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ABSTRACT

Recent advances in LLM-based multi-agent systems (MAS) show that workflows
composed of multiple LLM agents with distinct roles, tools, and communication
patterns can outperform single-LLM baselines on complex tasks. However, most
frameworks are homogeneous, where all agents share the same base LLM and dif-
fer only in prompts, tools, and positions in the workflow. This raises the question
of whether such workflows can be simulated by a single agent through multi-
turn conversations. We investigate this across seven benchmarks spanning coding,
mathematics, general question answering, domain-specific reasoning, and real-
world planning and tool use. Our results show that a single agent can reach the
performance of homogeneous workflows with an efficiency advantage from KV
cache reuse, and can even match the performance of an automatically optimized
heterogeneous workflow. Building on this finding, we propose OneFlow, an al-
gorithm that automatically tailors workflows for single-agent execution, reducing
inference costs compared to existing automatic multi-agent design frameworks
without trading off accuracy. These results position the single-LLM implemen-
tation of multi-agent workflows as a strong baseline for MAS research. We also
note that single-LLM methods cannot capture heterogeneous workflows due to the
lack of KV cache sharing across different LLMs, highlighting future opportunities
in developing truly heterogeneous multi-agent systems.

1 INTRODUCTION

Recent advances in large language models (LLMs) have sparked significant interest in multi-agent
systems (MAS), where multiple LLM agents collaborate through predefined workflows to tackle
complex tasks. These systems typically consist of specialized LLM agents, each defined by distinct
system prompts and tools, that communicate according to specific patterns to achieve superior per-
formance compared to single-LLM approaches (Zhuge et al., 2024; Liu et al., 2024; Zhang et al.,
2025e). Current research has demonstrated the effectiveness of such multi-agent workflows across
diverse domains, from mathematical reasoning to code generation and tool usage (Hu et al., 2025;
Zhang et al., 2025b; Wang et al., 2025b).

However, a critical observation about existing MAS reveals a fundamental characteristic that has
been largely overlooked: most current multi-agent systems are homogeneous (Ye et al., 2025a;
Zhang et al., 2025a). Within a given MAS, all agents rely on the same base LLM, differentiated only
by their system prompts, tools, and positions in the workflow. This homogeneity raises a compelling
question: if all agents share the same underlying model and work collaboratively to solve a task,
can a single agent simulate the multi-agent workflow effectively through multi-turn conversations?

It is well recognized that task decomposition is critical for solving complex problems, which directly
motivates the design of multi-agent systems. Given a multi-agent workflow that already decomposes
a task, what happens if a single agent executes the workflow end-to-end? Specifically, because
homogeneous agents possess identical reasoning capabilities and differ only in their specialized
instructions, a single agent should be capable of role-playing these agents sequentially, thereby
exploiting the workflow’s task decomposition. Moreover, a single agent can reuse a shared KV cache
across agent interactions, retaining context without additional prefill cost and potentially offering
efficiency gains and greater consistency than maintaining separate model instances for each agent.

1
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To investigate this hypothesis, we conduct comprehensive experiments across seven benchmarks
spanning coding, mathematics, general question answering, domain-specific reasoning, and real-
world planning and tool use. Our results reveal that a single agent using multi-turn conversations
with KV cache can indeed simulate tailored workflows with performance comparable to traditional
homogeneous multi-agent setups, while reducing cost. This finding challenges the conventional
assumption that multiple separate agent instances are necessary for effective tailored reasoning.

Building on this insight, we introduce OneFlow, an algorithm for automatically designing tailored
workflows that optimize both performance and computational efficiency for single-agent execution.
Based on recent work on automatic workflow design (Zhang et al., 2025e;b; Nie et al., 2025; Hu
et al., 2025), OneFlow employs a dual-LLM designer architecture to discover streamlined workflows
with longer, more comprehensive system prompts for individual agents and fewer total agents in
the system. This approach achieves similar performance to existing methods while significantly
reducing inference cost.

We further extend our analysis to heterogeneous multi-agent workflows, where agents use differ-
ent base LLMs (Ye et al., 2025a; Zhang et al., 2025a; Wang et al., 2024a). Exhaustively exploring
combinations of base models can be very expensive (Ye et al., 2025a). In a pilot experiment us-
ing AFlow (Zhang et al., 2025e) to automatically design heterogeneous workflows via Monte Carlo
Tree Search, we find that our single-LLM baseline can match the performance of one such automat-
ically discovered heterogeneous alternative with less computational cost. Importantly, single-LLM
approaches have inherent limitations: they cannot simulate truly heterogeneous workflows due to
the inability to share KV caches across different models. This limitation suggests that developing
effective heterogeneous agentic workflows, where the benefits of model diversity outweigh coordi-
nation costs, remains a promising and necessary direction for advancing LLM multi-agent system
research. Our contributions can be summarized as follows:

• Empirically validate that single-agent execution can effectively simulate homogeneous
multi-agent workflows with comparable performance on collaborative tasks.

• Propose OneFlow, an algorithm for automatic workflow design that generates streamlined
multi-agent architectures with improved computational efficiency and suitability for single-
agent execution.

• Show in a pilot study that a single-LLM implementation can match the performance of
one automatically discovered heterogeneous workflow; more importantly, realizing the full
benefits of heterogeneity remains an important open direction for agentic LLM systems.

2 PRELIMINARY

LLM-based Multi-Agent Workflows. Multi-agent workflows represent a paradigm where multiple
LLM agents collaborate through structured communication patterns to solve complex tasks. To il-
lustrate this concept, consider the session-based query recommendation example shown in Figure 1.
Given a customer’s shopping history and current query, the task requires understanding session
context, analyzing product relationships, and generating relevant recommendations, a multi-faceted
problem that benefits from specialized processing stages, as demonstrated in the middle panel of
Figure 1. Importantly, these workflows are implemented as executable Python code (right panel
of Figure 1) that specifies both the agents and their interaction logic. This code-based representa-
tion enables complex control flows including sequential execution, conditional branching, iterative
refinement, and collaborative deliberation patterns.

Formal Definition. We now provide a formal characterization of LLM-based multi-agent work-
flows. LetM denote the set of available base LLMs. An LLM-based multi-agent workflow W is
defined as a directed graph G = (N,E) where:

• N = {n1, n2, ..., n|N |} represents the set of LLM agents. Each agent ni is parameterized
as ni = (bi, pi, τi), where: bi ∈ M is the base LLM (e.g., Claude 3.5 Haiku, Gemini
2.5 Flash), pi is the system prompt that defines the agent’s role and capabilities, τi is the
available tool set (e.g., sandboxed Python interpreter, web search). Agents are typically
specialized for specific subtasks, with common roles including LLM reviewers, LLM en-
semblers, and output formatters.

2
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An Exemplar Agentic WorkflowAn Exemplar Task

Session-based Query Recommendation

Task Description

Based on a sequence of user interactions 

(queries and clicks), predict which query the 

user is most likely to make next.

a sample question

Query:  crinlin underskirt womens

Session
Analyzer

Language 
Normalizer

Intent 
Detector

Confident  
with the 
answer?

Task

Ensemble 
(CoT style) 

Final 
output 

formatter

Yes

No

Explanation:

The previous query contained a typo ('crinlin’). 

The user clicked on two products with 'Crinoline' in the 

title, suggesting they are interested in this correctly 

spelled term.

Generated workflow for the task: 

Session-based Query Recommendation

Customer Session

Question:  Which query is the user most likely to 

make next?

Click 2: 6 Hoop Crinoline Underskirt Petticoat 

Floor Length Bridal Dress Ball Gown Slip

Click 1: AWSALE Petticoats Crinoline Slips 

Underskirt Floor Length for Bridal Gown

Correct answer

0. crinoline underskirt womens

Code-Represented Workflow

Figure 1: Sample question–answer pair from a session-based query recommendation task (left),
an exemplar agentic workflow to solve it (middle), and its code representation (right). The work-
flow demonstrates how multiple LLM agents can collaborate to process complex shopping queries
through sequential and conditional execution patterns.

• E ⊆ N × N encodes the inter-agent communication structure and control flow. Each
edge may include routing conditions and message transformations implemented in Python,
enabling sophisticated orchestration patterns such as sequential processing, conditional
branching, and iterative loops.

Homogeneous vs. Heterogeneous Workflows. A critical distinction in multi-agent workflows
concerns the diversity of underlying base models. We define B(W ) = {bi | ni ∈ N} as the set of
base LLMs used by workflow W . Based on this, workflows can be categorized as:

• Homogeneous workflows: |B(W )| = 1, where all agents share the same base LLM and
differ only in their system prompts, tools, and positions within the workflow structure.

• Heterogeneous workflows: |B(W )| > 1, where agents utilize different base LLMs, po-
tentially leveraging diverse model capabilities and specializations.

Design Complexity of heterogeneous workflows. The choice of which base model to assign to each
agent (the mapping i 7→ bi) represents a non-trivial design decision that is often determined empir-
ically. While heterogeneous workflows offer greater design flexibility by combining models with
complementary strengths, they also significantly expand the design space to include model selection
alongside prompt engineering, tool assignment, and routing logic (models × prompts × tools ×
routing). Consequently, many existing automatic workflow design systems default to homogeneous
configurations for practical reasons.

KV Cache. The distinction between heterogeneous and homogeneous workflows is fundamental
to our analysis, as it determines whether a workflow can be efficiently simulated by a single agent
instance through multi-turn conversations with shared KV cache. In transformer-based LLMs, the
key-value (KV) cache is a crucial optimization technique that stores the computed key and value
matrices from attention layers for previously processed tokens. Without KV caching, the model
would redundantly recompute these attention states for all previous tokens when generating each
new token, leading to quadratic computational complexity. By caching these intermediate states,
the model achieves significant speedup during autoregressive generation. In homogeneous multi-
agent workflows, where all agents share the same base LLM, there exists substantial contextual
overlap between agent interactions, such as shared task descriptions, intermediate reasoning steps,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and common knowledge bases. This overlap enables efficient KV cache sharing across different
agent roles within a single LLM instance, potentially offering both computational efficiency gains
and improved consistency compared to maintaining separate model instances for each agent.

3 METHODOLOGY

3.1 SINGLE AGENT CAN BE AS STRONG AS MULTI-AGENT FRAMEWORK.

We formalize when a single agent can implement a homogeneous multi-agent workflow without
loss of expressivity. Recall the formalization in the Preliminary section: a workflow W is a directed
graph G = (N,E) with agents ni = (bi, pi, τi) and routing logic on edges. Let W be homogeneous
with |B(W )| = 1 and base LLM b. Executing W on input x produces a transcript

HT = (h0,m1, r1, h1, . . . ,mT , rT , hT ),

where at step t the workflow selects agent index it and tool action at according to a policy πW (it, at |
ht−1) induced by E, queries the same base model b with system prompt pit and context ht−1 to
obtain model message mt, optionally executes a tool ut ∈ τit to obtain result rt, and updates the
history ht.

Consider a single-LLM simulator that maintains one conversation state and, at each step t, sets the
system message to pit , appends the same visible context ht−1 and tool outputs, and decodes from
the same base model b with identical decoding parameters.

Proposition 1 (Simulation of homogeneous workflows). Suppose (i) tool side-effects are deter-
ministic given inputs, (ii) the routing policy πW depends only on the visible history ht−1 and tool
outputs, and (iii) decoding uses deterministic rules (e.g., greedy) or shared randomness. Then the
single-LLM simulator induces the same distribution over transcripts as executing W with separate
agent instances:

Hsingle
T

d
= Hmulti

T .

Proof sketch. Both procedures query the same conditional distribution b(· | pit , ht−1) at the same
sequence of states; induction on t yields equality in distribution.

Cost with KV cache. Let Lt be the tokenized length of the prefix visible at step t and ∆Lt the
number of new tokens appended between steps t−1 and t. With separate agent instances (no cache
sharing), overlapping prefixes are re-encoded, yielding cost

Cmulti ∝
T∑

t=1

L
(it)
t + gent.

The single-LLM simulator reuses the same KV cache across t, so

Csingle ∝
T∑

t=1

∆Lt + gent ≤ Cmulti,

with equality only when agent contexts are disjoint. Thus, for homogeneous workflows with sub-
stantial contextual overlap, single-LLM execution is asymptotically no worse and often cheaper,
while preserving behavior under the conditions above.

3.2 SINGLE AGENT IMPLEMENTATION OF MULTI-AGENT WORKFLOW.

We provide a concrete single-LLM simulator for any homogeneous workflow W = (N,E) with
base LLM b. Let ni = (b, pi, τi). The simulator maintains a single chat history ht and follows the
routing policy encoded by E.

1. Initialization. Set h0 = wrap(x) with task x and global instructions. Insert role delimiters
to isolate subsequent agent turns.

2. Agent step t. Using the routing logic in E, select index it and required tool action at based
on ht−1. We append the system message pit to the end of the conversation history ht−1

(effectively treating the ‘system message’ as a user message), keeping all previous context.
Then, query b to obtain mt ∼ b(· | pit , ht−1) with fixed decoding parameters.

4
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3. Tool execution. If at invokes a tool u ∈ τit , execute u to get result rt and append it to the
history.

4. State update. Set ht = append(ht−1, (it,mt, rt)) and advance according to edge condi-
tions in E. Repeat until termination.

Because every step calls the same base model b, the simulator reuses the KV cache across t (see
Preliminary), so the prefill cost scales with incremental growth ∆Lt rather than the full prefix Lt.
To control context growth and mitigate interference, one may insert compaction operators (e.g.,
deterministic summarization) that map a window of turns (ht−k:t) 7→ st where st is the summarized
representation, while preserving routing decisions, which leaves Proposition 1 applicable.

3.3 ALGORITHM: ONEFLOW

Workflow 1
(single LLM)

Acc: 62% Cost: $ 1.5

Workflow 3
(added session 

analyzer)

Acc: 64% Cost: $ 3

Workflow 2
(added cot)

Acc: 61% Cost: $ 3

Add chain-of-thought: failed 

Add session analyzer: success

Modification 2

add session 

analyzer (success)

Modification 1

add chain-of-

thought (failed)

Workflow 4
(two cot + ensemble)

Acc: 62% Cost: $ 4

Workflow 5
(added confidence 

check )

Acc: 64% Cost: $ 3.5

Modification 3

add more cot, then 

ensemble (success)

Add one cot 
then 
ensemble: 

success

Modification 4

add confidence 

check (failed)

Add 
confidence 
check:
failed

Workflow Optimization Trajectory

Workflow 6

Designer
claude-4-sonnet

Critic
claude-4-sonnet

Given workflow {python code of Workflow 3} for {task_type} task, 
creatively modify it to significantly improve performance.

Previous attempts: {Add confidence check} did not improve 
performance—avoid repeating.

Instruction to modifications: ... 

Error logs: {error logs}

Output: Modified code in 'workflow.py' with justification 
comments for each change

1. Workflow 3 is selected for the generation of Workflow 6.

Workflow 6

Given:

• Original workflow: {python code of Workflow 3} for 
{task_type} task

• Designer LLM's modified workflow: {python code of 
modified Workflow 3}

• Current top 4 solutions: code, score, and cost.

Goal: Critically evaluate the designer's proposed workflow and 
modify if necessary.

Output: Modified code in 'workflow.py' with justification 
comments for each change.

Workflow 6

(Modified)

2. Prompt to the Designer LLM

How is Workflow 6 generated through the 
collaboration of the                             and the                       ?

3. Prompt to the Critic LLM

Designer

Critic

Designer

Critic

Designer

Critic Designer

Critic

Designer LLM Critic LLM

?
Workflow 6

(Modified)

Acc: 66% Cost: $ 3.7

Run the workflow on the 
validation set, record 
accuracy and cost, then 
update the workflow tree.

Figure 2: An example to show how OneFlow framework works. The framework employs dual meta-
LLMs (One creative workflow designer and one workflow critic) with Monte Carlo Tree Search to
automatically design multi-agent workflows that suitable for single-agent execution for complex
tasks. The left panel shows how the first five rounds of workflow design and selection process work.
The right panel shows how workflow 6 is generated.

For a given task T (e.g., select a most relevant query to the customer from four candidate queries),
we seek to return an optimal LLM agentic workflow W ∗ that is suitable for this task T . Ideally, the
optimal workflow W ∗ should be able to solve the task T with high performance and low cost. We
formulate this as a multi-objective optimization problem:

W ∗ = arg max
W∈W

[α · P (W,T )− β · C(W,T )] (1)

where P (W,T ) represents the agentic workflow W ’s performance on task T (e.g., accuracy),
C(W,T ) denotes the operational cost (inference cost or token consumption), and α, β are balancing
hyperparameters that reflect the relative importance of performance and cost.

We approach this as a search problem within a search space that includes LLM agents (LLMs with
specific system prompts and tools) and their communication patterns (such as sequential execution,
conditional execution, and loops). This creates a discrete and potentially infinite search space. The
most common way to address this is using human expert priors to design specific workflows, e.g.,
Camel (Li et al., 2023), OAgent (Zhu et al., 2025), ReAct (Yao et al., 2023), LLM debate (Du
et al., 2023), etc. For automatic methods, there have been methods to automatically optimize the
prompt (Khattab et al., 2024) and also automatically design the workflow (Zhang et al., 2025e;b).
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Following AFlow (Zhang et al., 2025e), we adopt Monte Carlo Tree Search (MCTS) to search this
discrete search space. The entire search process follows these steps (illustrated in Figure 2):

Algorithm 1 OneFlow (MCTS with Dual Meta-LLMs)
Require: Task T , validation set Dv , iterations K, weights α, β
Ensure: Best workflow W ∗

1: WIO ← single-LLM input-output; Eval(WIO on Dv); init tree with WIO
2: for k = 1 to K do
3: C ← {WIO}∪ Top-(n− 1) by score S(W ) = αP − βC
4: W ← Select(C) ▷ Selection; App. A.2
5: Wd ← Designer(W, errors(W )) ▷ Meta-LLM 1; App. A.3
6: Wnew ← Reviewer(Wd, C) ▷ Meta-LLM 2
7: Eval(Wnew on Dv); attach Wnew; backpropagate
8: end for
9: return argmaxW αP (W,T )− βC(W,T ) over explored nodes

Initialization. We begin with the simplest possible workflow: WInput-Output, which directly uses a
single agent to answer questions in a straightforward input-output manner. We evaluate this work-
flow on a validation dataset Dv (where |Dv| means 20% samples of a specific dataset, e.g., the
HumanEval dataset has 164 questions, so the validation dataset has 33 questions) to measure its
performance, including both performance metrics (such as accuracy) and cost metrics (such as in-
ference cost in USD). This input-output workflow becomes the root node in our Monte Carlo tree
(workflow 1 in Figure 2), storing both performance metrics and examples of failure cases.

Iterative Monte Carlo Tree Search (MCTS) Process. We then follow a standard four-stage MCTS ap-
proach, adapted for workflow optimization. 1. Selection. Choose a workflow W from the tree based
on a performance-based probability distribution. 2. Expansion. Based on the selected workflow W ,
generate a new workflow Wnew using dual meta-LLMs that collaboratively design improved work-
flows. 3. Evaluation. Test the new workflow Wnew on validation data to obtain performance and
cost metrics. 4. Backpropagation. Compare the performance and cost metrics of the new workflow
Wnew with the parent workflow W , and record this modification to the parent workflow W to avoid
redundant designs. This iterative process continues until reaching a maximum number of iterations
(we set it to 20 iterations in our experiments), producing a diverse set of automatically generated
workflows tailored to the specific task.

Dual Meta-LLM Architecture. As illustrated in Figure 2, OneFlow employs two specialized meta-
LLMs during the expansion phase: a Creative Designer that proposes performance-focused work-
flow improvements, and a Critical Reviewer that refines these proposals to optimize cost-efficiency.
This collaborative design balances the performance-cost trade-off in Equation 1. Details about al-
gorithm can be found in the appendix MCTS optimization (Section A.2) and dual meta-LLMs for
balanced performance and cost optimization (Section A.3).

OneFlow includes two stages: first, it searches for the optimized workflow, then performs
single LLM implementation of the optimized workflow. We use OneFlow and OneFlow (single-
agent execution) to clearly distinguish these two phases.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach across a diverse set of benchmarks spanning multiple domains
to assess generalization capabilities. Our evaluation suite includes: (i) code generation tasks: MBPP
and HUMANEVAL; (ii) mathematical reasoning: GSM8K and MATH; (iii) question answering:
HOTPOTQA and DROP; (iv) domain-specific reasoning: SHOPPING-MMLU; and (v) real-world
planning and tool use: TRAVELPLANNER.

Evaluation Metrics. We assess both task performance and computational efficiency. For code gen-
eration, we report pass@1 accuracy; for general question answering, we use F1 score; for mathe-
matical tasks, we report solve rate (%); for Shopping-MMLU, we use accuracy. For TravelPlanner,
we use task success rate (%). Computational cost is measured as USD token expenditure per work-

6
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flow, accounting for both input and output token usage. To ensure statistical reliability, we conduct
three independent trials and report mean values with standard deviations.

Baseline Methods. We compare against four categories of approaches: (1) Manual baselines:
Direct input-output (IO) prompting, chain-of-thought (CoT) prompting (Wei et al., 2022), self-
consistency (CoT) and MultiPersona (Wang et al., 2024b); (2) Automated multi-agent frameworks:
AFlow (Zhang et al., 2025e) and our proposed OneFlow; (3) Heterogeneous multi-agent systems:
AFlow-optimized workflows using GPT-4o-mini and Claude-3.5-Haiku as heterogeneous executors;
(4) Single-LLM implementations: Following Section 3.2, we execute multi-agent workflows (AFlow
and OneFlow) using a single LLM agent.

Model Configuration. Following established practices (Zhang et al., 2025e), we use GPT-4o-mini
as the primary executor LLM across all methods with temperature set to 0. For robustness validation,
we additionally evaluate with Claude-3.5-Haiku (results are in the appendix) and Qwen-3 8B (to
verify findings on open-weight models). Methods requiring workflow optimization (e.g., AFlow)
employ Claude-4.0-Sonnet as the designer/optimizer with 20 optimization rounds.

Heterogeneous Multi-agent Workflow Implementation. To investigate model heterogeneity ef-
fects, we leverage AFlow (Zhang et al., 2025e) to automatically design heterogeneous multi-agent
workflows. For homogeneous multi-agent workflows, all the executor LLMs are the same (either
gpt-4o-mini or claude 3.5 haiku). In this heterogeneous setting, the workflow has two executor mod-
els at the same time, GPT-4o-mini and Claude-3.5-Haiku. Claude-4.0-Sonnet serves as the workflow
designer. Optimization iterations are capped at 20 rounds with temperature 0. API interactions uti-
lize OpenAI Chat Completions and Anthropic interfaces. System prompts for the optimizing process
are detailed in Appendix A.6.

KV Cache and Cost Estimation for Single-agent Implemented Multi-agent Workflows. Im-
plementing KV-cache optimization (Section 3.2) typically requires open-weight LLMs. Since we
employ closed-weight LLMs (GPT-4o-mini) via API calls, we simulate ideal KV-cache costs by uti-
lizing the final conversation states (the final message list). Cost calculations follow OpenAI’s official
tokenization for GPT-4o-mini, categorizing user prompts as input tokens and assistant responses as
output tokens to estimate the theoretical KV-cache cost. For open-weight models (Qwen-3 8B), we
explicitly measure latency and throughput using vLLM with KV cache enabled.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Table 1: Main results on public benchmarks with GPT-4o mini as executors. Values are mean ± std
over three runs, in percentage (0–100). Code tasks report pass@1; QA tasks report F1; solve rate
(%) for math. Best per column in bold; runner-up per column underscored.

CODE MATH QA

Method HumanEval MBPP GSM8K MATH HotpotQA DROP

Manual baselines
IO 89.1 ± 0.4 72.6 ± 0.3 87.0 ± 0.1 51.3 ± 0.6 71.1 ± 0.5 66.2 ± 0.6

CoT (Wei et al., 2022) 90.3 ± 1.2 73.3 ± 0.0 87.1 ± 0.2 50.9 ± 0.3 71.2 ± 1.0 78.9 ± 0.4

CoT SC (5-shot) 89.8 ± 0.9 71.9 ± 1.0 92.6 ± 0.8 37.7 ± 1.2 67.3 ± 0.3 79.4 ± 0.1

MultiPersona (Wang et al., 2024b) 89.1 ± 0.2 73.3 ± 0.3 87.1 ± 0.1 50.9 ± 0.3 71.2 ± 1.0 78.9 ± 0.4

Automatically designed multi-agent frameworks
AFlow (Zhang et al., 2025e) 90.1 ± 0.0 78.8 ± 0.7 93.6 ± 0.5 55.6 ± 0.3 72.1 ± 0.2 83.1 ± 0.3

OneFlow 91.6 ± 0.8 81.1 ± 0.4 93.0 ± 0.4 53.4 ± 1.4 73.5 ± 0.5 81.1 ± 0.8

Single-LLM implementation of multi-agent workflow
AFlow (single-agent execution) 91.1 ± 1.6 78.8 ± 0.7 92.9 ± 0.1 53.8 ± 0.9 68.4 ± 0.1 81.1 ± 0.7

OneFlow (single-agent execution) 92.1 ± 0.4 81.4 ± 0.6 93.3 ± 0.1 54.1 ± 0.7 73.5 ± 0.5 81.7 ± 0.7

4.2.1 PERFORMANCE ON PUBLIC BENCHMARKS

A single-agent implementation of a multi-agent workflow can match multi-agent performance.
Table 1 summarizes results with GPT-4o mini (pass@1 for code; F1 for QA; solve rate (%) for math).
Across the board, automatically designed multi-agent workflows and their single-agent executions
substantially outperform manual baselines, highlighting the value of automated design. Notably, ex-
ecuting AFlow- and OneFlow-designed workflows with a single agent matches or slightly exceeds
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their multi-agent counterparts, consistent with the hypothesis in Section 3.1: in homogeneous set-
tings, a single model can faithfully simulate agent roles via multi-turn conversations. Our proposed
OneFlow, typically when using the single-agent execution setting, shows superior performance com-
pared to all the homogeneous workflow baselines.

4.2.2 COST ON PUBLIC BENCHMARKS

Table 2: Inference cost (USD) on public benchmarks with GPT-4o mini. Values are mean± std over
three runs (lower is better). Best per column in bold; runner-up per column underscored.

CODE MATH QA

Method HumanEval MBPP GSM8K MATH HotpotQA DROP
Manual baselines

CoT SC (5-shot) $0.103 ± 0.000 $0.177 ± 0.000 $1.265 ± 0.001 $1.561 ± 0.009 $1.201 ± 0.001 $0.613 ± 0.001

MultiPersona $0.099 ± 0.000 $0.226 ± 0.001 $0.429 ± 0.005 $0.330 ± 0.021 $0.415 ± 0.000 $0.301 ± 0.000

Automatically designed multi-agent frameworks
AFlow $0.198 ± 0.003 $0.393 ± 0.002 $1.134 ± 0.001 $2.343 ± 0.036 $1.438 ± 0.000 $0.771 ± 0.001

OneFlow $0.026 ± 0.000 $0.070 ± 0.005 $0.623 ± 0.001 $0.819 ± 0.007 $0.278 ± 0.000 $0.322 ± 0.000

Single-LLM implementation of multi-agent workflow
AFlow (single-agent execution) $0.198 ± 0.004 $0.283 ± 0.001 $0.697 ± 0.001 $2.039 ± 0.028 $0.530 ± 0.001 $0.345 ± 0.001

OneFlow (single-agent execution) $0.020 ± 0.000 $0.063 ± 0.004 $0.387 ± 0.000 $0.677 ± 0.002 $0.278 ± 0.000 $0.284 ± 0.001

Single-agent execution is substantially more efficient and cheaper than multi-agent execution.
Table 2 shows that single-LLM execution dramatically reduces cost at comparable performance
(Table 1), largely due to KV-cache reuse across agent turns in homogeneous workflows. Without
single-LLM execution, OneFlow is more cost-efficient than AFlow; when executed as a single LLM,
both AFlow and OneFlow realize cost gains and still maintain performance. For OneFlow, the per-
formance even slightly increases with single-agent execution, thanks to KV sharing, which provides
more context to the agent and generates better results. Table 10 further breaks down input/output
tokens and explains where the savings arise.

Table 3: Executor-specific results and heterogeneous baseline on public benchmarks. Values are
mean ± std over three runs, in percentage (0–100). Best per column in bold; best per base model
type per column underscored.

CODE MATH QA

Method (Executor) HumanEval MBPP GSM8K MATH HotpotQA DROP

GPT-4o mini-based
AFlow (GPT-4o mini) 90.1 ± 0.0 78.8 ± 0.7 93.6 ± 0.5 55.6 ± 0.3 72.1 ± 0.2 83.1 ± 0.3

OneFlow (GPT-4o mini) 91.6 ± 0.8 81.1 ± 0.4 93.0 ± 0.4 53.4 ± 1.4 73.5 ± 0.5 81.1 ± 0.8

AFlow (GPT-4o mini, single-agent) 91.1 ± 1.6 78.8 ± 0.7 92.9 ± 0.1 53.8 ± 0.9 68.4 ± 0.1 81.1 ± 0.7

OneFlow (GPT-4o mini, single-agent) 92.1 ± 0.4 81.4 ± 0.6 93.3 ± 0.1 54.1 ± 0.7 73.5 ± 0.5 81.7 ± 0.7

Claude 3.5 Haiku-based
AFlow (Claude 3.5 Haiku) 90.8 ± 0.0 83.6 ± 0.0 91.2 ± 0.0 50.5 ± 0.0 74.6 ± 0.0 86.8 ± 0.0

OneFlow (Claude 3.5 Haiku) 91.6 ± 0.0 84.4 ± 0.0 93.0 ± 0.0 51.3 ± 0.0 74.7 ± 0.0 87.5 ± 0.0

Heterogeneous baseline
AFlow (Heterogeneous: GPT-4o mini + Claude
3.5 Haiku)

87.0 ± 0.8 80.0 ± 0.3 93.6 ± 0.3 55.7 ± 0.6 75.1 ± 0.5 85.5 ± 0.5

4.2.3 PILOT STUDY ON AUTOMATICALLY DESIGNED HETEROGENEOUS MULTI-AGENT
WORKFLOWS

Performance is largely bounded by the best homogeneous workflow. We conduct a pilot study
using an automatically designed heterogeneous multi-agent workflow with GPT-4o mini and Claude
3.5 Haiku collaboratively working within the workflow. We notice that the performance of this
heterogeneous workflow is largely bounded by the homogeneous multi-agent workflow. E.g., the
performance on DROP achieves an F1-score of 85.5, even outperforming all GPT-4o mini-based
methods (with AFlow utilizing GPT-4o mini having an F1 of 83.1), but is still bounded by the best
performance of the Claude 3.5 Haiku-based homogeneous workflow (specifically OneFlow, with
an F1 of 87.5). However, we want to emphasize that this pilot study uses automatically generated
heterogeneous multi-agent workflows, which are not perfectly optimized. When deploying multi-
agent systems in the real world, well-designed heterogeneous multi-agent workflows can be very
beneficial. For example, for simple tasks, we can use a small LLM agent to handle them, while
for complex tasks, we may route them to a strong reasoning model. Implications. In homogeneous
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settings, single-agent execution is a strong, cost-efficient baseline and even matched the performance
of AFlow-optimized heterogeneous workflows. Two directions stand out: (1) train a single agent
to execute complex workflows end-to-end; (2) design effective heterogeneous workflows that mix
models of different strengths and costs to collaborate efficiently despite no KV sharing.

4.2.4 KV CACHE REUSE WITH OPEN-WEIGHT LLMS

Table 4: Results on HumanEval with Qwen-3 8B. Single-agent execution maintains performance
and efficiency thanks to KV cache reuse. Scores are averaged over three independent runs.

Method pass@1 Avg Latency (s) Throughput (samples/s) Avg Input Tokens Avg Output Tokens

CoT 83.5% 2.60 7.66 213 74
CoT SC × 5 83.7% 17.44 1.32 1748 502
MultiPersona 84.7% 32.38 0.75 1722 846
AFlow (multiple stateless api calls) 86.8% 54.98 0.17 2302 1753
AFlow (Single-agent execution) 90.5% 53.53 0.18 3269 1739
OneFlow (multiple stateless api calls) 87.0% 4.31 2.47 920 148
OneFlow (Single-agent execution) 87.4% 4.83 1.70 1288 159

To validate our findings beyond proprietary models, we conduct experiments using the open-weight
Qwen-3 8B model with vLLM, setting the context window to 16k to reflect typical resource con-
straints. As shown in Table 4, single-agent execution of both AFlow and OneFlow maintains or
improves performance (pass@1 on HumanEval) compared to multiple stateless API calls. Crucially,
while multi-turn conversations increase the average input tokens due to history accumulation (+967
for AFlow, +368 for OneFlow), the inference efficiency (latency and throughput) remains stable
thanks to KV cache reuse. We note that Qwen-3 8B tends to generate longer responses in multi-turn
settings compared to single-turn, slightly offsetting efficiency gains seen with GPT-4o-mini, but the
core benefit of KV cache sharing in homogeneous workflows is confirmed.

4.2.5 ADDITIONAL EXPERIMENTS ON THE TOOL-USING BENCHMARK: TRAVELPLANNER

We additionally evaluate on TravelPlanner (Xie et al., 2024), a context- and tool-intensive bench-
mark for real-world planning, to assess whether single-agent execution of homogeneous multi-agent
workflows remains competitive. A single LLM executing the AFlow and OneFlow workflows
matches the task success rate of their original multi-agent counterparts while incurring lower in-
ference cost. The workflow uncovered by OneFlow is especially compact and efficient, further
reducing cost. The results are shown in Figure 3.
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Pareto frontier: single agent executes multi-agent workflow
vs. original multi-agent workflows on TRAVELPLANNER benchmark

Methods
Input-Output
AFlow (Multiple stateless api calls)
AFlow (Single-agent execution)
OneFlow (Multiple stateless api calls)
OneFlow (Single-agent execution)

Pareto frontierInput-Output

AFlowAFlow (Single)

OneFlowOneFlow (Single)

Figure 3: Pareto frontier: single agent executes multi-agent homogeneous workflow vs. origi-
nal multi-agent workflows on TravelPlanner (Xie et al., 2024) benchmark. All the workflows are
searched by Claude 4 Sonnet. All the workflows are executed by GPT-4o mini.
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5 RELATED WORK

Multi-Agent Workflows and Task Decomposition. Multi-agent systems organize multiple LLM
agents with complementary roles and communication patterns to solve complex tasks more reli-
ably than a single-pass input-output baseline. Foundational designs include role-playing and tool-
augmented collaboration (e.g., CAMEL, OAgent, ReAct, debate) that decompose tasks into spe-
cialized stages and coordinate agents via sequential, iterative, or deliberative interactions (Li et al.,
2023; Zhu et al., 2025; Yao et al., 2023; Du et al., 2023). A key empirical trend is that most frame-
works are homogeneous: agents share the same base LLM and differ by prompts, tools, and routing
logic (Zhuge et al., 2024; Liu et al., 2024). Heterogeneous systems, where agents use different base
models, have been explored to leverage model diversity (Ye et al., 2025a; Zhang et al., 2025a; Wang
et al., 2024a; Jiang et al., 2023; Chen et al., 2023), but many such approaches emphasize ensem-
bling or discussion rather than end-to-end execution with explicit control flow. This paper examines
when a single agent can faithfully simulate homogeneous workflows via multi-turn conversations,
and clarifies where heterogeneity may bring benefits and costs.

Automatic Design of Multi-Agent Workflows. Reducing human effort in workflow construction
has led to three complementary directions: (1) prompt optimization, (2) communication/topology
optimization, and (3) automatically workflow search/generation. For prompt optimization, DSPy
formalizes modular prompt programs with compilation-time optimization, and TextGrad proposes
gradient-inspired improvements (Khattab et al., 2024; Yuksekgonul et al., 2025). For communi-
cation/topology optimization, GPTSwarm explores graph-structured agent teams with iterative re-
finement; Dylan performs dynamic agent selection; Agent-Prune prunes redundant edges; and G-
Designer learns task-adaptive topologies (Zhuge et al., 2024; Liu et al., 2024; Zhang et al., 2025c;d).
For automatic workflow design, ADAS is the first to propose this idea and conducts heuristic
search; AFlow uses MCTS with named nodes; MaAS optimizes a distribution over architectures
via a controller; AgentSquare extends this paradigm; and recent methods generate workflows di-
rectly via fine-tuning or continuous optimization (MAS-GPT, Flow-reasoner, ScoreFlow), or train
weaker meta-agents to design for stronger executors (Weak-for-strong) (Hu et al., 2025; Zhang et al.,
2025e;b; Shang et al., 2025; Ye et al., 2025b; Gao et al., 2025; Wang et al., 2025b; Nie et al., 2025).
While these systems substantially reduce manual design effort, the vast majority assume homo-
geneous executors; some incorporate heterogeneous options only tangentially (e.g., MAS-Router,
limited heterogeneity settings in AFlow) (Yue et al., 2025; Zhang et al., 2025e). Our work comple-
ments this line by showing that a strong single-LLM simulator provides a competitive, cost-efficient
baseline for many automatically designed homogeneous workflows, while clarifying when hetero-
geneity remains necessary. We also note an orthogonal trend toward smaller, cost-efficient models
that further motivates cost-aware workflow design (Belcak et al., 2025).

KV Cache and Single-LLM Execution. Transformer KV caching reuses previously computed
key/value states to avoid repeated prefill, enabling substantial speedups in autoregressive decoding.
When multiple agents share the same base model (homogeneous workflows), a single-LLM execu-
tion can maintain one conversation with shared KV cache, avoiding redundant re-encoding across
agent turns and often improving consistency. In contrast, heterogeneous workflows cannot share KV
states across different base models, limiting these gains and complicating end-to-end training. Prior
work has analyzed caching behaviors and memory allocation (e.g., attention sinks) and proposed
structured caches for long or graph-structured contexts (Xiao et al., 2024; Wang et al., 2025a). These
observations motivate our study: if behavior can be preserved (under mild conditions) and caches
can be shared, single-LLM simulations offer an informative and strong baseline for homogeneous
agentic workflows.

6 CONCLUSION

In homogeneous multi-agent workflows, a single LLM can role-play agents via multi-turn conver-
sations, reuse a shared KV cache, and match or slightly exceed multi-agent performance at substan-
tially lower cost. OneFlow helps discover compact workflows and, when executed by a single LLM,
yields additional efficiency gains. While single-LLM simulation cannot realize true heterogeneity,
our pilot shows it can even match the performance of AFlow-optimized heterogeneous workflows;
we view (1) training single agents for end-to-end execution and (2) principled heterogeneous
composition as complementary, promising directions in LLM multi-agent system research.
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ETHICS STATEMENT

This research primarily focuses on evaluating the effectiveness of using a single LLM (large lan-
guage model) agent to perform multi-agent workflows, with an emphasis on empirical validation. It
relies solely on existing LLMs and does not involve training, fine-tuning model weights, or creating
new LLMs. As such, the work does not raise any novel ethical considerations or societal impacts
beyond those already well documented in relation to large-scale language models more broadly.

REPRODUCIBILITY STATEMENT

We provide pseudocode and a detailed explanation of OneFlow in the main methodology section,
along with a visual illustration for clarity. We also include the exact prompts used, as well as the
model settings for both the executor model and the optimization model.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Large language models were used solely for sentence-level proofreading. All research ideation and
paper writing were conducted entirely by the authors.

A.2 MONTE CARLO TREE SEARCH FOR WORKFLOW OPTIMIZATION

As mentioned above and Figure 2, we employ MCTS to systematically explore the space of possible
workflows, treating each workflow configuration as a node in the search tree. Specifically:

1. Selection: At each iteration, we form a candidate set consisting of the initial workflow
WInput-Output together with the top 3 best-performing workflows from the Monte Carlo Tree. Retain-
ing the initial workflow WInput-Output in the candidate set helps the framework maintain exploration
of the workflow space. We then select one Workflow W workflow from the candidate set for expan-
sion. Following AFlow (Zhang et al., 2025e), we employ a mixed-probability selection strategy that
combines uniform distribution (for exploration) and score-based weighting (for exploitation):

pi = λ · 1
n
+ (1− λ) · exp(α · si)∑

j exp(α · sj)
(2)

where si is the score of workflow i, α controls the sharpness of the distribution, λ balances explo-
ration and exploitation, and n ≤ 4 represents the number of candidates. This formula ensures that
better-performing workflows have a higher probability of being selected as Workflow W .

2. Expansion: This phase leverages the dual meta-LLM architecture (detailed in Appendix A.3).
At each expansion, the designer meta-LLM proposes a new workflow design Wnew1 (represented
in Python code with detailed comments) based on the selected workflow W from the previous se-
lection step and the failed cases in the validation dataset Dv . Next, the critic meta-LLM reviews the
proposed workflow design Wnew1 to assess its validity and efficiency by examining the code com-
ments and Python implementation. The critic also compares the proposal Wnew1 with candidate
workflows from the selection stage. Finally, the critic meta-LLM proposes an improved workflow
Wnew2 based on the designer’s proposal Wnew1, writing detailed comments in the workflow code
to record changes and their rationale. The output of this stage is a runnable workflow.py file that
implemented Wnew2.

3. Evaluation. The proposed workflow Wnew2 is then evaluated on the validation dataset Dv

to obtain performance metrics (e.g., accuracy), cost metrics (e.g., token consumption), and failed
samples (including the specific reasoning processes of the failures).
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4. Backpropagation: The performance and cost, and failure cases are stored in the current workflow
node Wnew2. The relative success or failure compared to the parent workflow node W is stored
in the parent node W (we call this backpropagation) to avoid proposing similar workflows. The
optimization process continues until a maximum number of iterations is reached (20).

A.3 DUAL META-LLMS FOR BALANCED PERFORMANCE AND COST OPTIMIZATION

We design two specialized meta-LLMs that collaboratively design new workflows (the right panel
of Figure 2 shows how this dual meta-LLM framework works):

Meta-LLM 1: Creative Designer. This meta-LLM’s goal is to creatively, even disruptively, im-
prove a workflow. It receives the code and prompt of the current agentic workflow Wcurrent, the
workflow’s performance score (e.g., accuracy), any previous modifications based on Wcurrent, the
corresponding performance score, and a sample of incorrectly answered questions, Derror, including
the questions, the reasoning process when the workflow failed to answer the question, and the ground
truth answer. It also receives instructions on how to write a runnable workflow.py file, how to
define system prompts for LLM agents, and how to utilize existing operators (e.g., chain-of-thought
reasoning, ensembling, executing Python code, etc.). With this information, the Creative Designer
is prompted to make creative modifications to improve workflow performance and add comments to
the workflow code explaining the rationale for the changes.

Wcreative designer = Designer(Wcurrent, Derror, instructions) (3)
The creative designer’s setting is similar to the AFlow (Zhang et al., 2025e) setting, with two mod-
ifications: 1) the creative designer is prompted to write code comments explaining the rationale
for modifications, which can inform the other meta-LLM (the critical reviewer), and 2) the cre-
ative designer is given more detailed error logs, which include the specific reasoning process during
the entire workflow’s execution. This helps the creative designer better understand the workflow’s
failure cases. Empirically, we found that the creative designer alone can propose workflows with
excellent performance, but the inference cost of the workflow is high.

Meta-LLM 2: Critical Reviewer. The Critical Reviewer’s goal is to review and critique the cre-
ative designer’s proposed workflow and modify it to avoid mistakes and improve cost-efficiency. To
accomplish this, we provide the critical reviewer with the same information as the creative designer.
Additionally, we give the critical reviewer the creative designer’s proposed workflow (a runnable
workflow.py file, including code and comments) and the cost and performance metrics of exist-
ing workflow candidates (the top 3 best-performing workflows from the Monte Carlo tree, plus the
initial workflow WInput-Output). We then prompt the critical reviewer to carefully examine the cre-
ative designer’s proposed workflow, using the existing workflow candidates’ cost and performance
as reference points. The critical reviewer proposes a new workflow design based on the designer’s
proposal, writing detailed comments in the workflow code to document changes and their rationale.
The goal is to avoid mistakes and improve cost-efficiency. The output of this stage is a runnable
workflow.py file. The critical reviewer also writes reflections on the improved workflow. Since
the critical reviewer is given more global information and cost data, it can provide a broader view of
the workflow’s performance and cost trade-offs to guide future rounds of workflow design.

Wcritical reviewer = Reviewer(Wcreative designer,Wcandidates, cost metrics) (4)
We use the critical reviewer’s output workflow as the final workflow of this round.

A.4 RESULTS ON CLAUDE 3.5 HAIKU

To further evaluate the effectiveness of our proposed OneFlow framework, we conduct experiments
on Claude 3.5 Haiku. The results are shown in Table 5 and Table 6.

Performance on Shopping-Specific Tasks. Table 7 demonstrates that our OneFlow approach
achieves state-of-the-art performance across 9 out of 10 shopping-specific tasks, outperforming both
single-LLM baselines and existing multi-agent frameworks. Notably, we observe substantial im-
provements over the strongest baseline (AFlow) in critical shopping domains: Product Selection
(+4.0% absolute improvement, 0.678 vs. 0.638), Sentiment Analysis (+2.5%, 0.777 vs. 0.752), and
Multilingual Query Understanding (+4.8%, 0.569 vs. 0.521). These gains are particularly significant
given the complexity of shopping-specific reasoning tasks, where domain knowledge and nuanced
understanding of user intent are crucial.
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Table 5: Results on Claude 3.5 Haiku. Performance comparison on public benchmarks. We re-
port pass@1 accuracy for code generation tasks (HumanEval, MBPP) and F1 scores for question-
answering tasks (HotpotQA, DROP), solve rate (%) for GSM8K, MATH. OneFlow achieves com-
petitive or superior performance across most benchmarks. Results are averaged over three indepen-
dent runs.

Method HumanEval MBPP GSM8K MATH HotpotQA DROP

IO 0.870 0.745 0.875 0.329 0.635 0.640
AFlow (Zhang et al., 2025e) 0.908 0.836 0.912 0.505 0.746 0.868
OneFlow (Ours) 0.916 0.844 0.930 0.513 0.747 0.875

Table 6: Results on Claude 3.5 Haiku. Cost comparison on public benchmarks. Values represent
total inference cost in USD (lower is better). OneFlow achieves substantial cost reductions while
maintaining competitive performance. Results are averaged over three independent runs.

Method HumanEval MBPP GSM8K MATH HotpotQA DROP

AFlow (Zhang et al., 2025e) 0.20 2.39 6.68 3.55 6.55 3.46
OneFlow (Ours) 0.25 0.58 5.83 4.33 1.47 3.14

Table 7: Performance comparison on Shopping-MMLU tasks using accuracy as the evaluation met-
ric. OneFlow achieves state-of-the-art performance across 9 out of 10 shopping-specific tasks. Re-
sults are averaged over three independent runs. Task abbreviations: Product Sel. (applicable product
selection), Sentiment (aspect-based sentiment classification), Attribute (implicit attribute selection),
Multi-lang (multilingual query product semantic understanding), Prod. Comp. (product comple-
ments), Query (query product semantic classification), Brand (related brands selection), Keyword
(related keyword intent selection), Rev. Help (review helpfulness selection), Rev. Sent. (reviews
overall sentiment selection). Best results are shown in bold.
Method Product Sentiment Attribute Multi- Prod. Query Brand Keyword Rev. Rev.

Sel. lang Comp. Help Sent.

IO 0.638 0.668 0.650 0.465 0.713 0.464 0.681 0.728 0.586 0.578
CoT (Wei et al., 2022) 0.647 0.712 0.700 0.441 0.700 0.455 0.761 0.713 0.586 0.566
SC(CoT X 5) (Wang et al., 2023) 0.656 0.731 0.713 0.473 0.703 0.491 0.761 0.725 0.598 0.566
AFlow (Zhang et al., 2025e) 0.638 0.752 0.769 0.521 0.736 0.530 0.761 0.713 0.550 0.698
OneFlow (Ours) 0.678 0.777 0.775 0.569 0.756 0.567 0.756 0.783 0.609 0.718

Table 8: Cost efficiency comparison on Shopping-MMLU tasks measured in USD inference cost
(lower is better). Results are averaged over three independent runs. OneFlow demonstrates superior
cost efficiency across all shopping-specific tasks while maintaining competitive performance. Best
results are shown in bold.
Method Product Sentiment Attribute Multi- Prod. Query Brand Keyword Rev. Rev.

Sel. lang Comp. Help Sent.

SC(CoT X 5) (Wang et al., 2023) 1.87 1.78 1.62 1.84 1.89 1.55 1.34 2.00 1.53 2.78
AFlow (Zhang et al., 2025e) 1.47 1.83 2.20 1.32 1.39 0.63 0.23 0.39 0.86 2.75
OneFlow (Ours) 0.26 0.48 0.63 0.46 0.42 0.47 0.32 0.60 0.31 0.74

A.5 SYSTEM PROMPT FOR ONEFLOW

A.5.1 SYSTEM PROMPT FOR THE CREATIVE DESIGNER META-LLM

The following designer prompts are adapted from AFlow (Zhang et al., 2025e).

WORKFLOW_OPTIMIZE_PROMPT_DESIGNER = """You are building a workflow
Graph (nodes are llm agents, edges are the flow of information)
and corresponding Prompt to jointly solve {type} problems.

Referring to the given graph and prompt, which forms an example of a
{type} solution approach, please reconstruct and optimize them.

You can add, modify, or delete nodes, edges, or prompts. Include your
single modification in XML tags in your reply. Ensure they are
complete and correct to avoid runtime failures.
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When optimizing, you can incorporate critical thinking methods such
as review, revise, ensemble (generating multiple answers through
different/similar prompts, then voting/integrating/checking the
majority to obtain a final answer), brainstorming, expert-based
reasoning, to solve the problem efficiently and effectively.

Consider Python’s loops (for, while, list comprehensions),
conditional statements (if-elif-else, ternary operators), and
other programming techniques to enhance the workflow. Use logical
and control flow (IF-ELSE, loops) for a more enhanced graphical
representation.

You can design a workflow that adapts its approach based on the
complexity of each problem. For example, using Python if-else
statements to choose different solution strategies for easy vs.
hard problems.

PROMPT REQUIREMENTS:
- Only generate prompts used by Custom operators in your graph

(accessed as prompt_custom.YOUR_PROMPT_NAME)
- Built-in operators already have their own prompts - don’t generate

prompts for them
- Remove any unused prompts from prompt_custom
- Generated prompts must be complete with no placeholders

Output the modified graph and all necessary prompt_custom prompts.
It’s crucial to include necessary context during the process.
Be creative and try to push the boundaries of the existing graph.
Write concise and informative inline comments for the code you

modified to explain the logic and the purpose, why the
modification is creative and effective. With all the comments you
write, you should leave your name: Designer (modifying the round
X graph).

If you encounter code comments written by other designers or critics,
keep those that are useful for future reference.

"""

WORKFLOW_INPUT_DESIGNER = """
Here is a workflow graph and the corresponding prompt (prompt only

related to the custom method) that has been tested on the
previous round and its score (maximum score is 1). You must make
further optimizations and improvements based on this graph. The
modified graph must differ from the provided example, and the
specific differences should be noted within the
<modification>xxx</modification> section.\n

<sample>
<experience>{experience}</experience>
<modification>(such as:add /delete /modify/ ...)</modification>
<score>{score}</score>
<graph>{graph}</graph>
<prompt>{prompt}</prompt>(contains prompts used by Custom
operators)

<operator_description>{operator_description}</operator_description>
</sample>

You are encouraged to use the operators provided, not limited to the
custom operator.

In the graph, you should use the list process to record the
intermediate output of the workflow. And return the process as
the one of the output of the workflow.

Below are the logs of some results with the aforementioned workflow
Graph encountered errors, which can be used as references for
optimization:
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{log}

In your design, you cannot hardcode the answer (e.g., remember the
answer of a specific problem), which can lead to overfitting.
Instead, provide principles rather than specific answers.

First, provide optimization ideas. **Only one detail point can be
modified**, and no more than 5 lines of code may be changed per
modification; you can not totally change the existing graph,
extensive modifications are strictly prohibited to maintain
project focus!

When introducing new functionalities in the graph, please make sure
to import the necessary libraries or modules yourself, except for
operator, prompt_custom, create_llm_instance, which have already
been automatically imported.

No need to import the operator, prompt_custom, create_llm_instance,
which have already been automatically imported.

**Under no circumstances should Graph output None for any field.**
Use self.custom methods to restrict your output format, rather than

using code (outside of the code, the system will extract answers
based on certain rules and score them).

It is very important to format the Graph output answers, you can
refer to the standard answer format in the log.

Be creative and try your best to propose new ideas.

"""

A.5.2 SYSTEM PROMPT FOR THE CRITICAL REVIEWER META-LLM

The following critic prompts are adapted from AFlow (Zhang et al., 2025e).

WORKFLOW_OPTIMIZE_PROMPT_CRITIC = """You are a great workflow critic
and optimizer.

You are the analytical critic and practical optimizer. Focus on (1)
the potential of the designer’s idea to push the boundaries of
the existing workflow solutions and (2) cost-effectiveness of the
designer’s proposed solution.

- The designer’s idea has a great chance to help us push the
boundaries of the existing graph and may find great solutions, so
you should try to implement the designer’s idea in a
cost-efficient way, if necessary.

- Preserve the designer’s innovative ideas while making them more
cost-efficient, if necessary.

- You are encouraged to use the operators provided, not limited to
the custom operator.

- Fully respect the designer’s idea, especially when the designer
proposed to use a predefined operators, you just use it and do
not modify it. Some operators can be expensive, but if the
designer proposed to use them, you should give them a try as it
may have great potential of performance improvement.

- If a solution involves too many api calls (agent) e.g., > 5 api
calls per problem and are not necessary, it can be very slow and
costly, you can try to find a way to make it more cost-efficient.
Overly expensive solutions are not allowed.

- You have access to the existing top performing workflow graphs and
their performance and cost metrics. Consider the performance and
cost of these existing graphs (they are the existing solutions
for the same problem) when optimizing the designer’s graph. You
should not blindly reuse the existing top performing graphs, but
use them as references to improve the cost-efficiency of the
designer’s idea, which may have great potential.

## Code Commentary Requirements:
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- Add concise inline comments explaining your critical analysis and
optimization rationale

- Include practical critiques at the code’s end, drawing from
top-performing graphs and best practices

- Preserve useful existing comments from other designers/critics,
remove redundant ones

- Sign your comments as: "Critic (modifying round X workflow proposed
by the designer)"

## Context and References:
When optimizing, refer to the designer’s comments to understand the

logic, purpose, and creative value of each modification. Consider
how your optimization maintains the innovation while improving
practical efficiency.

Referring to the designer’s given graph and prompt for {type}
problems, optimize them following the framework above."""

# Critic input prompts
WORKFLOW_INPUT_CRITIC = """
Here is a workflow graph and the corresponding prompt (prompt only

related to the custom method) that has been proposed by a
creative designer LLM (based on one existing workflow), which can
be a great idea. You must respect and implement the designer’s
ideas. If the designer LLM’s proposed workflow is already
cost-effective, you just use it and do not change it. When the
designer’s idea is costly, you need to make further optimizations
based on this graph to make it more cost-efficient. Try to
preserve the original ideas as much as possible, but implement
them in a great cost-efficient way if necessary. You are also
provided with the existing top performing workflow graphs, their
prompts, their performance metrics, most importantly, their cost
metrics, on the same problems. Critically learn from their cost
and strategy, and focus on improving the cost-efficiency of the
designer’s idea. Your improved workflow, by nature, is a great
and cost-efficient implementation of the designer’s idea.

{experience}

Only when you are very sure that the designer’s idea is not good
based on strong evidence, you can propose a new idea or
fundamental changes. But in most cases, you should try to improve
the designer’s idea’s cost-efficiency while preserving the
original ideas, which can help us utilize the designer’s
innovative idea to push the boundaries of the existing workflow
graph and find great solutions. The modified graph must differ
from the provided graph (only exception is that, If the designer
LLM’s proposed workflow is already cost-effective, you just use
it and do not change it.), and the specific differences should be
noted within the <modification>xxx</modification> section, here
is the workflow graph proposed by the designer LLM.

<sample>
<modification>(such as:add /delete /modify/ ...)</modification>
<graph>{graph}</graph>
<prompt>{prompt}</prompt>(contains prompts used by Custom
operators)

<operator_description>{operator_description}</operator_description>
</sample>
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In the graph, you should use the list process to record the
intermediate output of the workflow. And return the process as
the one of the output of the workflow.

You are encouraged to use the operators provided, not limited to the
custom operator.

**ERROR LOGS FROM THE ORIGINAL WORKFLOW:**
The designer proposes an improved workflow (the graph above) based on

an existing graph. The error logs of the old workflow that the
designer is improving are:

{log}

**IMPORTANT:** Pay close attention to the error logs above. These
logs show specific issues, failures, and problems encountered by
the old workflow. Use these error logs to evaluate whether the
designer’s proposed improvements have potential to address these
specific issues. In your design, you cannot hardcode the answer
(e.g., remember the answer of a specific problem), which can lead
to overfitting. Instead, provide principles rather than specific
answers.

**CRITICAL FORMATTING RULE - READ THIS FIRST:**
NEVER combine formatting instructions with reasoning instructions in

the same prompt. If you need both reasoning AND specific output
formatting, you MUST use separate agents or code-based formatting.

**WHY:** LLMs cannot simultaneously reason deeply AND maintain strict
output formats. When you ask an LLM to "think about this problem
AND format your answer as X", it will prioritize thinking over
formatting, causing format failures.

**SOLUTION:** Use one agent for reasoning, then use code (regex) or a
separate formatting agent to ensure correct output format. This
is non-negotiable for reliable results.

When introducing new functionalities in the graph, please make sure
to import the necessary libraries or modules yourself, except for
operator, prompt_custom, create_llm_instance, which have already
been automatically imported.

No need to import the operator, prompt_custom, create_llm_instance,
which have already been automatically imported.

**Under no circumstances should Graph output None for any field.**
Use self.custom methods to restrict your output format, rather than

using code (outside of the code, the system will extract answers
based on certain rules and score them).

Here are the existing top performing workflow graphs (the round 1 is
not the top solution, it is a baseline solution) for the same
problem and their performance and cost metrics. Do not blindly
reuse the existing top performing graphs, but pay attention to
their cost and performance, and use them as references to improve
the cost-efficiency of the designer’s idea if needed:

{top_solutions_context}
"""

A.6 SYSTEM PROMPT USING FOR AFLOW OPTIMIZED HETEROGENEOUS MULTI-AGENT
SYSTEMS

The following guidance is adapted from AFlow (Zhang et al., 2025e).
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# Optional guidance snippet appended when running in heterogeneous
executor mode

HETERO_EXEC_GUIDANCE = """
\n[HETEROGENEOUS EXECUTOR MODE]
You can use two different executor LLMs within a single workflow:

‘claude-3-5-haiku-20241022‘ and ‘gpt-4o-mini‘.
- Define your Workflow __init__ to accept two configs (e.g.,

llm_config_haiku35 and llm_config_4omini), create two Custom
operators (self.custom_haiku35, self.custom_4omini), and choose
between them per step based on problem characteristics.

- IMPORTANT: Do not rely on a single executor. Prefer designs that
leverage BOTH executors creatively within the same workflow
(e.g., draft with 4o-mini -> verify/refine with Haiku; brainstorm
with Haiku -> select/format with 4o-mini; parallel
generate-and-vote using both, etc.).

- If you decide to use only one executor for a step, briefly justify
why the other is not helpful for that specific step (cost/perf
tradeoff). Over the whole workflow, ensure both executors have
meaningful roles.

- Keep each round’s modification minimal. Maintain imports to allowed
modules and record intermediate steps in ‘process‘.

- Prompts you generate still belong to the ‘prompt_custom‘ module and
are used by Custom operators regardless of which executor calls
them.

"""

A.7 DETAILS ABOUT THE DATASETS

Dataset Selection and Evaluation Protocol. We use the same six datasets as AFlow (Zhang et al.,
2025e): GSM8K, HumanEval, MBPP, HotpotQA, DROP, and MATH. The number of testing sam-
ples in each dataset are: HumanEval (131), MBPP (341), MATH (486), GSM8K (1055), HotpotQA
(800), and DROP (800). We also evaluate on TravelPlanner (Xie et al., 2024), a benchmark for real-
world planning and tool use with Language Agents. The number of testing samples in TravelPlanner
are: TravelPlanner (180).

Shopping-MMLU: Domain-Specific Evaluation. To assess performance on domain-specific
reasoning tasks, we introduce evaluation on Shopping-MMLU, a specialized benchmark for e-
commerce reasoning capabilities. Our evaluation protocol for Shopping-MMLU follows a rigorous
difficulty-based selection process. We initially evaluated all 33 shopping-related multiple-choice
questions using Claude 3.5 Sonnet as a screening model. From these initial evaluations, we iden-
tified and selected the 10 most challenging tasks where Claude 3.5 Sonnet achieved less than 80%
accuracy, ensuring our evaluation focuses on genuinely difficult reasoning scenarios that require
sophisticated multi-agent collaboration.

The selected Shopping-MMLU tasks span critical e-commerce domains including product selection,
sentiment analysis, attribute reasoning, multilingual query understanding, product complementarity,
semantic classification, brand relationships, keyword intent analysis, review helpfulness assessment,
and sentiment evaluation. This comprehensive coverage allows us to evaluate how well different
workflow approaches handle the nuanced reasoning required in real-world shopping scenarios. The
results for Shopping-MMLU evaluation are presented in Table 7, demonstrating the effectiveness of
our approach across diverse shopping-specific reasoning tasks.

A.8 MORE RESULTS ON THE COST ANALYSIS.
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Table 9: Executor-specific token usage and heterogeneous baseline on public benchmarks. Left:
input tokens; right: output tokens. Values are averaged over three runs.

Input tokens Output tokens

Method (Executor) HumanEval MBPP GSM8K MATH HotpotQA DROP HumanEval MBPP GSM8K MATH HotpotQA DROP

GPT-4o mini-based
AFlow (GPT-4o mini) 2863 2049 2738 10793 8501 4003 1880 1409 1107 5361 871 605
OneFlow (GPT-4o mini) 488 586 1062 2096 1559 1191 205 196 719 2286 190 374
AFlow (GPT-4o mini, single-agent) 2597 414 1044 9382 5572 1084 1875 1279 840 4979 655 447
OneFlow (GPT-4o mini, single-agent) 313 443 215 2164 1559 1134 174 196 557 1782 190 307

Table 10: Executor-specific inference cost (USD) and heterogeneous baseline on public benchmarks.
Values are mean ± std over three runs (lower is better).

CODE MATH QA

Method (Executor) HumanEval MBPP GSM8K MATH HotpotQA DROP

GPT-4o mini-based
AFlow (GPT-4o mini) $0.198 ± 0.003 $0.393 ± 0.002 $1.134 ± 0.001 $2.343 ± 0.036 $1.438 ± 0.000 $0.771 ± 0.001

OneFlow (GPT-4o mini) $0.026 ± 0.000 $0.070 ± 0.005 $0.623 ± 0.001 $0.819 ± 0.007 $0.278 ± 0.000 $0.322 ± 0.000

AFlow (GPT-4o mini, single-agent) $0.198 ± 0.004 $0.283 ± 0.001 $0.697 ± 0.001 $2.039 ± 0.028 $0.530 ± 0.001 $0.345 ± 0.001

OneFlow (GPT-4o mini, single-agent) $0.020 ± 0.000 $0.063 ± 0.004 $0.387 ± 0.000 $0.677 ± 0.002 $0.278 ± 0.000 $0.284 ± 0.001

Claude 3.5 Haiku-based
AFlow (Claude 3.5 Haiku) $0.200 ± 0.000 $2.390 ± 0.000 $6.680 ± 0.000 $3.550 ± 0.000 $6.550 ± 0.000 $3.460 ± 0.000

OneFlow (Claude 3.5 Haiku) $0.250 ± 0.000 $0.580 ± 0.000 $5.830 ± 0.000 $4.330 ± 0.000 $1.470 ± 0.000 $3.140 ± 0.000

Heterogeneous baseline
AFlow (Heterogeneous: GPT-4o mini
+ Claude 3.5 Haiku)

$0.278 ± 0.003 $0.343 ± 0.004 $1.469 ± 0.003 $1.334 ± 0.006 $2.153 ± 0.005 $0.822 ± 0.001
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