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Figure 1: WILDVISION-ARENA (WV-ARENA) supports multi-round multimodal chats with 20+
models, enabling the comparison of VLMs in real-world scenarios. We curate WILDVISION-
BENCH (WV-BENCH) by selecting 500 samples from 20k+ in-the-wild chats and 8k+ user ratings.
Automatic model scorings on WV-BENCH closely correlate with the Elo ratings on WV-ARENA.

Abstract

Recent breakthroughs in vision-language models (VLMs) emphasize the necessity
of benchmarking human preferences in real-world multimodal interactions. To
address this gap, we launched WILDVISION-ARENA (WV-ARENA), an online
platform that collects human preferences to evaluate VLMs. We curated WV-
BENCH by selecting 500 high-quality samples from 8,000 user submissions in
WV-ARENA. WV-BENCH uses GPT-4 as the judge to compare each VLM with
Claude-3-Sonnet, achieving a Spearman correlation of 0.94 with the WV-ARENA
Elo. This significantly outperforms other benchmarks like MMVet, MMMU, and
MMStar. Our comprehensive analysis of 20K real-world interactions reveals
important insights into the failure cases of top-performing VLMs. For example,
we find that although GPT-4V surpasses many other models like Reka-Flash,
Opus, and Yi-VL-Plus in simple visual recognition and reasoning tasks, it still
faces challenges with subtle contextual cues, spatial reasoning, visual imagination,
and expert domain knowledge. Additionally, current VLMs exhibit issues with
hallucinations and safety when intentionally provoked. We are releasing our chat
and feedback data to further advance research in the field of VLMs.

https://hf.co/spaces/WildVision/vision-arena


1 Introduction

Vision-language models (VLMs) [68, 82, 69, 49, 14, 113, 3, 5] have shown groundbreaking perfor-
mance across various applications, necessitating enhanced evaluation approaches [87, 24, 107, 106] to
keep up with their rapid advancements. Current evaluation benchmarks, however, are constrained by
simplicity [53, 102] and practicality [101, 50]. Meanwhile, evaluation metrics for vision and language
tasks are predominantly reference-based, focusing on exact matches or model-based scores [87, 7].
The success of the CLIP model [73] has enabled reference-free evaluation [24], reducing the need
for reference curation while maintaining alignment with human annotators. More recent evaluation
methods [56, 107, 35] leverage the instruction-following capability of LLMs and the expertise of
vision models [15, 91, 34], making the automatic evaluation of VLMs more fine-grained and inter-
pretable. Despite these advancements, a gap remains between these metrics and human preferences
when comparing a large number of models’ capabilities in real-world multimodal interactions.

In this paper, we introduce WILDVISION-ARENA and WILDVISION-BENCH to address the need for
tracking human preferences regarding models’ capabilities in the wild. Our WILDVISION-ARENA is
a chatbot-style [110, 12] platform that facilitates easy comparison among VLMs, utilizing the Elo
Rating system as the primary ranking metric. With the support of over 20 models (GPT-4o [69],
GPT-4V [68], Gemini-Pro [82], Gemini-1.5 [81], Reka [83], Claude-3 [2], LLaVA-NEXT [48],
etc), alongside a side-by-side chatting interface over images, we have crowdsourced over 20, 000
multi-round human-AI chat interactions, including over 8, 000 votes and fine-grained feedback. We
then sample diversified and safe data as our WILDVISION-BENCH and adapt AlpacalEval [44] to
visual context. Specifically, we use the latest released GPT-4o [69] as a judge model to vote between
each VLM and the reference model Claude-3-Sonnet [2]. The statistically estimated model scores on
WV-BENCH achieve a Spearman’s Correlation of 0.94 with Elo ratings in WILDVISION-ARENA.

Our comprehensive analysis of these in-the-wild chats identifies areas for improvement in recognizing
visual context, spatial reasoning and imagination, and expert domain knowledge. Additionally,
lower-performing VLMs struggle with discerning fine visual details in images, hindered by resolution
and contextual limitations. Across the board, these models also face challenges with hallucination
and safety concerns. Our main contributions can be summarized as:

• We develop WILDVISION-ARENA, an interactive evaluation platform that hosts over 20
VLMs and a live leaderboard reflecting crowdsourced user preferences on real-world chats.

• We curate WILDVISION-BENCH from WILDVISION-ARENA, a fast-evaluation benchmark
that closely aligned with human preferences at 0.94 Spearman’s Correlation.

• We comprehensively analyze 20, 000+ multimodal conversations and 8, 000+ votes, and
we will release this data to advance future research in VLMs.

Statistic Number

Total Votes 8,076
Anonymous 6,636
Non-anonymous 1,440
Left Vote 2,932
Right Vote 2,839
Tie Vote 979
Bad Vote 1,326

Days 102

Total Round 10,884
Avg Round 1.34
Avg Token Input 31.00
Avg Token Output 108.87

Table 1: Statistics of vot-
ings in WV-ARENA.
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Figure 4: Battle Count Heatmap (Left): the number of voted comparisons between models. Win
Fraction Heatmap (Right): the winning rate of Model A over Model B in voted comparisons.

2 WILDVISION-ARENA: Ranking VLMs with Human Preference

In this section, we introduce WILDVISION-ARENA and present statistics of in-the-wild chat data,
along with a deep analysis of human preferences that formulate our online VLMs leaderboard.

2.1 Overview Design of WILDVISION-ARENA

Users conduct multi-round chats over uploaded images, during which two models from the pool or
third-party APIs are sampled. Users vote for the better response, with the model’s identity revealed
afterward, and can provide reasons for their choices. Votes contribute to a live leaderboard, which is
updated every few hours to rank the models. Appendix A shows a screenshot of our user interface. In
WILDVISION-ARENA, we currently support 20+ VLMs as shown in the leaderboard on the right
part of Figure 1. The generation hyperparameters are set the same when comparing these models,
and users can change the temperature, top-p and max output tokens per their use cases.

2.2 Statistics of Chat Data with Votings

Each chat data point that has human voting is classified into a category-subcategory and domain-
subdomain using GPT-4v . The prompt template details are provided in Appendix E.1. Key statistics
of user voting in WILDVISION-ARENA are presented in Table 1. The number of tokens is estimated
with tiktoken tokenizer corresponding to model ‘gpt-3.5-turbo’. Figure 2 and Figure 3 visualize the
distribution of these voting data in terms of question categories and image domains, respectively. In
addition to the three dominant question categories (Recognition, Descriptive, Analytical), the
Interactive, Instructive, and Creative categories are also receiving increasing interest. Users
are mostly interested in chat about images tagged with the Entertainment domain (most of which are
related to games and movies/TV shows), as well as the Urban, Expert, and People domains.

2.3 Crowdsourced Human Preference on VLMs in the Wild

Pairwise Comparison We visualize the heatmap of battle counts and win fractions of seven models
out of the 20+ models supported in the WILDVISION-ARENA in Figure 4. The battle count heatmap
highlights the frequency of direct comparisons, with models like GPT-4V vs. Gemini-Pro (252
voted battles) being tested more rigorously. GPT-4o consistently outperforms the others by a large
margin, winning 77% of its battles against the second-best model, GPT-4V, which ranks as the second
best. Reka-Flash follows closely behind GPT-4V, winning 42% of its battles, while other models
demonstrate lower winning rates. Among the open-source models, LLaVA-NEXT leads, though there
remains a significant gap between it and both GPT-4V and GPT-4o.

Expert Agreement with User Voting To assess the quality of crowdsourced user voting data on
our platform, we evaluated inter-annotator agreement by comparing the annotations of our experts
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Table 2: WILDVISION-ARENA Leaderboard. We show the full elo score and within three question cat-
egories (Analytical, Descriptive, Recognition) and three image domains (Entertainment,
Objects, Expert) of 22 models with a time cutoff at May 29, 2024. Best Second Best Best among
proprietary models Best among open-source models.

Models Size Elo Battles MMMU Question Category Image Domain
Analyt. Descri. Recogn. Entert. Objects Expert

GPT-4O [69] − 1235 434 62.8 1290 1250 1236 1362 1203 1293
GPT-4-Vision [68] − 1132 2288 56.8 1154 1169 1099 1177 1109 1178
Reka-Flash [83] − 1107 513 56.3 1093 1141 1067 1069 1101 1191
Claude-3-OPUS [2] − 1100 908 59.4 1117 1096 1092 1111 1127 1128
Gemini-Pro-Vision [82] − 1061 2229 47.9 1099 1041 1090 1088 1077 1041
Yi-VL-PLUS [1] − 1061 283 − 1084 1040 1078 1001 1119 1101
LLaVA-NEXT [48] 34B 1059 1826 51.1 1068 1104 1021 1074 1015 1052
Gemini-1.5-Flash [81] − 1055 132 − 1090 1018 1085 1190 990 1127
Claude-3-Sonnet [2] − 1044 496 53.1 1063 1056 1041 1033 1023 1119
CogVLM-Chat-HF [89] 13B 1016 1024 32.1 950 947 1006 955 930 950
Claude-3-Haiku [2] − 1002 419 50.2 964 1008 996 1033 1014 1005
LLaVA-NEXT [48] 7B 992 1367 35.1 963 1032 977 992 1023 1001
DeepSeek-VL [51] 7B 979 646 36.6 988 984 953 956 1026 962
Idefics2 [37] 8B 965 100 36.6 818 1003 1011 909 1071 1020
LLaVA-NEXT [48] 13B 956 201 35.9 965 974 1006 975 971 987
Qwen-VL-Chat [5] 10B 930 1328 35.9 898 937 940 923 942 902
Bunny-V1 [23] 3B 921 389 38.2 897 922 878 884 823 823
MiniCPM-V [26] 3B 910 1349 34.7 895 911 925 888 890 840
LLaVA-v1.5 [47] 13B 891 299 36.4 952 838 920 887 827 914
Tiny-LLaVA-v1-HF [111] 3B 879 288 33.1 901 828 821 808 853 894
InstructBLIP [14] 7B 862 807 30.6 834 856 891 840 902 763
UFORM-Gen2-Qwen [86] 500M 827 452 − 911 785 853 768 937 830

with those from users of the WILDVISION-ARENA. This analysis was conducted on a set of 100
samples. Our findings indicate a substantial level of agreement with the two experts, with an average
percentage agreement of 72.5%. Furthermore, the calculated Cohen’s Kappa coefficient was 0.59,
suggesting a moderate to high degree of reliability in the annotations across different annotators.

2.4 Model Ranking with Elo Rating in WILDVISION-ARENA

Following Chatbot Arena [12], we adapt Elo Rating System [17] to provide a dynamic evaluation
platform for ranking VLMs by statistical modeling based on our collected direct pairwise comparisons.
We briefly introduce the Online Elo Rating and the statistical estimation method.

Online Elo Rating Elo rating focuses on modeling the probability of player i winning against
player j given their existing ratings Ri and Rj respectively, where i, j ∈ N . We define a binary
outcome Yij for each comparison between player i and player j, where Yij = 1 if player i wins
against player j, and Yij = 0 otherwise. Then the logistic probability is formulated as:

P (Yij = 1) =
1

1 + 10(Rj−Ri)/α
, (1)

where α = 400 for Elo rating computation. After a match, each player’s rating is updated by the
formula: R′

i = Ri +K × (S(i|j)− E(i|j)), where S(i|j) is the actual match outcome (1 for a win,
0.5 for a tie, and 0 for a loss), and E(i|j) = P (Yij = 1). The higher-rated player will win fewer
points if they win but lose more if they lose, while the lower-rated player will experience the opposite.
The computation of the online Elo rating is correlated with the comparison order. Therefore, we
follow Chatbot Arena to adopt the Bradley–Terry model [9] for a stable statistical estimation.

Statistical Estimation The Bradley–Terry model [9] estimates the Elo rating using a logistic
regression model and maximum likelihood estimation (MLE). Let’s say there are N players, and we
have a series of pairwise comparisons, where Wij is the number of times player i wins against player
j. The log-likelihood function for all pairwise comparisons can be written as:

L(R) =
∑

i,j∈N,i̸=j

(WijYij logP (Yij = 1)) , (2)
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Figure 5: Elo ratings of six models across question categories (Top) and image domains (Bottom).

where R = {R1, ..., RN} is the Elo rating variable of each player. Since this modeling does not
consider ties, in practice, we duplicate all the votes and force half of the tie votes to be counted as left
model i winning (Yij = 1) and the other half as right model j winning (Yij = 0).

2.5 WILDVISION-ARENA Leaderboard

We report the leaderboard results in Table 2, including the full Elo ratings and the total number
of battles for each model, with a time cutoff on May 29, 2024. Additionally, we provide the Elo
ratings for three main question categories (Analytical, Descriptive, Recognition) and three
main image domains (Entertainment, Natural, Expert) to better understand the specialties of
each model. GPT-4o quickly dominates the leaderboard after its release, surpassing the previous state-
of-the-art GPT-4V by a significant margin, followed by Reka-Flash, Claude-3-OPUS. Yi-VL-PLUS
and LLaVA-NEXT-34B achieve the same rank, reflecting that both models are based on the Yi [1].
Among open-source models, LLaVA-NEXT-34B ranks first, even surpassing Gemini-1.5-Flash and
Claude-3-Sonnet, Claude-3-Haiku, indicating a strong baseline for research purposes. To compare
models under each question category and image domain, we present the top six models ranked in
the WILDVISION-ARENA leaderboard in terms of Elo ratings for each question category and image
domain in Figure 5. GPT-4o consistently outperforms all other models except for the images tagged
with Natural, where varying specialties are more commonly observed among the other models.

3 WILDVISION-BENCH: In-the-Wild Testbed for VLMs

Recent VLMs reveal a closing gap with GPT-4V on various benchmarks[101, 102], but this improve-
ment is not always reflected in users’ daily experiences. This discrepancy arises from current models’
limited generalizability compared to proprietary ones, which fixed benchmarks fail to capture. To
address this, we propose creating WILDVISION-BENCH, a challenging and natural benchmark for
VLMs that reflects real-world human use cases, with models’ rankings aligning closely with the
WILDVISION-ARENA leaderboard contributed by diverse crowdsourced user votes.
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Table 3: VLMs’ responses on two cases from WILDVISION-BENCH expert annotated samples. The
example #61 is a hard case that all models fall short at.

Image #44 in WildVision Bench Image #61 in WildVision Bench

Text Prompt: Answer shortly what is he doing? And
what do we call him?

Text Prompt: Convert the first row of this sudoku
matrix into the text format, each cell separated by a
space. Use 0 to represent empty cells.

GPT-4V: He is performing a breakdance move. We
call him a breakdancer or b-boy.

GPT-4V: 6 8 4 2 1 0 0 0 0

LLaVA-v1.6-34B: He is performing a dance move that
involves spinning or flipping while balancing on one
hand ..., he may be referred to as a dancer or acrobat.

LLaVA-v1.6-34B: 6 8 4 0 2 1 0 7 3 4 0 6

Gemini Pro Vision: He is breakdancing. He is called
a b-boy or breaker.

Gemini Pro Vision: 6 8 4 2 1 9 8 7 7

3.1 Data Curation Pipeline

Starting with in-the-wild multimodal conversation data from WILDVISION-ARENA’s users, we apply
the NSFW detector [36] on the images to filter out unsafe content. We then perform deduplication
on the images and apply diversity sampling to formulate a public set of 500 data samples for
WILDVISION-BENCH. Our experts manually annotate 50 samples as a preview of a hidden set, which
will be updated dynamically to avoid contamination. We showcase the model performance on two
cases from expert annotations in Table 3.

3.2 Automatic Evaluation on WILDVISION-BENCH

Left Vote Right Vote Tie Vote
GPT-4V Vote
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Metric vs Human GPT-4v

4-way 3-way Binary

F1 Score (Macro) 0.4245 0.5143 0.7792
F1 Score (Micro) 0.5747 0.5842 0.7796
F1 Score (Weighted) 0.5407 0.5536 0.7798
Cohen’s Kappa Score 0.3404 0.3442 0.5585
Pearson Correlation 0.2906 0.2880 0.5587

Figure 6: Left: GPT-4V vs. Arena Human Voting. Right: Agreement; 4-way: left/right/tie/bad vote.
3-way: left/right/other. Binary: left/right vote

VLMs as a Local Evaluator Previous work [107, 35] shows alignment between GPT-4V and
humans when evaluating the performance of VLMs. We further validate the agreement of GPT-4V
with crowdsourced human preferences in WILDVISION-ARENA to ensure its efficacy in the wild.
Specifically, we feed a pair of multimodal conversations along with the votes into GPT-4V to select
among four choices: 1) left/right vote: the left/right model response is better, 2) tie/bad vote: both
models are equally good/bad. In Appendix E.3, we provide the detailed prompt template for GPT-4V.
We show the GPT-4V vs Arena Human alignment in Figure 6. We observe that GPT-4V has relatively
low agreement with humans on tie votes but shows high agreement with humans when both models
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Table 4: Estimated model scores of VLMs on WILDVISION-BENCHtest split of 500 samples.
Model Score 95% CI Win Rate Reward Much Better Better Tie Worse Much Worse Avg Tokens
GPT-4o [69] 89.41 (−1.7, 2.0) 80.6% 56.4 255.0 148.0 14.0 72.0 11.0 157
GPT-4-Vision [68] 80.01 (−1.9, 2.8) 71.8% 39.4 182.0 177.0 22.0 91.0 28.0 140
Reka-Flash [83] 64.79 (−2.9, 3.0) 58.8% 18.9 135.0 159.0 28.0 116.0 62.0 181
Claude-3-Opus [2] 62.15 (−2.8, 3.4) 53.0% 13.5 103.0 162.0 48.0 141.0 46.0 120
Yi-VL-PLUS [1] 55.09 (−2.9, 3.0) 52.8% 7.2 98.0 166.0 29.0 124.0 83.0 150
LLaVA-NEXT-34B [48] 51.91 (−3.1, 2.4) 49.2% 2.5 90.0 156.0 26.0 145.0 83.0 165
Claude-3-Sonnet [2] 50.00 − − − − − − − − 120
Claude-3-Haiku [2] 37.70 (−3.2, 4.2) 30.6% −16.5 54.0 99.0 47.0 228.0 72.0 97
Gemini-Pro-Vision [82] 35.45 (−2.6, 3.2) 32.6% −21.0 80.0 83.0 27.0 167.0 143.0 66
LLaVA-NEXT-13B [48] 33.69 (−3.8, 2.7) 33.8% −21.4 62.0 107.0 25.0 167.0 139.0 138
DeepSeek-VL-7B [51] 33.48 (−2.2, 3.0) 35.6% −21.2 59.0 119.0 17.0 161.0 144.0 119
CogVLM-Chat-HF [89] 31.88 (−2.7, 2.4) 30.6% −26.4 75.0 78.0 15.0 172.0 160.0 63
LLaVA-NEXT-7B [48] 26.15 (−2.7, 2.3) 27.0% −31.4 45.0 90.0 36.0 164.0 165.0 139
Idefics2 [37] 23.71 (−2.4, 2.5) 26.4% −35.8 44.0 88.0 19.0 164.0 185.0 128
Qwen-VL-Chat [5] 17.87 (−2.6, 2.2) 19.6% −47.9 42.0 56.0 15.0 155.0 232.0 70
LLaVA-v1.5-13B [47] 14.15 (−2.2, 2.2) 16.8% −52.5 28.0 56.0 19.0 157.0 240.0 87
Bunny-3B [23] 12.70 (−1.8, 1.9) 16.6% −54.4 23.0 60.0 10.0 164.0 243.0 76
MiniCPM-V [26] 11.66 (−1.8, 2.1) 13.6% −57.5 25.0 43.0 16.0 164.0 252.0 89
Tiny-LLaVA [111] 8.01 (−1.4, 1.4) 11.0% −66.2 16.0 39.0 15.0 127.0 303.0 74
UFORM-Gen2-Qwen [86] 7.55 (−1.6, 1.1) 10.8% −68.5 16.0 38.0 11.0 115.0 320.0 92
InstructBLIP-7B [14] 5.54 (−1.3, 1.5) 7.8% −72.5 11.0 28.0 15.0 117.0 329.0 47

exhibit distinguishable differences. However, predicting when both models are bad is challenging as
GPT-4V sometimes falls short in these examples as well.

WILDVISION-BENCH Alignment with Human Preferences in WILDVISION-ARENA Inspired
by Alpaca Eval [16], we adopt a similar approach to rank VLMs on our WILDVISION-BENCH
automatically. Specifically, we use GPT-4o as the judgment model and Claude-3-Sonnet as our
reference model. We compare each model’s answers on the WILDVISION-BENCH public set with
Claude-3-Sonnet and then use GPT-4o, which shows better alignment with humans in our cases,
to give a vote. The template in Table E.3 is used for the prompt of the judge, where 5 levels
of comparison results are defined, which are "Better+", "Better", "Tie", "Worse", and "Worse+"
respectively. We report the score results of these models in Table 4. This achieves a 0.94 Spearman
correlation with the WILDVISION-ARENA leaderboard.
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Figure 7: WILDVISION-BENCH achieves the high-
est correlation with WILDVISION-ARENA, with a
Spearman’s correlation of 0.94.

Benchmark Correlation Heatmap We visu-
alize the Spearman correlation heatmap among
various multimodal benchmarks in Figure 7.
The MMBench-series [50] (CCBench, MM-
Bench EN, MMBench CN) considers fine-
grained perception and reasoning tasks in mul-
tiple choice questions. MMVet [101] evalu-
ates integrated capabilities in visual question an-
swering. MMStar [10] alleviates misjudgment
issues with high-quality multiple choice ques-
tions. HallucionBench [22] focus on investigat-
ing hallucination issues, while MMMU [102]
and MathVista [53] focus on college-level sub-
ject knowledge and mathematical reasoning in
visual contexts, respectively. WildVision Elo
represents the arena leaderboard, reflecting hu-
man preferences using Elo ratings from pair-
wise comparisons. WildVision Bench represents
ranking model using estimated model score on
our WILDVISION-BENCH. This achieves the
highest correlation with WildVision Elo, indicat-
ing its crucial role in simulating human preferences on these VLMs in the real world. The runner-up
in alignment with human preferences is MMVet, followed by MMMU and MMStar.
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Table 5: Failure cases of GPT-4V and Gemini-Pro-Vision sampled from WILDVISION-ARENA.

Image Image

Text Prompt: What operating system is this? Text Prompt: What is the length of the object shown
in the image.

GPT-4V: The image shows a screenshot of Windows
3.x, which is a series of graphical operating environ-
ments produced by Microsoft for use on personal com-
puters, prior to the Windows 95 operating system...

Gemini-Pro-Vision: The diameter of the bolt is 7.92
mm.

4 Analysis

In-the-wild Multimodal Chat In contrast to public benchmark, in-the-wild multimodal conver-
sations involve images and instructions from a diverse range of sources and receive vote data from
a varied group of users. This better helps us understand how current VLMs can benefit real-world
scenarios and reveal improvement directions for researchers in the field. In Appendix B, we present
more cases under each image domain and question category. We will release both multimodal chat
and crowdsourced voting data for future research.

Failure Cases In Table 5, we present two distinct failure instances that are documented in the
WILDVISION-ARENA platform. This analysis reveals that GPT-4V’s limitations primarily stem from
insufficient background knowledge, whereas Gemini-Pro-Vision often fails to discern and process
subtle details crucial for deriving correct answers. Additional details on these failure cases are
provided in Appendix Our categorization of common failures includes six types: Visual Recognition,
Visual Reasoning, Spatial Imagination, Contextual Understanding, Expert Domain Knowledge,
Hallucination, and Safety. Although not all failure cases can be included in this paper, we plan to
periodically release additional cases on our live platform to aid ongoing research and development.

Model Comparison on WILDVISION-BENCH Table 3 compares the responses of GPT-4V,
LLaVA-NEXT-34B, and Gemini-Pro-Vision on a validation sample from WILDVISION-BENCH.
GPT-4V generally outperforms the other models, confirming expectations of its superior capabilities.
Nevertheless, all models occasionally fail to deliver correct responses, notably in scenarios requiring
compositional reasoning, regardless of the simplicity of the text or the image involved. We also
observe that recognizing and interpreting subtle visual details within images is still challenging for
less capable models.

Broader Impact For the first version of data release, we plan to release over 20,000 crowdsourced
multi-turn conversation data and more than 8,000 human votings with reasons, providing a valuable
resource for understanding human preferences in VLMs interactions and developing models that
align more closely with human standards in real-world scenarios. We will also present a live
leaderboard together with useful failure case analysis to keep track of recent advancements in
this field. Additionally, by open-sourcing the WILDVISION-ARENA code, we enable researchers
and developers to adapt our methods to other domains. We will also support fast evaluation of
our WILDVISION-BENCH for quick and human-aligned evaluation, which aligns with the human
preferences in VLMs in real-world scenarios.
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Modality, Resolution, Long Context, Resource-Efficent Many work have extended vision-
language models (VLMs) beyond image-text modalities, including video [105, 57, 109], audio [13],
and even applied to embodied agent [65]. Future work may consider improving all-in-one models [63,
92, 82, 112, 19] by discovering better methods to integrate these modality data. Recent works have
enabled high-resolution [48, 96] and text reading [108, 25] capabilities in VLMs, although many
failure cases are still induced by low resolution or poor OCR capability. Other work advances
multi-image and long-context capabilities in VLMs [61, 37, 29, 79, 54]. We expect future research to
discover the best mechanisms for balancing compact and effective approaches to convey multimodal
information, such as recent progress of text representation in pixel space [75, 18, 55]. This is essential
to closing the gap between open-source multimodal agents [99, 104] and proprietary ones [97, 69].
Although many works [26, 111] have made VLMs more compact, their performance is still not
satisfying. Future work may further improve the performance of smaller models with less training
data and higher throughput inference.

World Knowledge and Safety in VLMs The challenge of embedding extensive world knowledge
within VLMs is significant, particularly given their current limitations in understanding physical
principles and interacting with real-world environments. These models’ ability to dynamically
expand their knowledge base through activities like browsing the internet, reading books, or watching
videos is an exciting potential advancement. Key concerns in LLMs include security [94, 64, 90, 98],
privacy [31, 38], and the propagation of truthfulness [30, 77, 45] and prevention of misinformation [80,
72, 103]. For VLMs, they face unique safety challenges: 1) incorrect alignment of multimodal data
can lead to harmful outputs, 2) images may contain sensitive information, necessitating careful
handling, and 3) VLMs are vulnerable to attacks manipulating both text and images.

5 Related Work

Live Benchmarking for vision-language models Vision-and-language pre-training starts from
models [42, 43] adapting objectives in BERT [33], to models [74] adopting contrastive learning, and
to unified frameworks [52, 88, 41, 40] without task-specific head. With recent advancements of Large
Language Models [67, 20, 4, 84, 85], their multi-modal counterparts [68, 82, 14, 113, 49, 47, 5, 28, 37]
are dominating vision and language tasks. Beyond previous task-specific caption [11, 78], visual
question answer [62, 59, 27, 21, 60], grounding [46, 100, 66, 58, 71], more benchmarks [101, 50,
39, 32] are proposed to capture VLMs capabilities. When building such benchmarks, there is an
urge need to consider alleviating data contamination [76, 6] during eval, assuring robustness [55] and
difficulty [70], and incorporating real-world scenarios [8, 93]. We build WILDVISION-ARENA to
support diversified, difficult, in-the-wild, live benchmarking [12, 95] of VLMs.

Human-Aligned Evaluation for vision-language models Evaluation for open-ended vision and
language tasks [8, 93, 70] are usually challenging, and recent techniques improve human alignment by
mapping free-form predictions to pre-defined choices [50], using larger models as the evaluator [56,
107]. In the domain of evaluating LLMs, a certain approaches [110, 16] prove their effectiveness in
aligning with real-world annotators on the Chatbot Arena [12]. This inspires our efforts in curating in-
the-wild small-scale WILDVISION-BENCH, that can support fast evaluation by pair-wise comparison
with reference model (such as Claude-3-Sonnet [2]), and achieve alignment with crowdsourced
human rators on WILDVISION-ARENA.

6 Conclusion

We first introduce WILDVISION-ARENA, a dynamic evaluation platform for comparing vision-
language models (VLMs) in the wild. We conduct comparative insights across over 20 models by
utilizing an extensive dataset of 20,000+ multimodal conversations and 8,000+ votes, allowing for
continuous refinement of VLMs performance. From these in-the-wild chats, we then sample safe and
diversified data for WILDVISION-BENCH and apply automatic evaluation that closely aligns with
crowdsourced human preferences from WILDVISION-ARENA. Our comprehensive analysis on these
in-the-wild chats indicates future directions for advancing VLMs.
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A User Interface

In Figure 8, we show a screenshot of the user interface of our WILDVISION-ARENA, which presents
an interactive environment for evaluating multimodal large language models. This environment
allows users to input questions and compare responses from multiple models simultaneously. Each
model’s answer is displayed side-by-side, enabling a straightforward comparison of their performance
and capabilities based on user queries related to specific images or tasks. The interface also facilitates
easy selection and voting to decide which model’s response fits the user’s criteria best, enhancing the
user’s ability to judge and refine the models’ outputs effectively.

Figure 8: User Interface of WILDVISION-ARENA.
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B Question Category and Image Domain

In Table 6- 8, we showcase example data under each of the image domain and question category from
WILDVISION-ARENA’s users.

Table 6: Example input data in WILDVISION-ARENA tagged with [Image Domain-Subdomain]
and [ Question Category-Subcategory].

Image [Entertainment-Movies/TV Shows] Image [Natural-Plants]

[Descriptive-Movies/TV Shows] Text Prompt:
What are the two giraffe characters on this movie poster
doing?

[Analytical-Problem Solving] Text Prompt:
How likely is it to snow after this picture was taken?
What would change with this type of tree before it’s
likely to snow?

Image [Expert-Business] Image [Urban-Infrastructure]

[Analytical-Data Analysis] Text Prompt:
Which of the companies featured in the dashboard
are headquartered outside the US?

[Recognition-Text] Text Prompt: Can you tell
me the potential risks and the unreasonale parts in the
image?
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Table 7: Example input data in WILDVISION-ARENA tagged with [Image Domain-Subdomain]
and [ Question Category-Subcategory].

Image [Entertainment-Comics] Image [People-Portraits]

[Descriptive-Scene Description] Text
Prompt: Whos’s in the sky?

[Creative-Media Post] Text Prompt: write a so-
cial media post with the provided image, saying that I
am ready for the new challange.

Image [Urban-Buildings] Image [Expert-Science]

[Recognition-Location] Text Prompt: where is
this?

[Analytical-Safety Procedures] Text
Prompt: Can you tell me the potential risks
and the unreasonale parts in the image?

Image [Natural-Landscapes] Image [Objects-Household Tools]

[Recognition-Location] Text Prompt: where
was this photo taken?

[Descriptive-Object Description] Text
Prompt: describe the scene and objects
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Table 8: Example input data in WILDVISION-ARENA tagged with [Image Domain-Subdomain]
and [ Question Category-Subcategory].

Image [Entertainment-Web and Mobile Apps
Screenshots]

Image [Event-Sports]

[Interactive-Web Navigation] Text Prompt: I
need to download flyer, you will be given screenshot
from browser with elements marked with number. give
next action to take on web page to download the fly-
ersngive me response in below format example 1 ac-
tion:[click,scroll,wait], box:1 format action:, box:

[Descriptive-Scene Description] Text
Prompt: this is a football match , every player has
an identifier , describe every player action (example :
player #501 is running)

Image [Urban-Infrastructure] Image [Expert-Science]

[Interactive-Recommendations] Text Prompt:
Which section’s ticket would you recommend I pur-
chase?

[Interactive-Code Generation] Text Prompt:
Give me Latex code to create this diagram

Image [Expert-Health and Medcine] Image [Entertainment-Web and Mobile Apps
Screenshots]

[Recognition-Object] Text Prompt: what type
of tumor is this?

[Analytical-Critical Reviews] Text Prompt:
Review each screenshot carefully, focusing on different
aspects of usability...
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C Analysis of Failure Cases

We observe some common failure patterns of VLMs in the wild from WILDVISION-ARENA chat data.
In Tables 9- 13, we present specific failure cases. Based on the types of errors, we have condensed
six categories, detailed in the following paragraphs.

Visual Recognition Failures in this category involve several types of recognition challenges.
Complex text, such as artistic Chinese characters (Error #5 in Table 10), and small details, such as
the text on a shop sign in a restaurant scene (Error #3 in Table 9), often elude accurate detection.
Errors also occur with small text in screenshots (Error #18 in Table 13), recognizing objects against
novel backgrounds (Error #9 in Table 11), and identifying new objects within known contexts, like
a helmet next to a motorcycle (Error #11 in Table 11). Failures in interpreting charts (Error #4 in
Table 9) and identifying reflections (Error #20 in Table 13) are also noted.

Visual Reasoning This category covers the ability to discern visual differences and reason through
visual data. Errors include overlooking changes in clothes of the character (Error #6 in Table 10),
strategizing in chess (Error #1 in Table 9), and reading analog clocks (Error #16 in Table 11).

Spatial Imagination Challenges in this area involve imagining the outcomes of spatial transforma-
tions. Failures are evident in cube folding tasks (Error #10 in Table 11) and visual riddles involving
the folding of objects like magazines (Error #12 in Table 11).

Contextual Understanding Errors in this category relate to recognizing and understanding contexts
specific to certain domains, such as movies (Error #7 in Table 10) and video games (Error #8 in
Table 10). Failures also include responding inappropriately to marked images (Error #17 in Table 13).

Expert Domain Knowledge This involves specialized knowledge areas where VLMs fail to provide
accurate information or analysis, such as verifying architectural compliance (Error #2 in Table 9) and
analyzing programming code details (Error #15 in Table 11).

Hallucination Errors of hallucination occur when models generate incorrect or misleading content
based on subtle cues or nonexistent details, such as fictitious characters (Error #13 in Table 12) or
obscure brand names (Error #18 in Table 13).

Safety Issues in this category are critical as they involve handling harmful, biased, or inappropriate
content, and dealing with NSFW images in ways that either excessively censor or insufficiently filter
content. These images are not presented and are filtered out in benchmark curation.
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Table 9: Failure Cases.

Image Error #1 Image Error #2

Text Prompt: What should I play in this position? Text Prompt: Based on the architecture plans is this
compliant in the Ontario building code

GPT-4V: This chess position is unconventional and hu-
morous because it features a board filled with knights
(horses) except for a single queen. In a standard game
of chess, this situation would not occur, as each player
starts with just two knights. In this specific position,
there’s not much strategy to discuss because the game
doesn’t reflect an actual playable scenario. However, if
we want to engage with this as a fun exercise in imagi-
nation, you could consider moving one of the knights
that isn’t pinned or creating a threat to the queen. For
example, you could move one of the knights on the
third rank to attack the queen, such as Nc3-d5 or Ne3-
c4. Remember, this is just a playful scenario and not
representative of a legitimate chess position. In a real
game, the best move would depend on a much broader
context of the board and the strategic positions of all
the pieces, not just an army of knights.

GPT-4V: I’m sorry, but as an AI, I do not have the
capacity to verify the compliance of architectural plans
with specific building codes. Building code compli-
ance typically involves a wide range of considerations,
including but not limited to accessibility, fire safety,
structural integrity, and mechanical systems. Profes-
sional architects and engineers, often alongside local
code enforcement officials, ensure that designs and con-
struction meet the appropriate codes and regulations.
To determine compliance with the Ontario Building
Code, the plans would need to be reviewed by a cer-
tified professional who has access to and understands
the local regulations and requirements. They would
check if the design meets all necessary stipulations for
things such as room sizes, egress requirements, bath-
room accessibility, fire ratings, and many other details.
You should consult with a licensed Ontario architect or
a building code consultant for an official assessment of
compliance.

Image Error #3 Image Error #4

Text Prompt: What food will these people have very
soon?

Text Prompt: Based on this chart, what is the MOHS
hardness of Marble?

LLaVA-NEXT-34B: Based on the image, the peo-
ple are lined up outside a building with a sign that
reads "Salsa’s Authentic Mexican Restaurant." It seems
likely that they will be having Mexican food very soon,
which could include items such as tacos, burritos, en-
chiladas, chiles rellenos, guacamole, and other similar
dishes that are typically served at Mexican restaurants.
The specific menu items will depend on the restaurant’s
offerings and the preferences of the customers.

LLaVA-NEXT-34B: The MOHS hardness of Marble,
as indicated on the chart, is 3.
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Table 10: Failure Cases.

Image Error #5 Image Error #6

Text Prompt: 图片中是什么字 Text Prompt: 这张图里右侧的照片和左侧相比有
什么变化

GPT-4V:图片中的字体设计巧妙地融合了艺术与
文字，呈现出既像文字又像艺术作品的效果。这
个特殊的设计使得文字的具体含义不太直观，没
有提供清晰的线索来解释这些字符的标准解读。
如果你有更多关于这些字的背景信息或上下文，
我可以试图进行更多的解释。不过，从图像中直
接解读标准文本是非常困难的。

Gemini-Pro-Vision: 右侧的照片中，人物的脸部
表情更加丰富，并且背景中添加了春节的元素，
使画面更具喜庆的氛围。

Image Error #7 Image Error #8

Text Prompt: which movie is this picture from? what
is it about?

Text Prompt: do u know which game i am playing?

LLaVA-NEXT-34B: This image appears to be from
the movie T̈he Girl(̈2012), which is a psychological
thriller film directed by David Riker and starring Abbie
Cornish and Caleb Landry Jones. The film is about a
young woman who is hired to care for a girl living in a
remote Texas farmhouse, but soon discovers that the
girl is not what she seems. The story revolves around
themes of isolation, identity, and the consequences of
one’s actions.

LLaVA-NEXT-34B: You are playing T̈he Legend of
Zelda: Breath of the Wild,ẅhich is an action-adventure
game developed and published by Nintendo for the Wii
U and Nintendo Switch consoles. The game is known
for its open-world exploration and its unique gameplay
mechanics.
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Table 11: Failure Cases.

Image Error #9 Image Error #10

Text Prompt: How many keys does the keyboard
have?

Text Prompt: By examining the unfolded cube (net)
at the top of the image, which one of the four cubes
labeled A, B, C, and D can be created by folding this
net along the edges?

GPT-4V: The keyboard in the image features a non-
standard layout, which appears to be a compact form
factor lacking the numeric keypad commonly found
on full-sized variants. Without being able to view the
entire keyboard, it’s impossible to provide an exact
count of the keys...

Gemini-Pro-Vision: The correct answer is C. The un-
folded cube (net) at the top of the image has two red
squares and three orange circles. Cube C has two red
squares and three orange circles in the same arrange-
ment as the unfolded cube.

Image Error #11 Image Error #12

Text Prompt: what is this Text Prompt: Try to guess the solution to this Fold-in
from Mad magazine. A Mad Fold-in is a visual riddle
that a human can easily solve by physically folding the
page as explained in the instructions in the top-right
corner. I know the solution. I want to verify if you
are able to solve it. What big car feature will soon be
included in small economy cars?

GPT-4V: This is an oversized, artistic representation
of a classic hand-held manual egg beater or whisk. It’s
designed to mimic the appearance of a traditional egg
beater with an exaggerated size, likely for decorative
or exhibit purposes as suggested by the setting that
appears to be a show or exhibition hall. The inclusion
of this piece in a public space may indicate it being
part of an art installation, event display, or perhaps a
promotion related to culinary equipment or innovation.

LLaVA-NEXT-34B: The Mad Fold-in features a car
salesman in front of a sign that says "CONSERVE
ENERGY DRIVE A SMALL CAR" with various "big
car" features like a tire iron, a spare tire, a picnic basket,
and a trunk full of items. When you fold the page as
directed, it’s revealed that the large "big car" features
are actually inside the small car, showing that the small
car also has these items, humorously implying that the
small car will soon include all the features typically
associated with big cars. The joke is that despite their
size, small cars will also include all the amenities that
were once exclusive to larger vehicles.
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Table 12: Failure Cases.

Image Error #13 Image Error #14

Text Prompt: What is the name of the character with
the sunglasses?

Text Prompt: Are the workers wearing safety devices?

GPT-4V: You’re looking at an image from the ani-
mated film Z̈ootopia.T̈he character with the sunglasses
is named Nick Wilde; he’s a red fox who is one of the
main characters in the movie.

LLaVA-NEXT-34B: In the image you’ve provided, the
workers are wearing safety vests, which are commonly
used in construction and industrial environments to in-
crease visibility and reduce the risk of accidents. These
vests are a standard safety device to help workers be
more visible to operators of heavy machinery and other
workers in bright colors that contrast with the surround-
ings. The workers also appear to be wearing hard hats,
which are required on construction sites to protect the
head from potential injuries.

Image Error #15 Image Error #16

Text Prompt: What do you see in the image? Text Prompt: What time is it on that watch?

Gemini-Pro-Vision: This is a code snippet in Python.
It seems to be a function that preprocesses an image
for object detection. The function takes an image as
input and returns a preprocessed image and a list of
bounding boxes.

LLaVA-NEXT-34B: The watch in the image is dis-
playing a time that appears to be 10:11. The hour hand
is pointing to the number 10, and the minute hand is
pointing to the number 11.
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Table 13: Failure Cases.

Image Error #17 Image Error #18

Text Prompt: where to find food? Text Prompt: What time is it?

Gemini-Pro-Vision: The food is in the refrigerator,
which is located in the kitchen. The kitchen is the room
with the stove and oven.

LLaVA-NEXT-34B: The time is 06:54 PM.

Image Error #19 Image Error #20

Text Prompt: What Brand is highlighted Text Prompt: What causes this and which is the real
one?

LLaVA-NEXT-7B: The brand highlighted in the im-
age is Ḧead.̈

Qwen-VL-Chat: It is funny because the guy who is
not in a white t-shirt is saying that he is in a white
t-shirt.
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D Data Analysis
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Figure 9: Winner Density Plot

Position and Length Biased Human Preferences Hu-
man preferences on models are known to be biased to
the length of model responses. Previous work [12] show
not strong correlation found between length and rank at
model-wisely. To further understand each voting point
in WILDVISION-ARENA. We plot Figure 9 to show the
winner distribution over token length. The Blue line repre-
sents the density of Model B wins over Model A, and the x
axis be the token length difference which substract length
of Model B from Model A. This plot help decouple the
cofounders of position bias and length bias. And when the
token length difference is more obvious, the preferences
are slightly biased to length output model. And this effect
is marginal when both model have long output.

Battles Trend In Figure 10, we plot the number of votes per day with a date cutoff at May 29, 2024.
On average, WILDVISION-ARENA got 71 votes from the users per day.
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Model Chats We visualize number of conversations per model in Figure 11.
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E Prompt Template

E.1 Taxonomy Annotation

In Table E.1, we show the template fed into GPT-4v to annotate the question category and image
domain for each data sample in WILDVISION-ARENA as in Figure 2 and Figure 3.

[Image] <image>

[Question] What is the color of the main object in the image?

[System] Given the image and following text question, please classify the content according
to the specified taxonomy:

Question Categories:
Descriptive - General Description (Provide a broad overview of what the image contains.) ...
Recognition - Object Recognition (What objects are present in the image?) ...
Instructive - How-to Guides (How do I obtain what’s depicted in the image?) ...
Analytical - Data Analysis (Analyze the data presented in the image.) ...
Comprehensive - Cultural Analysis (Analyze the cultural significance of the image.) ...
Interactive - Bug Fixing (Fix the bug in the code depicted in the image.)
Creative - Music and Composition (Compose a song inspired by the image.)

Image Domains:
Urban - Cityscapes, Infrastructure, Public Spaces, Buildings, Transportation, Street Scenes
People - Portraits, Crowds, Faces, Selfies, Group Photos
Event - Cultural Events, Historical Events, Social Gatherings, Performances, Sports, Fashion,
Lifestyle
Objects - Accessory, Vehicles, Sports Equipment, Kitchenware, Food, Furniture, Electronics,
Appliances, Household Tools, Musical Instruments, Art Supplies, Office Supplies
Entertainment - Games, Movies and TV Shows, Media and Communication, Web and Mobile
Apps Screenshots
Expert - Art and Design, Business, Science, Health and Medicine, Humanities and Social
Science, Tech and Engineering

Please analyze the text and image provided and classify them into the appropriate category
and subcategory, as well as the main image domain and subdomain, based on the taxonomy
above. Please only reply with four values 1. question category, 2. question subcategory,
3. image domain, 4. image subdomain) in a string separated by [&]. For example,
“Descriptive[&]Object Description[&]Natural[&]Landscapes”.

[Output] Analytical[&]Attribute-based Question Answer[&]Objects[&]Furniture
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E.2 VLM Voting

In Table E.2, we show the template used to generate the pairwise preference by utilizing GPT-4V as a
local evaluator 3.2.

[Image] <image>

[Question] What is the color of the main object in the image?

[Model Assistant A’s Response] Blue.

[Model Assistant B’s Response] Red.

[System] Please act as an impartial judge and evaluate the quality of the responses provided
by two model assistants to the user question displayed in [Question]. You should choose
the assistant that follows the user’s instructions and answers the user’s questions better.
Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth,
creativity, and level of detail of their responses. Avoid any positional biases and ensure that
the order in which the responses were presented does not influence your decision. Do not
allow the length of the responses to influence your evaluation. Do not favor certain names of
the assistants. Be as objective as possible. Reply with “leftvote” if you find assistant A better,
“rightvote” if assistant B is better, “bothbad_vote” if both responses are wrong, and “tievote”
if both assistants provide equally satisfactory answers. If you are unable to make a decision,
please reply with “NA”.

[Evaluator Output] leftvote
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E.3 WILDVISION-BENCH Evaluator

In Table E.3, we show the template used to prompt judges to generate the pairwise preference by
utilizing GPT-4o as a judge. We have defined have different judge results, which corresponds to the
"Better+", "Better", "Tie", "Worse", and "Worse+" respectively in Table 4.

[System] Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user prompt displayed below. You will be given assistant A’s
answer and assistant B’s answer. Your job is to evaluate which assistant’s answer is better.

Begin your evaluation by generating your own answer to the prompt. You must provide your
answers before judging any answers.

When evaluating the assistants’ answers, compare both assistants’ answers with your answer.
You must identify and correct any mistakes or inaccurate information.

Then consider if the assistant’s answers are helpful, relevant, and concise. Helpful means the
answer correctly responds to the prompt or follows the instructions. Note when user prompt
has any ambiguity or more than one interpretation, it is more helpful and appropriate to
ask for clarifications or more information from the user than providing an answer based on
assumptions. Relevant means all parts of the response closely connect or are appropriate to
what is being asked. Concise means the response is clear and not verbose or excessive.

Then consider the creativity and novelty of the assistant’s answers when needed. Finally,
identify any missing important information in the assistants’ answers that would be beneficial
to include when responding to the user prompt.

After providing your explanation, you must output only one of the following choices as your
final verdict with a label:

1. Assistant A is significantly better: [[A»B]]
2. Assistant A is slightly better: [[A>B]]
3. Tie, relatively the same: [[A=B]]
4. Assistant B is slightly better: [[B>A]]
5. Assistant B is significantly better: [[B»A]]

Example output: "My final verdict is tie: [[A=B]]".

[User] {question_1}

[Image] <image>

<|The Start of Assistant A’s Answer|>
{answer_1}
<|The End of Assistant A’s Answer|>

<|The Start of Assistant B’s Answer|>
{answer_2}
<|The End of Assistant B’s Answer|>
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F Discussions

F.1 Limitations

Although our platform integrates a variety of multimodal models for convenient comparison, it
inevitably omits some recently released models, potentially limiting the breadth of insights available.
Additionally, the platform’s stress testing is inadequate; scaling up is imperative to handle the
increasing volume of user queries each day. There is also a critical need to balance the protection
of third-party models with ensuring that model responses remain unbiased and true to their design.
Despite logging data for research purposes and informing users accordingly, ongoing efforts are
required to enhance system security to prevent data leaks.

F.2 Societal Impact

WildVision Arena serves as a dynamic benchmarking tool, embracing crowd-sourced input from a
diverse range of users. However, biases persist, particularly among English-speaking users—a reflec-
tion of some models’ linguistic limitations—and among those with a specific interest in multimodal
research. Efforts are underway to refine the interface, aiming to broaden participation and reduce
existing biases. By enhancing accessibility and user engagement, we strive to create a more inclusive
platform that better represents global perspectives.

G Accessiblity of Datasets

G.1 Dataset Documentation and Intended Uses

To interact with models and submit votes, visit Hugging Face Vision Arena1. To view the live
leaderboard, navigate to the leaderboard tab on the same page. Data can be accessed for downloading
and viewing at WildVision Arena Data2.

G.2 Maintenance Plan

The live leaderboard of WILDVISION-ARENA is updated every three hours. The data will be
continually updated at WildVision on Hugging Face3. The code for the platform will be open-sourced
at WildVision-Bench Github repo4 and welcome community effort. The voting data and code for the
evaluation will be provided to facilitate easy reproduction of the leaderboard.

G.3 Author Statement

We confirm that we bear all responsibility in case of violation of rights during the collection of data
on WILDVISION-ARENA and WILDVISION-BENCH. We will take appropriate action when needed.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

1https://huggingface.co/spaces/WildVision/vision-arena
2https://huggingface.co/datasets/WildVision/wildvision-arena-data
3https://huggingface.co/WildVision
4https://github.com/WildVision-AI
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Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Appendix
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Appendix
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] Appendix
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Section 3, 4
(b) Did you include complete proofs of all theoretical results? [Yes] Section 3, 4

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] first page
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] Section 3,4
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] Section 3,4
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] Section 3,4
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Section 3,4
(b) Did you mention the license of the assets? [Yes] Section 4
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

front page
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] Appendix
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] Appendix
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] User interface

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [Yes] The data annotation part of the project is
classified as exempt by Human Subject Committee via IRB protocols.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] Appendix
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