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ABSTRACT

Many AI models trained on natural images develop representations that resem-
ble those of the human brain. However, the factors that drive this brain-model
similarity remain poorly understood. To disentangle how the model, training and
data independently lead a neural network to develop brain-like representations,
We trained a family of self-supervised DINOv3 vision transformers that systemat-
ically varied these different factors. We compare their representations of images to
those of the human brain recorded with both fMRI and MEG, providing high reso-
lution in both spatial and temporal analyses. We assess the brain-model similarity
with three complementary metrics focusing on overall representational similar-
ity, topographical organization, and temporal dynamics. We show that all three
factors - model size, training amount, and image type - independently and inter-
actively impact each of these brain similarity metrics. In particular, the largest
DINOv3 models trained with the most human-centric images reach the highest
brain-similarity. This emergence of brain-like representations in AI models fol-
lows a specific chronology during training: models first align with the early rep-
resentations of the sensory cortices, and only align with the late and prefrontal
representations of the brain with considerably more training. Finally, this devel-
opmental trajectory is indexed by both structural and functional properties of the
human cortex: the representations that are acquired last by the models specifically
align with the cortical areas with the largest developmental expansion, thickness,
least myelination, and slowest timescales. Overall, these findings disentangle the
interplay between architecture and experience in shaping how artificial neural net-
works come to see the world as humans do, thus offering a promising framework
to understand how the human brain comes to represent its visual world.

Method Figure. A. We compare the activation of DINOv3, a state-of-the-art self-supervised com-
puter vision model trained on natural images, to the activations of the human brain in response to
the same images. B. To understand the factors that make DINOv3 more-or-less similar to the brain,
we train from scratch a variety of models on different image domains (pictures from human-centric
cameras, satellite images or biological data), and with a varying amount of data. C. We compare
each model to both functional Magnetic Resonance Imaging (fMRI, with high spatial resolution) and
Magneto-Encephalography (MEG, with high temporal resolution) by computing the overall linear
similarity of their representations (encoding score) and the similarity of their hierarchical organiza-
tion (spatial and temporal scores).
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1 INTRODUCTION

Brain-AI similarity. Deep learning has transformed computer vision over the past decade. State-
of-the-art deepnets now achieve human-level or superior performance across a variety of tasks in-
cluding classification (Siméoni et al., 2025; Tschannen et al., 2025), object detection (Redmon et al.,
2016), semantic segmentation (Cheng et al., 2022), and medical image analysis (Esteva et al., 2017;
Lorenci et al., 2025). Surprisingly, the internal representations of these deep learning models appear
to be related to those of the human brain: multiple electrophysiology (Yamins et al., 2014a; Yamins
& DiCarlo, 2016; Schrimpf et al., 2018; Zhuang et al., 2021), functional Magnetic Resonance Imag-
ing (Eickenberg et al., 2017; Millet et al., 2023; Doerig et al., 2025; Tang et al., 2023; Nikolaus et al.,
2024), magneto-encephalography studies (Cichy et al., 2016; Seeliger et al., 2018; Caucheteux &
King, 2022; Banville et al., 2025) have now consistently shown that the activation patterns of these
models linearly map onto those of the cortex in response to the same images.

Theoretical importance. Understanding the principles at the origin of this representational simi-
larity between AI models and the human brain is of primary importance, to understand the laws of
information processing that may be universally shared across neural networks. Indeed, several lines
of research (Hasson et al., 2020; Huh et al., 2024; van Rossem & Saxe, 2024; Cagnetta et al., 2024;
Mehrer et al., 2020; Mahner et al., 2025; Simkova et al., 2025) suggest that there exists universal
principles that constrain the structure and emergence of representations in neural networks.

Challenge: Unclear causes. The precise factors responsible for the representational similarity be-
tween computer vision models and the human remain currently unclear. This gap of knowledge
is partly due to the fact that previous studies primarily focused on pretrained networks that simul-
taneously vary in training objectives, architectures and data regime (Conwell et al., 2021; Rajesh
et al., 2024). How each of these factors independently and interactively leads a model to converge
to brain-like representations thus remains unclear.
To address this issue, editwe systematically train a variety of DINOv3 models (Siméoni et al., 2025),
while independently varying their size, data type and training quantity. DINOv3 has the advantage
of being self supervised, and can thus be trained on different types of naturalistic but non-human
centric and non-labelled data such as satellite images (Siméoni et al., 2025) and biological images
(Lorenci et al., 2025).

Here, we compare a variety of DINOv3 models to the brain responses to images, as recorded with
ultra high field (7T) functional MRI and magneto-encephalography (MEG) to get a high spatial
and temporal resolution of the cortical representations, respectively. For this, we implement three
similarity metrics. First, we use a standard linear mapping metric, often referred to as encoding score
(Naselaris et al., 2011b), which evaluates the linear correspondence between the representations of
two systems. Second, we evaluate, with fMRI, whether this linear mapping follows a similar spatial
organization, whereby the first and last layers of the model would best match the sensory visual and
prefrontal cortices, respectively. Finally we evaluate, with MEG, whether this mapping follows a
similar temporal organization, whereby the first and last layers of the model best match the early
and late MEG responses, respectively.

2 METHOD

2.1 APPROACH

We aim to identify the factors that make modern computer vision models process and represent nat-
ural images similarly to the human brain. Following previous work (Kriegeskorte et al., 2008; Di-
Carlo et al., 2012; King & Dehaene, 2014), we rely on the definition of ”representation” as ”linearly
readable information”. We employ the encoding analysis procedure introduced by Naselaris et al.
(2011b) to evaluate the representational similarity between an AI model and brain recordings. This
linear model seeks to find whether there exists a linear mapping W ∈ Rm×d that reliably predicts
m-dimensional brain activity (Y ∈ Rn×m) given the d-dimensional model activation (X ∈ Rn×d)
in response to n images:

argmin
W

{
∥Y −XW∥22 + λ∥W∥22

}
2
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with λ the ridge regularization parameter. We use linear probes to maintain geometries of compared
representations. We use scikit-learn’s RidgeCV (Pedregosa et al., 2011), 10 logarithmically-spaced
regularization λ in between 100 and 108, and a 5-split cross-validation.

2.2 METRICS

Encoding score Given two representations X and Y , we quantify their overall representational
similarity by computing, for each split separately and then averaged, an encoding score with a
Pearson correlation score R ∈ [−1, 1]:

R = corr(WXtest, ytest)

We rely on encoding as the basis for our three metrics (encoding, spatial, and temporal scores), rather
than decoding, as decoding metrics cannot be meaningfully compared across models with different
architectures and representational spaces. Following the rationale of (Naselaris et al., 2011a), encod-
ing provides an interpretable mapping from model features to neural responses, comparable across
architectures and training regimes. For clarity, we can either summarize the average R score across
brain dimensions, or plot them all separately to get information about where brain activations are
linearly predictable from the model. In some analysis, we use R̃ = R/max(R), the normalized
encoding score, which peaks at 1.

Spatial score To assess whether a model organized its processing hierarchy similarly to that of a
brain with a spatial score, we proceed in four steps. First, we evaluate an encoding score for each
dimension m of the brain, and from 22 layers k ∈ [0, 1] of the model, where 0 is the first layer, and
1 is the last layer. Second, we identify the layer that best predicts this brain response: k∗. Third, we
approximate the hierarchical position m∗ of each brain region, as its Euclidean distance from V1 in
the standardized MNI space, in mm. Note that this is a coarse approximation, as the actual cortical
hierarchy does not strictly follow such distances, and may be considerably more complex (Felleman
& Van Essen, 1991). Finally, we compute the spatial score as the correlation between m∗ and k∗.
For clarity we restrict these analyses to regions of interest.

Temporal score To evaluate an analogous metrics from MEG recordings, we estimate a temporal
score: the correlation between the model layers k and T layer

max – the time at which each layer of the
model is maximally predictive of brain activity. To limit noisy estimate, we average on the temporal
window during which R̃k ≥ 95% where R̃k is the normalized encoding-score of the layer k.

2.3 MODELS

Architecture. DINOv3 is an open-source, state-of-the-art, self supervised learning vision trans-
former model trained on 1.7 billion natural images (Siméoni et al., 2025). We train, from scratch,
a selection of eight variants of this DINOv3 model to ensure a comprehensive evaluation ranging
through architectures, training scale and data types.
First, we leverage the DINOv3-7B, trained across 1e7 checkpoints. We analyze comparatively DINO
Small, Base, Large and Giant, after training for 5e6 training steps on 1.7B images with the same con-
figuration. Additionally, we train and analyze comparatively 3 versions of the DINO Large archi-
tecture: DINO human, DINO Cellular and DINO Satellite. These models were configured similarly
and trained, from scratch, over 5e6 steps on 10M images; they only differ in the type of images with
which they were trained.

2.4 DATASETS.

Images. DINOv3-7B and DINO human were trained on the same human-centric data. This dataset
was constructed from a large pool of web images, street views and ImageNet (Deng et al., 2009).
These images went through platform-level content moderation to prevent harmful contents, in order
to obtain an data pool of approximately 17 billion images. This data pool was curated following the
procedure of (Siméoni et al., 2025) to obtain a large-scale pre-training dataset of 1.7 billion images.
To compare models trained with different types of images, we re-trained three distinct large DINOv3
with one of three types of natural images – human-centric, cellular and satellite images – matched
in terms of quantity (10M images each).
Human-centric images correspond to the dataset used for training the original DINOv3 model. For
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Table 1: Specifications of DINOv3 model variants.
Model Parameters Layers Batch Images
DINOv3 7B 40 4096 Human centered 1.7B
DINOv3 Giant 1.1B 32 4096 Human centered 1.7B
DINOv3 Large 300M 24 4096 Human centered 1.7B
DINOv3 Base 86M 12 4096 Human centered 1.7B
DINOv3 Small 21M 12 4096 Human centered 1.7B
DINOv3 Human 300M 24 2048 Human centered 10M
DINOv3 Cellular 300M 24 2048 Cellular 10M
DINOv3 Satellite 300M 24 2048 Satellite 10M

our comparative analyses on human-centric, cellular and satellite images, we randomly selected
from this dataset of 1.7 billion images a subset of 10 million images.
Cellular images correspond to the ExtendedCHAMMI dataset, which consists of fluorescent micro-
scopic images of cells revealing cellular structures into different channels (e.g. nucleus, mitochon-
dria, microtubules, etc.) (Lorenci et al., 2025).
Satellite images correspond to a random subset of the SAT-493M dataset, which consists of approxi-
mately 500 million images sampled randomly from Maxar RGB ortho-rectified imagery at 0.6 meter
resolution (Siméoni et al., 2025).

Magnetoencephalography (MEG). We use the THINGS-MEG dataset (Hebart et al., 2023a),
which consists of MEG recordings from four healthy participants viewing 22,500 naturalistic im-
ages, representing a total of 1,800 object concepts (Hebart et al., 2023b). Images were presented
during 1.5 s, while participants maintained fixation. To limit the impact of noise we apply a band-
pass filter between 0.1 and 20 Hz, down-sample the signal at 30 Hz, time-lock the brain responses to
individual words, and epoch the corresponding neural data between -0.5 s and +3 s relative to word
onset using MNE-Python (Gramfort et al., 2013). Finally, we z-score MEG signals across words,
for each MEG channel and each time point independently.
time ROIs. We study individually three 0.05s-long time ROIs across the processing time of an im-
age, to study the relative impact of each layer in the encoding of the cognitive process at play during
that time. These time windows span .08-.13s, .13-.18s and .5-.55s.
T layer

max . To study the dynamics of each layer, we compute T layer
max , the mean of the temporal window

during which R̃layer ≥ 95% where R̃layer is the normalized encoding-score of each layer.

Functional Magnetic Resonance Imaging (fMRI). We leverage the Natural Scenes Dataset (Allen
et al., 2022), a 7 tesla fMRI dataset which consists of recordings from eight subjects, each observing
a total of 10 000 natural scenes during 4 seconds each, while performing a continuous recognition
task. We encode the BOLD signal on the fsaverage surface at 5.5 s after image onset. This timestep
corresponds to the peak of decoding of the image from the BOLD signal.
Regions of interest (ROIs). For clarity, we select a representative set of 15 regions of interest (ROIs)
spanning the anatomy of the cortex, among the regions encoded with an averaged FDR-corrected
t-test p < 0.01, among voxels forming the ROI. These ROIs are distributed from posterior-occipital
lobe to prefrontal cortex.

To investigate the cortical properties that index representational similarity, we analyze our results in
light of four cortical maps, made available through Neuromaps (Markello et al., 2022):
Cortical expansion (Hill et al., 2010) reflects the difference of cortical surface area between infants
and adults.
Myelin concentration is estimated from the T1w/T2w ratio in the HCP S1200 dataset (Van Essen
et al., 2013).
Intrinsic timescales are derived from mapping electromagnetic networks to hemodynamic network
and indexing the temporal integration window of each region (Shafiei et al., 2021).
Cortical thickness is estimated by measuring the distance between ”white” and ”pial” Freesurfer
surfaces (Fischl, 2012) from structural MRI in the Human Connectome Project (Van Essen et al.,
2013).

4
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2.5 STATISTICS

fMRI voxels. We only plot and analyze voxels thresholded with p < 0.01 after a FDR-corrected
t-test. Across subjects. To evaluate statistical estimates across subjects, we perform a Wilcoxon test
using scipy (Virtanen et al., 2020). To correct for multiple comparison, we apply a false discovery
rate correction, as implemented in MNE-Python (Gramfort et al., 2013).
Half times. To analyze the speed of convergence of DINO models during training, we estimate the
‘half time‘: the training step at which the similarity metric reaches half of its final value.

3 RESULTS

3.1 DINOV3-BRAIN SIMILARITY

A B

Figure 1: Brain-DINOv3 similarity across space and time. A. Across cortical space. Similarity
between DINOv3 embedding and the fMRI responses to corresponding images as estimated with a
Pearson Brain-Score, and FDR-corrected-thresholded at p < 0.01 (left: medial view of left hemi-
sphere, top right: bottom view; bottom right: lateral view of right hemisphere). B. Across time.
Similarity between DINOv3 embedding and MEG responses to the corresponding images. The er-
ror bar indicates the standard error of the mean across 4 subjects.

Encoding score. To verify that DINOv3 generates representations of natural images that are sim-
ilar to those of the brain, we perform a cross-validated encoding analysis by evaluating the linear
mapping between the activations of DINOv3 and of the brain in response to the same images. Func-
tional MRI results show that DINOv3 has representations that primarily peak in the visual pathway
(R=.45 ± .039 - SEM across subjects), mostly in the lateral-occipitotemporal (MT: R=.34 ± .026)
and ventromedial visual cortex (VMV2: R=.28± .025), Fig 1A.
MEG results show that this similarity rises around 70 ms after image onset (R=.09± .017, Fig 1B)
and remains significantly above chance level up to 3 seconds after image onset (p < 1e-3).
These results are consistent with past studies (Eickenberg et al., 2017; Schrimpf et al., 2018; Tang
et al., 2025) and additionally show that areas typically discarded from the visual pathways, e.g. pre-
frontal regions BA 44, BA 45, IFSa and IFSp, also present activations that are linearly predictable
from the AI embedding.

Spatial score. Does the hierarchy of representations of DINOv3 correspond to the visual hierarchy
in the human brain? To address this question, we estimate the ”spatial score”. The fMRI results
confirm that the lowest layers of DINOv3 tend to best predict the lower-level sensory regions such
as V1, whereas the highest layers tend to best predict higher-level regions of the brain, such as the
prefrontal cortex (Fig 2A, B). The Pearson correlation between (i) the Euclidean distance between
each brain region and V1, and (ii) the best encoding layer is highly significant, R=0.38, p < 1e−6

(Fig 2B). Temporal score. To complement this fMRI ”spatial score”, we evaluate an MEG ”tempo-
ral score”. We identify the layer which best predicts each time ROIs relative to image onset in the
MEG. The results show a significant correlation between layers and their T layer

max , hereafter referred
to as the temporal score (Fig 2C, D). The temporal score R=0.96, p< 1e−12, shows that the early
and late layers of DINOv3 consistently align with the earliest and latest MEG responses, respec-
tively. Generalization to multiple architectures. To test for generalization of Encoding, Spatial
and Temporal scores we reproduce these results on a variety of seven vision models including CNNs,
supervised and self-supervised ViTs as well as vision-language contrastive transformers. We find
similar scores for all three metrics, across all these models (Figs. S1,S2,S3,S4,S5)

5
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A B C D

Figure 2: The representational hierarchy of DINOv3 corresponds to the brain’s. A. Voxel-wise
best encoding layers of DINOv3, FDR-corrected and thresholded at p < 0.01 (left: medial view of
left hemisphere, top right: bottom view; bottom right: lateral view of right hemisphere). B. Plotting
the correlation between the best encoding layer for each region and the euclidean distance of this
region from V1, in mm. The Pearson correlation is r = 0.38, p < 1e-6. Plotted regions are encoded
with FDR-corrected thresholding at p < 0.01. C. Dynamic brain-score across time between each
layer of DINOv3 and MEG responses to the corresponding still images. D. Plotting the correlation
between the layers and their T layer

max , in s. The Pearson correlation is r = 0.84, p < 1e-5. Plotted
regions are encoded with FDR-corrected thresholding at p < 0.01.

3.2 WHAT FACTORS LEAD DINOV3 TO BECOME BRAIN-LIKE?

Impact of training. To clarify the emergence of brain-like processes in DINOv3, we evaluate
the encoding score, spatial score and temporal score at each selected training step of DINOv3, and
summarize their developmental speed with a “half time”: i.e. the training step where half of the
final score is reached. First, before training the encoding score reaches R=.03± 2e−4, after training
it ultimately converges to R=.09 ± 5e−4 (Fig 3). These R-scores are averaged across voxels – the
best voxel peaking at R=.45 ± .038. The half time of the encoding score occurs around 2% of the
training, around 2e5 training steps (i.e. 800 million images). Second, the temporal score emerges
faster than the encoding-score: with a half time around 0.7% of the training, and a convergence at
R=0.96 (p< 1e−12). Finally, the spatial score reaches its half time later, at 4% of the training, and
converges to R=0.4 (p< 1e−6). We reproduce the spatial score using the value of each ROI along the
sensory-to-transmodal gradient map from (Margulies et al., 2016) instead of the euclidean distance
of this ROI from V1, see Supplementary Figure S6. We obtain a similar increase across training
from -0.32 to 0.13 (1st to last checkpoint).

Generalization to multiple architectures. Across seven vision models with diverse architectures –
CNNs, supervised ViTs, vision-language contrastive transformers, etc.), trained models consistently
show higher encoding, spatial, and temporal scores than untrained models. Additionally, trained
models tend to show convergent encoding, spatial, and temporal scores, whereas scores from un-
trained models vary more widely – likely reflecting differences in their inductive biases. These
additional analyses are reported in S1,S2,S3,S4,S5, comparing trained and untrained versions of all
models.
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Figure 3: Evolution of scaled temporal, encoding and spatial scores as a function of DINOv3’s
training. The Evolution of these unscaled metrics is presented in Supplementary Fig. S7.
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Are these developmental trajectories identical across temporal and brain regions of interest? To ad-
dress this issue, we evaluate the same analyses on specific regions or temporal windows of interest.
Functional MRI results show that low-level visual regions (e.g. V1, V2) are marked by lower half
times of the last layer than high-level prefrontal cortices (e.g. IFSp, IFSa), Fig 4A,C,E. The corre-
lation between half time and anatomical location (coarsely defined as the Euclidean distance to V1)
is R=0.91, p< 1e−5. Similarly for MEG, earlier windows (e.g. <200 ms) are marked by lower half

A C E

B D F

Figure 4: Emergence of brain-like representations. A. Normalized brain encoding scores of layer
1 as a function of training for each brain ROI. The dashed line indicates the 50% of the maximum
encoding score for each region. B. Same as A for MEG time regions of interest (tROIs). C. Half
time for each brain ROI. D. Half time for each time ROI. E. Correlation between half time of
encoding score across training, and distance of each ROI from V1. F. Correlation between half
time of encoding score across training, and time position of the encoded cognitive process (tROI).

times than late time windows (e.g. >1,500 ms), Fig 4B,D,F. The correlation between half time and
temporal peak is R=0.84, p< 1e−5.
Overall, these results show that the brain responses of the sensory and prefrontal cortices contain
representations of images that are acquired early and late in the training of DINOv3, respectively.

   A    B C

Figure 5: Impact of model size. For inter-model comparisons, significance to p< 1e−3 are rep-
resented by asterisks ∗. A. Encoding (reds), spatial (purples), and temporal scores (greens) as a
function of training and model size. Logarithmic fits of scores across training. B. Scores on the final
k=4e5 training step. C. Encoding scores for V1 and Brodmann area 45 at the end of training.

Impact of model size. How does model size impact convergence? DINO models of larger scale
appear to converge quicker and encode higher-level ROIs more accurately. Model size consistently
leads to bigger encoding scores at the end of training (RGiant = 0.107 > RLarge = 0.105 >
RBase = 0.101 > RSmall = 0.096 with p < 1e−3). Similar, although noisier phenomena can be
observed for spatial scores and temporal scores (p < 1e−3), Fig 5A, B. Does model size impact en-
coding scores similarly across ROIs? Applying the same analysis for each ROI separately shows that
model size primarily increases encoding of higher-level cortices like BA45 and IFS as compared to
visual cortices like V1, V2. All models present this size-dependent increased encoding significantly
in higher-ROIs, only the smallest ones in V1, V2 (p < 1e−3) (Fig 5C, see Fig S10 for all studied
ROIs).

Impact of image type. To assess how image types influence the development of brain-like repre-
sentations in a model, we train, from scratch, three distinct DINO models, each using one of three

7
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   A    B C

Figure 6: Impact of image type. For inter-model comparisons, significance to p< 1e−3 are rep-
resented by asterisks ∗. A. Encoding (reds), spatial (purples), and temporal scores (greens) as a
function of training and image type. B. Scores on the final k=4e5 training step. C. Encoding scores
for V1 and Brodmann area 45 at the end of training.

natural images datasets: satellite images, cell images and classic (human-centric) images. We fo-
cus on a single DINOv3 architecture (Dino Large), with a fixed training length and training data
quantity (10M images) and data type as the only varying factor. Training improves encoding scores,
spatial scores and temporal scores for all image types (Fig 6A), suggesting that these models learn
visual features that are universal across these different types of natural images. However, these
brain-similarity metrics are lower for satellite and cell images than for human centric images, for
encoding, spatial and temporal scores (Fig 6A, B). Interestingly, this difference is observed across
all studied regions of interest: e.g. both V1 (p < 1e−3) and BA45 (p < 1e−3) are better encoded
by a model trained with human centric photos than other models (Fig 6C), see S11 for results on
all studied ROIs. At the end of training, DINO human reaches a significantly higher performance
regarding encoding, temporal and spatial scores (p < 1e−3), Fig 6B. These results might unravel
from the fact that human centric images reflect visual input that humans are exposed to, whereas
satellite images and cell images are images that human brains have not been trained to process.

3.3 LINK TO CORTICAL PROPERTIES

     A      B      C      D

Figure 7: Relation between shared representations and cortical properties. A. Left. Cortical
expansion index, as estimated from the difference between adults and infants’ brains, for each ROI
(Hill et al., 2010). Right. Correlation between cortical expansion and half time. Each dot is an ROI.
B. Same as A for cortical thickness, as estimated from (Van Essen et al., 2013). C. Same as A for
cortical time scales, as estimated from MEG source reconstruction in (Shafiei et al., 2021). D. Same
as A for myelin concentration, as estimated from (Van Essen et al., 2013).

Is the development of brain-like representations predicted by functional, structural and develop-
mental properties of the cortex? To explore this issue, we evaluate the correlation between the
representational half time of encoding and four properties of the cortex.
Cortical expansion. First, we focus on the developmental expansion of cortical regions. Using an
atlas comparing infant and adult cortical structures (Hill et al., 2010), we found a strong positive
correlation (R=0.88, p < 1e−3) between half time and cortical expansion (Fig 7A). This indicates
that cortical areas marked by greater developmental growth are also those whose representations
emerge later in the AI model.
Cortical thickness. Second, we assess the correspondence with cortical thickness, utilizing HCP
S12000 estimates. Our results show a significant correlation (R=0.77, p < 1e−2), suggesting that
cortical areas with larger cortical sheets exhibit longer half times (Fig 7B).
Cortical dynamics. Third, the areas with the slowest intrinsic dynamics, as estimated from a source-
reconstruction of MEG activity, are also those that tend to have the longest half times (R=0.71, p =
.022). This result directly echoes our MEG results (Fig 2), whereby deeper layers of DINOv3 tend
to be associated with slower brain responses (Fig 7C).
Cortical myelin. Finally, this dynamic property appears linked to myelin concentration (Van Essen
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et al., 2013). Myelin, which facilitates faster neuronal transmission, demonstrated a strong negative
correlation with half time (R=-0.85, p-val =1e−3). This implies that higher myelin concentration is
associated with shorter half times (Fig 7D).
In summary, these findings demonstrate a strong predictive relationship between the speed at which
brain-like representations emerge in AI models and various structural and functional characteristics
of the cortex, across development and once developed.

4 DISCUSSION

Main findings. Understanding why artificial neural networks develop representations that resem-
ble those in the human brain remains a fundamental challenge to neuroscience and AI (Huh et al.,
2024; Hasson et al., 2020; Shen et al., 2025; Caucheteux & King, 2022). While recent studies have
documented brain–model similarities across a wide range of architectures and training paradigms
(Wang et al., 2023; Conwell et al., 2022), the exact factors that cause this convergence and their
interactions remain unclear. Here, we independently manipulate three factors – model size (from
DINOv3 small to giant), training length (from 0 to 1e7 steps on several training sets of 10M and
of 1.7B images) and image type (human-centric, satellite images and biological images) to test how
each of them contributes to the emergence of brain-like representations of natural images. Our find-
ings demonstrate that these three factors all independently and interactively impact the extent to
which a self supervised model converges to brain-like visual processing. Results show that size,
training duration, and data type each shape the emergence of brain-like representations but also
brain-like hierarchies, measured through spatial and temporal scores. Representations, temporal and
spatial hierarchies all emerge – though at different pace across training. When comparing untrained
and trained versions of seven diversified vision models, we find that the vast majority of them consis-
tently develop qualitatively similar encoding, spatial and temporal scores as DINOv3. Our analyses
complement prior work examining only convergence between multiple models (Huh et al., 2024),
demonstrating that this convergence also extends onto human neural representations. Finally, we find
that the emergence of brain-like properties during training follows the developmental maturation of
the human cortex from birth through early adulthood. Although these developmental trajectories
have not been tested in other models, the convergence of encoding, spatial, and temporal scores
for eight diversified vision models may suggest that these additional results regarding DINOv3 are
generalizable to other models. Future research will allow to test this hypothesis.

Nativism and empiricism. In particular, the model–brain similarity increases consistently with
larger DINOv3 architectures, longer training, and more ecologically valid data. These results are
consistent with an increasing set of studies showing linearly aligned representations of natural im-
ages (Yamins et al., 2014b; Kriegeskorte, 2015; Schrimpf et al., 2018; Tang et al., 2025; Thobani
et al., 2025), with a hierarchy that maps the functional organization of the visual cortices (Eicken-
berg et al., 2017; La Tour et al., 2022), and dynamics that reflect the ordering of the model’s layers
(Seeliger et al., 2018; Cichy et al., 2016). In addition to its factorial disentanglement, our study
provides additional contributions.

First, this model-brain alignment is not confined to the visual pathways (Eickenberg et al., 2017;
Schrimpf et al., 2018; Tang et al., 2025) but extends into high-level – multi-modal – regions of
the cortex, including the prefrontal cortex (although see e.g. Solomon et al. (2024) for a low-
dimensional set of image features identified in the prefrontal lobe).

Second, our independent manipulation of model size, training duration, and data type further show
how these factors interact with one another: the largest architectures best align with brain activity
as (1) they get trained and (2) on ecologically-relevant naturalistic images.

Third, even non-human-centric datasets (satellite images, biological images) support partial con-
vergence in early visual areas, implying that low-level statistics shared across environments are
sufficient to bootstrap early representations. Our findings indicate that models trained on human-
centric images still tend to develop representations that more closely resemble those of the human
visual system. However, it remains unclear whether this advantage reflects low-level image statis-
tics (e.g., natural color and texture distributions) or higher-level semantic properties typical of hu-
man experience. Additionally, it remains unclear whether this higher alignment for human-centric
dataset is driven by a distribution of images more similar to the one in the training data of DINOv3.
Distinguishing between these factors will require future research, for example by evaluating brain
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responses from participants watching controlled non-human centric images. Overall, these results
suggest that while the architecture supplies a potential, the data remain critical in making these
systems learn representations that are similar to the brain. This interaction between architectures,
training and data provides an empirical framework to the long-standing debates in cognitive science
on nativism versus empiricism, – showing how ‘innate’ and ‘experiential’ interact with one another
in the development of cognition.

Towards a model of the visual cortex ontogeny. This model-brain alignment follows a surpris-
ingly steady developmental trajectory. Early in training, the models rapidly acquire representations
that align with the fast and low-level visual responses of the sensory cortices. In contrast, the emer-
gence of slow and high-level representations – particularly those aligning with the prefrontal cortex
– appears to require both far more training data.
This developmental trajectory echoes the biological development of the human cortex: the brain
areas with which the AI models align last during their training are precisely those with the greatest
cortical thickness, slower intrinsic timescales, prolonged maturation, and lower levels of myelination
– i.e. the areas of the associative cortices that are known to slowly develop throughout the first two
decades of life (Dehaene, 2021). This result suggests that the sequential acquisition of representa-
tions in artificial neural networks may spontaneously model some of the developmental trajectories
of brain functions. In doing so, they may ultimately provide a new computational framework to
understand the staged maturation of visual processing in biological systems (Vogelsang et al., 2024;
Zaadnoordijk et al., 2022; Long et al., 2024).

Open questions. Several results were not anticipated. First, the temporal score, encoding score and
spatial score do not appear to emerge simultaneously – hence leading to the novel question of why
these metrics follow this specific order. The factors that lead the temporal score to emerge are not
entirely clear. However, the temporal score rises before the encoding score 3, suggesting that the
encoding score alone does not solely explain the temporal score. Second, the spatial and temporal
scores are initially negative (respectively significantly, p = 0.05, and non-significantly, p > 0.05) at
the beginning of model training.This means that the deepest layers of a random DINOv3 tend to best
predict fast and low-level brain responses at the very early (but not late) stages of training. Finally,
the half times of these three metrics are reached in between 1% and 4% – i.e. only n=1.6B images –
of DINOv3 training quantity. This suggests that while low-level brain-like representations are very
quickly learnable, the high-level representations of the brain require a very large amount of data to
be fully acquired.

Limitations. While this study offers a controlled analysis of brain–model convergence, several
limitations warrant consideration. First, our findings are based exclusively on a single family of
self-supervised vision models (DINOv3), which are hierarchical by design. It thus remains an open
question whether similar spatial, temporal and encoding scores would emerge with other architec-
tures and training objectives (Conwell et al., 2021). Second, fMRI and MEG offer limited resolution
and thus provide coarse population-level brain activity and may overlook fine-grained neural mech-
anisms. Third, our analyses focus solely on the adult brain, leaving open the question of how these
alignments emerge across development. Understanding when these correspondences arise will re-
quire data from infants, children, or longitudinal cohorts (Evanson et al., 2025). Additionally, we
analyze two datasets where participants watched images most often passively: future work should
assess how different tasks modulate the alignment between DINOv3 and the prefrontal cortex. Fu-
ture research should also extend this systematic exploration to additional factors driving brain-like
convergence, as well as to the interactive effects between all of them. Finally, while we quantify
the similarity between representations from models and the brain, the exact nature and semantic
structure of these neuronal representations continues to be a subject of intense ongoing research
(Gifford et al., 2025; Graumann et al., 2022). Closing this interpretability gap certainly remains a
major challenge to both neuroscience and AI.

Conclusion. Beyond the characterization of the spontaneous convergence between AI models and
brains, these findings chart a path toward using AI models as tools to investigate the organizing
principles of biological vision in the human brain. By showing how machines can come to see like
us, our findings provide cues as to how the human brain may come to see the world.
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A REPRODUCIBILITY STATEMENT

The paper is based on an open-source MEG dataset (Hebart et al., 2023a) and an open-source fMRI
dataset (Allen et al., 2022), as well as several open-source vision models (versions of DINOv3
(Siméoni et al., 2025)). These models and datasets are cited in the Introduction and the Methods
sections. Regarding the comparative trainings, the satellite and human-centric datasets are currently
proprietary, whereas the cellular dataset is a collection of open-source datasets (Lorenci et al.,
2025). Linear decoding code is available at:
https://mne.tools/stable/generated/mne.decoding.SlidingEstimator.
html.
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B APPENDIX

Figure S1: Encoding, spatial and temporal scores reproduced for a range of seven vision mod-
els with varying architectures and training objectives - including CNNs (ResNet-50, ConvNeXt-
Large), a self-supervised ViT with different objective than DINOv3 (ViT-MAE, masked image re-
construction), a supervised ViT (ViT-L/16), and vision–language contrastive transformers (CLIP,
SigLIP2, OWL-ViT).

Figure S2: Encoding scores across cortex, reproduced for a range of seven vision models with
varying architectures and training objectives – including CNNs (ResNet-50, ConvNeXt-Large), a
self-supervised ViT with different objective than DINOv3 (ViT-MAE, masked image reconstruc-
tion), a supervised ViT (ViT-L/16), and vision–language contrastive transformers (CLIP, SigLIP2,
OWL-ViT).
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Figure S3: Maximally encoding layers across cortex, reproduced for a range of seven vi-
sion models with varying architectures and training objectives – including CNNs (ResNet-50,
ConvNeXt-Large), a self-supervised ViT with different objective than DINOv3 (ViT-MAE, masked
image reconstruction), a supervised ViT (ViT-L/16), and vision–language contrastive transformers
(CLIP, SigLIP2, OWL-ViT).

Figure S4: Encoding scores along time, reproduced for a range of seven vision models with
varying architectures and training objectives – including CNNs (ResNet-50, ConvNeXt-Large), a
self-supervised ViT with different objective than DINOv3 (ViT-MAE, masked image reconstruc-
tion), a supervised ViT (ViT-L/16), and vision–language contrastive transformers (CLIP, SigLIP2,
OWL-ViT).

Figure S5: Encoding scores for each layer along time, reproduced for a range of seven vision
models with varying architectures and training objectives - including CNNs (ResNet-50, ConvNeXt-
Large), a self-supervised ViT with different objective than DINOv3 (ViT-MAE, masked image re-
construction), a supervised ViT (ViT-L/16), and vision–language contrastive transformers (CLIP,
SigLIP2, OWL-ViT).
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Figure S6: Alternative spatial score along the sensory-to-transmodal gradient. Partial repro-
duction of the spatial scores results obtained on DINOv3 using the value of each ROI along the
sensory-to-transmodal gradient map (Margulies et al., 2016) instead of the euclidean distance of this
ROI from V1. We obtain a similar increase across training from -0.32 to 0.13 (1st to last check-
point).
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Figure S7: Evolution of temporal, encoding and spatial scores as a function of DINOv3’s train-
ing.

Figure S8: Impact of model size along distillation for DINOv3-Small, Base, Large and Huge.
Encoding (reds), spatial (yellow), and temporal scores (greens) as a function of training and model
size.
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Figure S9: Impact of model size along GRAM anchoring for DINOv3-Small, Base, Large and
Huge. Encoding (reds), spatial (yellow), and temporal scores (greens) as a function of GRAM
anchoring and model size, for models trained from scratch.

   A B

Figure S10: Impact of model size for multiple ROIs. For inter-model comparisons, significance
to p< 1e−3 are represented by asterisks ∗. A. Brain ROIs. B. Encoding scores for each ROI at the
end of training.

   A B

Figure S11: Impact of image type for multiple ROIs. For inter-model comparisons, significance
to p< 1e−3 are represented by asterisks ∗. A. Brain ROIs. B. Encoding scores for each ROI at the
end of training.
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C ETHICS STATEMENT

Among the three datasets this study leverages, only the human-centric dataset is constituted from
images from the web and imageNet; each of these images went through platform-level content
moderation to prevent any harmful contents (Siméoni et al., 2025).
The present paper uses two datasets regarding research with human subjects, both these datasets have
already been published, are open-source and cited in the paper. Theses open-source recordings were
collected after participants’ informed consent and were validated by the corresponding Institutional
Review Boards.

D LLM USE

An LLM was used in preparing this manuscript, exclusively for proofreading purposes: typos, gram-
mar, and in a few instances to search for improved sentence formulations.
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