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ABSTRACT

Federated learning (FL) is widely adopted as a secure and reliable distributed ma-
chine learning system for it allows participants to retain their training data locally,
transmitting only model updates, such as gradients or parameters. However, the
transmission process to the server can still lead to privacy leakage, as the updated
information may be exploited to launch various privacy attacks. In this work, we
present a key observation that the middle layer outputs, referred to as data repre-
sentations, can exhibit independence in value distribution across different types of
data. This enables us to capture the intrinsic relationship between data represen-
tations and private data, and inspires us to propose a Model Entanglement(ME)
strategy aimed at enhancing privacy preserving by obfuscating the data represen-
tations of private models in a fine-grained manner, while improving the balance
between privacy preservation and model accuracy. We compare our approach
to the baseline FedAvg and two state-of-the-art defense methods. Our method
demonstrates strong defense capabilities against mainstream privacy attacks, only
reducing the global model accuracy by less than 0.7% and training efficiency of
6.8% respectively on the widely used dataset, excelling in both accuracy and pri-
vacy preserving.

1 INTRODUCTION

Deep learning, particularly through the use of deep neural networks, has seen widespread adoption
due to its exceptional performance, which is also heavily dependent on large volumes of high-quality
training data. Currently, the widely adopted distributed learning algorithm known as Federated
Learning (FL)McMahan et al.|(2017) allows a central server to handle broadcasting and computation
for the participating client nodes. This iterative process facilitates collaborative model refinement
while preserving individual data privacy.

Although Federated Learning effectively mitigates the direct transmission of training data to enhance
privacy protection, it does not provide security guarantees for clients’ private local contributions. In
related work, Zhu et al.Zhu & Han|(2020); |Geiping et al.|(2020) demonstrated that even in scenarios
where gradients are shared, adversaries could reconstruct training data. The scenario of sharing
model parameters introduces additional privacy risks. |Carlini et al.|(2022); L1 & Zhang| (2021)
utilized model outputs to conduct membership inference attacks, focusing solely on the structure of
black-box models. These attacks aim to determine whether private data corresponds to the model’s
training data, effectively identifying membership.

Essentially, whether through reconstruction attacks or inference attacks, the core privacy threat stems
from extracting the intrinsic relationship between the model and the underlying data. The evolving
landscape of privacy attacks highlights the crucial need for developing robust strategies to protect
sensitive information when sharing model parameters in distributed learning scenarios.

Currently, mainstream defense approaches against these attacks include Differential Privacy (DP),
Secure Multi-party Computation (SMC), and Data Compression (DC). DP enhances privacy by
introducing perturbations to shared data, though it often compromises model accuracy. SMC en-
crypts user data, allowing servers to aggregate encrypted information while preventing malicious
eavesdropping, but it faces challenges related to key distribution and high computational demands.
Encryption-based methods also require extensive matrix operations, leading to increased computa-
tional load and potential communication delays. While less common, DC similarly struggles with
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balancing privacy defense and accuracy. Despite their strengths and limitations, ongoing research
is essential to further optimize these methods for privacy in distributed learning. Therefore, it is
imperative to propose a more comprehensive solution that fully leverages the collaborative nature of
client training to achieve robust client-level privacy preservation.

Our preliminary experiments yielded a key observation: when training data distributions differ,
the model parameters and updates reflect these distributional variations, particularly in non-
independent and identically distributed (Non-IID) datasets. This phenomenon may be linked to
the model’s capacity to memorize data, which is a key factor in privacy attacks. Based on the above
observations, this paper first investigates the intrinsic relationship between intermediate outputs of
the model and the model updates(i.e, gradient information) with the privacy. Accordingly, a pri-
vacy measurement mechanism based on node importance is proposed. The results of privacy risk
assessment are used as guidance to design a parameter replacement algorithm, which is then applied
within a federated learning framework. This leads to the development of a federated multi-client
collaborative privacy preserving framework with a safeguard client.

2 RELATED WORK

2.1 PRIVACY ATTACK

Membership Inference Attack(MIA): MIA enables an attacker to determine whether a sample
(z,y) belongs to the training dataset of a target machine learning model by constructing a binary
classifier which output 1 or 0. |Ye et al.| (2022) analyzed various attacks and attributed the vulnera-
bility of data points to different levels of memorization, or overfitting to conditional memorization.
Recent research has explored MIA’s significance in real-world scenarios. For instance, |Chen et al.
(2022) proposed a practical MIA against the industrial Internet of Things, relaxing key assumptions
made by prior MIAs that were impractical in industrial settings. |Zarifzadeh et al.|(2024) introduced
RMIA which is a refined MIA with lower overhead and uses fine-grained modeling of null hypothe-
ses in likelihood ratio tests and achieves greater robustness and accuracy than existing methods.

Model Inversion Attack: Under the model inversion attack, the attacker attempts to restore the
training data of the model with limited knowledge. Recently works, such as Zhu & Han| (2020);
Geiping et al.|(2020);|Zhao et al.|(2020) had continuously improved this attack, making it more effi-
cient. The research in[Wang et al.|(2022) analyzed how weight distribution affects the training data
recovery from gradient and proposed the algorithm exploited the variance of gradients. Additionally,
Nguyen et al.|(2023) addressed the suboptimal loss functions and poor quality of reconstructed sam-
ples by introducing regularization terms to improve the loss function’s convexity, thereby enhancing
the accuracy of recovered samples.

2.2  PRIVACY PRESERVING TECHNOLOGY

Secure Multi-party Computation: MPC aims to compute private inputs from all parties through
a secure function and return the result. [Bonawitz et al.| (2017) proposed HybridAlpha, a multi-
party training method based on functional encryption, which introduced a trusted third party for
verification. [Zhang et al.|(2020) developed Batchcrypt, a homomorphic encryption-based secure ag-
gregation scheme for cross-organizational settings, which reduces communication overhead, though
its performance significantly degrades with larger models compared to plaintext schemes. However,
MPC methods incur substantial computational overhead and conceal model updates from the server,
making them vulnerable to Byzantine and Poisoning attacks Wu et al.| (2020); (Chang et al.| (2020).
Chen et al.|(2023) addressed issues related to detecting malicious parameters and the strong reliance
on IID distributions in federated learning and MPC.

Differential Privacy: DP algorithms can resist corresponding privacy attacks by adding noise to the
federated learning framework. The work |Wei et al.| (2020) introduced noise to local updates before
the aggregation to defend against privacy attacks, optimizing the selection of the best K clients to
balance privacy and efficiency.Zhu et al.| (2022) proposed a fine-grained method to allocate noise
according to the importance value of layers in order to remain high model performance. In address
precision degradation, [Wang et al.| (2023)) introduced the idea of dynamic defense in DP federated
learning. However, existing DP strategies require clients to conform to a specific statistical distri-
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bution collectively, so that their mutual noisy effects are neutralized after aggregation. In scenarios
with fewer clients, the added noise significantly impacts individual client accuracy.

Data Compression: DC or pruning model updates (Tsuzuku et al.| (2018))) is a practical approach
to alleviate the connection between updates and private data. Zhu & Han|(2020) achieved the effect
of resisting DLG attacks by gradient information compresion and sparsification. However, this
method requires manual setting of the compression ratio, and requires a higher compression rate for
a better mitigation effect. To better address system heterogeneity and adapt to dynamic edge-client
changes within the federated learning framework, some methods propose adaptive control of local
updates for model compression. [Miao et al.[(2022) used compressive sensing and noise processing
with a privacy budget, reducing the computational cost of differential privacy for large models.
Similarly, | Xu et al.| (2023) optimized local updates based on client bandwidth and computational
resources. However, these methods focus more on system convergence rather than demonstrating
data compression’s effectiveness in privacy preservation.

3 PRELIMINARIES AND PROBLEM STATEMENT

3.1 MODEL UPDATE

In this section, we consider a distributed joint training framework based on gradient aggregation. To
better align with real-world scenarios, such as production federated learning, we opt to use model
updates(Ag,,) instead of individual gradients(Vg,,) as the information uploaded by clients, as de-
fined in Wang et al.[(2023).

For a given participating client C,,,n € N with its local dataset as D,,, multiple rounds of lo-
cal training are conducted on several mini-batches, with each epoch calculating an intermediate
gradient. However, in practical scenarios, the results after local computations differ from the aver-
age gradient obtained across multiple epochs and mini-batches. In addition to fixed learning rates,
hyperparameters such as momentum, weight decay, and learning rate schedules also need to be con-
sidered. Since the intermediate results of each epoch and mini-batch remain inaccessible to other
clients and the server, we focus on the model’s states at the beginning w; and the end of local train-
ing wiTt. The difference between these states is uploaded as model update information for server
aggregation Agitt = wit! — w! . The global model is then updated according to the aggregation

N |D,
result W't =W+ 5" ||D|‘Agff1.

3.2 THREAT MODEL

Since we assume the server is curious-but-honest, when clients transmit information to the server, it
can construct a threat model through privacy attacks.This could also result in local privacy vulnera-
bilities. Specifically, the following privacy threats may arise.

Membership Inference Attack: The effectiveness of this attack hinges on the attacker’s ability to
access the target model, leverage existing information to obtain intermediate computation results,
and use these to construct a binary classifier to determine whether a given sample belongs to the
training dataset. More broadly, attackers may estimate the parameters of the target model through
model updates. In the context of federated learning with gradient aggregation, after the client C,,
uploads the locally updated gradient Ag’™!, the server directly uses it to update the global model
W from the previous round. This allows the reconstruction of the user’s local model w’ ™ for
the current round, enabling an curious-but-honest server to extract privacy information from the
white-box model.

Formally, when the adversary is given a data point z = (z, y), aiming to determine whether z € S,
where S is the training dataset for the model A°. The result b = 0 if z belongs to S, and b = 1
otherwise. The adversary’s output on the data point is denoted as M. The adversary’s advantage
AdvM is expressed as the difference between M’s true and false positive rates:

Adv™ = Pr(M =0[b=0] — Pr[M = 0|b = 1] (1)

Model Inversion Attack: Privacy adversary can further utilize model update information such as
gradients to reconstruct training data. For instance, in image classification tasks, attackers can recon-
struct images pixel by pixel from gradients through optimization techniques(Zhu & Han|(2020)). In
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recent research, (Geiping et al.| (2020) proposed a model inversion attack method that approximates
gradients using model updates. This approach employs a matching mechanism similar to traditional
gradient matching, utilizing model updates and virtual increments to optimize target samples.

For the client Cj, with the training data (x, yx ), the model update increment obtained after ¢ global
rounds is denoted as Ag!. The attacker attempts to reconstruct the training data by exploiting the
increment. Specifically, the process begins by initializing a dummy data (x/ , y/ ), and then computing
the virtual gradient as model update Ag* accordingly. The difference between the virtual gradient
and the real gradient is then optimized, updating the dummy data (x/, y,) to approximate the actual
values based on the following objective:

a*,y* = argmin Dist (Agj, Ag”) ()
x/’y/

where x*,y* represent the attacker’s reconstruction results, and Dist (-) represents the distance
function of the vector, such as L2 distance.

4 PROPOSED SCHEME

4.1 BASIC IDEA

We begin by introducing the model structure which can be roughly divided into convolutional layers
for feature extraction and fully connected layers for classification. For simplicity, we consider an
input image and a deep neural network (DNN) structure with one convolutional layer, one filter, and
one fully connected layer as an example. We define the convolution layer and the fully connected
layer as follows:

X =T(cir(W,)R) (3a)

r=W;s; X (3b)

where R represents the raw input data to the convolution layer and W, denotes the convolution
kernels, X is the output of the convolution layer, which also serves as the input of the next fully

connected layer. cir refers to the circulant matrix and Wy is the linear weight matrix. And we
denote the intermediate output of layers as data representations 7.

Data Feature Fully Connected Network

(a) (b)

Figure 1: (a)Data representation independence for samples with different labels. (b)Data represen-
tations distribution with labeled 1 and 5 after dimensionality reduction.

We observe that in fully connected layers, variations in the distribution of input features X lead
to corresponding changes in the distribution of intermediate output parameters within the layer af-
ter forward computation. We name it as the phenomenon of data representation independence for
training data. As illustrated in Figure [Ta] taking the samples with labels 5 and 1 as an example,
the data representations 7 of different classes are differentiated after the forward computation due
to variations in the input features. Consequently, the computed data representations in the interme-
diate layer will also be relatively independent. This independence becomes even more pronounced
when considering individual samples or complex model structure, where the data representation
independence between samples is more apparent.

To verify that data from different classes correspond to distinct distributions of data representations,
we conducted a preliminary experiment. We selected 500 samples each with labels 1 and 5 from the
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Figure 2: Work-flow diagram of the FL framework applying the ME strategy: (1) Local training for
guard client; (2) Identify the location of parameters for private clients; (3) Set the replacement rules
in descending order; (4) Calculate the update ratio and perform the aggregation.

MNIST dataset and input them into the LeNet5 model to obtain the data representations before the
output layer. These representations were then visualized after dimensionality reduction, as shown
in Figure[Tb] The results clearly differentiate the data representations of the two classes, supporting
our hypothesis regarding the independence of data representations. For a given model, features of
different classes with distinct distribution cause the output data representations to occupy different
corresponding positions in the output neurons, which introduces certain privacy risks.

This observation inspires us to develop a strategy that utilizes obfuscated data representations to
reduce their independent performance and resist attackers, as illustrated in Figure 2] Specifically,
to protect the private client C'yy, our method first assesses the portion of the transmitted model up-
date containing sensitive information by analyzing the process from data representation to gradient
leakage and identifying the location of these parameters. These sensitive parameters of gradient are
then replaced with an unrelated model from client Cyy. To facilitate this, we introduce a guard model
F(Wy, Dyu.) which also acts as a participant in the FL scenario. The model is trained on the pub-
licly available auxiliary dataset D,,, as Dy with minimal privacy concerns, such as data sourced
from the Internet. The next private client receiving the model update will fine-tune it with local data
and calculate the proportion of model update relative to historical information to account for the
heterogeneity across different clients. The newly computed model update is then merged with the
guard model update, reducing the privacy risk associated with the original model update. We will
introduce the specific algorithm in detail in the following sections.

Our approach leverages the independence observation of data representation, introducing a interfer-
ence model between clients with different training data distributions, and those parameters can also
be regarded as a kind of noise information. This strategy aims to confuse the attacker’s inference to
protect privacy while minimizing the impact on model accuracy caused by replacement through FL.
aggregation.

4.2 DATA REPRESENTATION ENTANGLEMENT STRATEGY
4.2.1 DEFENSE STRATEGY

According to a previous research |Sun et al.| (2021]), effective gradient optimization attacks can be
launched using only the parameters of the fully connected layer. Consequently, our defense strategy
focuses on identifying specific locations that significantly influence reconstruction. By applying a
replacement algorithm, we aim to reduce the degree of data representation independence, thereby
mitigating the effectiveness of such attacks.

In a reconstruction attack, adversaries obtain gradient information Grad through backpropagation
and then generate a random noise sample X * to approximate the original input X using optimiza-
tion methods Invert(Grad). After applying our defense mechanism, the perturbed gradient is rep-
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Figure 3: Illustration of the defense by data representation from intermediate output.

resented as Grad* = Defend(Grad), and the result obtained by the attacker from this perturbed
gradient is X' = Invert(Grad*). To enhance privacy protection while minimizing costs and pre-
serving model accuracy, we focus on selecting the data representations r related to the gradient
values most crucial for safeguarding privacy. Consequently, our optimization objective, illustrated
in Fig. [3} is designed to maximize the distance between the original and reconstructed inputs, ex-
pressed as:

Defense Goal: maz|| X — X'||, 4)

Without loss of generality, we take the fully connected(FC) layer as an example to explore the rules
related to the structure of fully connected layer networks and gradient computation. Let X represent
the input to the linear layer, and denote the output of i;h layer as %, ¥ = X. The output of the
(i + 1);h layer can be expressed as r**1 = W . 7t where W' is the parameter matrix associated
with i;h layer.

To achieve the defense objectives, we approximate the overall neural network as the mapping: f :
X — r, and utilize the inverse function to construct a reverse mapping from r to X, thereby guiding
modifications to X through the calculation of .

In this process, we choose those data representations r that are more capable of influencing changes
in X, using them to guide the replacement of model updates Ag which adjacent to r as the core of
our replacement algorithm. As a result, even if attackers gain access to model update information,
it becomes difficult to associate it with privacy training data through optimization or computational
manner, thereby achieving the objective of privacy preserving. Subsequently, we make the following
assumptions and present an inverse function theorem on guiding our algorithm to defense based on
T.

Assumption 1 For f : © — y, while x € R, f(x) is continuous: Yxo € R, lim f(x) = f(zo).
Tr—rT0o

’

Assumption 2 For f : © — y, while x € R, f(x) is derivable: Yx € R,V f(z) = f (x) =
lig f@tAn)—f(@)
Az—0 Az '

Assumption 3 For f : © — y, there exists the inverse function, i.e. f~1 : y — x, and the variation
of y is always bounded: Ny, y , ||y — vy ||, < €.

Theorem 1 For feature extractor as the function f : X — r, based on Assumption|3| its inverse
function is f~1 = F : r — X. According to the conversion relationship, we have V f = (VF)~L.
X represents the raw input and r is the output vector of the middle layer. Our defense goal in Eq.
can be optimized as:

X —X =F(rg) — F(r'). (5)

In order to obtain an approximate solution, according to the Assumption |l{and [2] we perform the
Taylor expansion at g yields respectively,

FN(ro) = F(ro) = F(ro) + F (o) - (ro — 10) + .. (6)

SNy = BGY) = F(ro) + F (ro) - (' —70) + ... )
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Then we compute (6)-(7), and according to the trigonometric inequality transformation, we convert
the result into the following formula:

e o o T
1) = @0~ 1 o)+ 07 = 10l > I~ s ®

where r( represents the initial state after the forward calculation, f'(r() represents the partial deriva-
tive calculated at the point, and 7’ is the modified result. To maximize Eq. [8|and based on Assump-
tion [3} the problem transforms into identifying the final position of 7/ in a fine-grained manner, such
that

arg r}l&x”ﬁ\\ 9

4.2.2 ADAPTIVE REPLACEMENT RATIO

Given the heterogeneous nature of private clients, including variations in model parameter sizes, it
is necessary to set different replacement ratios for each client adaptively. To address this, we design
an adaptive factor that determines the replacement ratio for each client based on local and historical
information.

The client Cy, calculates the model update Ag}, for the current iteration and derives the model pa-
rameters based on historical model information from the previous iteration w},. Based on the ratio
Ag}. /w},, we can quantify the increment of the current model update relative to historical informa-

t
L:‘ﬂ’“ l1/N, which reflects the significant information captured during training and is
positively correlated with privacy sensitivity. For such model updates, we will assign a higher re-
placement ratio. The client Cj, then determines its adaptive replacement ratio using the modified
sigmoid function sigmoid(z) = H%’ rescaled as sigmoid x 0.4 — 0.3 to map the output from R

to a constrained range of (0,0.1) as follows:

tion as A = ||

1—3e 4

10(1 + e=4) +1=A) (o

pi =
where 5 € (0.1,0.9) is an adjustable hyperparameter designed to adapt the proposed replacement
algorithm to various datasets and applications, and /N denotes the size of the model parameters. The
optimal setting of /3 is verified through experiments. Fig. [2] shows the specific implementation of
applying the above algorithms to the FL framework.

5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENTAL SETUP

In this section, we conduct simulation experiments to verify the superiority of our proposed frame-
work in terms of training accuracy and its effectiveness against privacy attacks.

Datasets. We select two widely used datasets, MNIST and CIFAR-10, to evaluate the effectiveness
of our defense approach in real-world scenarios. The MNIST dataset is a benchmark for machine
learning tasks, containing 70,000 gray scale images of size 28 x 28. The CIFAR-10 dataset is
a widely recognized benchmark for image recognition tasks. It consists of 32 x 32 RGB images
across 10 classes, including animals and vehicles. We adopt the non-IID partitioning of the dataset,
consistent with our hypothesis that data held by different clients exhibit varying label distributions.
The dataset is divided into 10 disjoint parts, each allocated to one of the 10 clients in the FL scenario.
One partition is designated as the auxiliary dataset and used to train the guard client, ensuring that
its data distribution remains uncorrelated with the other private clients.

Hyperparameters configurations. We employ the LeNet-5 model architecture following [Zhu &
Han|(2020). For the MNIST dataset, the learning rate is set to 0.01, with 10 local epochs, 50 global
epochs, and a batch size of 256. For CIFAR-10, the learning rate is 0.001, with 20 local epochs,
50 global epochs, and a batch size of 64. The model is optimized using the SGD optimizer and
Cross-Entropy loss function.
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Privacy Attack. (1)Reconstruction Attack: For comparability, we follow the setup in the GS At-
tack(Geiping et al.|(2020)). During the privacy-preserving test phase, we employ a local batch size
of 1, which is the simplest and most effective configuration to reconstruct training samples from
the shared model updates. (2)Membership inference Attack: We employ the Boundary Attack(Li &
Zhang| (2021))), a decision-based inference method that does not require shadow models or datasets.
Sensitivity of the local models is assessed using 500 member samples from the training data and 500
non-member samples from external sources.

Evaluation Metrics. To validate the effectiveness of our proposed scheme, we aggregate local
model updates following our defense scheme to assess its impact on model accuracy. To evaluate
the scheme’s robustness against privacy attacks, we use Mean Square Error (MSE) and Peak Signal-
to-Noise Ratio (PSNR) to quantify the difference between the reconstructed image and the original
image—both metrics commonly used for reconstruction tasks. Additionally, we measure the AUC
of the attack accuracy for the membership classifier, illustrating the framework’s defense capability.

5.2 MODEL PERFORMANCE

5.2.1 COMPARISON WITH THE BASELINE

We first evaluate the effectiveness of our framework by training global models on the MNIST and
CIFAR-10 datasets, as shown in Fig. #a] The results indicate that although the convergence speed
of the proposed method is slightly reduced, it still achieves a high level of accuracy, comparable to
the baseline. As the adaptive factor decreases and the replacement ratio increases, the convergence
accuracy initially stabilizes at an optimal value but declines once the threshold is exceeded. Based
on empirical analysis, § = 0.7 is identified as a suitable hyperparameter for the MNIST scenario
and is adopted for comparison with other methods. And our method is also effective for the cifar10
dataset.

_________
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Accuracy
°
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Figure 4: Accuracy comparison on MNIST and CIFAR-10 datasets, respectively.

5.2.2 COMPARISON WITH THE STATE-OF-THE-ART

To demonstrate the superiority of our approach, we compare it with two state-of-the-art defense
methods. The method POGZ-FL proposed in |Zhu et al.| (2022) calculate the importance value of
each layer to reallocate the privacy budget. Miao et al.| (2022) propose a method called CA-FL
which combines compressive sensing with differential privacy.

We compare the proposed method with the aforementioned state-of-the-art defense methods on the
MNIST dataset, and the results are shown in Fig. [5a] The parameter o for POGZ-FL is set to 1.0,
while e for CA-FL is set to 5, with a compression ratio of 0.1, as recommended in their respective
papers for optimal accuracy. The adaptive value 3 for our method is set to 0.7.

From the results, we observe that although POGZ-FL exhibits a faster initial convergence compared
to our method, it lacks stability and fails to achieve final convergence. CA-FL, on the other hand, sig-
nificantly slows its convergence due to simultaneous gradient compression and adaptive differential
privacy operations. In contrast, while our proposed method shows a slightly slower convergence rate
compared to the baseline, it ultimately achieves accuracy comparable to the baseline, demonstrating
its superior practicality.
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Ground truth  Initial noise No defense Ours CA-FL POGZ-FL
. 2 2 & 2
[Scenario 1] F 4
MNIST Ty Sonrs
Label 2' \ \ MSE=0.0262 MSE=0.4277 MSE=0.1835 MSE=0.3339
\ \ PSNR=15.82 PSNR=3.69 PSNR=7.3628 PSNR=4.7632
[Scenario 2] q q Z _“
MNIST L :
Label '4' \ MSE=0.0035 MSE=0. 9835 MSE=0.5881 MSE=0.4481
\ \ PSNR=24.59 PSNR=1.02 PSNR=2.31 PSNR=3.49
[Scenario 3] ( (
CIFAR-10
Label 'airplane’' \ \ MSE=0.0110 MSE=4.4469 MSE=4.0600 MSE=3.3593
\ \ PSNR=19.5982 PSNR=-6.48 PSNR=-6.09 PSNR=-5.26
[Scenario 4] |
CIFAR-10
Label 'ship' \ \ MSE=0.0323 MSE=0.9296 MSE=0.3598 MSE=0. 2617
\ \ PSNR=14.91 PSNR=0.32 PSNR=4.44 PSNR=5.82

Figure 6: The effectiveness of various defense mechanisms against GS attack in different scenarios.

5.3 PRIVACY PRESERVING

5.3.1 DEFENSE FOR RECONSTRUCTION ATTACK

To evaluate the privacy-preserving effectiveness of the proposed method, we conduct GS attacks, a
more generalized and potent gradient inversion attack compared to the DLG(Zhu & Han| (2020)).
GS attacks utilize both the gradient and prior knowledge of the dataset, such as mean and variance,
for more accurate reconstruction. We compare the performance of our method against CA-FL and
POGZ-FL under GS attacks, as shown in Fig. |§l

The GS attack is applied to an untrained LeNet5 network with weights initialized from a uniform
distribution, using noisy samples as dummy data. To ensure experimental reliability, we conduct
five trials and analyze the best result.

Without any defense, the GS attack achieves nearly complete reconstruction, with an MSE below
0.05 and images closely resembling the ground truth.Our defense mitigates this by replacing the
target gradient with a guard gradient from randomly selected samples, yielding an MSE of 0.9835,
making the reconstructed image unrecognizable. We also test the CA-FL and POGZ-FL defense
methods, using their respective hyperparameters as outlined in [5.2.2} On the MNIST dataset, al-
though these methods can resist GS attacks, they still cause partial recognition of features, with
lower MSE values compared to our method. On the CIFAR-10 dataset, where the complexity of the
scenario increases, the attack’s reconstruction accuracy generally decreases, but our method contin-
ues to provide a higher MSE, indicating superior privacy protection.
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5.3.2 DEFENSE FOR MEMBERSHIP INFERENCE ATTACK

In this experiment, we implement the Boundary Attack which is a decision-based membership infer-
ence attack to assess the privacy-preserving effectiveness of various defense methods. Specifically,
we iteratively apply QEBA perturbations [Li et al.|(2020)) to each correctly inferred sample until the
model changed its decision, using the L2 distance of the perturbation as the criterion for determin-
ing membership. If the perturbation exceeds a predefined threshold, the sample is classified as a
member. The Area Under the Curve (AUC) value is then calculated to evaluate the effectiveness of
the attack.

For the attack, we randomly select a local model as the victim every five global iterations. The
attack’s effectiveness is evaluated across four different frameworks, with the results presented in
Fig[5b|

The results indicate that as global iteration rounds increase, the accuracy of the membership infer-
ence attack does not change significantly but increases slightly. This suggests that the federated
learning approach helps mitigate overfitting across different clients, though there remains room for
improvement. Specifically, the baseline method achieved an average attack AUC of 0.5453, while
POGZ-FL and CA-FL attained AUCs of 0.5235 and 0.5357, respectively. Our method achieved an
average AUC of 0.5245, representing a 4.0% reduction compared to the baseline method.

5.4 EFFICIENCY

To assess the efficiency of various defense methods, we measure the average training time of the
model under four conditions.This comparison highlights the communication and computation delays
introduced by each defense method in the federated learning scenario. By maintaining consistent
experimental parameters and hardware, we focus solely the impact of incorporating different defense
mechanisms on training time. The experimental results are shown in Fig.

With 50 global iterations, the method without defense takes approximately 1764 seconds, while our
defense method requires only 1885 seconds, reflecting a minimal 6.8% increase. In comparison,
the POGZ-FL method takes 2636 seconds, a 49.4% increase due to the computational overhead of
calculating differential privacy coefficients and adding noise. Although CA-FL aims to reduce noise
overhead through model compression, the added cost of compression and decompression raises
training time to 5232 seconds. Thus, our method demonstrates superior efficiency.

6 CONCLUSION

In this work, we present the observation that the data representations of a model’s intermediate
outputs are independent of one another. Building on this insight, we propose a replacement algo-
rithm that leverages data representations with varying distributions for entanglement, applying it to
federated learning scenarios. This approach ensures model accuracy while enhancing resistance to
privacy attacks. Specifically, we introduce the guard client whose updated information is used to
replace and fuse as the base with private client data before uploading to the server, thereby optimiz-
ing collaboration among clients within the federated learning framework. Furthermore, we provide
a theoretical analysis and discussion supporting the use of data representations for replacement. Fi-
nally, we conduct extensive experiments to validate the effectiveness of our method in both global
model accuracy and resisting attacks. The results demonstrate that our approach offers significant
improvements in terms of accuracy, privacy preserving, and efficiency compared to other widely-
used privacy-preserving techniques.
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A APPENDIX

A.1 DISCUSSION ON ADVERSARY BASED ON DATA REPRESENTATIONS

In the context of mini-batch training and the optimization of the stochastic gradient descent algo-
rithm, using a single training sample can lead to data representation independence in the model’s
intermediate computation results, which we believe is the root cause of privacy attacks.The feature
differences of data representations have been exploited in various privacy attacks.In reconstruction
attacks, [Zhu & Blaschko| (2021)) can calculate the original data input by leveraging data represen-
tations calculations when the model structure is known. In membership inference attacks, data
representations can also serve as effective features for constructing the attack classifiers.

Based on the concept of data representation independence and supporting research, it has been
demonstrated that an attacker can utilize recursive algorithms to infer the intermediate data repre-
sentations of an entire neural network when the gradient is known, thereby enabling a reconstruction
attack. Taking the example of the neural network with fully connected structures describes as:

z=Wafs—1(x) (11a)
fa—1(z) = 04-1 Wa-1fa—2 (2)), (11b)

while d denotes the d-th layer, o denotes the activation function and f;_; represents the model
structure before the d — 1 layer. According to the Eq[IT] we can calculate the gradients according to
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the following chain rule:

ol ol gy
aw, ~ azld (12a)
ol ol ,
WL ((Wf(a))di—1>fg—2 (12b)
o _ v ("N oo Moo P o
IWy_o = (W (( d(a)) 04-1)) ©04_3)fa—3 (12¢

We observe that the gradient of each layer has a repetitive format and is dependent on the output
of the previous layer f(x). It is possible to calculate the neuron outputs of each layer in reverse,
starting from the output z of the final layer. Specifically, when the gradient is known, the neuron
outputs of each layer can be computed in reverse, starting from the output z of the last layer until
the original input x. In this process, we found that due to the rules of chain computing, the output
results of the intermediate layer are directly related to the gradient values. For privacy attackers,
these key neuron outputs are critical, as they significantly impact the accuracy of the reconstructed
data and, consequently, the success of the final reconstruction. Therefore, modifying the gradient
at these critical points can effectively protect private data from optimization-based reconstruction
attacks.

Thus, by understanding the theory of data representation independence, we can identify specific
locations in the model that are vulnerable to privacy attacks. Our approach involves using a gra-
dient replacement algorithm to deliberately entangle data representations, thereby resisting privacy
attacks.
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