explo-
ration of diverse trade-offs by adapting weights dynamically based on the problem characteristics
and solution quality. More details can be found in Appendix A.4.

4 METHOD

In this section, we introduce the problem formulation and then present our solutions, including the
MAGO framework, Pareto frontier maintenance, and end-to-end integration.

4.1 PROBLEM FORMULATION

In order to address the Challenge #1 mentioned in previous sections, we formulate hybrid reasoning
training as a dynamic adaptive optimization problem:

J(θ) = Ex,ai

 1

G

G∑
k=1

m(x)︸ ︷︷ ︸
adaptive

Lk,0(θ) +
1

Tk

Tk∑
j=1

Lk,j(θ)− βDKL[πθ(·|x)∥πref(·|x)]


 , (4)

where m(x) represents an adaptive weighting mechanism that adjusts based on input characteristics.
Unlike existing approaches that rely on fixed hyperparameters, m(x) dynamically adapts to balance
competing training objectives without requiring manual tuning or hyperparameter search.

4.2 MULTI-OBJECTIVE ADAPTIVE GENERATION OPTIMIZATION

To realize the adaptive weighting mechanism m(x) introduced in Equation 4, we propose MAGO
that dynamically balances competing objectives. The framework integrates three objectives:

mMAGO(x) = β1 · Saccuracy(x) + β2 · Sefficiency(x) + β3 · Scalibration(x), (5)

where (β1, β2, β3) are dynamically adapted weights that automatically balance the three competing
objectives without manual tuning, and the three task-specific objectives are defined below:

Accuracy Objective. The accuracy objective Saccuracy(x) measures the correctness of responses
generated under different reasoning modes:

Saccuracy(x) = E(c,a)∼πθ(c,a|x)[I(ϕ(a) = y∗)], (6)

where I(·) is the indicator function, y∗ is the ground-truth answer, and ϕ(a) extracts the final answer
from the response sequence a. This function parses the generated response to identify the con-
cluding numerical or textual answer, enabling direct comparison with the ground truth regardless of
reasoning mode length.

Efficiency Objective. The efficiency objective Sefficiency(x) captures the potential for computa-
tional savings through appropriate mode selection by measuring the expected response efficiency:

Sefficiency(x) = E(c,a)∼πθ(c,a|x)

[
1− |a|

Tmax

]
, (7)

where |a| denotes the token length of the generated response sequence a, and Tmax represents the
maximum allowed sequence length. The normalization term |a|

Tmax
measures the relative computa-

tional cost, and subtracting from 1 converts this to an efficiency score where values approaching 1
indicate highly efficient responses. This expectation is computed by sampling responses and calcu-
lating their average normalized efficiency.
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Calibration Objective. The decision calibration objective addresses a critical challenge in hybrid
reasoning: ensuring that the model’s mode selection decisions are well-calibrated with its problem-
solving capabilities. Specifically, when the model chooses the short reasoning mode, it should be
confident that it can solve the problem correctly without extended reasoning. Conversely, when it
selects the think mode, this should indicate that the problem requires more elaborate reasoning for
solution. Poor calibration occurs when the model overconfidently chooses short mode for difficult
problems or unnecessarily defaults to think mode for simple problems it could solve directly.

The decision calibration objective Scalibration(x) ensures that mode selection decisions align with the
model’s actual capability on the specific input by measuring decision calibration quality:

Scalibration(x) = 1− E(c,a)∼πθ(c,a|x)[|Pmodel(correct|x, c)− I(ϕ(a) = y∗)|]. (8)

To compute the model’s confidence estimate, we first extract the raw confidence score from the final
answer tokens. Let Lanswer denote the logits over the answer vocabulary at the final token position.
The raw confidence score is defined as:

RawConf(a) = max(softmax(Lanswer)), (9)

which represents the model’s highest probability assignment among all possible answer tokens. We
then discretize this continuous confidence score into predefined intervals:

b = Bin(RawConf(a)) = ⌊RawConf(a)×Nbins⌋, (10)

where Nbins is the number of confidence bins (e.g., 5 or 10).

The model’s calibrated confidence estimate is then computed using statistical calibration based on
historical performance:

Pmodel(correct|x, c) = HistoricalAccuracy(c, b), (11)

where HistoricalAccuracy(c, b) returns the empirical accuracy for mode c in confidence bin b:

HistoricalAccuracy(c, b) =

∑
t∈H(c,b) I(correctt)

|H(c, b)|
, (12)

where H(c, b) represents the set of historical samples with mode c and confidence bin b, and
I(correctt) indicates whether sample t produced the correct answer.

The historical statistics are maintained using exponential decay to prioritize recent performance:

HistoricalAccuracyt+1(c, b) = λ · HistoricalAccuracyt(c, b) + (1− λ) · I(correctt+1), (13)

where λ ∈ (0, 1) is the decay factor. This approach leverages the model’s intrinsic confidence distri-
bution while correcting for systematic overconfidence or underconfidence patterns through empiri-
cal calibration, requiring no additional neural components while providing more reliable confidence
estimates than raw token probabilities. More details can be found in Appendix A.5.

4.3 PARETO FRONTIER

The Pareto frontier mechanism provides the mathematical foundation for dynamic weight adap-
tation in MAGO to address Challenge #2 mentioned in previous sections. We formalize the
multi-objective optimization problem as maintaining an evolving set of weight configurations
Ft = {β(1),β(2), ...,β(k)}, where each β(i) = [β

(i)
1 , β

(i)
2 , β

(i)
3 ] represents a distinct combination of

weights for the three competing objectives (accuracy, efficiency, and calibration). By maintaining
a diverse set of non-dominated weight combinations, the Pareto optimization framework avoids the
cone entrapment problem that constrains fixed-weight approaches to narrow regions of the objective
space, enabling principled adaptation to varying task requirements.

At each iteration t, we evaluate the performance of weight configurations using the training batch
Bt. For a given weight vector β(i), we define the objective vector based on batch-level performance:

St(β
(i)) =

[
1

|Bt|
∑
x∈Bt

Saccuracy(x),
1

|Bt|
∑
x∈Bt

Sefficiency(x),
1

|Bt|
∑
x∈Bt

Scalibration(x)

]
β(i)

, (14)
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where |Bt| denotes the batch size, each component represents the average performance of the corre-
sponding objective over the current batch, evaluated under the policy πθ trained with weight config-
uration β(i).

The Pareto frontier is maintained as the set of non-dominated weight configurations:

Ft = {β(i) | ∄β(j) ∈ St : St(β
(j)) ≻ St(β

(i))}, (15)

where St represents the set of all evaluated weight configurations up to iteration t, superscripts (i)
and (j) index different weight vectors in the frontier, and ≻ denotes Pareto dominance relation.

To address objective correlations that lead to cone entrapment, we introduce a correlation-aware
weight selection mechanism. For each training batch Bt at iteration t, we compute the empirical
correlation matrix between the three objectives:

Ct[i, j] =

∑
x∈Bt

(S(i)(x)− µ
(i)
t )(S(j)(x)− µ

(j)
t )√∑

x∈Bt
(S(i)(x)− µ

(i)
t )2

∑
x∈Bt

(S(j)(x)− µ
(j)
t )2

, (16)

where S(i)(x) denotes the i-th objective function (accuracy, efficiency, or calibration) evaluated on
input x, and µ

(i)
t = 1

|Bt|
∑

x∈Bt
S(i)(x) represents the batch mean of objective i. This correlation

structure guides the selection of weight combinations from the current frontier, ensuring that highly
correlated objectives receive balanced attention while conflicting objectives maintain proper balance.

The weight selection process employs a correlation-adaptive scoring function Ψt(β) that evaluates
the quality of each weight configuration in the current Pareto frontier and penalizes configurations
leading to high correlation between conflicting objectives:

Ψt(β) =

3∑
i=1

βiŜ
(i)
t − βcorr

∑
i<j

|Ct[i, j]| · |βi − βj |, (17)

where Ŝ
(i)
t represents the moving average of the i-th objective performance over recent iterations,

and βcorr > 0 is a hyperparameter controlling the penalty strength for correlated objectives. The first
term rewards weight configurations that emphasize well-performing objectives, while the second
term |βi−βj | penalizes unbalanced weight allocations when objectives i and j are highly correlated,
encouraging more uniform distribution across correlated objectives. The optimal weight vector for
the current iteration is selected as:

β∗
t = arg max

β∈Ft

Ψt(β). (18)

To prevent premature convergence and ensure frontier diversity, we employ an exploration mecha-
nism that generates new candidate solutions through guided perturbation:

βnew = β∗
t + ϵt · d, (19)

where β∗
t is the currently selected optimal weight vector, d is sampled uniformly from the constraint

surface {d ∈ R3 : ∥d∥2 = 1,
∑3

i=1 di = 0} to preserve weight normalization, and ϵt is scaled based
on the current frontier diversity measure:

ϵt = ϵ0 · exp
(
−D(Ft)

Dtarget

)
, (20)

where ϵ0 > 0 is the base exploration rate hyperparameter, Dtarget > 0 is the target diversity threshold
hyperparameter, and D(Ft) = 1

|Ft|2
∑

β(i),β(j)∈Ft
∥β(i) − β(j)∥2 measures the average pairwise

Euclidean distance among frontier solutions (Deb et al., 2002).

The frontier update mechanism integrates newly evaluated candidate solutions and maintains non-
dominance:

Ft+1 = NonDominated(Ft ∪ {βnew}) ∩ DiversityFilter(·, τdiv), (21)
where DiversityFilter(·, τdiv) ensures minimum pairwise distance τdiv between frontier solutions to
prevent clustering. In implementation, the number of frontier vectors |Ft| grows gradually in early
training and stabilizes around 20–25, remaining below the upper bound |Fmax| = 30. When the limit
is reached, dominated or redundant vectors are pruned through cosine-similarity filtering to preserve
representative diversity. More details about algorithm convergence can be found in Appendix A.6.
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Figure 3: MAGO framework efficiently implements end-to-end integration from training to deploy-
ment and inference. (A) Training pipeline with multi-objective optimization and frontier updates.
(B) Inference pipeline with learned adaptive mode selection.

4.4 END-TO-END INTEGRATION

Training and Deployment. MAGO integrates into the hybrid reasoning training framework by
replacing static weight parameters with dynamic multi-objective optimization (Figure 3A). At each
training iteration, the system selects an optimal weight vector β∗

t = [β∗
1 , β

∗
2 , β

∗
3 ] from the current

Pareto frontier Ft using correlation-aware selection (Eq. 18). The selected weights instantiate the
adaptive weighting function mMAGO(x;β

∗
t ) = β∗

1Saccuracy(x) + β∗
2Sefficiency(x) + β∗

3Scalibration(x),
which determines the control token weight for the current batch in the training objective:

J(θ) = Ex,ai

 1

G

G∑
k=1

mMAGO(x;β
∗
t )Lk,0(θ) +

1

Tk

Tk∑
j=1

Lk,j(θ)− βDKL[πθ(·|x)∥πref(·|x)]

 .

(22)

In training (Figure 3A), the framework iteratively performs policy updates using the selected
weights, evaluates objective performance on the current batch, and maintains the Pareto frontier
through non-dominated sorting in this closed-loop process. During deployment (Figure 3B), the
trained model automatically selects between <short> and <think> modes with zero inference
overhead through learned decision-making, followed by standard token generation. More details
can be found in Appendix A.7.

Training Process and Reward Design. We use a minimal reward function in training which en-
courages efficiency while maintaining correctness:

r(a, y∗, c) =


1.0, if c = <short> and ϕ(a) = y∗,

1.0− γ, if c = <think> and ϕ(a) = y∗,

−1.0, if ϕ(a) ̸= y∗,

(23)

where ϕ(a) extracts the final answer and 0 < γ < 1 creates preference for efficient correct re-
sponses (Fang et al., 2025). Additional details including the relative advantage computation and
token-level loss formulations are provided in Appendix A.8.

Framework Summary. While MAGO framework introduces training overhead, this cost is amor-
tized across millions of inference queries, yielding substantial operational savings. The framework
enables automatic adaptation to changing model capabilities and data characteristics, providing prin-
cipled trade-offs between accuracy, efficiency, and calibration without manual tuning, operating en-
tirely during training with zero additional inference parameters or computation.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Experimental Setup. We employ DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) as the base
model for hybrid reasoning training. To construct paired long-short response data for warm-up distil-
lation, we leverage DeepSeek-R1-671B (Guo et al., 2025) to generate extended reasoning chains and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024a) for concise responses. The training corpus com-
prises approximately 40K samples aggregated from DeepScaleR (Luo et al., 2025), OpenR1 (Face,
2025), OpenThoughts-114K (Team, 2025), and additional open-source mathematical reasoning cor-
pora (Jebali et al., 2024; Langlais et al., 2025). To demonstrate scalability, we conduct experiments
across Qwen2.5 series backbones of varying sizes (1.5B, 7B, 14B, 32B parameters) (Yang et al.,
2024a). All experiments are conducted on 4 to 8 NVIDIA H100 GPUs depending on model size.

Training Configuration. Training involves supervised fine-tuning (1 epoch) followed by MAGO
reinforcement learning (600 steps), implemented using VeRL (Jiang et al., 2025) and Mega-
tron (Shoeybi et al., 2019). We optimize using AdamW (AbuKaraki et al., 2024) with learning rate
1 × 10−6, batch size 128, weight decay 0.01, and momentum β = (0.9, 0.999). Context length is
16K during warm-up and 24K during reinforcement learning. MAGO hyperparameters: correlation
penalty βcorr = 0.1, exploration rate ϵ0 = 0.05, diversity threshold τdiv = 0.2, maximum frontier
size |Fmax| = 30, calibration bins Nbins = 10, decay factor λ = 0.95 for historical accuracy, and
reward preference γ = 0.1 favoring correct short responses.

Evaluation Benchmarks and Baselines. We evaluate on six benchmarks: AIME 2024 (Ji et al.,
2025b), Minerva Algebra (Hendrycks et al., 2021), MATH-500 (Lightman et al., 2023), and GSM-
8K (Cobbe et al., 2021) for mathematical reasoning, CommonsenseQA (Talmor et al., 2019) and
MedQA-USMLE (Jin et al., 2021) for cross-domain generalization. All benchmarks report Pass@1
accuracy and token usage per query. We compare against three baseline categories: (1) Base
LLMs: DeepSeek-R1-1.5B (Guo et al., 2025), Qwen2.5-1.5B-Instruct, and Qwen2.5-Math-1.5B-
Instruct (Yang et al., 2024a); (2) Shortened CoT: Model Merging (Team et al., 2025) with coeffi-
cients (0.5, 0.6, 0.7) and CoT-Valve (Ma et al., 2025) with α ∈ {4, 6, 8}; (3) Hybrid Reasoning:
DeGRPO (Fang et al., 2025) with fixed α = 0.001, random router, and Qwen2.5-7B router (Ong
et al., 2024). Additional details are provided in Appendix A.9.

5.2 RESULT

Multi-Objective Optimization Evaluation. We first evaluate MAGO on the 1.5B backbone.
Across mathematical reasoning benchmarks, MAGO yields 2.2× to 3× token-efficiency gains and
0.6% to 9.4% relative accuracy improvements over heuristic baselines, with consistent improve-
ments across all evaluated tasks. Table 1 shows that MAGO achieves superior token efficiency
(7,164 vs. 18,063+ baseline tokens on AIME) and competitive or superior accuracy on most bench-
marks, including AIME (0.2741) and MATH-500 (0.8247), while remaining close to the best scores
on Minerva Algebra (0.9483 vs. 0.9577) and GSM-8K (0.8469 vs. 0.8572). Unlike baseline meth-
ods that require dataset-specific hyperparameter tuning and router-based approaches that struggle
with complex datasets, MAGO’s Pareto optimization framework automatically calibrates reason-
ing strategies to achieve optimal efficiency–accuracy trade-offs, demonstrating the effectiveness of
principled multi-objective optimization over heuristic approaches in hybrid reasoning systems. To
validate scalability, we further apply MAGO to larger backbones (7B, 14B, and 32B). As model
capacity increases, Pass@1 improves consistently across all benchmarks while average token usage
per query decreases slightly, indicating that MAGO’s Pareto optimization generalizes effectively to
larger-scale models without increasing inference cost. More details can be found in Appendix A.10.

Mode Collapse in RL. Our Pareto optimization prevents mode collapse by maintaining balanced
reasoning mode selection throughout training, avoiding the extreme preference for short responses
that characterizes vanilla GRPO. Figure 4 (A) illustrates the Mode Collapse issue in standard GRPO,
where the model develops an excessive preference for short outputs during training, with the num-
ber of think samples dropping precipitously to near zero within 120 training steps. In contrast, the
proposed framework demonstrates significantly more stable training dynamics, maintaining a bal-
anced distribution between think and short samples throughout the process. The vanilla GRPO’s
rapid collapse to predominantly short-mode usage (below 10 think samples) indicates a failure to
properly balance competing objectives of accuracy and efficiency. Our Pareto-based optimization
prevents this catastrophic collapse by maintaining diverse weight configurations that ensure neither
reasoning mode is abandoned, enabling adaptive strategy selection based on query complexity rather
than converging to suboptimal modes.
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Table 1: Comparison of MAGO against baseline reasoning methods on mathematical benchmarks.

Models Type AIME 2024 Minerva Algebra MATH-500 GSM8K

Pass@1 #Tokens Pass@1 #Tokens Pass@1 #Tokens Pass@1 #Tokens

DeepSeek-R1-1.5B (Guo et al., 2025)
Base LLM

0.2800 18063 0.9577 3029 0.8608 5675 0.8347 1919
Q-1.5B (Yang et al., 2024a) 0.0200 1300 0.7771 933 0.5168 855 0.7022 466
QMath-1.5B (Yang et al., 2024a) 0.1133 1128 0.9184 586 0.7604 721 0.8572 447

Merging-0.5 (Team et al., 2025)

Short CoT

0.1333 8636 0.9292 834 0.7740 1524 0.8332 601
Merging-0.6 (Team et al., 2025) 0.1733 10615 0.9321 1091 0.7900 3000 0.8381 747
Merging-0.7 (Team et al., 2025) 0.1667 15854 0.9398 1834 0.8108 4347 0.8458 1201
CoT-Valve α = 8 (Ma et al., 2025) 0.2000 10692 0.8079 1903 0.7060 3723 0.7726 773
CoT-Valve α = 6 (Ma et al., 2025) 0.1933 17245 0.9468 2656 0.8024 5167 0.7970 1009
CoT-Valve α = 4 (Ma et al., 2025) 0.2267 17722 0.9439 2965 0.8036 5820 0.8108 1396

Router Random (Fang et al., 2025) Hybrid 0.1300 8093 0.9032 1736 0.7484 3096 0.8205 1086
Router Q-7B (Ong et al., 2024) 0.1480 9296 0.9049 795 0.7781 2748 0.8587 563

DeGRPO-Qwen-1.5B (Fang et al., 2025) Hybrid 0.2506 7262 0.9216 1228 0.8037 2644 0.8418 649
MAGO-Qwen-1.5B (Ours) Pareto 0.2741 7164 0.9483 1174 0.8247 2578 0.8469 633

MAGO-Qwen-7B (Ours)
Pareto

0.2960 6890 0.9562 1102 0.8424 2426 0.8611 592
MAGO-Qwen-14B (Ours) 0.3112 6724 0.9621 1041 0.8538 2368 0.8723 571
MAGO-Qwen-32B (Ours) 0.3254 6587 0.9689 992 0.8652 2294 0.8834 552

Figure 4: Training dynamics comparison between vanilla GRPO, DeGRPO, and MAGO frame-
works. (A) Mode collapse analysis showing sample distribution over training steps. (B) Accuracy
evolution for think and short reasoning modes during training. (C) Number of samples achieving
correct responses for both reasoning modes.

Table 2: Cross-domain generalization on CommonsenseQA.

Model Accuracy (%) ↑ Tokens / Query ↓ Token Reduction

DeGRPO 73.1 312 -
CoT-Valve 73.8 298 1.05
MAGO (ours) 74.9 152 2.05

The U-Shape Learning Curve. Figure 4 (B) reveals that our approach achieves more balanced
training dynamics across 600 steps, with both reasoning modes converging smoothly after approx-
imately 300 steps. While DeGRPO exhibits high volatility with fluctuations in accuracy for both
modes, the proposed method demonstrates stable convergence patterns with reduced variance. The
think mode maintains consistent performance around 0.6-0.7 accuracy while the short mode gradu-
ally improves from 0.4 to 0.5, contrasting sharply with DeGRPO’s chaotic dynamics where accuracy
fluctuates wildly between 0.3 and 0.8. Figure 4 (C) demonstrates superior sample efficiency, show-
ing that the model quickly learns to activate short mode while ensuring correctness. The intersection
point between think and short correct responses occurs later in training (around step 400), indicating
more thorough exploration of reasoning mode trade-offs before settling on optimal strategies.

Cross-Domain Generalization. To evaluate the generalization ability of MAGO beyond math-
ematical reasoning, we perform additional experiments on CommonsenseQA, a benchmark that
assesses everyday reasoning and contextual understanding. The objective is to examine whether
our proposed Pareto-based adaptive optimization, trained only on mathematical reasoning data, can
effectively transfer to a different reasoning domain without further fine-tuning. The same inference
settings described in Section 5.1 are adopted for all methods. Representative hybrid reasoning base-
lines, including DeGRPO and CoT-Valve, are used for comparison. The experimental results are
presented in Table 2. All results are averaged over three random seeds to ensure stability. MAGO
achieves 74.9% accuracy, outperforming DeGRPO and CoT-Valve by 1.8% and 1.1%, respectively,
while reducing the average number of generated tokens from 312 to 152, corresponding to a 2.05×
improvement in efficiency. These findings demonstrate that MAGO’s Pareto-based adaptive opti-
mization generalizes effectively across reasoning domains and maintains a stable balance between
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accuracy and computational efficiency. We also evaluate MAGO on MedQA-USMLE (Jin et al.,
2021), a medical question answering benchmark, where MAGO achieves over 2.0× efficiency im-
provement while maintaining competitive accuracy. More details can be found in Appendix A.18.

Computational Complexity. We analyze the computational and memory complexity introduced
by the multi-objective optimization process. Let |B| denote the batch size, M = 3 the number of
objectives, and |Ft| the number of maintained frontier vectors, with an upper bound |Fmax| = 30.

Per-step time cost consists of several components. Computing objective statistics and scores is
O(|B| ·M). Correlation estimation among objectives is O(|B| ·M2). Updating the Pareto frontier
requires non-dominated sorting and diversity filtering, which is O(|Ft|2 ·M), and remains constant
in practice since |Ft| ≤ |Fmax|. The guided perturbation and projection to the simplex is O(M).
Therefore, the overall additional time complexity per step is O(|B| ·M2 + |Fmax|2 ·M), which is
dominated by the batch term and treated as a small constant overhead due to the tight cap on |Fmax|.
The memory cost is linear in the frontier size, O(|Fmax| ·M), corresponding to at most 90 scalars
in our configuration, plus O(M · Nbins) for calibration bins. All operations are performed in the
objective space and are independent of model parameters, ensuring scalability to larger backbones.

6 RELATED WORK

Reasoning (Hybrid and Efficient). Recent hybrid reasoning advances combine multiple paradigms
for efficiency. Chain-of-thought and program-aided reasoning integrate natural language with
code (Gao et al., 2022; Ranaldi et al., 2024), while self-refinement methods iteratively improve
chains (Madaan et al., 2023; Ji et al., 2025a). Tree-of-thoughts structures reasoning as search (Yao
et al., 2023; Pandey et al., 2025), adaptive frameworks select strategies by complexity (Zhou et al.,
2023; Tu et al., 2025), and multi-path reasoning aggregates diverse chains (Zhu et al., 2024; Zhang
et al., 2024c). Compression (Omri et al., 2025; Han et al., 2024) and selective generation (Jo et al.,
2022; Yang et al., 2024b) reduce tokens while maintaining accuracy. However, these lack principled
frameworks for jointly optimizing strategy selection and efficiency across diverse distributions.

Effective Reasoning (Single Methods). Single-paradigm optimizations enhance reasoning with-
out hybridization. Prompt compression preserves semantics with 20x ratios (Jiang et al., 2023),
knowledge distillation transfers capabilities to smaller models (Shridhar et al., 2023), and specula-
tive decoding accelerates inference (Leviathan et al., 2022). Structured pruning removes redundant
steps (Tao et al., 2023; Men et al., 2024), early-exit uses confidence thresholds (Tang et al., 2023;
Xu et al., 2025), token-level optimization skips steps (Lee et al., 2024), and cache-based approaches
reuse patterns (Yang et al., 2025a;b). These optimize singular objectives, missing opportunities.

Multi-Objective Optimization (MOO). MOO in language models balances competing goals.
Pareto-optimal solutions identify accuracy-efficiency trade-offs (Mukherjee et al., 2024; Huang
et al., 2024), weighted scalarization combines objectives (Yang et al., 2024c; Li & Ma, 2018),
and RL optimizes multiple rewards (Zhang et al., 2024b). Constraint-based methods ensure
safety (Zhang et al., 2024a; Peng et al., 2025), dynamic adjustment adapts priorities (Low & Kumar,
2024; Krishna & Vali, 2025), preference learning captures values (Dai et al., 2023; Shen et al., 2025),
and evolutionary algorithms handle trade-offs (Bai et al., 2023; Li et al., 2024). However, MOO in
inference mode selection remains underexplored, missing context-aware optimization opportunities.

7 CONCLUSION

We present MAGO, a multi-objective adaptive generation optimization framework that integrates
Pareto frontier maintenance with correlation-aware weight selection for hybrid reasoning in LLMs.
Our framework combines three competing objectives (accuracy, efficiency, and calibration) through
dynamic weight adaptation using Pareto frontier maintenance and correlation-aware selection. This
principled approach eliminates hyperparameter tuning while preventing the mode collapse observed
in existing reinforcement learning methods. Experiments show that MAGO delivers 2.2× to 3×
token-efficiency gains along with 0.6% to 9.4% relative accuracy improvements over heuristic meth-
ods on mathematical reasoning tasks. Cross-domain evaluation on CommonsenseQA and MedQA
further confirms the framework’s transferability beyond mathematics without additional fine-tuning.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research focuses on developing multi-objective
optimization for adaptive reasoning in large language models. We identify the following ethical
considerations:

Privacy. No personally identifiable information is collected or processed.

Environmental Impact. We report detailed computational requirements in Appendix A.9.

Potential Harms. Our optimization framework could potentially be applied to harmful applica-
tions. We emphasize the importance of responsible deployment and adherence to AI safety guide-
lines.

REPRODUCIBILITY STATEMENT

To facilitate reproduction of our results:

Code. Complete implementation including training scripts and evaluation code will be released
upon paper acceptance. For review purposes, we provide pseudocode in Appendix.

Experimental Details. Hyperparameters and experimental setup are fully specified in Appendix
A.9. Hardware specifications are provided in Appendix A.9.

Data. We use publicly available datasets: AIME 2024, Minerva Algebra, MATH-500, and GSM-
8K for mathematical reasoning evaluation; CommonsenseQA and MedQA-USMLE for cross-
domain evaluation; DeepScaleR, OpenR1, and OpenThoughts-114K for training.
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