AegisGuard: RL-Guided Adapter Tuning for
TEE-Based Efficient & Secure On-Device Inference

Che Wang!-2#Ziqi Zhang?, Yinggui Wang®, Tiantong Wang?, Yurong Hao?,
Jianbo Gao*, Tao Wei®, Yang Cao®, Zhong Chen', Wei Yang Bryan Lim?

School of Computer Science, Peking University!,
Nanyang Technological University?, University of Illinois Urbana-Champaign®,
Beijing Jiaotong University*, Ant Group®, Institute of Science Tokyo®
chewang@stu.pku.edu.cn

Abstract

On-device large models (LMs) reduce cloud dependency but expose proprietary
model weights to the end-user, making them vulnerable to white-box model steal-
ing (MS) attacks. A common defense is TEE-Shielded DNN Partition (TSDP),
which places all trainable LoRA adapters (fine tuned on private data) inside a
trusted execution environment (TEE). However, this design suffers from excessive
host-to-TEE communication latency. We propose AegisGuard, a fine tuning and
deployment framework that selectively shields the MS sensitive adapters while
offloading the rest to the GPU, balancing security and efficiency. AegisGuard in-
tegrates two key components: i) RL-based Sensitivity Measurement (RSM), which
injects Gaussian noise during training and applies a lightweight reinforcement
learning to rank adapters based on their impact on model stealing; and (ii) Shielded-
Adapter Compression (SAC), which structurally prunes the selected adapters to
reduce both parameter size and intermediate feature maps, further lowering TEE
computation and data transfer costs. Extensive experiments demonstrate that
AegisGuard achieves black-box level MS resilience (surrogate accuracy around
39%, matching fully shielded baselines), while reducing end-to-end inference
latency by 2-3x and cutting TEE memory usage by 4x compared to state-of-the-art
TSDP methods.

1 Introduction

The rapid development of large models (LMs) [6,[10,128]] has enabled efficient on-device LM inference,
attracting attention from both academia and industry [2} 22, |39]. Particularly with parameter-efficient
fine-tuning (PEFT; e.g., Low-Rank Adaptation [15]), LMs can quickly adapt to various downstream
tasks. A popular solution to provide LM-based services is to deploy proprietary LMs fine-tuned on
private data to the users’ devices. However, such deployments introduce serious security risks, as
attackers with visibility of model parameters can exploit exposed components (white-box accessible to
the user) to effectively perform Model Stealing attacks [26]], replicating and redistributing proprietary
model capabilities by a surrogate model.

Existing works proposed TEE-Shielded DNN Partition (TSDP) [45. 4,147, 136] to enhance the security
of on-device inference. TSDP partitions the model into two parts and deploy them across TEE and
untrusted GPU for accelerating the efficiency of trusted inference. The goal of TSDP is to reduce
the workload in TEE by outsourcing the computation-intensive layers to untrusted GPUs, premised
on model security. Compared to cryptographic solutions like multi-party computation (MPC)[42]]

*Work done at NTU

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

and homomorphic encryption (HE)[50], TEEs introduce less overhead and thus are more practical in
real-world LMs deployment.

Shield-LoRA Sensitivity Score obtained AegisGuard
by RL-based Sensitivity Total: 6.42s

Measurement (RSM)

Transfer: 5.14s
GPU: 0.22s

_______ HII!D N
—>

Layer

1 Layer Layer
D3 n—1 n+1
Sensitivity Latency Breakdown
High - Low - Non N
Vo TEE: 628 LoRA LoRA
@00 Total: ~ 21.38s 1 Transfer: 14.91s Shielded Adapter
GPU ¢ | GPU: 0a9s P n—1 n+tl

Compression (SAC)

Figure 1: Shield-LoRA (Left), shields all adapters in TEEs. AegisGuard (Right), selectively shields
LoRA n, the higher sensitive adapter in TEE to reduce data transfer and computation costs.

A straightforward solution that uses TSDP to protect LM is to shield LoRA adapters (trained by
private data) in TEE and leave the base model layers (publicly available) offloaded on GPU (i.e.,
Shield-LoRA), as shown in the left part of Fig.[I] However, this solutions face a new challenge:
frequent data transfer between adapters (in TEE) and base models (on GPU). According to our
preliminary evaluation (16 batch size) on LLaMA-7B inference, the data transfer (14.91s) takes over
60% of the total inference latency (21.38s). Existing TSDP work mainly focuses on how to select
critical model weights to shield [49} 47] or how to obfuscate offloaded weights [45}134]. Thus, how
to reduce the communication cost is still an open problem for TSDP in LM scenario.

To address this challenge, we propose AegisGuard, a novel fine-tuning and deployment framework
that minimizes communication overhead while maintaining strong model protection against MS
attacks. The key insight behind AegisGuard is that not all LoRA adapters contribute equally
to privacy leakage. The sensitivity of an adapter (defined as how much its exposure helps the
performance of model stealing attack) varies across layers. This motivates a selective shielding
strategy, where only the most sensitive adapters are executed inside the TEE, while less sensitive
ones are offloaded to the untrusted GPU.

One challenge is how to evaluate the adapter sensitivity. Directly evaluating the sensitivity via
MS attacks is prohibitively costly. We instead propose a lightweight approach, i) Reinforcement
Learning-based Sensitivity Measurement (RSM), which estimates each adapter’s privacy risk by
combining reinforcement learning with Gaussian noise perturbations. More sensitive adapters are
then prioritized for fine-tuning and selected for shielding; ii) Shielded Adapter Compression (SAC),
which structurally compresses both parameter size and intermediate feature map dimensions of
adapters identified by RSM, improving execution efficiency within the TEE.

Extensive experiments demonstrate AegisGuard outperforms existing approaches, achieving 2-3 x
inference latency speedup towards Shield-LoRA. AegisGuard provides an effective defense against
MS attack. The attack accuracy is averagely 39.1%, similar to the black box protection (accuracy of
38.9%). AegisGuard introduces a negligible accuracy drop by 0.12%.

The contributions of this paper are as follows:
» We propose to reduce the communication workload between TEE and GPU for TSDP solutions
by an RL-based sensitivity measurement approach for on-device LM inference.

* We design AegisGuard, a fine-tuning framework that measures the adapter’s sensitivity and
compresses intermediate feature maps to reduce the communication cost after deployment.

* We conduct comprehensive experiments for deployed LMs, demonstrating superior inference effi-
ciency, robust security against model stealing attack, and minimal accuracy loss of AegisGuard.

2 Related works

2.1 TEE

Trusted Excution Environments (TEEs) is a secure space that is isolated from other parts of the
host machine [9, [1]]. We follow prior work to regard TEE as a secure and computation-limited area

(without GPU) on a malicious adversary host machine [47,49]]. TEEs, such as ARM TrustZone [1],
Intel SGX [9]], provide hardware-enforced isolated enclaves designed to secure sensitive data and
computations against adversarial access. Recent works have explored utilizing TEEs to protect model
security on users’ devices against possibly malicious device owners [4} 49, (17, 147, 34, 23]]. The goal
of TEE-based defenses is to downgrade the accurate and efficient white-box model stealing attacks to
inaccurate and slow black-box attacks.

2.2 TEE-Shielded DNN Partition (TSDP)

Due to the limited computational capability of TEE, it is challenging to protect the entire model
using TEE [36,47]. To address this issue, researchers propose TEE-Shielded DNN Partition (TSDP)
solutions that utilize co-located untrusted GPUs to accelerate the computation phase [49, 47, [14, |34]].
TSDP solutions partition the model into two parts. One is a critical and computationally lightweight
part, and the other is a computationally intensive part. The TEE shields the first part, and the second
part is offloaded to GPUs.

Limitation of existing TSDP. Although TSDP can mitigate the computation overhead by utilizing
GPU accelerators, existing solutions face another bottleneck: the cost of data transfer between TEE
and GPU. According to the measurement of the latest TSDP work, the time of data transfer can take
as much as 35% of the total inference latency [47]. It is because the DNN layers are heterogeneously
deployed across TEE and GPU, and TSDP solutions have to transfer the internal feature map between
TEE and GPU. The core goal of this paper is to reduce the communication workload by minimizing
the number of shielded adapters in TEEs while not compromising on security.

Gray-box Model Stealing (MS) Attack. The goal of a MS attack is to steal the functionality of a
victim model by acquiring a surrogate model with a similar performance to the victim model [27]].
The attack against the TSDP models is a gray-box model stealing because TSDP offloads some
computation to the untrusted GPU. The adversary can utilize computation operators (e.g., model
weights) to obtain more information than is available through black-box protection (shielding the
whole model in TEE). The goal of TSDP is to provide a black-box-level protection against MS attack
in this gray-box setting [34} 133} 45]].

2.3 Large Model Compression

Recent studies have validated the existence of sparse sub-networks in Transformer models, achieving
significant compression (e.g., over 50% parameter reduction) with minimal accuracy degradation
[20} 143119} [13]]. While some compression methods like Singular Value Decomposition (SVD) [37]
can effectively reduce model size, they do not compress the intermediate feature dimensions. Because
TSDP deploys an LM across TEE and GPU, it needs to transfer intermediate features between TEE
and GPU. The feature dimension determines the amount of data communication and affects the
efficiency of TSDP. Thus, structural pruning[43]] applied during fine-tuning provides more hardware-
friendly compression: it directly removes redundant parameters (e.g., attention heads or ffn layers) as
long as output dimensions, thereby generating sparse matrices that align with the computation and
memory optimizations in TEEs.

3 Design of AegisGuard

3.1 Threats model

We adopt a gray-box security model consistent with prior TSDP literature [47} 34} 33}145]]. The model
owner is the defender, who deploys a fine-tuned model to a user device for on-device inference. The
deployed model has two components: i) an open-source pretrained backbone such as LLaMA, and
ii) LoRA adapters fine-tuned using private data. The device owner is an honest-but-curious attacker
that follows the correct inference protocol, but attempt to perform a MS attack, in which a surrogate
model is trained to approximate the victim model’s behavior using only the exposed components.
The defender uses a TEE (e.g., Intel SGX) to shield selected LoRA adapters while offloading the
rest of the model to a co-located GPU. We assume the TEE is secure and cannot be compromised.
However, the attacker can observe: i) all model weights and parameters that are offloaded to the GPU,
and ii) inference outputs from the full model. Our defense objective is to minimize the performance
of the surrogate model while maintaining low inference latency and accuracy for the legitimate user.

Our threat model focuses on protecting the model’s proprietary fine-tuning knowledge against
parameter-extraction and functional imitation attacks. We do not address input reconstruction or
training data inversion attacks based on feature leakage from unshielded components. These are
orthogonal threats, and we note that complementary techniques such as differentially private training,
input anonymization, or secure enclaved preprocessing may be integrated with AegisGuard to
provide stronger end-to-end protection.

3.2 Problem formulation

AegisGuard aims to achieve a three-fold goal during the inference phase: security, efficiency, and
accuracy. Security means that AegisGuard should defend against gray-box MS attacks [47] and
minimize the surrogate model’s performance. Efficiency means AegisGuard should reduce the
overall inference latency by minimizing the amount of communication and computation in the slow
TEE. Accuracy means AegisGuard should maintain a comparable accuracy with the model trained
by standard fine-tuning. To better understand the AegisGuard approach, we define some symbols.

Let M denote the base model, with Dy,.,;,, representing training datasets. Similar to existing PEFT
work [15], AegisGuard trains a set of adapters parameterized as AW = BA. We set a decoder layer
as the unit. Let S = [s1, o, ..., 8, denote the sensitivity scores for n layers, and A = [ay, ag, ..., a4
represent policy actions of RSM, denotes selecting sensitive layers as trainable at each step, where t
is step number. The objective of our approach can be formulated as:

F = arg min Lrr(M(Dirain); AW) + arg min Tsac(AW;S) + arg max Jrsm (S|AW; Dirain; A) (1
AW AW | s

The first term Lrr minimizes task-specific loss through gradient-based fine-tuning. The second term
Tsac jointly optimizes higher sensitive adapter sparsity by pruning parameters based on sensitivity
score S, achieving dynamic model compression. The third term [Jrgym maximizes privacy protection
via RL. It updates S by evaluating sensitivity via noise perturbations to adapters and uses policy
actions A to sample and train these sensitive adapters more progressively.

3. Score Update RSM
Ri~ AL! <€

Layer1 —» Layer2 —>» Layer3 —» lLayer4 ~—>» Layer5 l

! 2. Layer-Wise Sensitivity Estimation

|:|II Q i(_ €= -\I\[\l\- Noised Loss
|lE| . LoRA matrix A Gaussian Noise } AL:
Layer Sensitivity - ----- Ceeeis e Task Loss

Score . Layer2 ,: 1. Layer Sampling :‘ Layer4 |

e f JeEEs i €
Trainable H /

O sensitive ') & OoooQ <-

DFrozen LoRA matrix A %%%%%
Insensitive oRA mairix LoRA matrix B Public weights W

Figure 2: Fine-tuning of AegisGuard, integrates two main modules: RL-based Sensitivity Measure-
ment (upper) and Shielded Adapter Compression (lower).

3.3 Overview

Fig. 2] illustrates the design of AegisGuard, which comprises two modules: RL-based Sensitiv-
ity Measurement (RSM) and Shielded Adapter Compression (SAC). The RSM outputs S, which
represents the privacy sensitivity of each layer, while the SAC outputs the compressed sensitive
adapters. The two modules are integrated to the fine-tuning phase to dynamically estimate layer-wise
sensitivity and compress the sensitive layers. Specifically, during fine-tuning phase, AegisGuard
conducts RSM and SAC at regular intervals to monitor the change in layer-wise sensitivity and adjust

it accordingly. RSM consists of three stages, which follows the RL pipeline: policy action, reward
feedback, and state update [11}[30]. The first stage (1 in Fig[2) samples sensitive layers based on
updated sensitivity scores. The second stage (2 in Fig[2) independently evaluates the sensitivity of
layers through gaussian noise. The third stage (3 in Fig[2) is to compute the rewards for each evaluated
layer, and then update corresponding sensitivity scores. SAC only prunes the adapter weights of
active layer (sampled by RSM), with the pruning ratio dynamically adjusted according to its updated
sensitivity score. The pseudocode algorithm of RSM and SAC is presented in Appendix.

3.4 RL-based Sensitivity Measurement

To better search sensitive layers, we model it as a contextual multi-armed bandit problem [3} 140],
which learns to select candidate higher sensitive layers for TEE protection based on continuously up-
dated sensitivity scores S. The measurement consists of three stages: (1) sensitive layer selection (pol-
icy actions), (2) layer sensitivity estimation (reward feedback), (3) sensitivity score update (state
update). An episode of the measurement is conducted at every ¢,.5,, fine-tuning steps (e.g., 10 steps).
We provide convergence analysis of layer selection based fine tuning strategy in Appendix B}

@ Sensitive Layer Selection. Given a model M with adapters, AegisGuard regards the sensitivity
scores S as environmental states. The scores are initialized to Sy = [0, 0, ..., 0]. The policy action
space A constitutes a sequence of decisions a; that select a subset of sensitive layers in each step
for training. We utilize a uniform distribution combined with scores S to sample candidate sensitive
layers. The policy action 7; is formally defined as follows:

o~ U(O, sigmoid(si)) 2)
where U represents a weighted random sampling in the range of [0, o(s;)]. For sampling, the layer
selection probabilities P = {p1,pa, ..., pn} are generated from ;. We select N, highest scoring

layers as trainable for the next fine-tuning steps. After one episode (¢,s,, steps of fine tuning),
AegisGuard injects noise to the weights of the selected N, layers to quantify their sensitivity.
However, due to the depth of LMs and the inaccuracy of initial layer selection, a group of adjacent
layers may be identified as sensitive. Empirically, consolidating sensitive layers into contiguous
sequences tends to cause unstable training. Therefore, we partition the total layers into {g;}& ;

groups and select % layers from each group. The candidate model for next fine tuning step is:

l 1, ified 6= (i) 3)
i —) =1 | Di > Py, 5>
0, otherwise I

where 6 is the selection strategy that i-th layer [; would be chosen as a trainable layer if p; larger than
threshold p,_ in corresponding group, then evaluate its sensitivity in current episode.

@ Layer Sensitivity Estimation. The layer sensitivity
is estimated through noise perturbation for each layer’s

adapters. In RSM episode, we inject Gaussian noise € — =
into the low-rank matrix A € R%w*do of each layer L10 :D
independently. Then, we conduct forward computations 3 —

on the noised model to evaluate sensitivity by measuring 2 ::
the change of output losses. This design is motivated g o

by differential privacy (DP), indicating that sensitive > 1

parameters correlate with private data patterns [48]. Per- — 4 ::

turbing sensitive parameters leads to a larger loss tur- |
bulence. Fig.[3]shows the loss change after perturbing L1 ==

different layers on ViT-Base. The y-axis is the layer in- -0.1 0 +0.1

dex and x-axis shows loss change. We can observe that Loss Change (x10)

the layer’s influence on the model loss varies by a large . .
margin. AegisGuard aims to utilize the correlation to Figure 3: Loss change when perturbing dif-
select the sensitive layers during RSM episode. ferent layers.

Then, the loss changes are used to guide the next action. The goal is to gather as much private
information as possible in the current sensitive layers. Formally, the noise perturbation operation for
the adapter can be expressed as:

f=aW+aB-A— f=aW +2(A+N(0,0%)-B, ¢~N(0,07))

N denotes gaussian noise, with a mean of 0 and variance o2. The variance is based on the standard
deviation of the adapters to ensure that the noise is only functional for the adapter’s weights but not
impact the base model’s weights, which is demonstrated by the weight distribution of base model and
adapters presented in Appendix The ¢-th layers’ change of loss is defined as:

1 B
ALY = 5 (L)) = Lixpili)],)

b=1

where B is the batch size of train data Dy;.q;y,. I; denotes noise perturbation of i-th layer’s adapter.
The layer-wise reward is computed according to the loss change of injected noise in Eq.[3]as:

N
¢ 1 ¢
R! = sgn(ALL) [e25 — i E AL] (6)
i=1

R! denotes the reward for i-th layer at step . sgn(-) is the indicator function and sgn(ALY) is
the sensitivity signal. Since the loss change would be small, we use exponential to amplify highly
sensitive signals while subtracting mean to stabilize reward across layers. Then, if AL} is greater
than zero, the layer is considered to be more sensitive to noise. Otherwise, the layer is considered
to be less sensitive. The sensitive layers will be rewarded, whereas the less sensitive layers will be
penalized.

@ Sensitivity Score update. The update of sensitivity score is based on the reward feedback
of policy action a; as shown in EqJ6l We only update layers that are trainable in current episode
and do not update frozen layers. Otherwise, frozen layers may consistently increase or decrease
the sensitivity scores without any training. Specifically, the update rule for the sensitivity score is
formulated as follows:

s; = 8; + 1y - sigmoid(s;) - (1 — sigmoid(s;)), ifl; =1 @)

where (1 is the learning rate of reinforcement learning, controlling the convergence of sensitivity
scores. After identifying sensitive layers, they will be selectively deployed in TEEs for model
protection.

3.5 Shielded Adapter Compression

Besides the frequent data transfer between TEEs and GPUs, reducing the amount of transmitted
data and computation costs of TEEs can also mitigate the inference latency. Therefore, we utilize
structural pruning to compress shielded adapters’ feature dimensions. In the following, we briefly
introduce gradient-guided weight pruning mechanism and describe how we utilize it to dynamically
compress the adapter of sensitive layers combined with RSM module.

LoRA Importance Estimation. According to prior work, the importance of the LoORA matrix
element BA; ; can be quantified by measuring the loss impact after setting BA; ; = —W; ; [43.124,
20]). For an input = and the ground-truth prediction y, the importance of BA; ; can be given as:

Lij = [L(x,y,W + B- A) — L(z,y, W + B- A|[BA; ; = —-W; ;)]?, ®)

where £ denotes the loss of model. We utilize the first-order Taylor expansion to approximate the

importance I 4,7 in gradient-based manner, in order to minimize the expensive computations of weight
matrix. The importance of parameters in LoORA matrices is formulated as:

-~ oL oL oL oL

5 + 17:A:,j aBZ_’: aAJ)(W%] + (BA)%J)} (9)

Shielded Adapter pruning. Since only selected layers are learnable in an RSM episode, gradients
are unavailable for other frozen adapter parameters, making it challenging to directly apply Eq. [9]in
dynamic model fine-tuning. Furthermore, pruning during the initial training phase may lead to bias
and performance degradation, as all layers exhibit relatively low and random sensitivity to private
data. Estimating weight importance and performing pruning with limited training data also increase
the inaccuracies. Therefore, we propose a dynamic pruning strategy that is compatible with our

sensitivity measurement module, ensuring both structural pruning compatibility and training stability.
Formally, we design a dynamic pruning ratio for adapters in ¢-th layer as:

Riol — R 4
(1- . 10
(T —t+6) - sigmoid(s;) (ata T) ’ (19)

where T is the total number of fine-tuning steps, ¢ is the current fine tuning step, Ry, is overall
prune ratio, and R; is cumulative prune ratio. « is a hyper-parameter to control the pruning rate. 0
used to prevent division by zero. In this way, the layer-wise pruning ratio will progressively increase
in a linear manner. This design aims to prune relatively more weights at the later training phase.

ratio; (t) =

In addition, the prune is executed at head-level. The head importance H; is computed by averaging
importance of weight elements in this head via moving average H! = SH!+(1—3)H, f ~! to mitigate
bias caused by a single batch of data. Afterwards, weight mask is computed by ranking the head
importance that partial lowest importance head would be set to O:

1 t t. -)
mask = 0’ if H‘ G rank (H ’ |_I'at101 (t) NheadJ)
1, otherwise.

(11)

where Njqq is the total number of heads. Afterwards, in the following forward computation, the
masked adapter would be calculated as :

f=2W + xBA © mask, (12)

where ©® denotes the Hardamard product. The module reduces intermediate feature maps throughput
for data transfer and mitigates computation costs by compressing the parameters in TEEs.

4 Experiments

To demonstrate the effectiveness of AegisGuard, in this section, we study four research questions:

RQ1: How is the on-device efficiency of AegisGuard compared with prior work?
* RQ2: How is the defense effectiveness against model stealing attacks?

* RQ3: Does AegisGuard introduce much accuracy degradation?

RQ4: How does the sensitivity vary across different layers?

4.1 Setup

Models and Datasets. We select large models from different domains and sizes, including generative
models (OPT-2.7B [44], LLaMA-7B [35])) and vision transformer (ViT-Base, ViT-Large-14[42]). We
employ LoRA [15] for parameter-efficient fine-tuning. For the dataset, we use CommonSenseQA[16]
to fine-tune generative models. We evaluate the model performance using six popular question-
answering benchmarks: ARC-Challenge and ARC-Easy[[7], HellaSwag [4 1], OBQA [21], PIQA [5],
and WinoGrande [29]. For ViT models, we use six diverse datasets: CIFAR10, CIFAR100, [18],
UTKFace [46], MNIST [8], GTSRB [32], and SUN397 [38]]. Following prior works [49} 4], we use
CIFAR and UTKFace to evaluate the defense effectiveness against MS attack for fair comparison.
Due to space constraints, we provide more details (such as attack pipeline, evaluation metrics, and
hyperparameters) in Appendix[C]

Implementation. We implement all code in PyTorch 2.5.1. The fine-tuning is conducted on a server
with one NVIDIA A6000 GPUs. For inference, we follow existing work [47] to build a prototype
framework on a PC with an Intel SGX enclave (SDK 2.6, GCC 7.5), and an NVIDIA RTX4090D
24GB GPU to evaluate the on-device LM performance.

Baselines. We select four baselines. Two are state-of-the-art TSDP solutions, two are bound
baselines. The SOTA TSDP solutions are TEESlice [47] and Phantom [4]], which are published
at top-tier conferences. The two bound baselines are No-Shield and Shield-LoRA, following [47]].
No-Shield deploys the entire model to the untrusted GPU, which has the highest efficiency (all on
GPU) but the lowest security (no TEE). Shield-LoRA refers to deploying all adapters in the TEE,

rather than the GPU. This baseline offers the highest security (all in TEE) but the lowest efficiency
(no GPU). Besides, No-Shield and Shield-LoRA also have the highest accuracy because they directly
apply LoRA fine-tuning to the base model and do not compress the model weights.

4.2 Inference Efficiency

Table 1: Inference overhead on a real device. We report inference latency of AegisGuard compared

with two baselines and Shield-LoRA setting (slowest). indicate lowest inference overhead
Inference Costs (ViT-Base) \ Inference Costs (LLaMA-7B)

Time (ms) Shield-LoRA Phantom TEESlice AegisGuard No-Shield ‘ Time (s) Shield-LoRA Phantom TEESlice AegisGuard No-Shield
GPU 6.88 6.03 5.73 5.94 6.45 GPU 0.19 0.32 0.21 0.22 0.96
TEE 12.24 4.25 8.93 4.31 - TEE 6.28 1.15 2.54 1.06 -

Transfer 13.65 13.67 11.02 4.89 - Trans 1491 11.96 9.03 5.14 -
End-to-End 32.77 (1.00x) 23.95 25.68 15.14 (2.16x) 6.45 | End-to-End 21.38 (1.00x) 13.43 11.78 6.42 (3.33%) 0.96

AegisGuard shows the best efficiency in inference latency. It presents the real-device efficiency of
ViT-Base and LLaMA-7B. Table[I|shows the latency of GPU computation, TEE computation, data
transfer, and the end-to-end latency. The end-to-end latencies of AegisGuard are 15.14ms and 6.42s
for ViT-Base and LLaMA-7B, respectively. AegisGuard outperforms TEESlice and Phantom by an
average of 1.60x. Compared to Shield-LoRA, AegisGuard accelerates the latency by reducing the
number of adapters shielded in TEEs for minimizing communication and computations costs. Besides,
the advantage of AegisGuard is larger when the model size increases. Compared to Shield-LoRA,
AegisGuard accelerates by 3.33 x on LLaMA-7B, higher than ViT-Base (2.16x). We also measure
the memory cost of AegisGuard. AegisGuard has average 4.00x less parameters (54.96MB for
LLaMA 7B, 0.88MB for ViT-Base) in TEEs than baselines. The memory results are in Appendix [D.2]

The improvement of AegisGuard comes from TEE computation and data transfer. All methods
have similar computation costs in GPUs, about 6 milliseconds for ViT-Base and 0.2 to 0.3 seconds
for LLaMA-7B. For ViT-Base, AegisGuard selectively deploys only four sensitive adapters in TEE,
whereas TEESlice places nine adapters. Thus, TEESlice exhibits more computation and data transfer
costs. Phantom needs to insert three redundant adapters into models to obfuscate the real execution
path. The MUX operation of Phantom is in TEESs to choose the correct path in each layer based on
the user’s key. Thus, Phantom has a larger data transfer costs than AegisGuard.

4.3 Defense Effectiveness

Table 2: Performance of MS attack accuracy. A lower attack accuracy (surrogate model) represents a

higher defense effectiveness. indicates the best defensive capability measured by the surrogate
model’s accuracy.
Model Stealing Attack (ViT-Base) ‘ Model Stealing Attack (LLaMA-7B)

Dataset No-Shield ~ Phantom TEESlice AegisGuard Shield-LoRA | Dataset No-Shield Phantom TEESlice AegisGuard Shield-LoRA
C10 97.97 56.09 41.89 40.70 42.73 ARC-E 65.06 5743 39.87 40.12 39.60
C100 86.07 30.79 23.18 22.67 19.25 PIQA 77.85 69.37 60.98 60.45 61.31
UTKFace 75.01 27.57 18.86 19.10 20.80 WinoGrande 68.75 60.48 50.73 51.48 50.27
Average 86.35 38.15 27.97 27.49 27.59 | Average 73.21 62.42 50.52 50.68 50.39

AegisGuard shows the comparable defensive effectiveness against Black-box setting after de-
ployment. Table [2| shows the performance of the MS attack on ViT-Base and LLaMA-7B. The
accuracy of the stolen surrogate model evaluates the defense performance. A lower accuracy repre-
sents a better MS attack defense. The last row shows the average accuracy and the value in parentheses
is the performance gain over the black-box baseline (lowest attack accuracy). AegisGuard can effec-
tively reduce the MS attack accuracy. In all cases, the attack accuracy of AegisGuard are similar
to the black-box baseline (1.00x higher than black-box). AegisGuard has a better protection than
Phantom (1.38 x lower) and a similar performance to TEESlice, which also provides black-box-level
protection. The comparatively high MS attack accuracy of Phantom is because its adapter parameters
are exposed in an untrusted GPU and difficult to find the optimal obfuscation forward path for LMs.
Thus, the adversary can recover a certain amount of model functionality. TEESIice offers black-box-
level protection because it shields all weights that are updated by private data in TEE. However, as
shown in Table [T} TEESlice has a (1.5-2.0)x higher latency than AegisGuard because AegisGuard
only shields partial highly sensitive layers in TEEs. We also present randomly selecting shielded
layers experiments, which requires approximate 2x layers than AegisGuard in Appendix[D.4]

4.4 Accuracy

Table 3: Accuracy of AegisGuard on nlp and cv tasks. indicates AegisGuard has a similar
downstream task accuracy (1.00x) with Shield-LoRA fine-tuning. R L., denotes RL-based sensi-
tivity measurement module. SAC means Shielded Adapter Compression.

Model Variant CIFAR-10 CIFAR-100 UTKFace MNIST GTSRB Sun397 Avg.
Shield-LoRA/Phantom 97.47 85.96 75.03 98.90 93.35 53.37 84.01
TEESlice 95.73 82.21 73.87 96.28 90.36 54.28 82.12
ViT-Base Shield-LoRA+RLsens 97.35 85.80 74.92 98.72 93.21 53.20 83.87
Shield-LoRA+SAC(30%) 96.12 84.77 74.61 97.41 92.89 52.48 83.05
AegisGuard 97.97 86.07 75.01 98.25 93.20 53.76 84.04
Model Variant ARC-C ARC-E HellaSwag ~ OBQA PIQA WinoGrande Avg.
Shield-LoRA/Phantom 41.43 65.06 72.39 45.67 77.92 68.61 61.85
TEESlice 39.96 63.98 71.82 43.18 75.27 66.28 60.08
LLaMA-7B Shield-LoRA+RL;en s 41.32 65.18 72.25 45.79 78.05 68.48 61.85
Shield-LoRA+SAC(30%) 39.55 62.95 69.46 42.56 72.80 65.72 58.84
AegisGuard 41.89 65.40 73.04 45.40 77.85 68.75 62.06

AegisGuard causes negligible accuracy fluctuation in downstream tasks. One concern of
AegisGuard is that it may introduce too much accuracy drop than the standard fine-tuning with
additional modules. Table [3]shows the accuracy of AegisGuard compared to standard fine-tuning
over six nlp and cv tasks, as well as ablation studies. For all cases, AegisGuard is comparable to stan-
dard fine-tuning that the average accuracy fluctuation of LLaMA-7B and ViT-Base is approximately
0.12%.

According to the ablation study, each module in AegisGuard has no obvious negative impact
on performance. It is because the RL-based sensitivity measurement and fine-tuning steps are
performed iteratively. And this module only designed to affect sampling behavior. The adapter
compression has a slight impact on performance, when prune 30% weights in Shield-LoRA. But
there has less impact on AegisGuard, cause only partial shielded adapters are pruned and its slight
negative impact can also be elimiated by next fine tuning epochs. We also conduct experiments in
other large models (e.g., OPT-2.7B, ViT-Large), and the results are provided in Appendix

CIFAR-100 (ViT-Base)

4.5 Sensitivity Visualization of Layers

Fig. 4 shows the sensitivity comparison across differ-
ent layers of two models: ViT-Base on CIFAR100
(upper figure) and LLaMA-7B on CommenSense
(lower figure). ViT-Base shows higher sensitivity in
deeper layers and middle layers. For LLaMA-7B, the 0 5 10
sensitive layers are distributed across the model from Layer idx

shallow layers to deep layers. For example, layer 2, CommenSense (LLaMA-7B)

4, and 28 have the highest sensitivity score. There-
fore, a fixed scheme that only shields shallow or deep
layers is insufficient for comprehensive model pro-
tection. This observation demonstrate the necessary
of a dynamic layer selection scheme to identify and

protect the sensitive layers. 0 5 10 15 20 25 30
Layer idx

Sensitivity

Sensitivity

Figure 4: Layer-wise Sensitivity Scores

5 Conclusion

In this paper, we propose a noval fine tuning framework, namely AegisGuard. It constructs a hybrid
LoRA-LM architecture for efficient and security on-device LM inference. We introduce a RL-based
Sensitivity Measurement, to proactively search sensitive layers and fine tune more steps on them. We
propose Shielded Adapter Compression that reduce the intermediate feature maps and enhance the
efficiency of computation in TEEs. Comprehensive experiments across various large models and
tasks showcases high-efficiency, high-security protection of on-device LM inference by AegisGuard.

6 Acknowledge.

Ziqi Zhang and Jianbo Gao are corresponding authors. This research is supported by Primary Re-
search & Development Plan of Jiangsu Province (BE2023025, BE2023025-5), National Natural
Science Foundation of China (62202011, 62172010). This work is also supported by Ant Group.
The Singapore authors are supported by the NTU startup grant and the RIE2025 Industry Alignment
Fund-Industry Collaboration Projects (IAF-ICP) (Award 12301E0026) as well as its Japan-Singapore
Joint Call: JST-A*STAR 2024 (Project ID: R2416IR139), administered by A*STAR. The Japan
author is supported by JSPS KAKENHI JP23K24851, JST PRESTO JPMJPR23P5, JST CREST
JPMICR21M2, JST NEXUS JPMINX25C4. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the author(s) and do not reflect the views of
Sponsors.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

Tiago Alves. Trustzone: Integrated hardware and software security. Information Quarterly,
3:18-24, 2004.

Apple. New MacBook Pro features M4 family of chips and Ap-
ple Intelligence. https://www.apple.com/sg/newsroom/2024/10/
new-macbook-pro-features-m4-family-of-chips-and-apple-intelligence/,
2024. Accessed: 2025-04-01.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26-38, 2017.

Juyang Bai, Md Hafizul Islam Chowdhuryy, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and
Deliang Fan. Phantom: Privacy-preserving deep neural network model obfuscation in heteroge-
neous tee and gpu system. In Proceedings of the USENIX Security Symposium ’25. Zenodo,
2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432-7439, 2020.

Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. Proceedings of the
IEEE, 107(8):1655-1674, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending
mnist to handwritten letters. In 2017 international joint conference on neural networks (IJCNN),
pages 2921-2926. IEEE, 2017.

Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, 2016.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
IIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Minghao Guo, Zhao Zhong, Wei Wu, Dahua Lin, and Junjie Yan. Irlas: Inverse reinforcement
learning for architecture search. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9021-9029, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770778, 2016.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1-124, 2021.

Jiahui Hou, Huiqi Liu, Yunxin Liu, Yu Wang, Peng-Jun Wan, and Xiang-Yang Li. Model
protection: Real-time privacy-preserving inference service for model privacy at the edge. IEEE
Transactions on Dependable and Secure Computing, 19(6):4270-4284, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 5254-5276, 2023.

11

https://www.apple.com/sg/newsroom/2024/10/new-macbook-pro-features-m4-family-of-chips-and-apple-intelligence/
https://www.apple.com/sg/newsroom/2024/10/new-macbook-pro-features-m4-family-of-chips-and-apple-intelligence/

[17] Md Shihabul Islam, Mahmoud Zamani, Chung Hwan Kim, Latifur Khan, and Kevin W Hamlen.
Confidential execution of deep learning inference at the untrusted edge with arm trustzone. In
Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy,
pages 153-164, 2023.

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[19] Xiuqging Lv, Peng Zhang, Sunzhu Li, Guobing Gan, and Yueheng Sun. Lightformer: Light-
weight transformer using svd-based weight transfer and parameter sharing. In Findings of the
Association for Computational Linguistics: ACL 2023, pages 10323-10335, 2023.

[20] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

[21] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[22] MLC LLM. Mlc llm: Universal llm deployment engine with ml compilation. https://11m,
mlc.ai/#android, 2024. Accessed: 2025-04-01.

[23] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias Leontiadis,
Andrea Cavallaro, and Hamed Haddadi. Darknetz: towards model privacy at the edge using
trusted execution environments. In Proceedings of the 18th International Conference on Mobile
Systems, Applications, and Services, pages 161-174, 2020.

[24] P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks
for resource efficient inference. In 5th International Conference on Learning Representations,
ICLR 2017-Conference Track Proceedings, 2019.

[25] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341-362, 2012.

[26] Daryna Oliynyk, Rudolf Mayer, and Andreas Rauber. I know what you trained last summer: A
survey on stealing machine learning models and defences. ACM Computing Surveys, 55(14s):1-
41,2023.

[27] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality
of black-box models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4954-4963, 2019.

[28] Konstantinos I Roumeliotis and Nikolaos D Tselikas. Chatgpt and open-ai models: A prelimi-
nary review. Future Internet, 15(6):192, 2023.

[29] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

[30] Ashish Kumar Shakya, Gopinatha Pillai, and Sohom Chakrabarty. Reinforcement learning
algorithms: A brief survey. Expert Systems with Applications, 231:120495, 2023.

[31] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[32] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural networks,
32:323-332, 2012.

[33] Yu Sun, Gaojian Xiong, Jianhua Liu, Zheng Liu, and Jian Cui. Tsqp: Safeguarding real-time

inference for quantization neural networks on edge devices. In 2025 IEEE Symposium on
Security and Privacy (SP), pages 1-1. IEEE Computer Society, 2024.

12

https://llm.mlc.ai/#android
https://llm.mlc.ai/#android

[34] Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long Lu, and Somesh
Jha. Shadownet: A secure and efficient on-device model inference system for convolutional
neural networks. In 2023 IEEE Symposium on Security and Privacy (SP), pages 1596—1612.
IEEE, 2023.

[35] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[36] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution of neural
networks in trusted hardware. In International Conference on Learning Representations.

[37] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

[38] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference
on computer vision and pattern recognition, pages 3485-3492. IEEE, 2010.

[39] Xiaomi. Mace: Mobile ai compute engine. https://github.com/XiaoMi/macel 2024.
Accessed: 2025-04-01.

[40] Kai Yao, Penglei Gao, Lichun Li, Yuan Zhao, Xiaofeng Wang, Wei Wang, and Jianke Zhu.
Layer-wise importance matters: Less memory for better performance in parameter-efficient fine-

tuning of large language models. In Findings of the Association for Computational Linguistics:
EMNLP 2024, pages 1977-1992, 2024.

[41] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4791-4800, 2019.

[42] Wenxuan Zeng, Meng Li, Wenjie Xiong, Tong Tong, Wen-jie Lu, Jin Tan, Runsheng Wang,
and Ru Huang. Mpcvit: Searching for accurate and efficient mpc-friendly vision transformer
with heterogeneous attention. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5052-5063, 2023.

[43] Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan
Zhuang. Loraprune: Structured pruning meets low-rank parameter-efficient fine-tuning. arXiv
preprint arXiv:2305.18403, 2023.

[44] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[45] Zheng Zhang, Na Wang, Ziqi Zhang, Yao Zhang, Tianyi Zhang, Jianwei Liu, and Ye Wu. Group-
cover: A secure, efficient and scalable inference framework for on-device model protection
based on tees. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024.

[46] Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adver-
sarial autoencoder. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5810-5818, 2017.

[47] Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao Guo, and
Xiangqun Chen. No privacy left outside: On the (in-) security of tee-shielded dnn partition for
on-device ml. In 2024 IEEE Symposium on Security and Privacy (SP), pages 3327-3345. IEEE,
2024.

[48] Maxim Zhelnin, Viktor Moskvoretskii, Egor Shvetsov, Egor Venediktov, Mariya Krylova,

Aleksandr Zuev, and Evgeny Burnaev. Gift-sw: Gaussian noise injected fine-tuning of salient
weights for llms. arXiv preprint arXiv:2408.15300, 2024.

13

https://github.com/XiaoMi/mace

[49] Tong Zhou, Yukui Luo, Shaolei Ren, and Xiaolin Xu. Nnsplitter: an active defense solution
for dnn model via automated weight obfuscation. In International Conference on Machine
Learning, pages 42614—42624. PMLR, 2023.

[50] Itamar Zimerman, Moran Baruch, Nir Drucker, Gilad Ezov, Omri Soceanu, and Lior Wolf.
Converting transformers to polynomial form for secure inference over homomorphic encryption.
In Forty-first International Conference on Machine Learning, 2024.

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: Yes, the main claims made in the abstract and introduction include our primary
contributions and the assumptions underlying our scenarios.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .

Justification: Yes, we discuss the scenarios in which our approach is applicable and the
limitations we assumed in Appendix[F|

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [Yes] .

Justification: Yes, we provide the convergence analysis of AegisGuard for its randomized
selection fine tuning strategy in Section. [T|with detailed analyses provided in Appendix [B]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: Yes, we describe our method concept in detail, providing overview diagrams
(Figure [2), pseudocode in Algorithm [A] specific implementations in experiments (Ap-
pendix [C).

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

16

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: Yes, we provide the implementation details in appendix, and artifacts are
released in code address presented in abstract.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: Yes, we provide all the training and test details in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: Yes, we provide the standard error of mean for LLMs and ViT models. All
results are presented in Appendix/[D.1]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: Yes, we provide the computer resources in Section We also provide
communication and memory costs in Appendix[D.2]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: Yes, our research conforms to the NeurIPS Code of Ethics in every respect.
We have thoroughly reviewed the guidelines and ensured that our work adheres to the ethical
standards set forth.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: Yes, our work secures LMs inference by using TEEs to protect core adapter
layers while reducing TEE-GPU communication. This enables privacy-preserving, tamper-
resistant Al services on-device, benefiting sensitive domains like healthcare and finance.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

However, improved model confidentiality may hinder transparency, auditing, or accountabil-
ity, and could be misused to conceal harmful models. TEE encapsulation also raises trust
concerns in critical applications. Future integration with auditing and attestation mechanisms
is important. Overall, our method enhances security and efficiency, we provide the attack
results in Appendix[D.4]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The research described in our paper does not involve data or models that have
a high risk for misuse, and thus does not require specific safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: Yes, all assets used in our paper are properly credited, and the license and
terms of use are explicitly mentioned. Detailed citations, including version numbers and
URLs, are provided in the main content Section

19

13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

20

paperswithcode.com/datasets

16.

Justification: This work does not involve human subjects or crowdsourced data collection. It
focuses on the design and evaluation of a system for secure and efficient LLM inference
using Trusted Execution Environments.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: LLMs were only used for writing and language editing purposes, which do not
affect the core methodology, scientific rigor, or originality of the research.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Pseudocode algorithm of AegisGuard

Algorithm 1 AegisGuard: RL-based Sensitivity Measurement & Shielded Adapter Compression

1: Initialize W with LoRA adapters AW = B - A
2: Set Sy = 0 for n layers

3: Set T' as total steps, ¢,,, as episode steps, t,,,, as prune interval steps
4: Initialize 7, A = [a]

5:fort=1—Tdo
6
7
8

Update ABt . At — ABt,1 . At,1
if t mod ¢,.4,,== 0 then
for i-th layer in all layers do

o: Noise injection: f; = aW; + x(A; +¢€) - B;
10: Layer Evaluation: AL! // loss change after noise perturbation
11: Compute Rewards: R!
12: Update Sensitivity Scores: s; = s; + R; - 44 - sigmoid(s;) - (1 — sigmoid(s;))
13: end for
14: Sampling a;: Select a subset of sensitive layers I; via ™
15: Update: A < a;
16: Partial selected sensitive layers I; fine tuning.
17: end if
18: if £ mod ¢, == 0 then
19: for layer /; do
20: Calculate prune ratio: ratio; (t)
21: Apply in matrix B, A: mask == 0 < Rank(H, |ratio;(t) - Npeaa))
22: end for
23: end if
24: end for

25: Return W with compressed AW and S(T')

Here we present the pseudocode of AegisGuard, for better understanding of entire framework of
Section [3|and Fig.[2]

B Convergence Analysis

In order to theoretical prove the effectiveness of AegisGuard (especially the RSM module), we
provide the convergence analysis of a randomized layer gradient descent algorithm, with reference to

[25], extending it to a setting where at iteration k, the total sampling mass C = Ele pk may vary,
but is lower-bounded by C, > C' > 0. Under block-wise Lipschitz smoothness and a fixed step size
n < maﬁ, we prove almost-sure convergence to stationary points with an O(1/k) rate, and linear

convergence when the objective function f satisfies the Polyak—t.ojasiewicz (PL) condition.

Let § € R™ be partitioned into L disjoint blocks (i.e., layers), such that § = (6 ... 0(F). At

iteration k, each block ¢ is selected with probability pf > 0, such that Zle pf = (C}. Let Sy, denote
the random set of selected indices. For each i € S, the update rule is given by:

0,1y = 0 —nVif(6r),
while the other blocks remain unchanged.

Assumption 1: Block-wise smoothness. There exist constants L; > 0 such that

[Vif(0 +Uih) = Vif(0)| < Lil[h]| forall 6,h.

. 1
Assumption 2: Step size. A fixed step size 7 satisfies 0 <1 < —=—7-.

max;

Assumption 3: Uniform mass bound. There exists a constant C' > 0 such that C, > C for all k.

22

Assumption 4: Polyak—Lojasiewicz condition. The objective function f satisfies the
Polyak—L.ojasiewicz condition:

1
SITIOI2 > u(f0) - 1),
where f* is the minimum of f.

Gradient Update and Function Value Bound The update of block i by A®) = —nV, f (0) results
in the following bound for the objective function value:

F(6+UAD) < 5(6) ~ nl Tif @) + S Lar IV O < £(6) ~ V. (6)]

Expected Function Value Change Conditioned on 6y, the expectation of the function value at the
next step is:

L
E[f(Ok+1) | 0] = (1= Ck)f(0x) + D pi [(O + Ui AD)

=1
L
< £(60) = 3 D pHIVF O
i=1
< 100~ 19 @)

Rearranging and taking the full expectation:

OBV 1(00) 2] < ELF(6)] — ELf (B 41)]

Summation Over Iterations Summing from & = 0to N — 1 gives:

nC \- .
72 IV £(00)IP] < f(Bo) — F(On) < f(80) — [,
k=0
SO:
> E[IVF(0k)II°]
k=0

which implies that E[||V £(0)||?] — 0 as k — oo. A standard supermartingale argument then
implies that ||V f ())|| — 0 almost surely.

Convergence Rate Define:

oy = min E[|VS(60]°]

From the finite sum above, we have:

N—-1 *
B(v /(00 < 200 =)

k=0 - nc

which implies that o5 = O(1/N).

23

Linear Convergence Under the Polyak-F.ojasiewicz Condition Under the Polyak—}t.ojasiewicz
condition, we have:

Bl (0c1) — 1] < B0 — 1]~ B[V £(0,))
< (1= pmC)E[f(0r) — 7],

which implies global linear convergence to the minimum f*.

In conclusion, the randomized layer selection method for gradient descent converges almost surely to
stationary points with an O(1/k) rate, and linearly under the Polyak-F.ojasiewicz condition.

C Experiment Configuration

In this part, we provide the hyperparameter used in our experiments, including Reinforcement Learing
in RSM, and fine tuning. We provide the model stealing attack pipeline and setup. All artifacts will
be released through a public GitHub repository upon paper acceptance, ensuring full transparency
and replicability of our research.

C.1 Parameter Efficient Fine Tuning

During adapter fine-tuning for general tasks, we primarily apply LoRA adapters to the multi-head
attention and feedforward layers, specifically to the query, key, value, and dense components. The
exact placement of LoORA modules depends on the model’s performance on task-specific datasets.
Our goal is to minimize the number of trainable parameters while maintaining competitive accuracy.
For instance, in relatively simple tasks such as CIFAR-10, LoRA is only applied to the query and
value projections. In contrast, for more challenging NLP tasks, we insert LoORA adapters into the
query, key, value, and dense components of each layer. The rank hyperparameter of LoRA is chosen
from 16, 32, 64, depending on the size of the model and the dataset.

For dynamic pruning, we set the total pruning ratio with 20% and 50% to balance performance and
efficiency. The pruning frequency is set to 20 steps, and the warm-up ratio is set to 0.1.

We use a micro-batch size is 8,32 and gradient-accumulation-steps as 8,1 for LLaMA and ViT,
respectively. The training epochs of nlp tasks are setting in range of [2,5]. For vision tasks, the
epoch is setting from 6 to 20 depends on the task complexity. We employ the AdamW as optimizer,
experimenting with a range of learning rates: [2e-5,4e-5,2e-4,3e-4].

C.2 Reinforcement Learning in RSM

Several hyperparameters are involved in this phase. The first is gaussian noise, which is set within
the range of 0.01 to 0.1 for vision models. For LLaMA and OPT models, however, a smaller noise
value is required, as a larger gaussian noise may lead to loss vanishing or explosion due to the depth
of layers. The sampling group size is fixed at 3. The reinforcement learning (RL) steps are scheduled
every 20 fine-tuning steps, meaning that the RL procedure is executed once after every 20 steps of
standard fine-tuning. The parameter IV, is set to 40% of the total number of layers. The learning rate
for the reinforcement learning process is selected in the range of 3 to 8, depending on the convergence
behavior of the Sensitivity score distributions.

C.3 Model Stealing Attack

Model Stealing Attack aims to create a "knockoff" or surrogate model that replicates the functionality
of a victim model by adversaries, using only black-box access to query the victim model. The
attack process typically involves initializing a surrogate model using a publicly available pre-trained
model, sampling images/text from an out-of-distribution dataset to query the victim model and collect
predictions, and then retraining the surrogate model on these collected prediction pairs to mimic the
victim models’ behavior. The effectiveness of model stealing is evaluated by measuring the surrogate
models’ accuracy on the victim model’s private test dataset, indicating how well the surrogate model
performs after being trained on the adversary’s constructed dataset.

24

To perform fair comparison, we employ standard query-based stealing techniques where the attacker
trains a model from a set of collected data labeled by the partially-shielded victim model. Query-based
MS attack has been widely adopted in literature[47, 4] 27]]. For surrogate model initialization, we
assume that adversaries have knowledge of the LM architectures, since many public LMs are open-
sourced. Therefore, adversaries can compare differences between their local models and publicly
available models to identify the trained parameters.

Model Stealing Attack Setup. Model stealing attacks aim to extract a surrogate model that
replicates the functionality of the victim model. To simulate this, we adopt the same architecture
as the victim model and fine-tune it using a limited query-based training dataset, which consists
of approximately 1% of the full dataset. This setting has been shown to be realistic and practical
in real-world scenarios [47]. Moreover, AegisGuard follow the same fine-tuning configurations
as baselines for a fair comparison. During this process, we shield approximately 40% of the total
adapters based on sensitivity scores, and reinitialize these adapters with random weights before
retraining. The learning rate and number of training epochs are set to be consistent with those used in
the initial fine-tuning phase.

D Supplementary Experimental Results

D.1 Ablation Study

Table 4: NLP Model Performance Across Tasks (Accuracy %)

Model Variant ARC-C ARC-E HellaSwag OBQA PIQA WinoGrande Average
Shield-LoRA/Phantom 37.99 51.94 51.95 32.80 72.03 61.16 51.65

TEESlice 36.12 49.57 50.31 30.85 71.49 60.06 49.90
OPT-2.7B Shield-LoRA+RL;cns 37.95 52.41 51.75 33.92 71.65 59.70 51.56
’ Shield-LoRA+SAC(30%) 34.15 48.19 48.50 31.72 67.90 57.95 48.07
AegisGuard 38.07 52.27 51.62 33.80 71.82 59.82 52.40
Shield-LoRA/Phantom 41.43 65.06 72.39 45.67 77.92 68.61 61.85

TEESlice 39.96 63.98 71.82 43.18 75.27 66.28 60.08
Llama-7B Shield-LoRA+RLen s 41.32 65.18 72.25 45.79 78.05 68.48 61.85
Shield-LoRA+SAC(30%) 39.55 62.95 69.46 42,56 72.80 65.72 58.84
AegisGuard 41.89 65.40 73.04 45.40 77.85 68.75 62.06

Table 5: Vision Model Performance Across Tasks (Accuracy %)

Model Variant CIFAR-10 CIFAR-100 UTKFace MNIST GTSRB Sun397 Average
Shield-LoRA/Phantom 97.47 85.96 75.03 98.90 93.35 53.37 84.01
TEESlice 95.73 82.21 73.87 96.28 90.36 54.28 82.12
ViT-Base Shield-LoRA+RLens 97.35 85.80 74.92 98.72 93.21 53.20 83.87
i Shield-LoRA+SAC(30%) 96.12 84.77 74.61 97.41 92.89 52.48 83.05
AegisGuard 97.97 86.07 75.01 98.25 93.20 53.76 84.04
Shield-LoRA/Phantom 98.58 91.97 88.38 98.46 94.79 63.81 89.33
TEESlice 95.76 89.37 85.46 95.58 91.84 62.05 86.68
ViT-Laree Shield-LoRA+RLens 98.41 91.78 88.25 98.19 94.62 63.55 89.13
g Shield-LoRA+SAC(30%) 97.11 90.62 86.53 97.12 92.95 62.54 87.81
AegisGuard 99.01 91.05 88.25 98.78 95.35 63.97 89.40

In this section, we compare the performance of AegisGuard, Phantom, TEESlice, and Shield-LoRA
methods. The results are presented in Table[d]and Table[5] Phantom employs a post-selection strategy;
thus, its model performance are identical to the Shield-LoRA method, which uses standard fine-
tuned LoRA-LMs without additional modifications. TEESIice exhibits slightly inferior performance
compared to other methods due to the removal of several adapters aimed at minimizing the number
of adapters shielded within TEEs. Although TEESlIice can be theoretically applied to LM scenarios,
its practicality is limited, as the adapter removal is passive and only a small number of layers can

25

be removed while satisfying accuracy loss constraints. Ablation studies have demonstrate that each
module has no obvious negative impact on overall model performance, except for the pruning ratio.
Besides, due to the size of Table, we shows the standard error of NLP models in Tablef]

Table 6: Model Performance Across Tasks (Accuracy %) with Standard Error of the Mean
Model ARC-C ARC-E HellaSwag OBQA PIQA WinoGrande Average
OPT-2.7B AegisGuard 38.07+1.35 5227+1.02 51.62+048 33804213 71.82+1.01 59.824+1.37 5240+ 1.22
Llama-7B AegisGuard 41.89+1.41 6540+1.01 73.04+045 45404200 77.85+0.94 68.75+1.29 62.07+1.18
Model CIFAR-10 CIFAR-100 UTKFace MNIST GTSRB Sun397 Average
ViT-Base AegisGuard 97.97+0.20 86.07+0.55 7501+1.03 98.25+0.52 93204045 53.76+1.21 84.04 4 1.01
ViT-Large AegisGuard 99.01+0.20 91.05+0.56 8825+1.02 98.78+0.41 95.35+0.34 63.97+1.36 89.40 + 1.02

D.2 Utility Analysis

Table 7: Memory Consumption Comparison Across Models and Methods. Bold denotes the minimal
memory consumption

Models \ Methods \ #Public Params #Trainable Params #Params in TEE TEE Memory
Shield-LoRA 6.79B 56.10M 56.10M 224.4 MB
LL?}:?ZJ B | Phantom 6.79B 72.93M 16.83M 67.32 MB
) TEESlice 6.79B 44.88M 44.88M 179.52 MB
(ratio=30%)
\ AegisGuard \ 6.79B 56.10M 13.74M 54.96 MB (4.08 <)
OPT 2.7B Shield-LoRA 2.70B 47.19M 47.19M 188.76 MB
(r=3i) Phantom 2.70B 58.99M 11.80M 47.20 MB
. TEESlice 2.70B 37.715M 37.715M 151.00 MB
(ratio=30%)
| AegisGuard | 2.70B 47.19M 11.56M 46.24 MB (4.08)
ViT-Base Shield-LoRA 86.71M 0.88M 0.88M 3.52 MB
(r=16) Phantom 86.71M 1.32M 0.44M 1.76 MB
. TEESlice 86.71M 0.62M 0.62M 2.48 MB
(ratio=30%)
\ AegisGuard \ 86.71M 0.88M 0.22M 0.88 MB (4.00x)
ViT-Large Shield-LoRA 305.74M 2.36M 2.36M 9.44 MB
(r=16) Phantom 305.74M 3.54M 1.18M 4.72 MB
. TEESlice 305.74M 1.65M 1.65M 6.60 MB
(ratio=30%)
| AegisGuard | 305.74M 2.36M 0.58M 2.32 MB (4.06x)

In this section, we present the memory consumption of AegisGuard compared with baseline methods.
Obviously, AegisGuard achieves minimal memory occupation in TEEs due to adapter compression
and only partial layers shielded in TEEs. AegisGuard achieves averagely 4.00x less memory
consumption than baselines.

Table 8: Inference and Computation Overhead Evaluation of ViT-Large and OPT-2.7B. indicate
lowest inference overhead

Inference Costs (ViT-Large) ‘ Inference Costs (OPT-2.7B)
Time (ms) Shield-LoRA Phantom TEESlice AegisGuard No-Shield ‘ Time (s) Shield-LoRA Phantom TEESlice AegisGuard No-Shield
GPU 2433 23.56 28.90 23.24 3221 GPU 0.15 0.16 0.18 0.16 0.17
TEE 58.51 25.67 50.55 23.27 - TEE 1.86 0.08 1.35 0.08 -
Trans 685.51 629.24 537.40 333.60 - Trans 4.03 3.98 3.15 1.25 -
Total 768.35(1.00x) 678.47 616.85 377.11 (2.04 %) 3221 | Total 6.04 (1.00x) 4.22 4.68 1.49 (4.05%) 0.17

We also evaluate the inference and computation overhead for ViT-Large and OPT-2.7B, in order
to demonstrate AegisGuard can be applied in different type of models. As shown in Table[8]
AegisGuard achieves the best efficiency both in ViT-Large and OPT-2.7B, accelerating 2.04 x
and 4.05 x, respectively. Additionally, we provide the transfer intermediate features maps of NLP
models (OPT-2.7B, LLaMA-7B), their feature dimension are 4096. The results are presented in
Table [0l

26

Table 9: Comparison of transfer flops/size between original and compressed hidden dimensions (30%)
across different batch sizes. The original hidden size for LLMs are all 4096.

Batch Size Original Size (MB) Compressed Size (MB) Original Flops Compressed Flops

16 0.25 0.17 65,536 45,875
32 0.5 0.35 131,072 91,750
64 1 0.7 262,144 183,500
128 2 1.4 524,288 367,001
Base Model - Weight Distribution Adapter - Weight Distribution

10000 17500

15000

12500

10000

Count
Cou

7500

5000

2500

0 0
~0.15 -0.10 -0.05 0.00 0.05 0.10 015 ~0.15 -0.10 -0.05 0.00 0.05 0.10 015

Figure 5: Weight Value Distribution Comparison between Base Model and LoRA Adapter

D.3 Gaussian Noise Analysis

Fig. 5] shows the weight magnitude distribution of base model ViT-Base and LoRA Adapter, which is
W and B - A. Obviously, the weight of W has larger value than fine-tuned adapters. Therefore, the
noise setting based on adapters’ weights has a negligible impact on base model weights.

In Fig[6] we present all sensitivity scores of ViT-Base for all layers under various vision datasets.
The results present that different layer has domain-specific sensitivity scores, which demonstrates
shielding fixed number of layers are impractical for real on device LM protection.

D.4 Evaluation of Surrogate Model

As shown in Table[I0} we present the MS attack performance of ViT-Large and OPT-2.7B, in order
to demonstrate AegisGuard can also apply to different LM architectures. The results demonstrate
AegisGuard has comparable defensive effectiveness against black-box level protections. But for ViT-
Large, the surrogate model has better attack performance than ViT-Base, cause the base model (open-
sourced weights) already has good generalization ability in classify CIFAR and UTKFace datasets.

Table 10: Performance of MS attack accuracy. A lower attack accuracy (surrogate model) represents

a higher defense effectiveness. indicate the best defensive capability.

Model Stealing Attack (ViT-Large) ‘ Model Stealing Attack (OPT-2.7B)
Dataset No-Shield ~ Phantom TEESlice AegisGuard Shield-LoRA | Dataset No-Shield ~ Phantom TEESlice AegisGuard Shield-LoRA
C10 99.01 96.48 94.12 93.58 93.47 ARC-E 52.27 45.38 38.01 B 36.39
C100 91.05 48.63 27.25 26.86 27.01 PIQA 71.82 61.83 50.27 50.39 51.47
UTKFace 88.25 67.37 54.79 55.58 49.67 WinoGrande 59.82 50.34 45.23 45.74 45.81
Average 92.77 70.83 58.72 58.67 56.72 | Average 61.30 52.52 44.50 44.42 44.56

Additionally, we conduct experiments of selecting random number of layers on standard fine tuned
ViT-Large model. The results are shown in Fig[7] Obviously, standard fine tuned ViT-Large requires
more shielded layers to protect its privacy. Averagely, the least number of shielded layers should

27

GTSRB UTKFace Sun397
oy 2 2
> = >
3 3 3
C C c
0] [0 0]
n n n
0 5 10 5 10 0 5 10
Layer idx Layer idx Layer idx
MINST CIFAR-10 CIFAR-100
2 2 2
> > >
= s s
e C C
() ())]
n n n
0 5 10 0 5 10 0 5 10
Layer idx Layer idx Layer idx

Figure 6: Sensitivity scores distribution of all layers for ViT-Base with six vision task benchmarks

greater than 15 while AegisGuard could achieve black-box level protection with approximately 1/3
shielded layers.

UTKFace

—e= Random
@ Armocore

CIFAR-100

—e— Random
@ Armocore

CIFAR-10

100 —e— Random

@ Armocore

80

60

40

Accuracy (%)

20

0 *

3 6 9 12 15 18 21 24 3 6 9 12 15 18 21 24 3 6 9 12 15 18
Shielded Layers Shielded Layers Shielded Layers

2

21 24

Figure 7: Accuracy comparison of Random Shielded Layers Selection and AegisGuard

E Implementation of Baselines

Given the lack of previous works’ implementation and experiments on TEE shielded fine tuned
LMs, especially with low-rank adaptation, there is no ready-to-use tools for baseline evaluation. To
provide a comprehensive demonstration of the effectiveness of AegisGuard, we adapt most recent
TEE-shielded Deep Neural Networks methods for evaluation.

E.1 Phantom Description

Phantom is a recent method proposed at USENIX Security 2025, which leverages reinforcement
learning-based architecture search combined with top-K layer-wise sensitivity analysis to identify the
most sensitive layers for inserting redundant modules. These redundant layers are designed to degrade
model performance for unauthorized users, while maintaining full functionality for authorized users
who possess valid decryption keys. During inference, authorized users must verify their keys within a

28

Trusted Execution Environment (TEE) to obtain correct predictions; otherwise, the model’s forward
pass becomes corrupted, leading to erroneous outputs.

However, Phantom is tailored specifically for models trained from scratch and cannot be directly
applied to large models (LMs) fine-tuned with Low-Rank Adaptation (LoRA). To enable a fair
comparison, we assume that adversaries lack knowledge of the actual forward computation path of a
LoRA-based LLM. Accordingly, we propose to insert a subset of redundant LoRA adapters into the
model. Our objective is to maximize the loss of LoRA-fine-tuned models in the presence of these
redundant adapters. Following the experimental setup in Phantom, we insert redundant adapters into
the three most sensitive layers, as determined by layer-wise sensitivity analysis. The corresponding
results are presented in Appendix

E.2 TEESIice Description

Although TEESlice are specifically designed for models, such as ResNet-18[12], VGG[31]], it has
similar model partition mechanism as adapter-based fine tuning. TEESlice consists of two stages:
model slice extraction and hybrid model deployment. The slice extraction stage automatically finds
the "sweet spot" by minimizing the utility cost while maintaining accuracy and security. TEESlice
trains M jense from the public backbone and then prunes M ey, se to get Mpqrse. In the hybrid model
deployment stage, Mpqrse is deployed across the TEE and GPU. Model slices are deployed inside
TEEs, whereas the other part of the backbone are offloaded on GPUs.

In our experiments, we regard lora adapter as model slices proposed in TEESlice. The objective
of this method is dropping as more as adapters with minimal accuracy loss following the iterative
slice prune mechanism in TEESlice. However, the pre-defined threshold § defined as 1% governs the
tolerable accuracy loss during pruning is too small for LMs to drop adapters. Then we set threshold ¢
as 5% as tolerable accuracy loss. The main difference between TEESlice and AegisGuard is that
our method actively selects model layers with higher sensitivity, intentionally gathering more private
information into the layers should be deployed within the TEEs. In contrast, TEESlice adopts a
passive selection strategy, merely determining whether removing a certain layer would negatively
impact the final performance. The experimental results and analysis are presented Appendix [D.T}

F Limitations

Although the architecture presented in this paper achieves competitive performance in terms of
inference efficiency, defensive effectiveness, and accuracy, it has the following limitations. First, even
though we compare AegisGuard with most state-of-the-art baselines (TEESlice[47], Phantom[4]),
published in top-tier security conferences. We do not include methods from leading Al conferences.
There is an ICML 2024 paper, namely GroupCover[45], but it targets convolutional layers and
cannot be applied to the Transformer models used in our setting. Second, the baselines focus on
smaller models such as ResNet18 [[12] and VGG16 [31]], whereas we evaluate on large-scale models.
Although their techniques could in principle be adapted to larger architectures, they may not achieve
the same level of effectiveness in that context.

29

	Introduction
	Related works
	TEE
	TEE-Shielded DNN Partition (TSDP)
	Large Model Compression

	Design of AegisGuard
	Threats model
	Problem formulation
	Overview
	RL-based Sensitivity Measurement
	Shielded Adapter Compression

	Experiments
	Setup
	Inference Efficiency
	Defense Effectiveness
	Accuracy
	Sensitivity Visualization of Layers

	Conclusion
	Acknowledge.
	Pseudocode algorithm of AegisGuard
	Convergence Analysis
	Experiment Configuration
	Parameter Efficient Fine Tuning
	Reinforcement Learning in RSM
	Model Stealing Attack

	Supplementary Experimental Results
	Ablation Study
	Utility Analysis
	Gaussian Noise Analysis
	Evaluation of Surrogate Model

	Implementation of Baselines
	Phantom Description
	TEESlice Description

	Limitations

