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Abstract

Urban warming differs markedly from regional background trends, highlighting
the unique behavior of urban climates and the challenges they present. Accurately
predicting local urban climate necessitates modeling the interactions between urban
surfaces and atmospheric forcing. Although off-the-shelf machine learning (ML)
algorithms offer considerable accuracy for climate prediction, they often function
as black boxes, learning data mappings rather than capturing physical evolution.
As a result, they struggle to capture key land-atmosphere interactions and may pro-
duce physically inconsistent predictions. To address these limitations, we propose
UCformer, a novel multi-task, physics-guided Transformer architecture designed
to emulate nonlinear urban climate processes. UCformer jointly estimates 2-m air
temperature (T ), specific humidity (q), and dew point temperature (t) in urban areas,
while embedding domain and physical priors into its learning structure. Experimen-
tal results demonstrate that incorporating domain and physical knowledge leads to
significant improvements in emulation accuracy and generalizability under future
urban climate scenarios. Further analysis reveals that learning shared correlations
across cities enables the model to capture transferable urban surface–atmosphere
interaction patterns, resulting in improved accuracy in urban climate emulation.
Finally, UCformer shows strong potential to fit real-world data: when fine-tuned
with limited observational data, it achieves competitive performance in estimating
urban heat fluxes compared to a physics-based model. 1

1 Introduction

Occupying only ~3% of the Earth’s land surface [27, 31], urban areas concentrate more than 50%
of the global population [30], emit ~70% of total greenhouse gases [1], and represent the primary
settings where humans experience the impacts of climate change [46]. This disproportion between
the climatic importance of cities and their limited representation in global land cover highlights the
pressing need to understand and predict urban climate. Nevertheless, urban climates remain largely
underrepresented in machine learning (ML)-based climate models [7, 12, 23]. A primary reason is
that urban areas constitute only ~8% of grid cells in coarse-resolution global climate models (0.9°
× 1.25°), leading to their marginalization in most ML-based approaches. Moreover, urban climate
modeling poses unique challenges that are not captured by these approaches.

*This work was done during his internship at Shanghai Artificial Intelligence Laboratory.
1The code and datasets of this work are available at https://github.com/envdes/code_UCformer.
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Urban climate modeling is particularly challenging due to the heterogeneous nature of urban surfaces.
Urban environments feature complex structures such as street canyon morphology, varied surface ther-
mal and radiative properties, and irregular land use configurations [11]. Such diversity significantly
affects local energy exchanges and atmospheric coupling [25]. These complexities remain difficult
to capture with existing ML-based climate models. Despite advances in spatial resolution, most
models rely on purely data-driven mappings and lack representation of underlying physical processes
[41, 44]. These limitations bring two key learning challenges for ML-based urban climate models:
(1) learning is often inefficient due to the complexity and variability of urban environment, and (2)
limited physical interpretability hinders their generalization to different urban climate scenarios.

A physics-guided modeling approach, particularly one that learns physics-based models, appears
to be a compelling solution to these challenges. The physics-based models enable the physically
interpretable representation of urban climate processes [19, 32, 5, 38], which can guide the learning
process in ML approaches. Encoding the interaction between urban surface-atmosphere is crucial
to capture the challenge posed by the complexity of urban environment (Fig. 1). Moreover, these
interactions drive the evolution of surface energy fluxes, which are further modulated within the
urban canyon and collectively underpin the surface energy balance, providing a physical foundation
for predicting urban climate variables.

Figure 1: Urban surface–atmosphere interactions in urban
climate system. Atmospheric forcing is modulated by urban
surface characteristics, and urban climate states are diag-
nosed through the surface energy balance. We encode Xf

and Xs as inputs, model fluxes F as latent representations,
and estimate T , q, and t as outputs.

Here, we propose UCformer, a
physics-guided deep learning archi-
tecture tailored for local urban cli-
mate modeling. UCformer incorpo-
rates physical and climatic knowledge
through two carefully designed com-
ponents: (1) a domain-specific en-
coder that dynamically encodes urban
surface-atmosphere processes, captur-
ing the modulation of atmospheric
forcing by surface features and em-
bedding surface fluxes as latent vari-
ables; (2) a physics-guided decoder
that embeds inductive biases derived
from physical laws, allowing the learn-
ing process to capture variable inter-
dependence as an emergent property
rather than as isolated prediction tar-
gets. Extensive experiments show that
UCformer achieves superior perfor-
mance in multi-task urban climate es-
timation, with a 12.7% relative im-
provement in urban temperature pre-
diction accuracy and a 13.4% gain in
generalization to future urban climate dynamics compared to the best baseline. Furthermore, learning
a neural model based on simulated data cuts city-scale climate simulation (55 years) time from
~12 hours to ~17 seconds, making large-scale scenario analysis practical and efficient (discussed in
Appendix A.1). Additionally, despite being trained on physics-based simulations, UCformer shows
strong potential to fit real-world data. While our solution is motivated by urban climate modeling, the
underlying design principles are grounded in general surface-atmosphere interaction mechanisms,
which can be shared across other Earth science domains.

We summarize our contributions and findings as follows:

• We introduce a comprehensive ML-ready dataset tailored for urban climate modeling, filling
a critical gap in existing climate benchmarks. The dataset captures detailed urban surface
characteristics, atmospheric forcing, and physics-based outputs, and is designed to facilitate
ML research on the unique challenges posed by urban climate systems.

• We propose a physics-guided modeling approach that integrates domain and physical knowl-
edge into the neural network to represent urban surface-atmospheric processes, enabling
excellent accuracy of local urban climate estimations.
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• With its domain-specific encoder and physics-guided decoder, our model effectively gen-
eralizes future urban climate dynamics, excels at multi-task estimations, and extends well
to sparse real-world data. This physics-guided design presents a transferable concept
for broader Earth system sciences, demonstrating strong potential for tackling complex
multi-task learning and modeling sparse data.

2 Related work

ML for urban climate modeling. Urban climate modeling simulates interactions between atmo-
spheric forcing and urban surfaces characterized by long-term averages and distributions. Multi-
model ensemble climate projections that incorporate urban surface energy processes are crucial for
climate-informed urban development [22]. However, such projections are universally unavailable
and challenging to implement [22]. Zhao et al. [46] first fills this gap by developing a reduced-order
regression model to generate local urban climate projections under different scenarios, facilitating the
comprehension of the impacts of climate change on local urban climates. Zheng et al. [47] expands
the work of Zhao et al. [46] by introducing non-linear regression models to map the local response of
urban climate to atmospheric forcing. Meyer et al. [22] develops an urban neural network to estimate
radiation and fluxes reflected to the atmosphere following the effects of urban parameterization, en-
abling it to be coupled to numerical models and thereby reducing computational demands. However,
these models primarily focus on learning data mappings, while often overlooking the underlying
physical evolution, such as the influence of urban surface characteristics on surface energy processes
(discussed in Appendix A.2), as well as the physical relationships between urban climate variables.
Moreover, the generalizability of these methods remains insufficiently explored, particularly in the
context of urban climate dynamics over long time spans.

Physics-guided ML. Concerns regarding the generalizability and interpretability of ML have led to
the development of new machine learning strategies in some scientific domains, known as physics-
guided ML or physics-informed ML [28, 41, 39]. For instance, Read et al. [29] introduced a physics-
guided loss (a simplified energy budget formulation) that penalizes ML predictions violating energy
conservation, enabling their long short-term memory model to better generalize to unseen scenarios.
Some studies, however, have shown that physical loss function does not consistently improve model
generalization [44, 6]. In contrast, physics-guided architecture embeds physical meaning into neural
network neurons or incorporates domain-specific knowledge into model structures to achieve task-
specific designs [9, 3]. Drawing on the relationship between predictands, Zanetta et al. [44] changed
the neural network architecture by adding an equation layer to derive two additional predictands
which ensure the predictands obey the physical laws and thus enhance the model interpretability.
Such strategies enhance model interpretability and generalizability, and hold the potential to advance
modeling of the interactions between urban environments and atmospheric processes. Building on
the inspiration provided by these methods, our work explores a physics-guided ML model tailored to
urban climates, refining the understanding of urban climate projection.

3 Methods

3.1 Problem formulation

The urban climate modeling problem can be summarized as a mapping from a set of atmospheric
forcing Xf to a set of urban climate predictands Î given the local urban surfaces characteristics (Xs):

Fθ(Î) = P (Xf |Xs), (1)

where θ represents the parameters of the model and the atmospheric forcing Xf ∈ RT×C×N consists
C variates modeled at N different cities. T denotes an interdependency time sequence, where the
simulation of urban climate is influenced by previous timesteps. Currently, this interdependency is
omitted at the daily scale [20, 46]. To fill the gap in fine-grained temporal urban climate projections,
this work extends the timestep to every 3 hour, making it essential to capture dependencies between
timesteps. For more details, see Appendix A.3.
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3.2 UCformer overview

Drawing inspiration from the urban surface-atmosphere interaction in some physics-based models
[21, 25], we strategically design this variant Transformer for urban climate emulation, named
UCformer. As shown in Fig. 2, instead of stacking and embedding all features together, we embed
atmospheric forcings Xf and urban surface parameters Xs into two independent embedding blocks
(each forming an independent sequence), respectively. This embedding strategy accounts for the
inherent differences between the two types of data, while enabling seamless integration with the
encoder component. The encoder of our model functions as urban climate process adaptive operators
described in Sec. 3.3, which consists of two blocks. The first encoder block learns the modulation of
atmospheric forcing by urban surfaces, reflecting their role in shaping urban climate dynamics. The
subsequent blocks focus on learning and simulating the flux iterative calculation processes within the
urban canyon. Urban 2-m air temperature (T ), specific humidity (q), and dew point temperature (t)
are subsequently diagnosed via the physics-guided decoder, which embeds inductive biases derived
from governing physical laws that characterize the intrinsic relationships among the target variables.

Figure 2: UCformer architecture. A: feature embedding strategy. Atmospheric forcing and urban
surface features are separately embedded as query, key, and value matrices. B: The structure of the
domain-specific encoder, which contains the urban surface-atmosphere interaction block and flux
iteration block. C: The structure of the physics-guided decoder. This module enables the model to
diagnose target variables by aggregating information from its physically coupled counterparts. D:
Predictands are processed by three separate fully connected layers. A component-level mapping
bridging the physics-based model and machine learning modules is provided in Appendix A.4.

3.3 Domain-specific encoder with urban surface-atmosphere interaction operators

The atmospheric forcing Xf is modulated by the urban surface characteristics Xs at the sub-grid
scale in physics-based models. Specifically, the interaction between Xf and Xs can be broadly
categorized as follows: firstly, the individual urban surfaces absorb solar and longwave radiation, and
there is radiatively interaction between these surfaces. Fluxes from each urban surface interact with
each other in the urban canyon (Fig. 1). Then, the temperature (T ), specific humidity (q), dew point
temperature (t), and other variables output to the atmosphere are predicted. Consequently, we can
characterize the above process by the following simplified equation:

Î = f(H,E,G), (2)

sum(H,E,G) = S⃗ − L⃗, (3)

S⃗ =
∑
Λ

[
WroofS⃗roof,Λ + (1−Wroof)S⃗uc,Λ

]
,where S⃗roof,uc,Λ = ϕ(Xf , Xs), (4)
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L⃗ = Wroof(Lroof ↑ −Lf ↓) + (1−Wroof)(Luc ↑ −Lf ↓),where Lroof,uc ↑= ϕ(Xf , Xs). (5)

Eq. 2 defines the prediction of a set of urban climate variables (Î), based on the sensible flux (H),
latent flux (E), and ground flux (G) in the urban canyon [25]. Eq. 3 denotes that the sum of fluxes
must be balanced by the net solar radiation (S⃗) and net longwave radiation (L⃗) absorbed by the urban
canyon [25]. Eq. 4 and Eq. 5 describe the numerical solutions of radiation in the urban canyon [25],
where the net solar radiation including visible (Λ) direct and diffusion radiation of roof (S⃗roof,Λ) and
other surfaces (S⃗uc,Λ).

Features Xf and Xs are important to derive the radiation and fluxes required in the urban canyon
energy budget balance. We model the processes (Eq. 4 and Eq. 5) through a cross-attention operator
to represent the interaction between Xf including solar radiation (Sf ↓) and longwave radiation
(Lf ↓), and Xs, which encompasses properties such as emissivity and albedo, formulated as:

F̂ = softmax(
QfK

T
s√

dk
)Vs, (6)

where Qf is derived from Xf , while the key (Ks) and value (Vs ) matrices are obtained from Xs. This
assignment reflects the physical principle that atmospheric forcing, such as radiation and wind fields,
dynamically responds to heterogeneous urban surfaces, which modulate energy and fluxes. Then the
output (F̂ ) of the cross-attention operator goes through serval self-attention operators representing
the iterative fluxes interactions (Eq. 2 and Eq. 3):

ẑ = softmax(
QFK

T
F√

dk
)VF , (7)

where ẑ ∈ RT×D×N is regarded as the latent representative of urban climate predictands with
dimensionality D.

3.4 Physics-guided decoder incorporating soft physical constraints

The physics-guided decoder enables the model to infer each target variable not in isolation, but by
leveraging the latent representations of its physically coupled counterparts, imposing a soft form of
physical constraint. The variables of interest in this work (T , q, t) are physically coupled through a
set of physical equations, including the empirical Magnus–Tetens formula:

t =
b · γ(T,RH)

a− γ(T,RH)
,where γ(T,RH) =

a · T
b+ T

+ ln

(
RH

100

)
, (8)

RH =
q

qs
· 100 =

q · (P − 0.378es)

0.622es
· 100,where es = c · exp

(
a · T
b+ T

)
, (9)

where a, b and c are empirical coefficients, and RH represents the relative humidity. Eq. 9 is derived
from the ideal gas law for dry air and water vapor. The saturation water vapor pressure (es) in
Eq. 9 follows the identical structure as the August-Roche-Magnus equation [44]. Thus, the physical
constraint among T , q and t can be described by an implicit equation F (T, q, t, P ) = 0. However,
the absence of pressure (P ) prevents explicit incorporation of the physical equation into the model
architecture or loss function. We propose a more flexible, representation-level approach to encode
physical relationships. Rather than treating each variable as an independent prediction target, such
as modeling t̂ = Wzt + b. Our approach encourages the model to learn physical dependencies as
emergent properties. Specifically, we reformulate the prediction of t as:

t̂ = Wg(zt, zq, zT ) + b, (10)

where g(zt, zq, zT ) denotes a latent functional mapping that captures the interaction among the
variables through a cross-attention mechanism. This enables the model to adaptively aggregate
information from the latent representations of T and q when predicting t, formulated as:

g(zt, zq, zT ) =

n∑
i=1

α(Qzt ,Kconcat(zq,zT ))Vconcat(zq,zT ). (11)

According to Eq. 10 and Eq. 11, the physics-guided decoder can be described as:

ŷi = WAiVjk + b, (12)

where Ai is the cross-attention score of variates j and k with respect to target variate i.
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4 Experiments

To evaluate our models, we conduct experiments on both simulation and observational datasets and
try to answer the following questions:

• How does the model perform on the local urban climate emulation task and generalize
beyond training data, particularly in emulating future climate dynamics and transferring the
model to previous unseen cities?

• As a physics-guided ML model, what are the respective roles of the domain-specific encoder
and the physics-guided decoder in capturing urban climate processes?

• Does learning shared representations of urban surface–atmosphere interactions across cities
lead to better performance than city-specific or locally focused models?

• What is the potential of the physics-guided ML model, developed using simulation data, to
extend to real-world settings?

4.1 Dataset and setup

Simulation data. The simulation datasets are derived from the physics-based Community Land
Model Urban (CLMU) [25], offering city-scale urban climate simulations for six cities (see Ap-
pendix B.1). These datasets explicitly incorporate urban surface-atmosphere processes and comprise
comprehensive atmospheric forcings and detailed urban surface characteristics. The training set
consists of data spanning from 2020 to 2044, with 8 time steps per day, totaling 1,095,000 data points.
The validation and test sets comprise data from 2045–2049 and 2050–2055, each containing 219,000
data points. We further use the data from 2070 to 2074 to assess the generalizability of our model
(The discrepancy in data distribution is detailed in Appendix A.5). Detailed descriptions of the dataset
implementation and the variables used for model development are provided in Appendix B.1 and
B.2.

Observational data. The observational data are sourced from Lipson et al. [19], including observed
atmospheric forcing and features surrounding the site. In this work, atmospheric forcing and heat flux
data from the “UK-King’s College” site in London were used to fine-tune UCformer, investigating
its potential to transition from physics-based simulation estimates to real-world data emulations.
Specifically, the dataset of UK-King’s College contains observational data from 2012-04-04 00:00:00
to 2013-12-31 23:30:00 with a time step of 30 minutes. After the clean process (drop samples with
“NaN” value for target labels), this dataset processes 19,725 data points.

Training objectives. Deterministic urban climate emulation models can be trained by minimizing
the MSE for rolled-out estimates. The model in this work is trained to minimize the aggregated MSE
loss for multi-task estimates: L = LT + Lq + Lt. The objective is to optimize the model parameters
θ by minimizing the total loss θ∗ = argminθ L. The model is optimized using the Adam optimizer:
θ ← θ − η∇θL, and the learning rate (η) is adjusted dynamically using a scheduler: η ← 0.9η.

Implementation details. We implemented the model using PyTorch and finalized its configuration
via hyperparameter tuning with Optuna [2] in 35 GPU hours (NVIDIA 4090). The model was trained
using the Adam optimizer and Gaussian Error Linear Unit (GELU) activation function, with a batch
size of 64, a learning rate set to 1e-5, a training epoch of 50, and a dropout rate of 0.1. Appendix B.3
lists the detailed configuration of models.

4.2 Baselines

Since there are no widely adopted models specifically designed for urban climate emulation, we select
baselines based on prior work related to urban climate modeling [47, 46] and urban representation
[22]. Although the task investigated in this work does not fall strictly under the category of time series
forecasting problem where future values are predicted from labeled historical sequences [36, 17],
our task involves input variables with inherent temporal structures, particularly atmospheric forcing.
In this context, time-series feature representation and modeling become a shared concern between
our task and standard forecasting problems [14, 48, 40]. Consequently, representative time series
forecasting models are included in the baseline comparisons to enable a more comprehensive assess-
ment of the model’s ability to leverage temporal information embedded in the input. Furthermore,
physics-guided ML models are excluded from the baseline set due to the absence of methods tailored
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to urban climate and the highly data- and task-specific nature of existing approaches, which typically
rely on embedding explicit physical or partial differential equations [29, 44] that are not readily
applicable in our setting.

Overall, we compare UCformer against several representative baselines: a Multi-layer Perceptron
following the top-performing architecture in the ClimSim benchmark [43] (MLP_CSB), an automated
machine learning method (AutoML), a vanilla Transformer, and two time-series forecasting models
adapted to our framework—Informer_modified [48] and LSTNet_modified [14]. Notably, AutoML
estimators are constructed in a task-specific manner, requiring separate training for each prediction
target.

4.3 Metrics

Two metrics are screened to evaluate the overall performance of models: the root mean squared error
(RMSE) and the Mean Emulation Skill Score (MESS) [44]. Here we defined MESS as:

MESS = 1− MAEem

MAEref
, (13)

where MAEem represents the mean absolute error (MAE) of urban climate emulators, while MAEref
refers to the MAE between the simulated urban climate and its corresponding atmospheric forcing.
The MESS presented here aims to denote the emulation skill of different models as MAEref can be
regarded as a lower-bound expectation of an emulator. We might expect that our models will have a
value of MESS between 0 and 1 (higher values are better). It also allows an emulator to score a much
lower value than 0 if its emulation is much worse than simply using its atmospheric counterpart. For
multi-task evaluation, we report the aggregated MESS (MESSagg) across urban air temperature (T ),
specific humidity (q) and dew point temperature (t). Statistical significance is assessed via the paired
Wilcoxon signed-rank test, as detailed in Appendix A.6.

4.4 Main results

Skillful urban climate multi-task emulations by UCformer. We report the performance of models
on the dataset of 2050-2054 in Tab. 1. UCformer consistently outperforms other models in terms
of RMSE and MESS for both single-variable and integrated multi-task emulations. In addition,
MLP_CSB ranks second overall, achieving a multi-task emulation score (MESS) of 1.9088, and
outperforming both modified sequence forecasting models, LSTNet_modified and Informer_modified.
This result indicates that simply modifying the data interface of time-series forecasting models to
fit our task may not resolve the underlying mismatch in problem formulation. Such adaptation
may impose assumptions about temporal dependencies that are not aligned with the objectives of
urban climate emulation, and risk mischaracterizing the nature of the task. The performance gap
may also be exacerbated by the extent to which these models are tailored for sequence forecasting.
For example, although Informer builds on a Transformer-based architecture with higher model
complexity and parameter count than LSTNet (which combines CNN and RNN modules), the lighter
LSTNet_modified achieves better results in our task.

Table 1: Performance metrics for multivariate estimation. Bold values indicate the best performance.

2050–2054 T q t
method MESSagg↑ RMSE(K)↓ MESS↑ RMSE(g/kg)↓ MESS↑ RMSE(K)↓ MESS↑

MLP_CSB 1.9088 0.3846 0.8128 0.2078 0.5524 0.1945 0.5436
AutoML 1.8584 0.3928 0.8088 0.2183 0.5216 0.1993 0.5280

Transformer 1.7173 0.3737 0.8136 0.2444 0.4631 0.2454 0.4406
LSTNet_modified 1.9065 0.3528 0.8286 0.2238 0.5075 0.1910 0.5704
Informer_modified 1.7700 0.3567 0.8268 0.2325 0.4775 0.2003 0.4657

UCformer 2.0468 0.3264 0.8405 0.1851 0.6157 0.1777 0.5906

Generalizing to future urban climate dynamics. The generalizability of ML models is a widely
concerned issue, and physics-guided models have been demonstrated to have physically reliable
prediction results while being expected to have better generalization [39]. We explored the tem-
poral generalizability of our model using the dataset of 2070-2074 (out-of-sample) and report the
performance in Tab. 2. The evaluation results on the testing dataset (Tab. 1) and the generalization
dataset (Tab. 2) highlight the strong temporal generalization ability of the UCformer. UCformer
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consistently achieves the lowest RMSE and highest MESS across all three variables in both datasets,
outperforming all other models. Notably, in the generalization dataset (2070-2074), the RMSE
values of UCformer for all three variables are lower than most of the other models on the testing
dataset (2050-2054) for the corresponding variables. Moreover, the probability density function
(PDF) comparison in 2070-2074 is presented in Appendix A.7.

Overall, UCformer consistently demonstrates a strong skill to approximate all predictands distribu-
tions across a time scale. In contrast, other baselines deliver notable deviations. On this basis, our
results highlight the exceptional ability of UCformer to generalize across time scales, showcasing its
robustness and adaptability to future scenarios.

Table 2: Temporal generalization performance for multi-variate estimations for future scenarios.

2070–2074 T q t
method MESSagg↑ RMSE(K)↓ MESS↑ RMSE(g/kg)↓ MESS↑ RMSE(K)↓ MESS↑

MLP_CSB 1.8809 0.4070 0.8031 0.2251 0.5394 0.1994 0.5384
AutoML 1.7995 0.4275 0.7941 0.2517 0.4947 0.2118 0.5108

Transformer 1.6746 0.3910 0.8032 0.2765 0.4348 0.2414 0.4366
LSTNet_modified 1.8944 0.3703 0.8211 0.2356 0.5450 0.2023 0.5283
Informer_modified 1.6585 0.3877 0.7803 0.2194 0.4202 0.2007 0.4586

UCformer 1.9451 0.3385 0.8358 0.2121 0.5671 0.1960 0.5422

Transferability to unseen cities. Spatial generalization remains a central concern in the climate
science community, given its importance for real-world applicability but also its inherent difficulty
for most machine learning models. In this context, we conduct additional “leave-one-city-out”
experiments to evaluate the spatial generalization capabilities of UCformer, with results summarized
in Tab. 3.

The results indicate that UCformer demonstrates a notable degree of spatial generalization, although
its performance exhibits variation across cities, potentially driven by differences in urban morphology
and local climate conditions. For example, the temperature (T ) estimation error increases from
approximately 0.02 K in Singapore to 0.07 K in Rome, while the RMSE for dew point temperature
(t) rises from 0.01 K in Rome to 0.03 K in London. These findings suggest that model spatial
generalization may be sensitive to specific urban contexts or climatic conditions, highlighting the
need for further investigation into the underlying factors affecting spatial generalization.

Table 3: Performance metrics of UCformer in “leave-one-city-out” experiments (values in parentheses
denote results under the original setting).

2050–2054 T q t
Held-out city MESSagg↑ RMSE(K)↓ MESS↑ RMSE(g/kg)↓ MESS↑ RMSE(K)↓ MESS↑

London 1.6629
(1.9007)

0.2990
(0.2419)

0.8127
(0.8541)

0.1344
(0.1117)

0.4357
(0.5171)

0.1977
(0.1655)

0.4144
(0.5295)

New York City 1.6989
(1.8901)

0.4167
(0.3515)

0.7699
(0.8030)

0.1904
(0.1645)

0.5063
(0.5741)

0.2507
(0.2212)

0.4225
(0.5130)

Shanghai 1.9369
(2.0024)

0.4806
(0.4437)

0.8349
(0.8486)

0.2886
(0.2611)

0.5555
(0.5986)

0.2529
(0.2426)

0.5465
(0.5552)

Singapore 2.2840
(2.4586)

0.2668
(0.2412)

0.8581
(0.8727)

0.2798
(0.2130)

0.7060
(0.7975)

0.1279
(0.1036)

0.7198
(0.7884)

Sao Paulo 1.8953
(2.1241)

0.3965
(0.3561)

0.8179
(0.8363)

0.2587
(0.2074)

0.5326
(0.6618)

0.1649
(0.1435)

0.5448
(0.6260)

Rome 1.8163
(1.9048)

0.3972
(0.3242)

0.7843
(0.8282)

0.1571
(0.1477)

0.5197
(0.5450)

0.1975
(0.1896)

0.5123
(0.5316)

4.5 Ablation studies

Domain and physics-guided neural operators are crucial for urban climate estimations. To
evaluate the contribution of the two proposed components in urban climate emulation, we conducted
ablation by replacing the domain-specific encoder and the physics-guided decoder with a vanilla
encoder and decoder, respectively. Tab. 4 highlights the impact of these neural operators and illustrates
how UCformer outperforms the vanilla Transformer in multi-task learning. Instead of merely learning
a direct mapping from Xf and Xs to target variables, the domain-specific encoder (DE) models
the evolution of urban climate physical processes. This approach enhances the representation of
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urban surface–atmosphere interaction and facilitates local urban climate emulations. Additionally,
the physics-guided decoder (PD) further boosts emulation accuracy.

Table 4: Ablation study regarding the effectiveness of the domain-specific encoder (DE) and physic-
guided decoder (PD).

2050-2054 Module T q t
method DE PD MESSagg↑ RMSE (K)↓ MESS↑ RMSE (g/kg)↓ MESS↑ RMSE (K)↓ MESS↑

Transformer ✗ ✗ 1.7173 0.3737 0.8136 0.2444 0.4631 0.2454 0.4406
✓ ✗ 1.9673 0.3389 0.8366 0.2022 0.5713 0.1879 0.5594

UCformer ✗ ✓ 1.9013 0.3176 0.8417 0.2181 0.5441 0.1964 0.5156
✓ ✓ 2.0468 0.3264 0.8405 0.1851 0.6157 0.1777 0.5906

Learning shared representations of urban climate processes improves emulation performance.
Urban climates exhibit distinct patterns tied to their geographic context, but may share learnable
regularities across cities. UCformer, our proposed model, is by default trained using a multi-city
strategy to capture shared surface–atmosphere interaction patterns. To assess the contribution of this
shared correlation learning, we introduced a single-city training setting (denoted UCformer_single),
where a separate model is trained independently for each city using only its local data. This ablation
isolates the effect of inter-city representation sharing on emulation performance.

As shown in Tab. 5, training across multiple cities significantly improves overall urban climate
modeling performance. Per-city results are provided in the Appendix A.8, where five cities show
notable gains. However, performance declines in Singapore suggest that city-specific training may
be preferable for cities with highly uniform climatic conditions. In particular, Singapore exhibits
significantly smaller temperature fluctuations throughout the year compared to the other cities, which
may limit the benefits of shared representation learning. These results indicate that while shared
modeling is generally effective, its utility may vary depending on the climatic distinctiveness of cities.

Table 5: Ablation study on the impact of shared correlation learning in urban climate emulation. The
results are first computed on each city individually and then averaged.

2050-2054 Number of Cities T q t

method N MESSagg↑ RMSE (K)↓ MESS↑ RMSE (g/kg)↓ MESS↑ RMSE (K)↓ MESS↑
UCformer_single N = 1 1.6126 0.3941 0.8020 0.2294 0.4368 0.2391 0.3738

UCformer N = 6 2.0468 0.3264 0.8405 0.1851 0.6157 0.1777 0.5906

4.6 The potential from simulation to real world

To address the challenge posed by the scarcity of climatic observations in urban areas, we ex-
plored the potential of UCformer to fit real-world data. Since the flux tower observations do
not include temperature, humidity, or dew point data, we fine-tuned UCformer on partial real-
world data to enable prediction of new predictands (sensible heat flux Qh and latent heat flux
Qle) (detailed in Appendix B.4). In Tab. 6, we investigated the importance of data scarcity on
UCformer fine-tuning by providing proportional data in chronological order (with the remain-
ing data serving as the testing set). Note that we used the metrics MAE and correlation coeffi-
cient (r) for evaluation in this section to align with the reference [19]. Overall, the performance
of UCformer in emulating Qle and Qh improves as the amount of fine-tuning data increases.

Table 6: The importance of data scarcity on model perfor-
mance for Qle and Qh estimations.

Data percent Qle Qh

MAE (W/m2)↓ r↑ MAE (W/m2)↓ r↑
20% 15.2 0.4135 24.9 0.8726
30% 13.7 0.4268 30.2 0.8396
50% 13.7 0.4776 27.1 0.8979

We conducted a comparative experi-
ment to evaluate how well UCformer
can fit real-world data under limited
observational conditions, comparing
it against the physics-based model
CLMU and a baseline trained solely
on observations. First, UCformer was
fine-tuned using 20% of the avail-
able observational data to estimate
Qle and Qh. Using the same subset,
we trained UCformer_ob, a baseline model with the same architecture and hyperparameters but
without any simulation-based training. Additionally, CLMU was run over the test period, driven by
real-world atmospheric forcing, to provide a physics-based reference.
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Fig. 3 presents the results of the three experiments. UCformer (Fig. 3 (a), (d)) significantly outper-
forms the physics-based model CLMU (Fig. 3 (b), (e)) in estimating Qle and Qh, achieving higher r
and lower MAE. Furthermore, the observed-data-only model UCformer_ob (Fig. 3 (c), (f)) performs
noticeably worse than UCformer. However, it is observed that neither physics-based nor data-driven
models are capable of appropriately estimating negative values of urban heat flux. Despite these
challenges, UCformer has demonstrated strong potential to extend to real-world data in addressing
the challenge of observational data scarcity.

Figure 3: Comparison of latent Qle and sensible Qh heat flux estimations from UCformer (left
column), CLMU (middle column), and UCformer_ob (right column). UCformer fine-tuned with
20% observed data; CLMU driven by real-world forcing; UCformer_ob trained only on limited
observations. The rainbow color represents the kernel density.

5 Conclusion

We introduce UCformer, a novel approach that integrates urban climatic and physical knowledge to
model the interaction between atmospheric forcing and urban surfaces in urban climate systems. Our
model outperforms relevant baselines, achieving lower RMSE and demonstrating superior emulation
skills, while also exhibiting enhanced generalization to future urban climate dynamics. For the
scarcity of real-world data problems, our model showcases strong potential for extension to real-
world settings, outperforming a numerical model and a baseline model trained only on observational
data in this regard. This work bridges ML techniques with the pressing needs of urban climatology,
but it is constrained by limited data availability. Long-term atmospheric forcing and simulated urban
climate data are crucial yet scarce, hindering the evaluation of UCformer under diverse climate change
scenarios. Additionally, although the models’ temporal and spatial generalization has been evaluated,
further work is needed to assess their performance across different spatial scales. This represents
another limitation of the present study. While ML continues to show promise in climate projections,
local urban climate modeling remains critically understudied. We hope this work stimulates the ML
community to pursue novel ML approaches tailored to the unique challenges of heterogeneous urban
environments.
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the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the experimental setup and details in Section 4.1 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show the details of statistical significance for model results in Ap-
pendix A.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
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8. Experiments Compute Resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We present the computational resources of our experiments in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
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experimental runs as well as estimate the total compute.
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We explain in Appendix C that our research is ethical.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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deviation from the Code of Ethics.
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Answer: [Yes]
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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Answer: [Yes]
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work is not related to Institutional Review Board (IRB) Approvals or
Equivalent for Research with Human Subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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• We recognize that the procedures for this may vary significantly between institutions
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• For initial submissions, do not include any information that would break anonymity (if
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20



Appendix

A Addtional results and figures

A.1 Model efficiency

In addition to UCformer, this work evaluated two representative sequence-to-sequence models, that
is, LSTNet and Informer, which can be adapted to urban climate estimation.

All models were tested with a batch size of 128 on an NVIDIA 5090 GPU. The inference time for
UCformer on our test set (219,000 data points) is approximately 1.4 seconds, with a model size of
about 9.35 million parameters. In comparison, Informer requires about 3.1 seconds for inference and
has 11.38 million parameters, while LSTNet is more lightweight with 111.13 thousand parameters
and an inference time of about 2.3 seconds. The inference efficiency (covering 5-year simulations for
6 cities) of the current model meets the requirements for operational urban climate applications.

These results indicate that, compared to Informer (a transformer-based model), our model has fewer
parameters and a shorter inference time. Relative to a smaller LSTNet, which utilizes a CNN+RNN
architecture, UCformer also demonstrates an advantage in inference efficiency.

A.2 Impact of urban representation on local urban climate emulation

Based on the work of Zheng et al. [47], Zhao et al. [46], we exclude urban surface features from
the mapping of atmospheric forcing to urban climate to show the impact of urban representation on
local urban climate emulations. The results in Fig. 4 are based on the vanilla Transformer, one of
the benchmark models used in this work. In this comparison experiment, we maintain consistent
hyperparameters, training data, and test data, except for the excluded urban surface features.

Figure 4: Ablation study regarding the urban representation in urban climate modeling. (a) to (f)
denote the emulations of temperature for six cities. Orange dots indicate estimation results with the
urban representation included, and blue dots indicate estimation results in the absence of the urban
representation.

A.3 Impact of the interdependency of timesteps on a fine-grained temporal scale

We use the same dataset as well as hyperparameters to reveal the impact of time series on urban
climate emulations. The results based on our model are presented in Fig. 5, when interdependencies
between time steps are ignored on fine-grained time scales, the emulated representation of the local
urban climate is compromised.
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Figure 5: Ablation study regarding the interdependency of timesteps in urban climate modeling. (a)
to (f) denote the emulations of temperature for six cities. Orange points indicate that interrelated time
series are explicitly characterized in the input feature matrix, while blue points represent time series
that are not interrelated within the input feature matrix.

A.4 The correspondence between the physics-based model elements and the ML modules

Table 7 clarifies the mapping between the model components and the elements of the inference
scheme.

Table 7: Mapping between physics-based components and machine learning modules.

Model Component Role in Inference
Scheme

Input(s) Output(s)

forcing embedding
layer

encodes atmospheric
forcing characteristics

atmospheric forcing features forcing tokens

urban surface embed-
ding layer

encodes urban surface
feature characteristics

urban surface features urban surface to-
kens

urban surface-
atmosphere interac-
tion block

learns interactions be-
tween urban surfaces and
atmosphere

forcing query tokens, urban surface
key tokens, urban surface value to-
kens

interaction-
encoded tokens

surface fluxes interac-
tion block

learns urban surface-
surface radiatively
interaction

updated interaction-encoded tokens intermediate fea-
tures tokens

decoder branch 1 T (temperature) estima-
tion

intermediate T query tokens, con-
catenated q and t tokens (as keys and
values)

esitmated T

decoder branch 2 q (specific humidity) esti-
mation

intermediate q query tokens, con-
catenated T and t tokens (as keys
and values)

esitmated q

decoder branch 3 t (dew point temperature)
estimation

intermediate t query tokens, concate-
nated T and q tokens (as keys and
values)

esitmated t

A.5 The discrepancy of data distribution

Fig. 6 shows the climatic shift in urban atmospheric conditions over a long-term climate change (from
2044 to 2074) under the SSP3-7.0 scenario, resulting in distributional differences across datasets. The
first column (from left) represents atmospheric temperature, the second column shows downwelling
shortwave radiation, and the third column shows downwelling longwave radiation.
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Figure 6: Differences in the data distribution of key atmospheric forcing variables (Xf ) across
datasets. The first column (from left) represents atmospheric temperature, the second column shows
downwelling shortwave radiation, and the third column shows downwelling longwave radiation.

A.6 Statistical significance metric

The paired Wilcoxon signed-rank test is a non-parametric statistical method [35] and was conducted
to evaluate the significance of differences between model estimations. Tab. 8 shows the details of
Paired Wilcoxon signed-rank tests for model results.

Table 8: The Results of Paired Wilcoxon signed-rank tests. For all models, except for the ablation
study (paired test with Transformer results), the results were paired and tested against those of
UCformer.

T q t
In-distribution

AutoML ** **
Transformer ** ** **
MLP_CSB ** ** **

Generalization (Out of Sample)
AutoML ** ** **
Transformer ** ** **
MLP_CSB ** ** **

Ablation studies
UCformer(DE) ** ** **
UCformer(PD) ** ** **
UCformer_single ** ** **
UCformer(RA) ** ** **
UCformer(TH) ** ** **
UCformer(RA&TH) ** ** **

** represents p <0.05 (95% confidence level), * indicates p <0.10 (90% confidence level), and
non-marked values show no significant difference at the 90% confidence level.

In the modeling of interactions between urban surfaces and the atmosphere, urban surface parameters
are often difficult to acquire and update. Therefore, in this section, we quantified the impact of
different urban surface parameters on UCformer emulation performance to explore the importance of
these parameters in data-driven urban climate emulation. For this purpose, three different feature
datasets, each excluding specific urban surface parameters, were provided to re-train UCformer.
In particular, urban surface parameters leveraged in CLMU can be divided into three subsets, the
morphological parameters (height-to-width ratio, the fraction of roof, impervious road, etc.), radiative
parameters (albedo and emissivity of roof, wall and road) and thermal parameters (heat capacity and
thermal conductivity of roof, wall and road) [11]. As such, as shown in Tab. 9, three datasets and
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their corresponding models were developed to evaluate the impact of the radiative parameters (RA),
the thermal parameters (TH), and the combination of the two parameters, respectively, on UCformer
emulation skill.

An insight can be gained in Tab. 9 that T estimation is less affected by the lack of urban radiative
parameters but more affected by the absence of thermal parameters, which aligns with the sensitivity
study based on physics-based simulations [24]. Overall, the importance of urban surface parameters
varies by variable, underscoring the need to tailor urban surface feature selection to improve the
emulation accuracy of multiple climate variables.

Table 9: Ablation study regarding the impact of different urban surface sets (Xs) on urban climate
emulations. RA and TH refer to radiative and thermal parameters, respectively.

2050-2054 Xs T q t
method RA TH MESSagg↑ RMSE (K)↓ MESS↑ RMSE (kg/kg)↓ MESS↑ RMSE (K)↓ MESS↑

✗ ✗ 1.8668 0.3495 0.8252 0.0002 0.5428 0.2046 0.4988
UCformer ✗ ✓ 1.9473 0.3211 0.8462 0.0002 0.5505 0.1852 0.5507

✓ ✗ 1.9236 0.3463 0.8276 0.0002 0.5389 0.1891 0.5571
✓ ✓ 2.0468 0.3264 0.8405 0.0002 0.6157 0.1777 0.5906

A.7 Generalize performance

The PDF of the models for the three predictands in 2070-2074 are shown in Fig. 7. UCformer
demonstrates a strong generalization ability to approximate all predictands distributions across a time
scale. However, AutoML, the Transformer model, and MLR consistently deliver notable deviations
of three predictands.

Figure 7: Probability distributions of urban 2-m air temperature (a), specific humidity (b), and dew
point temperature (c) for the years 2070-2074. GroudTruth denotes the simulation results of CLMU.
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A.8 Per-city results of shared correlation learning in urban climate emulation

Tab. 10 presents the per-city results under two training settings: shared multi-city training and
independent city-specific training. The results highlight consistent performance gains from shared
modeling in most cities, with the exception of Singapore.

Table 10: Per-city RMSE results. Values marked with (◦) correspond to city-specific modeling.

2050–2054 T q t
method RMSE(K) RMSE(K)(◦) RMSE(g/kg) RMSE(g/kg)(◦) RMSE(K) RMSE(K)(◦)
London 0.2419 0.2801 0.1117 0.1558 0.1655 0.2198

New York city 0.3515 0.4990 0.1645 0.2400 0.2212 0.3253
Shanghai 0.4437 0.5123 0.2611 0.3968 0.2426 0.3119
Singapore 0.2412 0.1733 0.2130 0.1860 0.1036 0.0872
Sao Paulo 0.3561 0.4427 0.2074 0.2670 0.1435 0.2018

Rome 0.3242 0.4573 0.1477 0.2211 0.1896 0.2888

B Implementation details

B.1 Simulation implementation and urban canyon scheme

Community Land Model (CLM) is an important component of the Community Earth System Model
(CESM) [10]. The urban representation/parameterization of CLM (CLMU) was developed by Oleson
et al. [26] to simulate the urban energy and flux calculation processes. CLMU is driven by the
atmospheric forcing data provided by the atmosphere component of CESM or observational data and
is a valuable tool for urban climate study [46, 45, 16, 33, 42, 34]. CLMU adopts an urban canyon
scheme to achieve urban surface-atmospheric processes [26]. The urban canyon scheme of CLMU
comprises the roof, sunlit and shaded walls, impervious and pervious roads. The parameters of
these urban surfaces include morphological characteristics (e.g., height-to-width ratio, roof fraction,
pervious road fraction, building height, and roof thickness), radiative properties (e.g., emissivity and
albedo of roofs, roads, and walls), and thermal properties (e.g., thermal conductivity and heat capacity
of roofs, roads, and walls) [11]. The two-dimensional structure of an urban canyon is characterized by
a road at the center, flanked by building walls and rooftops on both sides (with varying height-to-width
ratios across different cities). Specifically, the energy balance process in CLMU is subject to urban
surface input parameters and is calculated by the flux interactions within a simplified bulk urban
air mass. Additionally, it should be noted that the urban energy balance in the current version of
CLMU operates independently within a sub-grid [15], enabling a focused investigation of the urban
surface-atmospheric processes. We refer readers to the CLMU technique document [25] for the
detailed description of the urban canyon scheme. Combined with the exceptional performance of
CLMU demonstrated in an urban land surface model comparison project [19], it is well-suited as a
benchmark for developing urban climate emulators.

We conducted CLMU simulations under the SSP3-7.0 scenario for six cities (London, New York City,
Shanghai, Singapore, Sao Paulo, and Rome) with diverse background climates and urban surfaces
to obtain training, validation, and testing data for data-driven methods. To be specific, CLMU was
conducted to output instantaneous urban climate simulation outcomes for 8 time steps per day (every
3 hours) for the period of 2020 to 2074 after a 5-y spin-up (2015-2019). The simulation data were
divided into 4 subsets: data for the period 2020–2044 were used as training data (1,095,000 data
points), 2045–2049 data were used for validation (219,000 data points), and data from 2050–2054
(219,000 data points) were mainly used to evaluate model performance. Besides, we further used
simulation data from 2070–2074 (219,000 data points) to test model generalization ability.

B.2 Atmospheric forcing and urban surfaces variables

This work screened the forcing data from the atmospheric component of the Community Earth System
Model (CESM) at a native resolution of 0.9° × 1.25°. Urban surface characteristics were extracted
from CLMU’s static surface input files at the same resolution. The CLMU output in single-point
mode shares this spatial resolution, which aligns with the default resolution used in global urban
climate projections. However, it is worth noting that the objective of this work is to capture the
underlying physical mechanisms governing urban climate, rather than to perform estimations tied
to a specific spatial resolution. This design choice inherits the resolution-agnostic nature of the
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physics-based model. CLMU can operate in a single-point mode and does not assume a fixed spatial
resolution. Instead, its spatial footprint is implicitly determined by the resolution of the atmospheric
forcing and surface input data. As demonstrated in Section 4.6, both our model and CLMU are able
to operate using flux tower data with a finer spatial granularity (~500 m), further supporting the
resolution-agnostic nature of the learned physical processes.

The variables used to develop the data-driven models are listed in Table 11. To enhance training
efficiency (except for the decision tree-based model), all data were first standardized using the mean
and standard deviation of the training set. After standardization, the training data were scaled to the
range (-1, 1) based on the minimum and maximum values of the standardized training set [18, 4].

Table 11: List of features considered in this study. all fields are taken from the CLM simulation.
features marked with ∗ were omitted in the model development due to they have constant or nearly
identical values across the training area.

Type Fields Description Unit
Embedding as
atmospheric
forcing

a2x3h_Faxa_swndr Direct near-infrared incident solar radiation W m−2

a2x3h_Faxa_swvdr Direct visible incident solar radiation W m−2

a2x3h_Faxa_swndf Diffuse near-infrared incident solar radiation W m−2

a2x3h_Faxa_swvdf Diffuse visible incident solar radiation W m−2

a2x3h_Faxa_rainc Convective precipitation rate kg m−2s−1

a2x3h_Faxa_rainl Large-scale (stable) precipitation rate kg m−2s−1

a2x3h_Faxa_snowc Convective snow rate (water equivalent) kg m−2s−1

a2x3h_Faxa_snowl Large-scale (stable) snow rate (water equivalent) kg m−2s−1

a2x3h_Sa_u Zonal wind at the lowest model level m s−1

a2x3h_Sa_v Meridional wind at the lowest model level m s−1

a2x3h_Sa_tbot Temperature at the lowest model level K
a2x3h_Sa_shum Specific humidity at the lowest model level kg kg−1

a2x3h_Sa_pbot Pressure at the lowest model level Pa
a2x3h_Faxa_lwdn Downward longwave heat flux W m−2

a2x3h_Sa_z Height at the lowest model level m
doma_lon Longitude deg
dom_lat Latitude deg

Embedding as
urban surface
features

CANYON_HWR Canyon height to width ratio

WTLUNIT_ROOF Fraction of roof unitless
WTROAD_PERV Fraction of pervious road unitless
EM_IMPROAD∗ Emissivity of impervious road unitless
EM_PERROAD∗ Emissivity of pervious road unitless
EM_ROOF Emissivity of roof unitless
EM_WALL Emissivity of wall unitless
ALB_IMPROAD_DIR∗ Direct albedo of impervious road unitless
ALB_ROOF_DIR Direct albedo of roof unitless
ALB_PERROAD_DIR∗ Direct albedo of pervious road unitless
ALB_WALL_DIR Direct albedo of wall unitless
TK_ROOF Thermal conductivity of roof W m−1K−1

TK_WALL Thermal conductivity of wall W m−1K−1

TK_IMPROAD Thermal conductivity of impervious road W m−1K−1

CV_ROOF Volumetric heat capacity of roof J m−3K−1

CV_WALL Volumetric heat capacity of wall J m−3K−1

CV_IMPROAD Volumetric heat capacity of impervious road J m−3K−1

COSZEN Cosine of solar zenith angle deg
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B.3 Model configuration

Table 12: Hyperparameters used to train UCformer are listed along with their optimal values and the
search space for tuning the unconstrained model, shown as the range or set of possible values and the
sampling method. Note that attention heads and hidden size were not included in the optimization
process due to the structural requirements of UCformer.

Hyperparameter Value Search
layers 4 [3-8] ∼ choice

feed-forward dimension 2048 512, 1024, 2048 ∼ choice
batch size 128 32, 64, 128 ∼ choice

learning rate 1e-5 [1e-5, 1e-2] ∼ log uniform
dropout rate 0.1 [0.1-0.4] ∼ choice

epochs 50 [50-200] ∼ choice
attention heads 3

hidden size 384

Table 13: Hyperparameters used to train Transformer are listed along with their optimal values and
the search space for tuning the unconstrained model, shown as the range or set of possible values and
the sampling method.

Hyperparameter Value Search
layers 8 [3-8] ∼ choice

feed-forward dimension 2048 512, 1024, 2048 ∼ choice
batch size 32 32, 64, 128 ∼ choice

learning rate 1e-5 [1e-5, 1e-2] ∼ log uniform
dropout rate 0.14 [0.1-0.4] ∼ choice

epochs 100 [50-200] ∼ choice
attention heads 4 2,4,8 ∼ choice

hidden size 128 128, 256, 512 ∼ choice

The configuration of UCformer and Transformer is listed in Tabel 12 and Tabel 13.

For AutoML, we used a Python package named “FLAML” [37] to achieve automated model selection
and hyperparameter tuning (Automated Machine Learning, AutoML) for decision tree-based models.
Specifically, FLAML enables automated optimal machine learning model selection and optimizes
the search processes based on the evaluation metric and computational efficiency, that is, the “time
budget" hyperparameter. The package then allows iterative selection of learners, hyperparameters,
sample sizes, and resampling strategies. In this work, we configured AutoML for a regression task
with an “auto" estimator list, optimizing the RMSE metric, and set a time budget of 3,600 seconds
(1 hour) per trial. The “auto" estimator list includes tree-based models such as LightGBM [13],
XGBoost[8], and Random Forest.

B.4 Fine-tuning model with real-world data

To align with the observational dataset, we modified the input features of UCformer (from 30 to 23)
and the output features (from 3 to 2), while keeping all parameters of UCformer updated during the
fine-tuning process. The new predictions of sensible and latent heat fluxes are constrained by the
surface energy balance. This makes the physics-guided decoder in UCformer naturally adaptable to
predicting these variables.

C Code of Ethics and Broader Impacts

Our research is ethical. The physics-guided model proposed in this paper enables local urban climate
emulation, offering valuable applications in fields such as climate-informed urban planning and
providing significant benefits to society.

The dataset used in this study is derived from a public numerical model, ensuring no issues related to
infringement or privacy leakage. The experiments conducted are fair, reproducible, and designed
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with minimal resource consumption, posing no environmental or societal impact. Furthermore,
the proposed model is free from bias and discrimination concerns. To promote transparency and
accessibility, we open-source the model code and checkpoints on GitHub.

D Safeguard of Model

This paper introduces a physics-guided model for local urban climate emulation. It is essential to
recognize that all models inherently contain some level of emulation error. Therefore, the proposed
model should not be used as the sole basis for predicting major events or policymaking. Instead, its
findings should be combined with other models and expert knowledge to ensure more comprehensive
and well-informed conclusions.

E Assets

Our study complies with the licensing requirements for existing assets, as the data used in this paper
are generated from an open-source model that is publicly accessible and authorized for academic
research. The model proposed in this study constitutes a novel contribution and is regarded as a new
asset.
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