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ABSTRACT

Learning invariant representations has been the longstanding approach to self-
supervised learning. However, recently progress has been made in preserving
equivariant properties in representations, yet do so with highly prescribed architec-
tures. In this work, we propose an invariant-equivariant self-supervised architecture
that employs Capsule Networks (CapsNets) which have been shown to capture
equivariance with respect to novel viewpoints. We demonstrate that the use of
CapsNets in equivariant self-supervised architectures achieves improved down-
stream performance on equivariant tasks with higher efficiency and fewer network
parameters. To accommodate the architectural changes of CapsNets, we introduce
a new objective function based on entropy minimisation. This approach which we
name CapsIE (Capsule Invariant Equivariant Network) achieves state-of-the-art
performance across invariant and equivariant tasks on the 3DIEBench dataset com-
pared to prior equivariant SSL methods, while outperforming supervised baselines.
Our results demonstrate the ability of CapsNets to learn complex and generalised
representations for large-scale, multi-task datasets compared to previous CapsNet
benchmarks. Code is available at redacted

1 INTRODUCTION

Equivariance and invariance have become increasingly important properties and objectives of deep
learning in recent times, with precedence being largely placed on the latter. The task of invariance, i.e.
being able to classify a specific object no matter the camera perspective or augmentation applied, has
driven progress in modern self-supervised learning approaches, specifically those which follow a joint
embedding architecture Assran et al. (2022); Bardes et al. (2021); Chen et al. (2020). Equivariance
on the other hand is the task of capturing embeddings which equally reflect the translations applied to
the input space in the latent space. Equivariance thus has become an important property to capture to
enable the learning of high-quality representations in the real world where transformations such as
viewpoint are essential.

Self-supervised learning owes its success to invariant objectives, where all recent progress, whether
that is by contrastive Chen et al. (2020), information-maximisation Bardes et al. (2021); Zbontar
et al. (2021), or clustering based methods Caron et al. (2021); Assran et al. (2022) rely on ensuring
invariance in their representations under augmentation. This setting ensures performance in clas-
sification based tasks, but when employing the representations in alternative tasks, preservation of
information is essential to improve generalisation. To maintain properties of the transformation one
can predict the augmentations applied Dangovski et al. (2022); Lee et al. (2021), yet this is typically
not considered truly equivariant given the mapping of transformations is not represented in the latent
space. Methods that employ such a prediction methodology are typically considered equivariant
as the transformation in the input space is preserved in the latent space. Here prediction networks
are employed to reconstruct the view prior to transformation Winter et al. (2022), learn symmetric
representations Park et al. (2022), or predict the latent representation of the transformed view from
the representation of the original view given the transformation parameters Garrido et al. (2023).

The above methods, although promising, enforce equivariance via objective functions on vector repre-
sentations, yet these methods fail to employ architectural approaches that have shown to be capable of
better capturing these properties. Capsule Networks (CapsNets), which utilise a process called routing
Sabour et al. (2017); Hinton et al. (2018); Everett et al. (2023); Hahn et al. (2019); De Sousa Ribeiro
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(a) Schematic overview of the CapsIE architecture.
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(b) Generalised visualisation of the CapsNet projector.

Figure 1: Left: Schematic overview of the proposed CapsIE architecture. Representations are
fed into a CapsNet projector, and the output embeddings Zact and Zpose correspond to invariant and
equivariant embeddings respectively. Right: Generalised view of a Capsule projection head. CNN
feature maps are transformed via the primary capsules into poses ui, represented by cylinders, and
activations ai, represented by circles. Poses are transformed to votes, which represent a lower-level
capsules prediction for each of the higher-level capsules. The routing process then defines how
well these votes match the concept represented by the upper-level capsule, creating the coupling
coefficients. Coupling coefficients inform uj and aj , the output of the capsule projector head.

et al. (2020); Liu et al. (2024), are one such architecture, showing signs of desirable properties
that other state of the art (SOTA) architectures such as Vision Transformers (ViTs) and CNNs do
not. Specifically, CapsNets have shown a natural ability to have strong viewpoint equivariance and
viewpoint invariance properties – they achieve this through their ability to capture equivariance
with respect to viewpoints in neural activities, and invariance in the weights. In addition, viewpoint
changes have nonlinear effects on pixels but linear effects on object relationships De Sousa Ribeiro
et al. (2020); Hinton et al. (2018). Ideally, these properties could lead to the development of more
sample-efficient models that can exploit robust representations to better generalise to unseen cases
and new samples.

However, a common argument is that CapsNets have only shown these properties on toy examples
such as the smallNORB dataset LeCun et al. (2004), which many would consider irrelevant for modern
architectures. Despite this, small CapsNets outperform much larger CNN and ViT counterparts Everett
et al. (2023). In this work, we propose a novel CapsNet formulation and corresponding objective
function, achieving SOTA on several experiments and ablations studies on the 3DIEBench dataset
Garrido et al. (2023) which has been created to specifically benchmark equivariant and invariant
properties of deep learning models. We prove that CapsNets retain their desirable properties on this
dataset which is considerably more difficult than what has been previously achieved with CapsNets,
while also establishing new SOTA on these tasks.

To summarise, our contributions are:

• We propose a novel architecture based on a Capsule Network projection head that utilises the
key assumptions of capsule architectures to learn equivariant and invariant representations
which does not require the explicit split of representations.

• We design a new objective function to accommodate the employment of a CapsNet projector,
enforcing invariance through entropy minimisation.

• We demonstrate that CapsNet projectors implicitly learn pose understanding in a self-
supervised setting.

• We show state of the art performance on 3DIEBench classification for equivariance and
invariance benchmark tasks from our CapsNet-based architecture.

2 PROBLEM STATEMENT

Typically, self-supervised learning maximises the similarity between embeddings of two augmented
views of an image such that they are invariant to augmentations, and instead capture semantically
meaningful information of the original image. Views x and x′ are each transformed from an image
d ∈ Rc×h×w sampled from dataset D by image augmentations τ, τ ′ ∼ T sampled from a set of
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augmentations T . Embeddings are obtained by feeding each view through an encoder fθ, where
the output representations y, y′ are fed through a projection head hϕ to produce embeddings z, z′
whose similarity is maximised. However, it is detrimental in many settings that f is invariant to all
transformations, instead in this work we are focused on ensuring that f is equivariant to viewpoint
transformations. To train for and evaluate such properties we base our study on the challenging
3DIEBench dataset and corresponding problem definition presented in Garrido et al. (2023).

Maximise
Similarity

Minimise
Similarity

Invariant
Objective

Equivariant
Objective

Predict Rotation
of  given  

Figure 2: Visual depiction of the problem state-
ment. Two images are represented by subscripts
0, 1 while view under transformation g is given
by ′. Arrows represent the construction of embed-
dings from an encoder network. Top the invariance
objective is to maximise the similarity between em-
beddings of views originating from the same image.
Bottom the equivariance objective aim to learn the
transformations ρX(g) · x applied to x.

First, to define equivariance we begin by defin-
ing a Group consisting of a set G and a binary
operation · on G, · : G × G → G such that
· are associative; there is an identity e which
satisfies e · a = a = a · e, ∀a ∈ G; and for
each a ∈ G there exists an inverse a−1 such that
a · a−1 = e = a−1 · a. Group actions are con-
cerned with how groups manipulate sets, where
the left group action can be defined as a function
α of group G and set S, α : G × S → S such
that α(e, s) = s,∀s ∈ S, and α(g, α(h, s)) =
α(gh, s),∀s ∈ S, and ∀g, h ∈ G. In our setting,
we are concerned with group representations
which are linear group actions acting on vector
space V , which we define as ρ : G → GL(V )
where GL(V ) is the general linear group on V .
Here ρ(g) describes the transformation applied
to both the input data x and latent f(x) given
parameters g Park et al. (2022); Garrido et al.
(2023). Transformations comprise colour scal-
ing and shifting, and rotations around a fixed
point, see Appendix A for further details.

Following this, we can define the function f : X → Y as being equivariant with respect to a group G
with representations ρX and ρY if ∀x ∈ X, and ∀g ∈ G,

f(ρX(g) · x) = ρY (g) · f(x). (1)

As defined in Garrido et al. (2023) the goal (visually depicted in Figure 2) is to learn f and ρY to
construct representations that are equivariant to viewpoint transformations when ρX is not known,
but the group elements g that parameterise the transformations are known. Further details of these
transformations and the benchmark 3DIEBench dataset are given in Section A.

3 METHOD

3.1 ARCHITECTURE

Our method which we name CapsIE (Capsule Network Invariant Equivariant) follows the general
joint embedding architecture previously described in Section 2 and extends those proposed by VICReg
Bardes et al. (2021) and SIE Garrido et al. (2023). Like previous methods, we employ a ResNet-18
He et al. (2016) encoder as the core feature extractor fθ of our network. Yet unlike SIE Garrido et al.
(2023), we do not split the representations, and therefore do not require the use of separate invariant
and equivariant projection heads. Instead, we employ a single CapsNet (described in Section 3.2)
which takes as input the full representation of the encoder in place of the multi-layer perceptron
(MLP) in the projection head hϕ. Given the architectural design of CapsNets, our projection head
outputs both an activation scalar, representing how active the capsule is, and a 4× 4 pose for each
capsule.

To align with the above problem statement and Equation 1, we aim to simultaneously learn invariant
and equivariant representations by optimising our network f with respect to the output activations and
poses. In this case, we consider the activation vector to capture existence of semantic concepts/objects
of the input, thus, the invariant information is preserved by the transformation. The pose on the other
hand is designed to encode positional information related to each corresponding capsule Ribeiro et al.
(2022) (i.e. semantic concept), therefore it contains equivariant information that that was changed by
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the transformation. Akin to the SIE method, we therefore, consider two embedding vectors for each
image view, zact and zpose, which correspond to the capsule activation vector and pose, and invariant
and equivariant components respectively.

To enforce our network to learn equivariant properties we utilise a prediction network pψ,g which
takes as input the transformation g and zpose to predict z′pose, and hence learn ρY (g). In our setting,
g ∈ R3 corresponding to the quaternions of the rotation applied. In this work, we employ the
hypernetwork approach taken by Garrido et al. (2023) which uses an linear projector that takes as
input the transformation parameters g to parameterise an MLP predictor. Such a network avoids the
case where the transformation parameters g are ignored and the predictor provides invariant solutions.
We present more details of the predictor network in the appendix, and visually depict the full CapsIE
architecture in Figure 1.

3.2 CAPSULE NETWORK PROJECTOR

Image Activation Pose

1000
00.30.10.9
0-0.70.60.2
0-0.6-0.70.2

1000
0
0
0

1000
00.4-0.1-0.9
0-0.30.9-0.2
00.80.40.3

0.20.4-0.9
-0.40.80.3
0.90.40.3

Figure 3: Simplified visual representation
of CapsNet outputs. Activation vector out-
puts the probability of each capsule being ac-
tivated, whereas the pose matrix corresponds
to the object pose in relation to the frame.

Capsule Viewpoint Equivariance CapsNets are
designed to handle spatial hierarchies and recog-
nise objects regardless of their orientation or loca-
tion, achieving equivariance through their structure
Ribeiro et al. (2020). A capsule is a group of neurons
– vector-based representations – representing instan-
tiation parameters such as position, orientation, and
size. Before any routing process begins, lower-level
capsule poses ui are transformed to n upper-level cap-
sule poses uj|i which align with concepts represented
by higher-level capsules, preserving spatial relation-
ships and hierarchical information. It is then deter-
mined through the routing process how well these
transformed poses correspond with the concept repre-
sented by the upper-level capsule. CapsNets, unlike
convolution, excel in achieving viewpoint invariance
and viewpoint equivariance as they can capture equiv-
ariance with respect to viewpoints in neural activities,
and invariance in the network’s weights Ribeiro et al.
(2022). Consequently, capsule routing aims to detect
objects by looking for agreement between their parts,
thereby performing equivariant inference.

Self Routing Capsule We use the Self Routing CapsNet (SRCaps) Hahn et al. (2019) based on
the efficiency of its non-iterative routing algorithm. We consider the trade-off of a small amount of
classification accuracy to be acceptable when comparing the performance of SRCaps to other capsule
architectures which require significantly more resources to train. Based on the size of the 3DIEBench
dataset, these other routing algorithms would be unsuitable.

SRCaps calculates the coupling coefficients between each capsule in lower layer i with each capsule
in upper layer j to produce the coupling coeffients cij . It does so by using a learnable routing matrix
W route multiplied with the lower capsule pose vector ui, mimicking a single layer perceptron to
produce routing coefficients bij which when passed through a softmax function produce coupling co-
efficients cij . Additionally, we determine the activation of upper-level capsules aj by first multiplying
ai by cij to create votes and then dividing this by ai to create weighted votes.

cij = softmax(W route
i ui)j , aj =

∑
i∈Ωl

cijai∑
i∈Ωl

ai
(2)

The output pose of a capsule layer is calculated using learnable weight matrix W pose which when
multiplied with ui provides a capsule pose of each lower-level capsule for each upper-layer capsule
i.e uj|i. Following the same procedure as the activations, uj is the weighted sum of these poses by aj .

ûj|i = W pose
ij ui, uj =

∑
i∈Ωl

cijaiûj|i∑
i∈Ωl

cijai
. (3)
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3.3 OBJECTIVE FUNCTIONS

Invariant Criterion. To train our aforementioned architecture we first introduce an invariant
objective as the cross entropy between activation probability vectors, H(Zact, Z

′
act) where Z refers to

the matrix embeddings over a batch. The aims is to enforce embedding probability pairs originating
from the same image to be matched. To avoid trivial solutions and collapse to a single capsule,
we employ the mean entropy maximisation regularisation Assran et al. (2021; 2022) on the same
activation probability vectors to encourage the model to utilise the full set of capsules over a batch.
This regularisation maximises the entropy of the mean probabilities H(Z̄act) and H(Z̄ ′

act), where
Z̄act =

1
B

∑B
i=1 Zact and B is the batch size.

Equivariant Criterion. As previously stated in Section 2, our goal is to learn the predictor pψ,g to
model ρY (g) as to enforce equivariant representations. This is achieved by maximising the cosine
similarity between the output vector of the predictor pψ,g(Zpose) given translation parameters g and
equivariant representation Zpose, and the augmented view’s equivariant representation vector Z ′

pose. To
avoid collapse and improve training stability we also regularise the output of pψ,g(Zpose) by ensuring
the variance of the predicted equivariance representation is 1 to avoid collapse. Whereas, SIE Garrido
et al. (2023) finds this to be an optional but recommended component, we found in practice, without
such regularisation the predictor would consistently collapse to trivial solutions.

As with the activation vector we employ variance-covariance regularisation on the pose to ensure
they do not collapse of representations to trivial solutions. The variance objective V ensures that all
dimensions d in the embedding vector are equally utilised while the covariance objective C decor-
relates the dimensions to reduce redundancy across dimensions. The regularisation for equivariant
vectors Lreg is given by

Lreg(Z) = λC C(Z) + λV V (Z), where (4)

C(Z) =
1

d

∑
i̸=j

Cov(Z)2i,j and V (Z) =
1

d

d∑
j=1

max

(
0, 1−

√
V ar(Z·,j)

)
. (5)

The final objective function is given by the weighted sum of the individual objectives

L(Zact, Z
′
act, Zpose, Z

′
pose) = λinvH(Zact, Z

′
act) + (H(Z̄act) +H(Z̄ ′

act)) + (6)

λequi
1

N

N∑
i=1

∥pψ,gi(Zi,pose)− Z ′
i,pose∥22 + (7)

Lreg(Zpose) + Lreg(Z
′
pose) + λV V (pψ,gi(Zi,pose)). (8)

4 EXPERIMENTATION

4.1 TRAINING PROTOCOL

To directly compare with prior works employing the 3DIEBench dataset, we follow an identical
training protocol, as defined in Garrido et al. (2023). All methods employ a ResNet-18 encoder
network (fθ), for the projection head (hϕ) we compare a variety of hyperparameterisations, which
we later describe in the following sections. For primary bench-marking we train our model for 2000
epochs using the Adam Kingma & Ba (2014) optimiser with default settings, a fixed learning rate
of 1e-3 and batch size of 1024. For ablations and sensitivity analyses we train for 500 epochs and
employ a batch size of 512, with other settings remaining unchanged. We find in practice that 500
epochs presents a strong correlation of performance. By default the objective function weighting are
as follows, λinv = 0.1, λequi = 5, λV = 10, λC = 1. Each self-supervised 2000 epoch pretraining
run took approximately 22 hours using 3 Nvidia A100 80GB GPU’s, with 64 capsule models taking
approximately 25 hours using 6 Nvidia A100 80GB GPU’s. All eval tasks are completed on a single
Nvidia A100 80GB GPU and take approximately 6 hours for angle prediction, and 3 hours for
classification.
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Table 1: Evaluation of invariant properties via downstream classification task. Representations
are learnt under the invariance and rotation equivariant objective, we evaluate both the representations
and the intermediate embeddings of the projection head under varying number of capsules. FLOPs
and Parameters correspond to computation during training, ‘-’ refers to non-compatible experiments.

Computational Load Embedding Dims Classification (Top-1%)
Method Parameters # FLOPs Inv. Equi. All Inv. Equi.

Supervised
ResNet-18 11.2M 3.09G - - 87.47 - -
SR-Caps - 16 11.0M 3.16G - - - 73.85 -
SR-Caps - 32 13.0M 4.27G - - - 59.70 -
SR-Caps - 64 18.7M 8.22G - - - 69.45 -

Encoder Representation
SIE 20.1M 13.07G 512 512 82.94 82.08 80.32
CapsIE - 16 12.7M 3.49G 16 256 78.96 - -
CapsIE - 32 14.7M 4.57G 32 512 80.00 - -
CapsIE - 64 20.4M 8.69G 64 1024 80.26 - -

Projector - 1st Intermediate Embedding
SIE 20.1M 13.07G 512 512 - 80.53 77.64
CapsIE - 16 12.7M 3.49G 16 256 - 82.96 -
CapsIE - 32 14.7M 4.57G 32 512 - 83.49 -
CapsIE - 64 20.4M 8.69G 64 1024 - 83.64 -

4.2 DOWNSTREAM EVALUATION

To evaluate the quality of representations learnt under self-supervision, we use the standard benchmark
approach of learning downstream task specific networks with frozen representations as input. In our
case we evaluate the representations in three distinct tasks to evaluate both invariant and equivariant
properties, we use a linear evaluation training protocol of the frozen representations. Further details
of the evaluation protocol are given in the appendix B.2.

Invariant Evaluation. To evaluate invariant properties of the representation we train a classifier on
either the frozen representations output from the encoder network or the intermediate embeddings
of the capsule network projector. Given our advocation for CapsNets we evaluate using both the
standard linear classification and a capsule layer whose number of out capsules is set to the number
of classes. All methods are trained for 300 epochs by cross entropy.

Equivariant Evaluation. Evaluating equivariant properties is achieved through a rotation prediction
task in which a three layer MLP is trained to predict the quaternions defining the rotation between two
views of the same object. We train for 300 epochs using MSE loss. Similarly to rotation prediction,
we evaluate the representation’s equivariant properties by regressing the the colour hue of an object
view. We train a single linear layer for 50 epochs using MSE loss.

Representation Quality. The performance of CapsIE for both invariant and equivariant benchmark
tasks is given in Tables 1 and 2 respectively. We evaluate both the representations produced by
the ResNet-18 encoder and the intermediate embeddings of the capsule layer projection head given
different values for the numbers of capsules. We observe that across all models that the invariant
properties captured within the representations marginally suffer compared to the MLP projector of
SIE. This observation is expected given the significantly reduced number of embeddings employed in
the invariant criterion compared to SIE. However, the evaluation of equivariant properties captured
by the representations demonstrates that the use of a capsule projector in place of a MLP can lead to
vastly improved performance in rotation prediction (↑ 0.05 R2) advancing the prior state-of-the-art
whist also improving on the supervised baseline by a significant margin.

Additionally, we observe that the colour prediction task achieves a performance close to that of the
supervised setting even though our criteria do not directly optimise for such equivariant properties.
This suggests that the CapsNet is responsible for implicitly capturing transformations of the input
whilst having little to no impact on the tasks directly optimised for.

6
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Table 2: Evaluation of equivariant properties via downstream rotation prediction (left) and
colour prediction (right) tasks. Representations are learnt under the invariance and rotation equivari-
ant objective, we evaluate both the representations and the intermediate embeddings of the projection
head under varying number of capsules. ‘-’ refers to non-compatible experiments.

Rotation Prediction (R2) Colour Prediction (R2)
Method All Inv. Equi. All Inv. Equi.

Supervised
ResNet-18 0.76 - - 0.99 - -
SR-Caps - 16 - - 0.83 - - 0.99
SR-Caps - 32 - - 0.84 - - 0.99
SR-Caps - 64 - - 0.80 - - 0.99

Encoder Representation
SIE 0.73 0.23 0.73 0.07 0.05 0.02
CapsIE - 16 0.78 - - 0.97 - -
CapsIE - 32 0.75 - - 0.97 - -
CapsIE - 64 0.72 - - 0.97 - -

Projector - 1st Intermediate Embedding
SIE - 0.38 0.58 - 0.45 0.09
CapsIE - 16 - - 0.78 - - 0.97
CapsIE - 32 - - 0.77 - - 0.97
CapsIE - 64 - - 0.78 - - 0.97

Intermediate Projector Embeddings. The role of the projector is primarily employed to decorrelate
the embeddings on which the objective function operates on from the representations employed
downstream. The premise is to avoid representations that are over-fit to the self-supervised objective
Bordes et al. (2022). However, it has been well studied that it can be beneficial to maintain a number
of projector layers and instead utilise intermediate projector embeddings for downstream tasks. In our
case, the preservation of capsule layers for downstream tasks ensures that the desirable equivariant
and part-whole properties are maintained. Specifically, the equivariant information that has shown to
be captured in the object pose Ribeiro et al. (2022).

We evaluate the intermediate embeddings output from the primary capsule layer in the same manner
as the representations, however the activations and pose are given over a spatial region we perform
average pooling to return an activation vector and a 4 × 4 pose for each capsule which we then
flatten into a vector. As with the representation evaluation we report our invariant and equivariant
task performance in Tables 1 and 2 respectively. We find across all settings that evaluating the
intermediate embeddings of the capsule projector leads to improved performance on all tasks. We
observe that classification via the activation vector (i.e. invariant part) significantly improves on SIE
(↑ 0.7 Top-1%) while approaching performance levels of explicitly invariant approaches such as
VICReg (see appendix C.2). The same increase in performance is seen for the rotation prediction
task, where evaluating on the pose of the intermediate embedding (equivariant part) leads to improved
performance across all capsule based models, extending beyond supervised training.

4.3 QUANTITATIVE EVALUATION OF EQUIVARIANCE

In order to quantitatively evaluate the equivariant performance of our method and capsule projector,
we employ commonly used metrics including Mean Reciprocal Rank (MRR) and Hit Rate at k (H@k).
We utilise the same setup as described in Garrido et al. (2023), and discuss in further details the setup
in appendix B.3. All the results evaluated by the aforementioned metrics are given in Table 3. Our
CapsIE network outperforms EquiMod, Only Equivariance and SIE by a considerable margin across
all metrics and for all dataset splits. We achieve strong perfromance on PRE, reporting 0.21 PRE on
the validation set compared to 0.48 for EquiMod and Only Equivariance and 0.29 for SIE. The same
large gains in equivariant performance are shown for MRR and H@1 and H@5. Note, a random
H@1 results in a performance for 2% (0.02) demonstrating that our method lies well above random.
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Table 3: Quantitative evaluation of the predictor when using a Capsule network projector, using
PRE, MRR and H@k. The source dataset which embeddings are computed and the dataset used for
retrieval are given in the format source-retrieval for PRE and source for MRR and H@k.

PRE (↓) MRR (↑) H@1 (↑) H@5 (↑)

Method train-train val-val val-all train val train val train val

EquiMod 0.47 0.48 0.48 0.17 0.16 0.06 0.05 0.24 0.22
Only Equivariance 0.47 0.48 0.48 0.17 0.17 0.06 0.05 0.24 0.22
SIE 0.26 0.29 0.27 0.51 0.41 0.41 0.30 0.60 0.51

CapsIE 0.17 0.21 0.20 0.60 0.47 0.50 0.36 0.71 0.58

5 ABLATIONS & SENSITIVITY ANALYSES

5.1 NUMBER OF CAPSULES

Each capsule, in theory, should represent a unique concept, thus when the number of capsules is
increased, logically so should the networks representation ability to capture an increasing number of
semantic concepts. Observing the invariant performance during training (Figure 4) and downstream
evaluation in Table 1, CapsIE gains slight improvement with the addition of more capsules. This
demonstrates that our model has better utilised the additional representational power to improve
performance. This pattern is also observed when evaluating equivariant properties (shown in Figure
4), yet is less pronounced. However, in Table 1 we also show that increasing the number of capsules of
a supervised SR-Caps model trained in a standard supervised fashion is not an indicator of increased
performance, aligning with prior capsule research Everett et al. (2023). This differentiation in
behaviour provides an interesting direction for future research.
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Figure 4: Invariant and equivariant performance during training when varying number of cap-
sules. (left) Classification evaluation performance (top-1 %). (right) Rotation prediction evaluation
performance (R2).

5.2 IMPLICIT VIEWPOINT EQUIVARIANCE

Table 4: Evaluation of SIE and CapsIE
- 32 downstream rotation prediction on
representations by either a rotation or
colour hue equivariant objective.

Rotation Prediction (R2)
Method All

SIE - Rotation 0.43
SIE - Colour 0.29 (↓ 0.14)

CapsIE - Rotation 0.59
CapsIE - Colour 0.48 (↓ 0.11)

To investigate whether capsule models are implicitly learn-
ing equivariant properties without any explicit enforcing
criterion, we train our CapsIE model to predict colour hue
rather than rotation via the predictor network. Given the
observation in Table 2 that CapsIE is able to achieve near-
perfect prediction without any optimising criterion, we
hypothesise that capsules are implicitly capable of learning
equivariant properties. The evaluation performance of rep-
resentations on the rotation task under the aforementioned
ablation pre-training settings in Table 4, demonstrates that
CapsNets indeed learns more implicit equivariant proper-
ties than the benchmark SIE by a considerable margin. We
do however observe that SIE is still able to capture some
equivariant information without being explicitly trained for,

8
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which does not align with the findings of the setting where colour is evaluated Garrido et al. (2023).
Notably, this results is not a significant improvement over random representations in which the R2

lies approximately at 0.25. This observation presents an interesting study for future work, while
the improvement of the CapsIE model over SIE empirically demonstrates the viewpoint equivariant
assumptions of CapsNets.

6 RELATED WORK

6.1 EQUIVARIANT SELF-SUPERVISED LEARNING

Self-supervised learning has seen the majority of its success in the invariant setting by either con-
trastive Chen et al. (2020), information maximisation Zbontar et al. (2021); Bardes et al. (2021),
or clustering methods Caron et al. (2021); Assran et al. (2022). All families of approaches rely on
training a network to be invariant to transformations by increasing the similarity between embeddings
of the same image under augmentation. The differing approaches emerge from alternative methods to
avoid collapse, the phenomena where embeddings fall into a lower-dimensional subspace rather than
the entire available embedding space resulting in a trivial solution Hua et al. (2021). Although these
methods differ, they all produce similarly performing representations, hence we employ information
maximisation methods as the basis of this work due to their computational efficiency.

Learning to be invariant to transformations is typically useful for semantic discrimination tasks,
yet preserving information about the transformations can be highly beneficial. Some approaches
have attempted to capture specific information regarding transformations by predicting the applied
augmentation parameters Lee et al. (2021), preserving the strength of augmentations Xie et al. (2022)
and introducing rotational transformations Dangovski et al. (2022). However, as stated in Garrido
et al. (2023), these methods provide no guarantee that a mapping is learnt in the latent space that
reflects the transformations in the input space. Hence, methods have been employed that address this
limitation, Devillers & Lefort (2022); Park et al. (2022); Garrido et al. (2023) all employ predictor
networks to predict the displacement representations in the latent space given one view representation
and the transformation parameters. The latter, SIE Garrido et al. (2023), is the basis of our work,
which further extends prior methods by splitting representation vectors into invariant and equivariant
parts to better separate differing information.

6.2 CAPSULE NETWORKS

CapsNets present an alternative architecture to CNNs, addressing their limitations by explicitly
preserving hierarchical spatial relationships between features Sabour et al. (2017). CapsNets replace
scalar neurons with vector or matrix poses, representing specific concepts at different levels of a
parse tree as the network goes deeper. The first layer (primary capsules) corresponds to the most
basic parts, while capsules in deeper layers represent more complex concepts made up of the simpler
concepts as they get closer to the final layer where each capsule corresponds to a specific class.

The key components of the CapsNet are the pose and the activation. The pose of a capsule is an
embedding vector or matrix which provides a representation for the concept. The activation scalar is
a value between 0 and 1 which represents how certain the network is that the concept is present and
can be calculated directly from the values of the pose or via other means via the routing mechanism.

The key novelty in CapsNets is the routing mechanism, which determines the contributions of lower-
level capsules to higher-level capsules. Numerous routing algorithms, both iterative and non-iterative,
have been proposed to address the efficiency and effectiveness of this process Sabour et al. (2017);
Mazzia et al. (2021); Feng et al. (2024); Ribeiro et al. (2020); Hinton et al. (2018); De Sousa Ribeiro
et al. (2020); Yang et al. (2021); Everett et al. (2024). Among these, SRCaps Hahn et al. (2019)
introduces a non-iterative routing mechanism. This method maintains all of the desirable properties
of CapsNets, such as equivariance while largely mitigating the time cost of iterative methods, at
the price of a small amount of performance. However, SRCaps faces the same limitations as other
CapsNets where high resolution or high class datasets are beyond the network’s abilities when trained
in a standard fashion. For a more detailed description of capsule routing mechanisms please check
this review Ribeiro et al. (2022).

9
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7 CONCLUSION

Our proposed method demonstrates how self-supervised CapsNets can be employed to better learn
equivariant representations, leveraging architectural assumptions removing the the need to explicitly
split representation vectors and train separate projector networks. The resulting solution, CapsIE,
achieves state-of-the-art performance in equivariant and invariant downstream benchmarks with a
significant improvement of 0.05 R2 on prior self-supervised rotation prediction tasks and 0.02 R2

improvement over the supervised baseline. In addition, we observe competitive performance of
CapsIE on equivariant tasks not explicitly trained for, further demonstrating the implicit equivariant
properties of our capsule architecture under standard invariant optimisation criteria akin to those
of VICReg Bardes et al. (2021), SimCLR Chen et al. (2020), and MSN Assran et al. (2022). Our
results contribute significantly to the avocation of CapsNets in self-supervised representation learning,
introducing desirable properties with improved effectiveness over MLP projectors.

Ethics Statement. This work aims to learn higher quality and more applicable representations of
images without human generated annotations, therefore such methods can lead to positive societal
impacts the development of more accurate or informative models for a number of downstream tasks.
However, as is the case with all vision systems, there is potential for exploitation and security concerns
and one should take into consideration AI misuse when extending our method.

In addition, the use of CapsNets has shown little improvement when scaled, similar to the findings of
Everett et al. (2023); Mitterreiter et al. (2023); Nair et al. (2021) where the addition of more capsule
layers has either led to stagnated or decreased performance. We strongly feel that our work should be
revisited when a capsule network that can both scale and retain the desirable properties of capsule
networks is found.

As stated in the original dataset proposal and the problem setting the methodology presented rely on
the group elements being known. Hence, the applicability of the proposed method is only possible
in settings where group elements are known. However, we present findings where additional group
elements are preserved without prior knowledge of the group, this suggests the CapsNets are more
capable than previous invariant methods at capturing equivariant properties, thus opening an intriguing
direction for future work.

Reproducibility Statement. We have included the source code required to reproduce all experiments
and ablation studies presented in the main body of the paper and the appendix. We also provide the
details of our training protocol in the appendix.
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A 3DIEBENCH DATASET

3d Model

Figure 5: The 3DIEBench dataset, one 3d model is used to create 50 different views in a synthetic
environment, which are saved as images along with the latent values by which they are transformed.

Typical equivariant datasets are generally handcrafted and simple, with a small amount of classes
and instances within each class. This is due to the time needed in order to ensure correctness. While
standard image datasets do allow for testing invariance in the form of augmenting the same image in
two different ways, they do not allow for precise transformation of the subject. Thus the need for a
new, synthetic dataset.

We use the 3DIEBench Garrido et al. (2023) dataset1, which has been created specifically to be a
hard yet controlled test-bed for invariant and equivariant methods. The dataset consists of 52,472
3d objects across 55 classes of 3d objects from ShapeNetCorev2 Chang et al. (2015) posed in 50
different views as well as the latent information of the view, this can be seen in figure 5. For training
we then randomly select two views from each model in the training set. The parameters by which the
model could have been augmented can be seen in table 5.

Table 5: Values of the factors of variation used for the generation of 3DIEBench. Each value is
sampled uniformly from the given interval. Object rotation is generated as Tayt-Bryan angles using
extrinsic rotations. Light position is expressed in spherical coordinates. This table is sourced from
Garrido et al. (2023).

Parameter Minimum value Maximum value

Object rotation X −π
2

π
2

Object rotation Y −π
2

π
2

Object rotation Z −π
2

π
2

Floor hue 0 1
Light hue 0 1
Light θ 0 π

4
Light ϕ 0 2π

1The full dataset and splits employed can be found at https://github.com/facebookresearch/
SIE
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B TRAINING PROTOCOLS

B.1 CAPSIE PRE-TRAINING

Our proposed CapIE model is comprised of a ResNet-18 encoder, SR-CapsNet comprised of a
primary capsule layer routed to a second capsule layer. The SR-CapsNet projector takes as input the
activation map output of the ResNet prior to the final global average pooling. The predictor network
employed is that described in Garrido et al. (2023). All details of the architectural design are given in
the main paper.

Training of our CapsIE model is done over 2000 epochs with a batch size of 1024, optimised via the
Adam optimiser with learning rate 0.001, and default parameters, β1 = 0.9, β2 = 0.999. By default
the objective function weighting are as follows, λinv = 0.1, λequi = 5, λV = 10, λC = 1 where we
empirically found these optimal for our setting. Further performance gains could be achieved by the
tuning of such parameters, however, we deemed this unnecessary.

For ablation studies, where we explicitly state, we train for fewer epochs and with a smaller batch
size, 500 and 512 respectively. We find in practice this setting is a strong proxy for full training
performance and significantly save computational resource.

Training time for 2000 epochs with batch size of 1024, as previously stated, took approximately 22
hours using 3 Nvidia A100 80GB GPU’s, with 64 capsule models taking approximately 25 hours
using 6 Nvidia A100 80GB GPU’s.

B.2 DOWNSTREAM EVALUATION

In our work we perform evaluation on both the frozen ResNet-18 representations and the representa-
tions from the primary capsules layer, which are evaluated using either a linear classifier or additional
capsule layer acting as a class capsules, i.e the number of capsules is set to the number of classes
and activations are used as the logits. Here, we detail the exact training protocols to ensure complete
reproducability.

For our evaluations we use two different depths of MLP heads, these are: 1. Deep MLP referring to
an MLP with layers containing in_dim - 1024 - out_dim neurons, with intermediate ReLU activations.
2. Shallow MLP referring to a single MLP layer with in_dim in neurons and out_dim out neurons.
When we evaluate our primary capsules for angle and colour prediction, we average the 8x8 feature
map so that we only have a single pose vector for the entire image. For our Capsule Classification
task, we do not have an in_dim as we do not use a MLP, but instead use a capsule layer which operates
on the primary capsules pose and activations.

Table 6: Training settings for our evaluations. Settings are the same for all number of capsules.
NC is used as shorthand for number of capsules. - denotes that this element is not used. * denotes
multiplication.

Representations Representations Representations Capsule Capsule Capsule
Angle Colour Classification Angle Colour Classification

Caps Head - - - - - Yes
MLP Head Deep Shallow - Deep Shallow -
in_dim 512 512 512 NC * 16 NC * 16 N/A
out_dim 4 2 55 4 2 55
Optimizer Adam Adam Adam Adam Adam Adam
LR 0.001 0.001 0.001 0.001 0.001 0.001
β1 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999 0.999 0.999
Batch Size 256 256 64 256 256 256
Epochs 300 50 300 300 50 300
Objective MSE MSE Cross Entropy MSE MSE Cross Entropy
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B.3 QUANTITATIVE EQUIVARIANT EVALUATION IMPLEMENTATION DETAILS

We evaluate the equivariant properties of the predictor in line with that proposed in Garrido et al.
(2023) reporting the Mean Reciprocal Rank (MRR) and Hit Rate at k (H@k) on the multi-object
setting. Given a source and target pose of an object, we first compute the embeddings of each image,
and pass the source embedding through the predictor and use the resulting vector to retrieve the
nearest neighbours.

The MRR is the average reciprocal rank of the target embedding in the retrieved nearest neighbour
graph. H@k in this case is computed to be 1 if the target embedding is in the k-NN graph of the
predicted embedding, where we only look for nearest neighbours among the views of the same object.

The Prediction Retrieval Error (PRE) gives an evaluation of predictor quality, and is given by the
distance between its rotation q1 ∈ H and the target rotation q2 as d = 1− < q1, q2 >2 of the nearest
neighbour of the predicted embedding averaged over the whole dataset. Full implementation details
can be found in the open-source code provided.

B.4 SUPERVISED TRAINING OF SR-CAPS

In our work we train a Self Routing Capsule Network model in a supervised fashion for the down-
stream tasks to evaluate whether our pretrained model improves the quality of downstream evaluations.
The training setting of these runs can be found in table 7.

Deep MLP refers to an MLP with layers containing number_caps * 16 * 2 - 1024 - 4 neurons, with
intermediate ReLU activations. Shallow MLP head refers to a single MLP layer with number_caps *
16 * 2 in neurons and either 4 (for rotation prediction) or 2 (for colour prediction) out neurons.

Table 7: Training settings for our supervised Self Routing Capsule Network model. Settings are
the same for all number of capsules. - denotes that this element is not used.

Angle Colour Classification

Caps Head - - Yes
MLP Head Deep Shallow -
Optimizer Adam Adam Adam
LR 0.001 0.001 0.001
β1 0.9 0.9 0.9
β2 0.999 0.999 0.999
Batch Size 256 256 64
Epochs 300 50 300
Objective MSE MSE Cross Entropy
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Table 8: Capsule downstream invariance evaluation on projection head embeddings.

Embedding Dims Classification (Top-1%)
Method Inv. Equi. Representations Embeddings

Supervised - - 87.47

SIE 512 512 82.94

Capsule Projector Naive Evaluation
CapsIE - 16 16 256 78.96 65.83
CapsIE - 32 32 512 80.00 69.12
CapsIE - 64 64 1024 80.26 56.64

Table 9: Evaluation of invariant properties on downstream classification task for baseline SSL
methods. We evaluate both the representations and the intermediate embeddings of the projection
head when different numbers of capsules in the projection head is used. ‘-’ refers to non-compatible
experiments.

Embedding Dims Classification (Top-1%)
Method Inv. Equi. All Inv. Equi.

Encoder Representation
VICReg - - 84.74 - -
VICReg, g kept identical - - 72.81 - -
SimCLR - - 86.73 - -
SimCLR, g kept identical - - 71.21 - -
SimCLR + AugSelf - - 85.11 - -
EquiMod (Original predictor) - - 87.19 - -
EquiMod (SIE predictor) - - 87.19 - -

SIE Garrido et al. (2023) 512 512 82.94 82.08 80.32
SIE * 512 512 82.54 82.11 80.74
CapsIE - 16 16 256 78.96 - -
CapsIE - 32 32 512 80.00 - -
CapsIE - 64 64 1024 80.26 - -

Capsule Projector - 1st Intermediate Embedding
CapsIE - 16 16 256 - 82.96 -
CapsIE - 32 32 512 - 83.49 -
CapsIE - 64 64 1024 - 83.64 -

C FURTHER EXPERIMENTATION

C.1 CAPSULE DOWNSTREAM CLASSIFICATION ON EMBEDDINGS.

Table 8 provides the downstream classification evaluation for the frozen output embeddings of the
CapsNet projection head. The drop in performance is an expected result inline with that demonstrated
by Chen et al. (2020); Bordes et al. (2022). These results signify the importance of the projection
head and specifically its role in decorrelating the embeddings from representations to avoid overfitting
to the pre-training objective. We do note however, that our observed performance drop is inline or
slightly less than that reported in Garrido et al. (2023).

C.2 INVARIANT AND EQUIVARIANT SSL BENCHMARKS

We report below the classification (invariant, Table 9), rotation prediction, and colour prediction
(equivariant, Table 10) performance of baseline self-supervised methods. The below baseline results
are acquired from Garrido et al. (2023), with the exception of those denoted by ‘*’ which corresponds
to our re-implementation.
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Table 10: Evaluation of equivariant properties on downstream rotation prediction (left) and
colour prediction (right) tasks for baseline SSL methods. We evaluate both the representations
and the intermediate embeddings of the projection head when different numbers of capsules in the
projection head is used.

Rotation Prediction (R2) Colour Prediction (R2)
Method All Inv. Equi. All Inv. Equi.

Encoder Representation
VICReg 0.41 - - 0.06 - -
VICReg, g kept identical 0.56 - - 0.25 - -
SimCLR 0.50 - - 0.30 - -
SimCLR, g kept identical 0.54 - - 0.83 - -
SimCLR + AugSelf 0.75 - - 0.12 - -
EquiMod (Original predictor) 0.47 - - 0.21 - -
EquiMod (SIE predictor) 0.60 - - 0.13 - -

SIE Garrido et al. (2023) 0.73 0.23 0.73 0.07 0.05 0.02
SIE * 0.72 0.21 0.71 0.06 0.05 0.03
CapsIE - 16 0.78 - - 0.97 - -
CapsIE - 32 0.75 - - 0.97 - -
CapsIE - 64 0.72 - - 0.97 - -

Projector - 1st Intermediate Embedding
CapsIE - 16 - - 0.78 - - 0.97
CapsIE - 32 - - 0.77 - - 0.97
CapsIE - 64 - - 0.78 - - 0.97
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