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Abstract

Animals can swiftly adapt to novel tasks, while
maintaining proficiency on previously trained
tasks. This contrasts starkly with machine learn-
ing models, which struggle on these capabilities.
We first propose a new task, the sequential Morris
Water Maze (sWM), which extends a widely used
task in the psychology and neuroscience fields
and requires both rapid and continual learning.
It has frequently been hypothesized that induc-
tive biases from brains could help build better
ML systems, but the addition of constraints typi-
cally hurts rather than helping ML performance.
We draw inspiration from biology to show that
combining 1) a content-addressable heteroassocia-
tive memory based on the entorhinal-hippocampal
circuit with grid cells that retain shared across-
environment structural representations and hip-
pocampal cells that acquire environment-specific
information; 2) a spatially invariant convolutional
network architecture for rapid adaptation across
unfamiliar environments; and 3) the ability to
perform remapping, which orthogonalizes inter-
nal representations; leads to good generalization,
rapid learning, and continual learning without
forgetting, respectively. Our model outperforms
ANN baselines from continual learning contexts
applied to the task. It retains knowledge of past
environments while rapidly acquiring the skills to
navigate new ones, thereby addressing the seem-
ingly opposing challenges of quick knowledge
transfer and sustaining proficiency in previously
learned tasks. These biologically motivated re-
sults may point the way toward ML algorithms
with similar properties.
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1. Introduction
Animals can rapidly learn new tasks that are conceptually
similar to previously encountered tasks, but have different
inputs and surface-level details; simultaneously, they retain
the ability to solve the previous tasks. Neural modeling of
this process of rapid conceptual knowledge transfer with
retention of past learning has been limited. In some ways,
rapid learning and learning retention seem to be in opposi-
tion: the former requires fast adaptation of parameters while
the latter requires stable parameters. In machine learning,
models tend to focus on either solving rapid learning and
transfer, or on continual learning without forgetting; models
tend not to do well at both.

Here, we build a biologically motivated neural model to
solve a sequential version of the classic Morris Water Maze
task (Morris, 1981; Vorhees & Williams, 2006), in which
a rodent must find and then navigate to a submerged plat-
form in a pool of cloudy water across multiple trials start-
ing from different positions. We term our variant of this
task the sequential Morris Water Maze (sWM) task. This
task necessitates sequential learning across multiple unique
environments, each characterized by a different platform
location. Within a single environment, the task demands
two generalizations from the agent. First, it must generalize
its learning from a variety of starting locations. Second,
it must rapidly adapt to changes in the goal locations. In
our sequential version of the task, an additional layer of
complexity is introduced. Here, the agent is required to
learn new environments while preserving knowledge of the
previous ones. This requirement tests the agent’s ability
to avoid catastrophic forgetting, a significant challenge in
machine learning. Thus, the sWM task not only involves
the aforementioned intra-environment generalization and
adaptation but also inter-environment learning and memory
retention.

Conventional unstructured neural networks suffer from
catastrophic forgetting: a phenomenon where networks
trained on a sequence of tasks fail to perform well on previ-
ously trained tasks (McCloskey & Cohen, 1989). Unstruc-
tured neural networks generally also lack an intrinsic ability
to generalize rapidly to unseen tasks. Networks that per-
form rapid task transfer are typically extensively trained on
a large number of related tasks (e.g. using multi-task learn-
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Figure 1. Schematic of the sequential Morris Water Maze task. (a) The water maze environment. The rodent icon represents the
agent, arrows indicate the rodent’s allowed actions, gold circles indicate the hidden platforms, and curves parallel to the walls of each
environment denote patterns along the walls. The agent observes a portion of the wall pattern. (b) our training setup. Agents must
generalize in three distinct ways. 1. Find a fixed goal location starting from random points in the environment. 2. Quickly learn new goal
location within one environment, and reach it from random starting locations. 3. Learn various new environments, each with random
start positions and multiple goal locations. The agent is evaluated on rapidly learning to navigate to new goal locations and in new
environments and remembering navigation strategies from previously seen environments.

ing techniques (Caruana, 1997) or meta-learning (Thrun &
Pratt, 1998)).

We hypothesize that certain inductive biases, like those
present in the brain, allow networks to avoid these short-
comings and achieve performance comparable to animals on
rapid and continual learning. It is known that animals exploit
low-dimensional circuit dynamics in the entorhinal cortex
and hippocampus to enable efficient spatial navigation and
learning (O’Keefe & Dostrovsky, 1971; Hafting et al., 2005).
We use a structured neocortical-entorhinal-hippocampal cir-
cuit based on a low-dimensional set of structured internal
entorhinal states that do not vary across environments, the
Vector Hippocampal Scaffolded Heteroassociative Mem-
ory (Vector-HaSH) architecture (Chandra et al., 2023), to
enable such generalization in the Water Maze after train-
ing only on a single environment. Our model proceeds as
follows: first, Vector-HaSH maps observation signals to a
grid cell pattern, a type of spatial representation found in
the entorhinal cortex. The grid code is then inputted into a
randomly initialized, fixed Convolutional Neural Network
(CNN), yielding a spatially invariant output feature vector.
Lastly, this feature is processed by an attention module to
determine the agent’s action.

We integrate the high-capacity content-addressable memory
system with a policy network that takes in the translation-
ally invariant (grid) representations and computes a spatially
invariant output vector that facilitates zero-shot policy learn-

ing in new environments. Conceptually, this combination
is beneficial as it allows the system to store and retrieve
relevant information efficiently, while also adapting rapidly
to new environments without requiring additional training.
This functionality reflects the learning behavior of biolog-
ical entities, contributing to the agent’s capacity for both
knowledge retention and rapid, flexible learning. We em-
phasize that this is the first work to employ Vector-HaSH in
continual learning tasks.

Our findings demonstrate a significant advantage of our
neural-inspired method over general state-of-the-art con-
tinual learning algorithms in the sequential Morris Water
Maze task. This outcome suggests that our method could
offer valuable insights into developing more effective con-
tinual learning strategies, particularly in scenarios where
traditional approaches fall short.

The contribution of this paper is threefold:

• We propose a new lifelong learning and rapid-learning
task, the sequential Morris Water Maze (sWM), which
extends the widely used Morris Water Maze test of
spatial learning in animals.

• We propose a neuro-inspired lifelong learning algo-
rithm based on Vector-HaSH (Chandra et al., 2023);
the algorithm is designed to enable rapid learning while
retaining knowledge over long time-scales.

• In sWM, our method achieves significantly higher per-
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formance than baseline methods in standard continual
learning.

2. Related Work
2.1. Continual Learning in Artificial Intelligence

Continual learning methods can be categorized into
three approaches; 1) regularization-based methods, 2)
replay-based methods, and 3) architecture-based methods.
Regularization-based methods (Cheung et al., 2019; Kirk-
patrick et al., 2017; Li & Hoiem, 2017; Zenke et al., 2017)
employ regularization terms to constrain the changes in
model parameters to preserve previous model weights. They
balance the trade-off between stability and plasticity in the
learning process. EWC (Kirkpatrick et al., 2017) leverages
the Fisher information matrix to estimate an importance
matrix used for parameter regularization so that the network
can remember old parameters. LwF (Li & Hoiem, 2017)
finds the output logits from an old model trained on a previ-
ous task and distills them into a new model. Replay-based
methods (Robins, 1995) prevent forgetting by forming a
replay buffer, a small exemplar set of previous data, or syn-
thetic data (Van de Ven et al., 2020) to interleave with new
tasks during training. Since the memory size is constrained,
there are several approaches to find smaller subsets; reser-
voir sampling, reinforcement learning (Rebuffi et al., 2017),
gradient-based selection (Aljundi et al., 2019). Another line
of research employs existing sampling techniques and fo-
cuses on other aspects such as distillation (Douillard et al.,
2020; Kang et al., 2022). Architecture-based methods fo-
cus on altering the model’s structure to accommodate new
tasks without affecting the performance of previous tasks.
DEN (Yoon et al., 2018) dynamically expands neurons in
the network. On the other hand, PNN (Rusu et al., 2016),
DER (Yan et al., 2021) generates a new architectural back-
bone for each task, and FOSTER (Wang et al., 2022) distills
a previous backbone network and a new backbone network
into a single network applicable to the tasks corresponding
to either backbone network.

2.2. Continual Learning in Neuroscience

Unlike continual learning with an artificial neural network,
biological neural networks do not suffer from catastrophic
forgetting (Morris, 1981). Aimone et al. (2010) argue that
adult-born neurons contribute to learning new information
while separating previous patterns. In the Morris Water
Maze task, where a rodent navigates toward a hidden escape
platform relying on distal cues, it directly heads to the plat-
form even in an environment that was learned a few days
ago (Morris, 1981; Vorhees & Williams, 2006). Place cells
in the hippocampus play a key role in solving the task; they
facilitate self-localization and route replay (Redish & Touret-
zky, 1998). Furthermore, they organize spatial information

into separate maps when there is a significant shift in context
or other non-spatial or spatial variables (remapping) (Colgin
et al., 2008; Fyhn et al., 2007). This allows the rodent to re-
member each environment with associated platform location
information, which enables it to navigate to the platform di-
rectly. Our method is based on Vector-HaSH (Chandra et al.,
2023) which models the entorhinal-hippocampal circuit.

3. Morris Water Maze Task
We have developed a variant of the Morris Water Maze task
called the sequential Morris Water Maze (sWM). This task
assesses an artificial rodent’s ability to remember previously
explored environments while quickly learning new ones. In
the original task, a rodent is placed in a circular tub filled
with opaque fluid. Distal cues provide orienting and rough
spatial information to the rodent. Inside the tank, there is a
hidden platform that the rodent must find to avoid exhaustion
from swimming. Once the rodent discovers the platform,
the animal is placed in a different starting location within the
same environment. This process is repeated multiple times.
Then, the rodent is introduced to a different environment
where the goal location and wall cues have changed, and the
process repeats. Impressively, even after training in multiple
subsequent environments, the rodent retains knowledge of
previous environments and rapidly navigates toward the
hidden platform.

For our task, we simplified the setup by using a square tub
with distinctive markings on the walls as cues. These mark-
ings help the agent localize itself within the environment.
The agent’s objective is to efficiently locate a hidden plat-
form within the environment. The agent can choose to take
steps from among the four cardinal directions - north, south,
east, or west.

Once the agent has been sufficiently trained in one envi-
ronment, we introduce a sequential training regime. In this
phase, the agent is exposed to both familiar and unfamiliar
environments, with different starting points in each. Varying
the starting points adds complexity, and requires the agent
to adapt its strategies based on its current position and the
goal location.

Our task provides a comprehensive evaluation of the agent’s
cognitive abilities, specifically focusing on its capacity to
retain knowledge from past experiences and its ability to
quickly learn from new ones. These are qualities that biolog-
ical entities, like rodents, naturally possess and demonstrate
with remarkable efficiency. By replicating these attributes
in our artificial agent, we aim to create a system capable of
navigating complex tasks with similar adeptness.
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Figure 2. Schematic of our model: Vector-HaSH for Spatial Navigation (vHSN) The agent observes a portion of wall. Observations, along
with velocity inputs, are fed into a Vector-HaSH network that produces grid cell activations representing the agent’s location. An external
memory module stores the grid code of the goal location. Grid codes of the current location and goal location are fed to the displacement
network, a spatially-invariant convolutional neural network to produce a representation of the relative goal position. This is fed to a policy
that produces actions.

4. Vector-HaSH
Vector-HaSH (Chandra et al., 2023) is a content-addressable
memory (CAM) model based on the architecture of the
neocortical-entorhinal-hippocampal memory circuit in the
brain. Content-addressable memory models are networks
that can store vectors (patterns to be memorized) as fixed
points of their dynamics, and thereby recall/reconstruct them
from noisy cues. Specifically, given a corrupted version of a
previously encountered pattern, CAM models aim to recon-
struct the original un-corrupted ground truth pattern. CAM
models often suffer from a memory cliff problem: when
the number of stored patterns crosses a certain threshold,
the model not only fails to learn any new patterns, but also
abruptly fails to recall all previously stored patterns. This is
a form of catastrophic forgetting.

Vector-HaSH addresses the memory cliff problem by con-
structing a fixed scaffold of pre-defined content-independent
fixed points, which are then used to store the content-laden
patterns through hetero-associative learning, thus mimick-
ing the neocortical-entorhinal-hippocampal circuit to store
patterns. The Vector-HaSH architecture consists of three
layers; features, hidden states, and labels, which biologi-
cally correspond to sensory input, place cell layer, and grid
cell layer, respectively. We use grid code as labels instead
of the k-hot labels in Vector-HaSH. The place cell layer
p ∈ {−1,+1}NP represents an NP dimensional binary
vector, the grid cell layer g ∈ {0, 1}

∑
λi is defined as the

concatenation of λi dimensional one-hot vectors each of
which represents a grid module in the brain, and the sensory
layer is Ns dimensional.

Before starting experiments, the memory scaffold (grid and
place cells states, as well as the projections between the
grid and place cell layers) is pre-defined. The projection
matrix from the grid cell layer to the place cell layer, WPG

is randomly generated so that it maintains an injective pro-
jection. On the other hand, the weight matrix from the place
cell layer to the grid cell layer is trained by Hebbian learn-
ing such that it associates each active place cell (defining a

place code) to the concurrently active grid cells (defining a
corresponding grid code):

WGP =
1

|N|

µ=N∑
µ=1

g · (sign(WPG · g))T , (1)

where N is the number of training patterns.

When the agent explores the environment, the weights be-
tween sensory inputs and the place cells (WSP and WPS)
are learned by a pseudoinverse learning rule (Personnaz
et al., 1985) in an online manner (Tapson & van Schaik,
2013), yielding the following final weights:

WSP = S ·P†, (2)

WPS = P · S†, (3)

where S and P are Ns × N and Np × N dimensional
matrices of sensory patterns and place patterns respectively,
and † indicates the pseudoinverse.

In summary, given the sensory input st at time t, the corre-
sponding place cell and grid cell activations are computed
through the model dynamics as follows:

pt = sign(WPS · st), (4)
gt = CAN(WGP · pt). (5)

where CAN(·) represents the continuous attractor recur-
rence in the grid layer that is implemented using module-
wise winner-take-all dynamics. This ensures that the equi-
librium grid state is always a valid grid code i.e., a con-
catenation of one-hot vectors corresponding to each grid
module.

The grid cell layer receives velocity signals (action input at)
for path integration, where the activated index for each grid
cell module is shifted according to the action direction to
infer the next grid state. Once we obtain the next grid code
gt+1, its corresponding place code pt+1 is associated with
the sensory input (st+1).
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In our implementation, we extend the grid cell modules to
2D space (with λ2

i dimensions for each one-hot grid cell
module) and adapt the path integration described above to
suit the proposed 2D sequential Morris Water Maze envi-
ronments.

5. Vector-HaSH for Spatial Navigation (vHSN)
5.1. Motivation and Overview

Artificial neural networks, despite their significant advance-
ments, are still prone to a major shortcoming known as
‘catastrophic forgetting’ during continual learning. This
issue arises when these networks, after being trained on
new tasks, tend to forget the old ones, thereby undermining
their learning continuity. By contrast, natural organisms
like rodents and humans showcase a remarkable resilience
to such forgetting. This ability to continuously learn and
adapt without forgetting past learning underscores the so-
phistication of biological learning systems. A wealth of
scientific research has demonstrated that specific types of
neurons, known as grid and place cells, play instrumental
roles in counteracting catastrophic forgetting, particularly in
the context of spatial memory. These cells, predominantly
found in the hippocampus, are believed to create cognitive
maps of the environment, helping the organism to navigate
and remember spatial information.

Inspired by this, we design a novel method for continual
learning based on Vector-HaSH (Chandra et al., 2023) called
Vector-HaSH for Spatial Navigation (vHSN). To begin with,
the Vector-HaSH converts observations into grid cell pat-
terns (grid code). This involves representing the acquired
data in a structured format that mimics the function of grid
cells in the brain, which are integral to understanding spatial
positioning and navigation. Next, the grid code is inputted
into a randomly initialized fixed Convolutional Neural Net-
work (CNN) to leverage its inherent spatial invariance, ensur-
ing consistent output regardless of shifting inputs. Finally,
an attention module takes the feature vector and retrieves the
appropriate action based on features that have been observed
previously.

5.2. Associating Grid Code Displacements with
Movements

We develop a model of how rodents rapidly learn to nav-
igate in new environments. Using a randomly initialized
fixed convolutional neural network (CNN), our model maps
the rodent’s current and goal locations (encoded in a grid
code, provided by Vector-HaSH) to a spatially-invariant rep-
resentation of the displacement of the goal relative to its
current position. We use an attention mechanism with the
keys being the spatially invariant representation of the grid
code and the values being the appropriate actions. During

the training phase, these key-value pairs are associated and
stored within the mechanism. During the testing phase, the
agent’s current state generates a spatially invariant represen-
tation of displacement that is used as the query. This query
is then processed through a dot product operation with the
existing keys in the dictionary. The action associated with
the key most similar to our query is identified and used.
This process allows for efficient action selection based on
the spatially invariant displacement of the agent. Our ar-
chitecture’s spatial invariance allows the agent to rapidly
learn to navigate in unseen environments by only learning
associations between new observations and the grid code
(it does not need to learn new associations to actions) as
we will discuss in the next section. Figure 2 illustrates our
model architecture. In our appendix, Algorithm 1 illustrates
the pseudocode of our training loop, while Algorithm 2 illus-
trates how our agent is updated, and Algorithm 3 illustrates
how we use Vector-HaSH.

5.3. Agent Training and Zero-Shot Policy Learning in
Novel Environments

The agent under consideration is now equipped with two
crucial functionalities: the ability to counteract catastrophic
forgetting and the capacity to facilitate forward transfer to
novel environments. These two attributes together expedite
the learning process.

During the initial phase of training, the agent is introduced
to a novel environment where it initiates exploration. Con-
currently, it collects observational data, forming associations
between these observations and a grid code via the Vector-
HaSH framework. This process effectively constructs a
memory scaffold, enabling the agent to effectively navigate
within a specific environmental context.

Upon successful identification of the goal within the envi-
ronment, the agent proceeds to store the corresponding grid
code. This stored grid code, signifying the goal location,
serves as a key reference point in the agent’s cognitive map
of the environment.

Subsequently, from multiple locations within the environ-
ment, we use our spatially invariant CNN to compute a rep-
resentation of the vector displacement between the agent’s
location and the pre-stored goal location. This displacement
vector encapsulates the navigational ’distance’ the agent
must traverse to reach the goal from its current position.

These displacement representations are then processed by
the attention mechanism. The mechanism associates dis-
placement with the corresponding movement action required
to progress toward the goal. Storing these associations al-
lows the agent to retrieve the appropriate action when a
previously observed displacement is encountered later.

Upon introduction to a new environment, the agent embarks

5



Rapid Learning without Catastrophic Forgetting in the Morris Water Maze

Figure 3. Our model performance remains steady with the addition of new environments and avoids catastrophic forgetting.
The average success rate of each environment while training on the following environments of our final model (a) and ours without
Vector-HaSH (b). The full model rapidly outperforms the one without Vector-HaSH. In both plots, we use a moving average of 25 points
and Gaussian smoothing with σ = 10.

on a similar exploration phase. Once the goal is located in
this new environment, a significant feature of our system
emerges: the policy requires no further training. The agent
first computes a representation of goal displacement using
the spatially invariant CNN. Then, it applies the attention
mechanism to the stored associations between displacement
representations and movements to retrieve the correct navi-
gational action.

This unique process facilitates zero-shot policy learning
in new environments, underscoring the effectiveness and
adaptability of our proposed framework. It exemplifies our
agent’s capacity to rapidly assimilate and apply knowledge,
enabling successful navigation in unfamiliar environments.

6. Experiments
6.1. Experimental Details

We optimize parameters using Adam (Kingma & Ba, 2015)
with a learning rate of 0.001 for 800 episodes for each envi-
ronment. The maximum number of steps in each episode is
set to 100 and the starting configuration (head direction and
coordinates) are different. The environment is a 30 × 30
grid with unique, noise-added step function markings on
the walls. The agent has a field of view (FOV) of 120 de-
grees (see Figure 1a). We use a public continual learning
implementation (Zhou et al., 2023) for EWC (Kirkpatrick
et al., 2017), another public continual learning implementa-
tion (Boschini et al., 2022) for DER (Buzzega et al., 2020),
DER++ (Buzzega et al., 2020), A-GEM (Chaudhry et al.,
2019), ER (Rolnick et al., 2019), and implement our own
version of replay buffer and fine-tuning. For fine-tuning,
we sequentially train on each environment. In our replay
buffer implementation, we allocated a fixed buffer size (100
in our case) during the training of the neural network within
a single environment. Throughout this training phase, we
stochastically selected data points for inclusion in our replay

buffer. Upon completion of training in one environment,
we initiated a fine-tuning process on our replay buffer by
sampling from it, followed by an evaluation in all previously
trained environments. This procedure was replicated across
all five environments. We selected the replay buffer size
based on the performance. Details about (Boschini et al.,
2022) implementation in our environment is included in the
appendix.

Figure 4. Our method clearly outperforms the continual learn-
ing baselines, maintaining almost perfect performance, while
other methods are degraded as training goes on. We show the
average success rate along incremental stages by testing on envi-
ronments shown previously.

6.2. Comparison with Baselines

In Figure 3, our approach (a) exhibits rapid learning in the
first environment compared to the baseline neural network
trained in a fine-tuning framework shown in (b), where the
observations are fed directly into a neural network and su-
pervised by the correct action. Furthermore, our method
successfully acquires a general, transferable navigation pol-
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Table 1. The average success rate (%) of each environment after training on all environments. Our model maintains high success rates
across all environments. In contrast, other methods perform poorly due to catastrophic forgetting, except for some methods in the last
environment (Env 5).

METHOD AVERAGE ENV 1 ENV 2 ENV 3 ENV 4 ENV 5

FINE-TUNE 19.5 2.2 3.6 2.4 0.5 99.9
EWC (KIRKPATRICK ET AL., 2017) 23.2 0.0 0.0 16.0 0.0 100.0
REPLAY BUFFER 4.0 0.0 9.0 0.0 3.0 8.0
DER (BUZZEGA ET AL., 2020) 2.05 0.0 7.69 2.56 0.0 0.0
DER++ (BUZZEGA ET AL., 2020) 3.39 0.0 3.85 0.0 11.54 1.54
A-GEM (CHAUDHRY ET AL., 2019) 7.31 0.0 7.69 15.38 13.46 0.0
ER (ROLNICK ET AL., 2019) 16.92 23.08 26.92 30.77 3.85 0.0

OURS(VHSN) 99.2 99.2 99.5 99.0 99.5 98.8

icy from this initial environment, allowing rapid navigation
in subsequent environments without any policy training.
This contributes to the prevention of catastrophic forgetting,
as past environments can be recalled after recognizing the
current environment through a few trajectories. In sharp
contrast, the baseline experiments demonstrate an almost
immediate onset of catastrophic forgetting upon exposure
to a new environment. This phenomenon is marked by a
rapid performance decline following the training of a few
new trajectories, despite the initial successful knowledge
transfer and adequate performance in the new setting.

To address this shortcoming of the baseline, we employed
additional strategies in continual learning such as the use of
a replay buffer and Elastic Weight Consolidation (EWC) on
the baseline neural network. Despite these efforts, both the
replay buffer strategy and EWC demonstrated signs of catas-
trophic forgetting. Figure 4 displays the average success
rate of all previously trained environments after training on
the environment indicated on the x-axis. Our method consis-
tently outperforms the continual learning baselines, whereas
other methods exhibit degraded performance as more envi-
ronments are introduced for training. To benchmark against
contemporary state-of-the-art methods, we selected four
additional techniques: Dark Experience Replay (Buzzega
et al., 2020), Dark Experience Replay ++ (Buzzega et al.,
2020), A-GEM (Chaudhry et al., 2019), and Experience
Replay (Rolnick et al., 2019). Table 1 shows our method
compared to baselines on all five environments after all
training is complete.

The underwhelming performance of EWC in our tasks ap-
pears to stem from the similarity of inputs across different
environments. Despite these similarities, the goal positions
differ between environments. Consequently, similar obser-
vations could map to two distinct actions. EWC aims to
maintain the weights of the network to find an overlap be-
tween all tasks. However, due to this subtle complexity in
our task design, EWC fails to perform optimally.

The underwhelming performance of the replay methods in

our tasks appears to stem from the impact a few trajectories
have on the network due to the similarity of the inputs in the
environment. In addition, an observation in one environment
that might be similar to an observation in another could map
to different actions leading to interference.

6.3. Ablation Study

The effectiveness of each individual component in our pro-
posed method is analyzed and summarized in Table 2 in the
Appendix. Overall, the attention module plays a crucial role
in achieving high performance. In fact, when used alone, the
attention module achieves a perfect success rate. This is be-
cause when the goal location remains fixed, there is no need
to rely on the spatial invariance provided by CNN (policy).
Instead, the grid code can be directly associated with the
attention module. This approach must learn associations be-
tween every observation and the corresponding ground-truth
actions, which is memory inefficient and non-transferable
to new environments. Furthermore, this approach becomes
vulnerable when there are changes in the goal locations
within the same environment since associations between
observations and actions must be re-learned. On the other
hand, when the attention module is combined with Vector-
HaSH without CNN, the performance is significantly lower.
This is likely because Vector-HaSH lacks spatial invariance,
leading to the learning of conflicting associations between
the grid code and actions. As for the CNN without the at-
tention module, it corresponds to the ”Fine-Tuning” model
presented in Table 1. The use of Vector-HaSH allows the
CNN to use different input encoding methods, enhancing
its versatility.

In summary, the superior accuracy demonstrated by the
encoding network with attention, or by the attention mecha-
nism in isolation, can primarily be attributed to its perfect
memorization capabilities. This becomes apparent when
the attention mechanism undergoes training as it is just
storing key-value pairs. However, in the absence of such
training, the model’s performance in future environments
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Table 2. Combined components of vHSN allow for zero-shot transfer to new environments. The last row is our final model. We
measure the average success rate (%) across all environments after training the last environment. The exception is the case of vHSN:
Vector-HaSH, the encoding network, and attention mechanism, where the system is trained in a single environment and subsequently
tested across five different environments.

VECTOR-HASH DISPLACEMENT NETWORK (DN) ATTENTION TRAINING ENVIRONMENT ID SUCCESS RATE

✓ 1, 2, 3, 4, 5 100
✓ 1, 2, 3, 4, 5 19.5
✓ ✓ 1, 2, 3, 4, 5 99.7

✓ ✓ 1, 2, 3, 4, 5 0.9
✓ ✓ 1, 2, 3, 4, 5 5.4

✓ ✓ ✓ 1 99.2

Table 3. Our model allows for adaptation to new goal locations
not included during training. The last row is our final model,
vHSN. We measure the average success rate (%) of a new goal loca-
tion after training the new goal in one environment. The exception
is the case of Vector-HaSH, the encoding network, and attention
mechanism, where the system is trained in a single environment
and subsequently tested across five different environments.

VECTOR-HASH DN ATTENTION SUCCESS RATE

✓ 1.6
✓ 2
✓ ✓ 1.8

✓ ✓ 1
✓ ✓ 5.6
✓ ✓(FC) ✓ 0.1

✓ ✓ ✓ 99.5

significantly declines, often nearing zero. This reveals a
lack of forward transfer or generalizability in the model.

To verify the effectiveness of spatial invariance from CNN,
we train one environment with the fixed goal location and
evaluated it with the changed goal location. Table 3 shows
that all three modules should be combined together to solve
the new location with further training. Furthermore, we also
test that using fully-connected layers (FC) instead of CNN
cannot solve the problem, which emphasizes the need to
spatial invariance to find unseen goal locations.

Our framework, which includes Vector-HaSH, the encoding
network, and the attention mechanism, is trained exclusively
on one environment and subsequently evaluated on four un-
seen environments and one seen environment. Conversely,
all other ablated models are trained and then evaluated in all
five environments. We adopted this strategy due to the ob-
servation that, without any training in future environments,
each of our ablation study networks merely exhibited ran-
dom movement, demonstrating no ability to generalize.

7. Discussion
We introduced a novel neural model, powered by the Vector-
HaSH architecture, which exhibits remarkable proficiency
in rapidly learning and retaining knowledge across a range
of spatial environments. Furthermore, it facilitates an im-
pressive transfer to unfamiliar settings. This capability for
quick learning, generalization, and seamless adaptation rep-
resents a significant advancement in addressing complex
cognitive tasks, which often pose challenges to conventional
machine learning methods but are effortlessly handled by
biological agents.

Experimental results illuminate not only the successful ap-
plication of structured neural models to complex real-world
tasks but also the potential limitations of traditional deep
learning methodologies. These methods have historically
grappled with issues such as rapid learning, generalization,
and the avoidance of catastrophic forgetting. Our model
deftly navigates these hurdles, underscoring the potential
benefits of incorporating inductive biases into neural mod-
els.

Our findings carry implications for both artificial intelli-
gence research and neuroscience. They suggest a promising
role for structured neural models, inspired by architectures
found in the brain, in tackling complex tasks, thereby push-
ing the boundaries of what artificial intelligence systems
can currently achieve. Given these encouraging results, we
believe that continued exploration and development of struc-
tured neural network models with low-dimensional rigid
components may herald significant advancements in the
field. Looking ahead, we consider it an exciting direction to
explore how our proposed model could be further optimized
or adapted to other, more general continual-learning tasks.
Additionally, assessing its scalability and performance in
even more complex, dynamic environments will be a valu-
able direction for future work.
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Code
Our code is available at: https://github.com/raymondw2/seq-
wm
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A. Appendix
A.1. Dynamic Sequential Water Maze

In this section, we extend our original task, developing a more complex paradigm called the Dynamic Sequential Water
Maze (dsWM). In the previous model, an agent was positioned within five distinct environments, each containing a unique
goal location. However, the increased complexity of dsWM necessitates a more advanced set of cognitive capabilities from
the agent.

In this version of the task, the agent must now retain the goal position for each environment while additionally adapting to
altered goal positions within a single environment. To elaborate, the agent is initially trained in one environment, with a
fixed goal position. Following this training period, the goal position is changed twice, yet the agent’s policy is not trained
further. The agent is then tested a further 800 times each in two different goal positions. This procedure is subsequently
repeated in four additional unique environments, without the initial training period.

In our primary study, we compared our approach to several baseline models. These baseline models involved training
the policy in one environment with a fixed goal position, followed by the relocation of the goal position within the same
environment for testing. The results demonstrated that our method was unique in its ability to generalize without further
training, while the baseline methods exhibited poor performance.

The Dynamic Sequential Morris Water Maze represents an extension of this original work, offering a more complex task
and demanding greater cognitive adaptability from the agent. This enhanced task complexity will allow us to analyze the
capability of our method further. Figure 5 shows that our vHSN is robust against all inter- and intra-environment changes.

Figure 5. Our method shows robustness against all inter- and intra- environment changes. The average success rate of each environment
while training on the following environments of our final model. Each dotted line indicates a goal position change. We use a moving
average of 25 points and gaussian smoothing with σ = 10.

A.2. Replay Buffer

In order to assess the sensitivity of our baseline replay buffer, we conducted tests using a variety of replay buffer sizes,
mirroring our original experimental setup. Initially, the network was trained in one environment and fine-tuned using
100 randomly sampled data points from the replay buffer. Subsequent testing was performed on all previously trained
environments. The data obtained from these tests reveals no correlation between replay buffer size and performance in the
latter environments, suggesting catastrophic forgetting.

A.3. Large Morris Water Maze

To assess the adaptability of our system, we doubled the size of our Morris Water Maze and observed a minor performance
degradation (shown in Table 4). This test was conducted using the same number of time steps as in the smaller maze
configuration. Despite the reduction in search time relative to the increased area, the system still maintained a high level of
performance.
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Table 4. The average success rate (%) of each environment after training all environments for two different sized sWM mazes.

Training Scheme Average Env 1 Env 2 Env 3 Env 4 Env 5

vHSN (15 x 15) 99.2 99.2 99.5 99.0 99.5 98.8
vHSN (30 x 30) 93.1 94.5 94.25 87.25 95.19 94.4

A.4. More Baselines

To benchmark against contemporary state-of-the-art methods, we selected four additional techniques: Dark Experience
Replay (Buzzega et al., 2020), Dark Experience Replay ++ (Buzzega et al., 2020), A-GEM (Chaudhry et al., 2019), and
Experience Replay (Rolnick et al., 2019).

In these benchmarks, we conducted tests over 100 epochs. For each epoch, the network is trained on 200 trajectories. Each
trajectory was limited to a maximum of 100 time steps, after which we deemed it a timeout. Success was defined as the
agent locating the goal within these 100 time steps. In methods utilizing a buffer, we set its capacity to 200. For the DER++
algorithm, we adhered to the optimal parameters recommended in the paper: α and β both set at 0.5. All tested methods
employed Cross Entropy loss and a learning rate of 0.001. Post-training in all five environments, we assessed the accuracy
of each on the previous environments. As a point of comparison, we introduce our method wherein the action-selection
network is trained exclusively in the first environment and then subjected to zero-shot testing in the remaining environments.

A.5. Architecture Details

For our spatially invariant displacement network, we use a convolutional neural network (CNN) encoder (details in Table 5)
for each of the three grid modules. The inputs to the encoder are the grid codes for the current location and the goal location.
We use circular kernels. Then, we concatenate the three grid modules and pass into a feedforward encoder (details in Table 6)
that outputs the displacement.

Type Input Channels/Features Output Channels/Features Kernel Size Stride
Conv2d 2 16 3 1
ReLU - - - -
Conv2d 16 32 3 1
ReLU - - - -
Conv2d 32 64 3 1
ReLU - - - -
AdaptiveAvgPool2d - - - -

Table 5. An architecture of a single CNN encoder for one grid module.

Type Input Channels/Features Output Channels/Features
Linear 192 132
ReLU - -
Linear 132 64
ReLU - -
Linear 64 64
ReLU - -
Linear 64 32
ReLU - -
Linear 32 4

Table 6. An architecture of a deep neural network that combines the displacement for the three grid modules.
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A.6. Computing Infrastructure

We conducted our experiments on a high-performance computing system. The system was equipped with an AMD EPYC
7713 64-Core Processor, 32 GB of RAM and one Nvidia RTX 2080 Ti GPU.

A.7. Algorithm Pseudocode

Algorithm 1 Pseudocode for vHSN
agent = Agent() {Initalize agent }
attention = Attention() {Initialize attention block}
vector hash = Vector-HaSH(Λ, Nplace cells) {Initialize Vector HaSH; Λ: set of grid periods}
all obs = empty set() {Empty set to store observations}
goal states = empty list() {Initialize goal as null}
envs = [env1, . . . , envn] {Initialize multiple environments}
for env in envs do

for trajectory in env do
if observation is associated with grid cell then

found where i am = true
else

found where i am = false
end if
for step in trajectory do

vHSN-update(env, agent, vector hash, all obs, found where i am, goal states)
end for

end for
end for
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Algorithm 2 vHSN update
Input: env, agent, vector hash, all obs, found where i am
obs = env.sensory input {Get the current sensory input}
if First trial and not found where i am then

found where i am = true
vector hash.remap grid(obs) {Remap obs to a random set of grid states}
grid state = vector hash.get grid activations()

end if
if found where i am then

vector hash.update weights(obs) {Associate observation with the current grid state}
all obs.add(obs)
if goal is found then

displacement = fixedCNN(goal state, grid state) {Calculate displacement}
if in the first env then

action = attention.associate(displacement, ground truth action) {Learn Association between displacement and
action}

else
action = attention.retrieve(displacement)

end if
end if

else
action = random action() {Randomly wander until finding the goal and location}

end if
agent.step(action) {Agent takes a step in the env}
vector hash.update grid(action) {Update the grid state based on the action}
if env.reached goal() then

goal state = grid state {Update the goal if the agent reached it}
goal states.append(goal state)
break

end if

Algorithm 3 Vector-HaSH

self .WGP = 1
|N|

∑µ=N
µ=1 g · (sign(WPG · g))T {Initialize random connections between grid cells and place cells}

function remap grid
Input: obs
self .WSP = obs ·P† {Hebbian learning to learn weights between observation and place cells}
self .WPS = P · obs†

end function
function get grid activations

pt = sign(self .WPS · obs) {Get place activations from current observation}
gt = CAN(self .WGP · pt) {CAN is a continuous attractor network}
return gt {Return grid activations}

end function
function update grid

Input: action
gt+1 = Aaction(gt) {Aaction shifts grid activations in the direction of movement}

end function
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