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Abstract

The discovery of new materials and biological solutions is hindered by the vast complexity of
design parameter spaces and resource-intensive data acquisition, which makes traditional
exhaustive search strategies impractical. Active learning methods, which iteratively identify
informative data points, offer a promising solution to tackle these challenges by significantly
reducing the data-labeling effort and resource requirements. These methods iteratively guide
experiments or simulations by focusing on the most informative data points, enabling faster
identification of optimal candidates with reduced labeling demands. Despite these advances,
the absence of standardized benchmarks impedes objective comparison of methodologies,
slowing progress in autonomous scientific discovery. To address this, we introduce BALSA, a
comprehensive benchmark designed to systematically evaluate search strategies in autonomous
laboratories using active learning frameworks. BALSA provides a standardized evaluation
protocol, novel metrics for high-dimensional optimization, and reference implementations
to facilitate efficient and reproducible benchmarking. BALSA includes both synthetic
benchmarks and real-world tasks in various fields, designed to address unique challenges,
particularly limited data availability, in autonomous laboratories.

1 Introduction

The design of proteins or materials with specific properties, ranging from antibiotic resistance to super-
conductivity, represents a crucial frontier to address critical scientific and societal challenges (Hamidieh,
2018; Varmus et al., 2003; Merchant et al., 2023). Traditionally, scientists have approached these design
processes by generating hypotheses based on prior knowledge and past data. These hypotheses are then
tested using experimental protocols within constrained budgets. However, this approach is often inefficient,
time-consuming, and limited by human ingenuity and errors. In recent years, the integration of data-driven
methods with automated laboratory setups has accelerated discovery across various fields, ranging from the
design of proteins and DNA sequences in biology to the discovery of functional materials (Coley et al., 2019;
Rao et al., 2022; Szymanski et al., 2023; Rapp et al., 2024).

One of the most promising innovations in this field is autonomous laboratories or self-driving laboratories
(SLs), which leverage active learning (AL) algorithms to autonomously guide experimentation and accelerate
scientific discovery (Häse et al., 2019; Kang et al., 2019; Abolhasani & Kumacheva, 2023). AL is a paradigm
in which a learning algorithm iteratively selects the most informative unlabeled samples to be labeled by an
oracle (e.g., an experiment or human expert), with the goal of achieving higher model accuracy using fewer
labeled data points compared to passive (random) sampling (Ren et al., 2021). Advances in AL offer the
potential to significantly enhance the exploration of larger regions within the expansive search space, thus
improving efficiency and effectiveness in experimental designs and optimization processes, as shown in Figure
1 (a). Given that the underlying model of the objective function (or the validation source) is often intractable,
and only limited data are available, a typical approach is to develop a surrogate model to approximate the
distribution of the objective function. This surrogate model is then used iteratively to optimize the design,
serving as a stand-in for the objective function in the optimization process. The key components of SLs (or
AL pipelines) are illustrated in Figure 1 (b).
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Figure 1: Overview of key components in active learning for self-driving labs. (a) Active learning can address
problems with large search space and expensive data acquisition. (b) The goal of the active learning task is
to iteratively and autonomously improve solutions. Beyond synthetic functions, the proposed BALSA utilizes
i) AlphaFold2 as a simulator for biology applications and ii) open-source scanning transmission electron
microscopes (STEM) simulators for materials science applications.

Despite significant progress, many strategies to explore the search spaces, including exact and heuristic
approaches, often struggle to adapt and scale to high-dimensional and non-linear scenarios found in many
scientific applications (Frazier, 2018). Bayesian Optimization (BO) and its variants (Shahriari et al., 2016;
Bubeck et al., 2011; Springenberg et al., 2016; Garnett, 2023), have emerged as popular alternatives that learn a
Bayesian model of the objective function and sample the best candidates using an uncertainty-based technique
such as Thompson sampling (Shahriari et al.). While these approaches perform well in low-dimensional
spaces, their effectiveness diminishes in more complex, higher-dimensional settings (Frazier, 2018). More
recently, tree search methods, which are the key component of many revolutionary AI algorithms such as
AlphaGo (Silver et al., 2016), have been applied to design problems. These methods iteratively partition the
search space (Kim et al., 2020a) and employ local surrogate models to approximate the promising search
subspace (Eriksson et al., 2019). However, their success is often contingent on the quality of these local
models, and they also struggle with the curse of dimensionality (Wang et al., 2020).

Moreover, the intricate interplay between surrogate models and search strategies within AL pipelines, coupled
with the growing number of scientific applications, has made it increasingly difficult to compare and track
progress effectively. Different methods are often proposed and evaluated on distinct tasks with varying
evaluation protocols, leading to inconsistent benchmarks. To the best of our knowledge, no unified benchmark
or systematic investigation currently exists to evaluate and compare different search strategies in AL pipelines.
This paper addresses this gap by proposing a standardized benchmark that enables a fair comparison of
state-of-the-art search strategies, ensuring more consistent progress in scientific discovery. 1

Our main contributions are summarized as follows:

• We introduce BALSA, a benchmark tailored for evaluating search strategies within active learning
pipelines in real-world self-driving settings, emphasizing the employment of iterative process, surrogate
models and low-data regimes.

• We provide a suite of 8 standardized synthetic tasks and 14 baseline methods, and 4 real-world tasks,
covering various fields, for systematic and comprehensive evaluation.

• We propose a metric that quantifies the characteristics of objective landscapes across diverse design
problems, offering insights into the performance of search strategies across complex settings.

1The code and benchmark suite for BALSA are publicly available at https://github.com/anonymized.
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• We perform large-scale empirical studies to highlight critical areas for advancing self-driving labs
within the AL pipeline: (i) understanding the interplay between surrogate model and search strategy
in relation to the objective landscape, (ii) ensuring reproducibility of algorithmic performance across
a wide variety of synthetic and real-world tasks with limited data availability.

1.1 Related work

Self-driving laboratories There has been a surge of interest in developing SLs across numerous scientific
domains. For example, AL-driven pipelines have been applied to organic small-molecule synthesis and
compound discovery (Li et al., 2015; Coley et al., 2019), synthetic biology platforms (Martin et al., 2023),
and closed-loop drug discovery workflows (Saikin et al., 2019). In chemistry, active learning and optimization
methods have enabled multi-step reaction planning (Epps et al., 2020; Seifrid et al., 2022; Boiko et al.,
2023; Volk et al., 2023), reaction-condition screening (Torres et al., 2022; Angello et al., 2022), copolymer
design (Reis et al., 2021), and fully autonomous chemical synthesis (Manzano et al., 2022). In materials
science, similar approaches have accelerated the discovery of solid-state materials (Szymanski et al., 2023;
Merchant et al., 2023) and clean-energy compounds (Tabor et al., 2018), as well as the optimization of
thin-film fabrication processes (Ludwig, 2019). Each of these studies implements an AL pipeline tailored to
its specific experimental constraints and objectives. Due to the rapid pace of development and interest across
various disciplines, we can only include a limited selection. A curated and up-to-date list across application
areas and a broad overview of SLs including applications, software packages, or hardware is provided by the
Canadian Acceleration Consortium (Consortium).

Benchmarks Different benchmarks have been proposed for black-box optimization. Design-Bench Trabucco
et al. (2022) proposed a benchmark for offline model-based optimization. Further benchmarks include robotics
systems (Ginsburg et al., 2023) or simple multi-tool motion platforms (jub). Other works developed codebases
for optimization algorithms and libraries without downstream tasks or datasets (Rapin & Teytaud, 2018).
Traditional optimization benchmarks focus primarily on minimizing the number of function evaluations
required to reach the global optimum, and the objective often focuses on the optimization of trajectory planning.
Here, our benchmark is tailored for SLs, where every exact measurement (for example, a high-throughput
biological assay for antibiotic efficacy) can be prohibitively expensive. Instead of directly optimizing the true
function, we train surrogate models to approximate it and apply search algorithms to these surrogates. Our
goal is to evaluate the number of data points required by a search strategy to converge to these optima. This
approach provides an inexpensive means of assessment, offering critical insights into the algorithm’s efficiency
and effectiveness in optimization tasks across diverse contexts.

2 BALSA: Proposed benchmark framework

BALSA is a comprehensive benchmark suite that evaluates different search strategies in active learning
for real-world SLs, which acts as a critical step before applying these strategies to experimental laboratory
environments. BALSA is specifically designed with the following key objectives: (i) to emulate the iterative,
step-by-step process characteristic of real-world self-driving tasks; (ii) to leverage surrogate models for the
efficient approximation of complex systems in data-scarce scenarios; (iii) to address the unique challenges
associated with low-data regimes, ensuring robust performance under limited data availability.

Figure 1 (b) illustrates the general protocol of an AL pipeline, which comprises four main components:
(i) database, (ii) surrogate model that accurately represents complex relationships in the data, (iii) search
strategy that utilizes the surrogate model to guide the search for an optimal single state, and (iv) validation
source that can provide the ground truth. Although BALSA follows this AL pipeline to evaluate both
synthetic and real-world tasks, we intentionally add constraints to the number of data points in the database
to emulate real-world environments. As a result, surrogate model training will be less effective, leading to
more demanding scenarios for search strategies to explore optimal designs.

We include both standardized synthetic function and real-world tasks to systematically evaluate a broad range
of current AL search strategies and the respective surrogate models. Moreover, a novel metric is proposed to
quantify the characteristics of the objective landscapes, providing insights into the performance of the AL
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pipelines. Notably, we design and implement four real-world tasks to evaluate the proposed AL pipelines: (i)
neural network architecture search to optimize model performance; (ii) the lunar landing problem, simulating
complex control dynamics; (iii) a biology task utilizing AlphaFold2 as a virtual simulator for protein design,
demonstrating applications in computational biology; and (iv) a materials science task focused on resolution
optimization of scanning transmission electron microscopes, leveraging professional open-source simulation
software for advanced imaging applications.

3 Problem statement

The goal of SL tasks is to discover the most informative data points while keeping labeling costs low. Each
task is equipped with a quantitative metric that scores candidate designs, and our objective is to find the
global minimizer of this metric:

x∗ = arg min
x∈X

f(x) (1)

where x is the input vector and X is defined as the search space, typically Rn, and n is the dimension. f
is a deterministic but expensive objective function that maps the input x to the label. Because querying
f directly is costly, we instead learn a data-driven surrogate model f̂ from the dataset D = {(xi, yi)}N

i , in
which N is the number of labels and yi is the label of xi.

The pipeline for optimizing SL tasks involves iteratively selecting the samples from X, based on a search
strategy Q defined on the surrogate model f̂ , and re-training the surrogate model f̂ . Each iteration t consists
of three steps:

1. Surrogate Training: Train the surrogate model f̂θt
using the current labeled dataset D:

θt = arg min
θ

E(x,y)∼D[L( ˆfθ(x), y)]

where L is the loss function.

2. Search and Selection: Using a search strategy applied to f̂θt
, choose a batch of k promising, unlabeled

points:

xnew = Q(f̂θt
; k) ∈ X

3. Labeling and Updating: Obtain the labels ynew for the selected samples xnew from the exact function
f , add them to the labeled dataset D:

ynew = f(xnew), D ← D ∪ {(xnew, ynew)}

It is noteworthy that this function is not limited to single-objective problems; it can be a product of multiple
functions as long as it solely depends on x, which makes it a multi-objective task.

4 Synthetic benchmark tasks

Our benchmark suite includes eight carefully selected functions: Ackley, Rastrigin, Rosenbrock, Griewank,
Schwefel, Michalewicz, Levy, and Sphere. The primary objective for these synthetic functions is to identify
their global minima with a minimum number of sample acquisitions. Unlike traditional optimization
algorithms, which primarily focus on minimizing the number of function evaluations required to reach the
global optimum, our benchmark study uses these synthetic functions to mimic the complex data distributions
generated by various validation sources. The process is iterative, with each iteration allowing only 20 data
points to be sampled from the synthetic function tasks. This constraint necessitates the development of
an effective learning-based surrogate model. These synthetic functions can serve as valuable test cases for
understanding the properties of real-world SL tasks across diverse conditions using different search algorithms
with surrogate models within the AL pipeline. We explore a statistical feature to characterize different
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Figure 2: Objective landscapes of different synthetic functions with distinct topological characteristics.
Visualization of 2D objective landscapes with (a) Ackley, (b) Rosenbrock, (c) Schwefel, and (d) Michalewicz in
their 2D forms. Histograms (frequency distributions) of Laplacian of function s for (e) Ackley, (f) Rosenbrock,
(g) Schwefel, and (h) Michalewicz, where each function is in 10-dimension with 1 million samples uniformly
sampled from the parameter space. Joint plots of the ground truth function values (x-axis) and the surrogate
model predictions (y-axis) for (i) Ackley, (j) Rosenbrock, (k) Schwefel, and (l) Michalewicz, where r denotes
the Pearson correlation coefficient. Note that some of the functions are re-scaled to achieve better fitting (see
Appendix A.3 for more details.)

objective landscapes that may pose challenges for the AL search strategies. Here, we focus on four key
functions: Ackley, Rosenbrock, Schwefel, and Michalewicz, as these functions are characterized by their
distinct objective landscapes.

Landscape characterization Landscape topology is a critical feature of an objective function. Prior
studies have quantified it using metrics such as the probability of convexity or the estimated number of local
optima (Mersmann et al., 2011). A machine learning model often exhibits a less-satisfactory performance
on a flat landscape of an objective function, for which most of the values are at the same level, making it
difficult for the model to learn and generalize. A poorly performing surrogate model may mislead the search
methods, ultimately resulting in sub-optimal outcomes. Figure 2 (a-d) visualizes the objective landscapes of
the corresponding synthetic functions in their 2D forms. Ackley shows a rugged but funneled topology, while
Rosenbrock exhibits a long valley with numerous local minima. Schwefel presents a complex multi-funnel
topology, whereas Michalewicz has sharp drops on a rather flat landscape (The mathematical formula can be
found in Appendix A.1).

To better understand the relationship between the landscape of the objective function and the performance
of the surrogate model, we introduce the landscape flatness. This metric uses random sampling and discrete
Laplacian operator to quantify the flatness of the objective landscape. While the metric provides valuable

5



Under review as submission to TMLR

Figure 3: Correlations between Pearson correlation coefficient (r) and flatness (ω) for CNN, Random Forest,
and XGBoost across benchmark functions. Note that all functions are in 50D.

empirical insights, we acknowledge its limitations in theoretical rigor and aim to explore a more comprehensive
analysis in future work.

Laplacian of function Let x = [x1, ..., xi, ..., xn] be a n-dimensional input of the function. The discrete
Laplacian operator at a high-dimensional position x can be defined as:

sx =
n∑

i=1

∂2f

∂x2
i

≈
n∑

i=1

f(xi + ϵ) + f(xi − ϵ)− 2f(xi)
ϵ2 (2)

where ϵ is the step size and is set to 0.01 partition of the interval between upper bound and lower bound.
The Laplacian of function s is expected to be positive for a locally convex landscape in many of the ith

dimensions and to be negative for a locally concave landscape in many of the ith dimensions. A near-zero
Laplacian of the function s indicates that the objective function has a rather flat distribution, and there is no
gradient on the landscape in many of the ith dimensions.

Figure 2 (e-h) demonstrate the frequency distributions of s and the corresponding mean µ and standard
deviation σ, where we uniformly sampled 1 million inputs from the individual parameter spaces (in 10D) of
the functions. Ackley shows a positively skewed distribution with µ close to 0 and σ of 9.18, suggesting a
moderate fluctuation in concavity across all dimensions with some more convex areas (Figure 2e). Rosenbrock
shows both large µ of 9.18× 104 and σ of 2.70× 104, indicating a landscape that is heavily convex anywhere
in the landscape domain, with highly anisotropic concavity across all dimensions (Figure 2f). In contrast,
Schwefel shows near-zero values for both µ and σ, implying a landscape that is generally flat with a rather
small, isotropic concavity across all dimensions (Figure 2g). Interestingly, Michalewicz shows a µ close to 0
and an abnormally large σ, implying that the landscape is flat with some small areas being dramatically
concave or convex (Figure 2h).

Landscape flatness To quantitatively measure the flatness of the landscape, we introduce a metric
landscape flatness ω based on the mean µ and variance σ of the frequency distributions of s, which is defined
as:

ω =
√

σ

|µ|
. (3)

Ackely-10 and Rosenbrock-10 have ω of 3.62 and 0.54, respectively, whereas ω of Schwefel-10 and Michalewicz-
10 are 37.07 and 54.47, respectively, indicating that the overall landscape is rather flat. Indeed, Figure 3
demonstrates a strong correlation between the flatness measure ω and surrogate performance across model
types (Random Forest and XGBoost). Appendix Figure A3 further confirms that this relationship holds
across multiple dimensionalities. In particular, functions with lower ω values are consistently easier for
surrogate models to learn than those with higher ω values.
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Surrogate model training A key challenge for AL search strategies with surrogate models is to learn a
good approximator of the objective function with only a few samples. Figure 2 (i-l) presents the correlations
of the ground truth function values and the surrogate model (i.e. neural network in this case) predictions for
different functions (all in their 10D forms). Each surrogate model f̂ was trained on a dataset D = {(xi, f(xi)}
of inputs xi and the corresponding function value f(xi) (see Appendix A.3 for more details). It can be
observed that surrogate models generalize better on landscapes with gradients (i.e., Ackley and Rosenbrock),
and worse on flat landscapes (i.e., Schwefel and Michalewicz). It is likely that a surrogate model requires
many more samples to generalize in the low ω scenario.

Figure 4: Evaluation of sampling efficiency for Ackley, Rastrigin, Rosenbrock in 100-dimension. SASSBO
stops early because of out-of-memory. No single search strategy demonstrates consistent superiority across all
scenarios.

Data sampling efficiency Figure 4 shows the history of the performance of AL search strategies to
evaluate the sampling efficiency of the algorithms. Here, 14 methods are benchmarked against the current
minimum across different data acquisition scenarios. The results reveal that no single method consistently
outperforms others across all situations. Notably, TuRBO5 achieves the best performance on the Ackley-100
and Rastrigin-100 tasks, while CMA-ES excels in the Rosenbrock-100 task.

5 Real-world benchmark tasks

Many real-world tasks can be treated as SLs, where high-fidelity simulators are combined with learning
models, automatically optimizing designs to achieve better mechanical, physical, or chemical properties within
a virtual environment. SLs are essential across a multitude of complex real-world systems, particularly when
experiments are associated with prohibitive costs and extensive design spaces. The virtual tasks included
in SLs can be framed as typical AL problems. In this work, we focus on four benchmark tasks within SLs:
neural network architecture search (NAS), lunar landing problem, cyclic peptide design and optimization of
electron ptychography reconstruction. These benchmark tasks are selected because (i) they are supported by
accurate high-fidelity simulators, (ii) they address optimization problems with single or multiple objectives in
the broad fields of computer science, automation control, biology, and materials science, and (iii) they can be
executed within reasonable time and computational resources. Note that the experimental setups for NAS
and lunar landing problem are detailed in Appendix A.5 and A.6, respectively.

5.1 Cyclic peptide design

Background Cyclic peptides are a class of compounds that have garnered significant attention as therapeutic
agents due to their enhanced stability, high specificity, and excellent membrane permeability. These properties
make them particularly effective in targeting traditionally "undruggable" protein surfaces (Vinogradov et al.,
2019). The amino acids (AAs) in cyclic peptides are interconnected by amides or other chemically stable bonds,
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Figure 5: Pipelines of two chosen real-world tasks: (a) cyclic peptide design and (b) electron ptychography.

which can be chosen from the 20 standard AAs or various non-standard ones, creating a high-dimensional
and complex sequence design space (Zorzi et al., 2017).

Here, the task is more specific than general protein design: it involves designing a specialized type of protein
with therapeutic applications. This protein is required to exhibit stronger interactions with its target, such
as higher binding affinity. Such a task can be framed as an optimization problem. However, even for a
relatively simple 16-residue sequence, the combinatorial search space includes 1620 possible configurations. The
intricate and nonlinear relationship between protein sequence and functional properties further complicates
the challenge, making it a suitable benchmark for testing advanced methodologies. An additional advantage
of this setup is the availability of natural binders as a reference for comparison. Traditionally, one often
needs to conduct high-throughput wet lab experiments, synthesizing thousands of cyclic peptides before
discovering one that can specifically bind to a desired protein (Gang et al., 2018). SL can accelerate this
discovery process by narrowing the potential candidates to a few dozen, drastically reducing the cost. The
general pipeline of this task is present in Figure 5 (a).

Dataset Two protein and canonical cyclic peptide complexes, PDBID: 4kel and PDBID: 7k2j, are sourced
from the Protein Data Bank (PDB). The former is a 14-amino acid serine protease inhibitor targeting human
kallikrein-related peptidase 4 (KLK4) (Riley et al., 2019), while the latter is a cyclic 7-mer peptide interacting
with Kelch-like ECH-Associated Protein-1 (KEAP1) (Ortet et al., 2021). For simplicity, we only consider
standard amino acids. Therefore, each cyclic peptide is represented as a sequence of integers ranging from 0
to 19, with each number corresponding to a distinct type of standard amino acid, making this a discrete
optimization task.

Optimization target The optimization target of cyclic peptide design is defined as follows:

Target = SC · dSASA (4)

The SC value ranges from 0 to 1, referring to how well the surfaces of two proteins fit geometrically together
at their interface; dSASA measures the size of the interface (in units of Å2). A larger dSASA reflects a
more extensive interface area. Further details regarding the dataset and simulation settings can be found in
Appendix A.7.

5.2 Electron ptychography

Background Electron ptychography is a phase-contrast imaging technique capable of resolving nanos-
tructures at a sub-angstrom resolution. Electron ptychography is widely used for specimens thicker than a
monolayer (Cowley & Moodie, 1957) and sensitive materials vulnerable to beam-induced damage (Song et al.,
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Table 1: Evaluations of AL search strategies on synthetic functions with the usage of surrogate model, where
the values with bold texts denote the best optimization result across all the methods. Results are averaged
over 5 trials, and ± denotes the standard deviation.

Ackley-20 Ackley-100 Rastrigin-20
(×102)

Rastrigin-100
(×103)

Rosenbrock-20
(×104)

Rosenbrock-100
(×104)

Schwefel-20
(×103) Michalewicz-20

f(x∗) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -19.63
Random 7.59 ± 0.17 9.23 ± 0.13 2.18 ± 0.15 1.47 ± 0.016 2.380 ± 0.119 64.60 ± 0.936 5.50 ± 0.11 -6.11 ± 0.42
TuRBo5 0.37 ± 0.14 1.73 ± 0.18 0.52 ± 0.04 0.40 ± 0.034 0.003 ± 0.000 0.127 ± 0.066 2.84 ± 0.79 -11.34 ± 1.20
LaMCTS 1.96 ± 0.75 5.05 ± 0.73 0.80 ± 0.30 0.82 ± 0.044 0.008 ± 0.005 0.652 ± 0.098 3.32 ± 0.33 -7.66 ± 0.44
CMA-ES 0.75 ± 0.09 2.85 ± 0.04 0.78 ± 0.03 0.97 ± 0.017 0.006 ± 0.004 0.037 ± 0.004 5.28 ± 0.44 -6.38 ± 0.33
Diff-Evo 6.43 ± 0.16 8.13 ± 0.19 1.88 ± 0.12 1.30 ± 0.032 0.797 ± 0.115 28.30 ± 2.690 5.10 ± 0.17 -6.05 ± 0.73
DA 0.00 ± 0.00 3.28 ± 0.19 1.29 ± 0.06 0.53 ± 0.039 0.005 ± 0.003 0.908 ± 0.088 2.38 ± 0.39 -10.03 ± 0.77
Shiwa 4.43 ± 0.07 5.78 ± 0.52 2.48 ± 0.02 1.19 ± 0.047 2.266 ± 0.146 0.240 ± 0.022 5.49 ± 0.32 -6.65 ± 1.13
MCMC 0.00 ± 0.00 4.79 ± 0.16 0.89 ± 0.27 0.73 ± 0.038 0.011 ± 0.006 0.088 ± 0.036 2.11 ± 0.86 -9.74 ± 1.18
DOO 7.17 ± 0.37 9.44 ± 0.09 2.22 ± 0.14 1.50 ± 0.044 1.640 ± 0.456 72.22 ± 2.700 5.56 ± 0.29 -6.13 ± 0.28
SOO 7.75 ± 0.18 9.40 ± 0.17 2.24 ± 0.08 1.54 ± 0.027 2.760 ± 0.744 76.30 ± 2.700 2.89 ± 2.18 -6.34 ± 1.17
VOO 2.44 ± 0.49 5.23 ± 0.17 1.03 ± 0.13 0.92 ± 0.028 0.006 ± 0.000 2.107 ± 0.324 5.38 ± 0.08 -7.98 ± 0.79
IPOP-CMA-ES 2.26 ± 0.15 4.18 ± 0.13 1.24 ± 0.15 1.25 ± 0.109 0.010 ± 0.001 0.706 ± 0.150 4.58 ± 0.63 -6.62 ± 0.52
BIPOP-CMA-ES 6.93 ± 0.35 9.10 ± 0.05 1.87 ± 0.16 1.43 ± 0.048 2.195 ± 0.517 60.16 ± 5.246 5.61 ± 0.25 -6.08 ± 0.41
SAASBO 1.29 ± 0.30 3.44 ± 0.33 1.11 ± 0.29 0.93 ± 0.049 0.037 ± 0.008 1.087 ± 0.251 4.35 ± 0.50 -6.18 ± 0.24

All benchmark tasks here involve minimization objectives.
The asterisk (*) represents the global minimum of the function.

2019). However, electron ptychography relies on a careful selection of various reconstruction parameters,
such as physical, optimization, and experimental parameters, which affect the quality and accuracy of the
retrieved transmission function. The parameter space is vast and complex, and the optimal choice depends
on the specific configuration of the dataset and measurement conditions. Although some algorithms have
been applied to this task (such as Bayesian optimization using Gaussian process (Cao et al., 2022)), the
parameter selection process still strongly relies on expert knowledge and trial-and-error, which limits the
efficiency and applicability of electron ptychography. The entire pipeline can be found in Figure 5 (b).

Dataset The dataset is a 4D datacube, comprising 2D grid of positions, each of which records a 2D diffraction
pattern by a converged electron probe. Here, we utilized abTEM (Madsen & Susi, 2021) to simulate the
dataset: 10-layer-stacked molybdenum disulfide (MoS2), an emergent two-dimensional semiconductor that
demonstrates strong potential to exceed the fundamental limits of silicon electronics (Li et al., 2024). The
MoS2 dataset is simulated with intentionally exaggerated probe aberrations to pose challenges for the
optimization algorithms.

Optimization target The goal of this task is to optimize the reconstruction parameters within the electron
ptychography algorithm to retrieve the best quality of phase of the transmission function within the atomic
lattice. This requires solving a non-convex problem in a 15D parameter space in our case (see Appendix
A.8 for details). Specifically, the objective function is the normalized mean square error (NMSE) between
the positive square-root of the measured diffraction pattern IM and the modulus of the Fourier-transformed
simulated exit-wave Ψ, which can be formulated as:

1
N

N∑
i

∣∣∣√IM(i)(u)− |F [Ψi(r)]|
∣∣∣2

(5)

where r and u denote the real- and reciprocal-space coordinate vectors, respectively, N is the total number
of the measured diffraction patterns, and the operator F represents a Fourier transform. Further details
regarding the dataset, simulation settings, and evaluation metrics can be found in Appendix A.8.
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Figure 6: Benchmarks of sampling efficiency for Neural Architecture Search (NAS) in 21-dimension and lunar
landing problem in 100-dimension. Note that both problems involve maximization objectives.

6 Results

6.1 Synthetic benchmarks

We benchmark 14 state-of-the-art search methods (including Random Search) alongside neural network as
the surrogate model on synthetic function tasks within the AL pipeline. These methods span a wide range
of algorithm categories, including Dual Annealing (DA (Pincus, 1970)), Evolutionary Algorithm (CMA-ES
(Hansen et al., 2003), IPOP-CMA-ES (Auger & Hansen, 2005; Nomura & Shibata, 2024), BIPOP-CMA-ES
(Hansen, 2009), Differential Evolution (Diff-Evo (Storn & Price, 1997)), Shiwa (Liu et al., 2020)), Bayesian
Optimization (BO (Gardner et al., 2014), TuRBO (Eriksson et al., 2019), SAASBO (Eriksson & Jankowiak,
2021)), Monte Carlo Tree Search (LaMCTS(Wang et al., 2020), DOO (Munos, 2011), SOO (Munos, 2011),
and VOO (Kim et al., 2020b)). The implementation settings of each AL search strategies can be found in
Appendix A.4. Our evaluation covers all functions in their 20D forms, as well as the Ackley, Rastrigin, and
Rosenbrock functions in both 20D and 100D forms. The result can be found in Tabel 1.

Two key insights emerge from these findings. First, these methods are more effective with lower-dimensional
functions, but their performance diminishes as dimensionality increases. Second, search methods tend to
work better on functions that have well-fitting surrogate models (i.e., Ackley and Rosenbrock), while they
perform less well or even not better than random sampling with poorer surrogate model fittings (i.e. Schwefel
and Michalewicz, as shown in Figure 2). The observed variance primarily arises from data sparsity associated
with high dimensionality. Within our active learning pipeline, we train a surrogate model that serves as the
basis for exploration and optimization by search algorithms. Notably, the search algorithm operates without
direct access to ground truth labels, making the random initialization of the surrogate model’s training
dataset a critical factor influencing the outcomes. Variations in these initializations yield distinct surrogate
models, which in turn contribute to increased variance across trials. This effect is particularly pronounced in
high-dimensional problems, where greater variance is anticipated due to the exacerbated sparsity.

6.2 Real-world benchmarks

For the NAS and lunar landing problem, we benchmark the results using six to nine different AL search
strategies. For biology and materials science tasks, we evaluate the performance of four selected AL search
strategies: Diff-Evo, DA, TuRBO5, and BO. Each task is subjected to three independent trials to ensure
robust results, with each AL search strategy having a fixed number of oracle function evaluations.

Neural Architecture Search and Lunar Landing Problem Figure 6 shows benchmark results of both
real-world problems. As for NAS, We benchmark the problem with six optimization algorithms: Random
Search, MCMC, CMA-ES, DA, LAMCTS, and TuRBO5, where MCMC dominates and rapidly reaches 0.941
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Table 2: Evaluations on two real-world tasks. Shape Complementarity (SC) and the change in Solvent
Accessible Surface Area (dSASA) are used for cyclic peptide design, and normalized mean square error,
object reconstruction or and probe reconstruction error are used for ptychographic reconstruction on the
MoS2 dataset. Upward arrow (↑) and downward arrow (↓) indicate maximization and minimization tasks,
respectively. Results are averaged over 3 trials, and ± denotes the standard deviation.

Cyclic peptide design Electron ptychography

4kel-SC ↑ 4kel-dSASA ↑ 4kel-Target ↑ 7j2k-SC ↑ 7j2k-dSASA ↑ 7j2k-Target ↑ NMSE ↓ Object recon. error ↓ Probe recon. error ↓
(×10−3)

Reference* 0.77 1505 1156 0.67 865 582 0.079 0.048 0.35

Diff-Evo 0.72 ± 0.05 1464 ± 65 1046 ± 69 0.66 ± 0.04 923 ± 72 613 ± 61 0.283 ± 0.005 0.102 ± 0.008 2.96 ± 0.34
DA 0.70 ± 0.03 1556 ± 32 1096 ± 48 0.65 ± 0.04 894 ± 59 570 ± 19 0.313 ± 0.005 0.118 ± 0.011 3.05 ± 0.27
TuRBO 0.71 ± 0.03 1501 ± 37 1059 ± 55 0.63 ± 0.01 904 ± 42 572 ± 17 0.275 ± 0.000 0.104 ± 0.001 2.60 ± 0.08
BO 0.72 ± 0.02 1431 ± 14 1035 ± 22 0.60 ± 0.03 908 ± 56 546 ± 57 0.300 ± 0.000 0.097 ± 0.000 3.28 ± 0.00

*Reference denotes "native" for cyclic peptide design and "expert reconstruction result" for electron ptychography.

Figure 7: Benchmarking the cyclic peptide design task: visualization of protein 4kel yielded complex results,
with the highest target value observed across three trials, where SC and dSASA denotes shape complementarity
and change in Solvent Accessible Surface Area, respectively. The left inset illustrates the cyclic peptide
sequence, while the right inset presents the interaction map for each method: (a) Diff-Evo, (b) DA, (c)
TuRBO5, and (d) BO.

with 500 data acquisitions. Regarding the lunar landing, we evaluate this problem using nine algorithms:
Random Search, DOO, SOO, VOO, Shiwa, CMA-ES, Diff-Evo, DA, and MCMC.

Cyclic peptide design Table 2 presents the results of the AL search strategies for different metrics. In the
cyclic peptide design task, global optima is unknown, and therefore any method that yields the target value
exceeding the native complex (denoted as "Reference" in Table 2) can be considered a ’success’. According to
this criterion, none of the tested AL search strategies succeeded in finding a better binder for protein (pdbid:
4kel), and only Diff-Evo achieved a better design for protein 7j2k. However, it is noteworthy that in this type
of design task, native does not represent the best designs. Figure 7 illustrates the complex with the highest
target value optimized by the AL search strategies for protein 4kel. All these complexes contain hydrophobic
residues that fit into the protein pocket, contributing to the high target values. More detailed settings about
AL search strategies can be found in Appendix A.7

Electron ptychography Table 2 summarizes the performance of AL search strategies on ptychographic
reconstructions of the MoS2 dataset, where "Reference" denotes the expert reconstruction results for a
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Figure 8: Benchmarking the electron ptychography task: visualization of the reconstructed phases (of the
object transmission functions) with parameters obtained from the corresponding AL search strategies. No
single strategy achieves results comparable to the ground truth.

single-layer MoS2 dataset with the same aberration settings. It is observed that all AL search strategies do
not achieve the optimal reconstruction of both object and probe functions. However, TuRBO5 and Diff-Evo
can attain lower NMSE values and have generally more physically sensible reconstructions for the phases of
the object transmission functions. As shown in Figure 8, despite not being perfect, both AL search strategies
(Diff-Evo and TuRBO5) can resolve the atomic contrasts of heavy Molybdenum (brighter) atoms and light
Sulfur atoms (darker). On the other hand, DA and BO present higher NMSE values and are considered
worse in ptychographic reconstruction. We note that although not able to fully resolve atomic contrasts
from different atoms, BO has the lowest object reconstruction error and can retrieve an object transmission
function with general atomic signals. More detailed analyses are included in Appendix A.8.

7 Discussion

Data-driven tasks in real-world problem represent exciting areas with tremendous potential for the development
of self-driving labs. However, the absence of standardized benchmarks and evaluation protocols has hindered
the accurate tracking of progress. To address this, we design an active learning pipeline that tailors to
self-driving lab settings, including (i) iterative process, (ii) use of surrogate models and (iii) low-data regime.
Our benchmark BALSA is a comprehensive resource that includes (i) a codebase, (ii) a suite of synthetic
tasks, and (iii) two complex tasks with controlled simulators and two real-world applications in biology and
materials science. It features a large-scale empirical evaluation and provides a template for reproducible
research and for systematically advancing the performance of algorithms across disciplines, with virtual labs
and high-fidelity simulators having the potential to reduce the need for costly and time-consuming real-world
experiments. Our extensive evaluation highlights current limitations and indicates promising directions for
future research, including developing methods for hyperparameter selection with network-based surrogate
models and scaling approaches to very high dimensions.
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A Appendix

A.1 Synthetic functions

The synthetic functions are designed to evaluate and analyze computational optimization approaches. In
total, eig of them are selected based on their physical properties and topologies. The Ackley function can be
written as:

f(x) = −a · exp(−b

√√√√1
d

d∑
i=1

x2
i − exp(1

d

d∑
i=1

cos(cxi)) + a + exp(1), (6)

where a = 20, b = 0.2, c = 2π, and d is the dimension.

The Rosenbrock function can be written as:

f(x) =
d−1∑
i=1

[100(xi+1 − x2
i )2 + (xi − 1)2]. (7)

The Rastrigin function can be written as:

f(x) = 10d +
d−1∑
i=1

[x2
i − 10 cos(2πxi)]. (8)

The three functions are evaluated on the hypercube xi ∈ [−5, 5], for all i = 1, . . . , d with a discrete search
space of a step size of 0.1.

The Schwefel function can be written as:

f(x) = 418.9828d−
d∑

i=1
xi sin(

√
|xi|), (9)

where d is the dimension. The function is evaluated on the hypercube xi ∈ [−500, 500], for all i = 1, . . . , d
with a discrete search space of a step size of 1.

The Griewank function can be written as:

f(x) =
d∑

i=1

x2
i

4000 −
d∏

i=1
cos( xi√

i
) + 1, (10)

where d is the dimension. The function is evaluated on the hypercube xi ∈ [−600, 600], for all i = 1, . . . , d
with a discrete search space of a step size of 1.

The Michalewicz function can be written as:

f(x) = −
d∑

i=1
sin(xi) sin2m( ix2

i

π
), (11)

where d is the dimension. The function is evaluated on the hypercube xi ∈ [0, π], for all i = 1, . . . , d with a
discrete search space of a step size of 10−4.

The Levy function can be written as:

f(x) = sin2(πω1) +
d−1∑
i=1

(ωi − 1)2[1 + 10 sin2(πωi + 1)] + (ωd − 1)2[1 + sin2(2πωd)], (12)
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Figure A1: Evaluation of sampling efficiency for Ackley, Rastrigin, Rosenbrock in 20-dimension. No single
method demonstrates consistent superiority across all scenarios.

where ωi = 1 + xi−1
4 , and d is the dimension. The function is evaluated on the hypercube xi ∈ [−10, 10], for

all i = 1, . . . , d with a discrete search space of a step size of 0.1.

The Sphere function can be written as:

f(x) =
d∑

i=1
x2

i , (13)

where d is the dimension. The function is evaluated on the hypercube xi ∈ [−5, 5], for all i = 1, . . . , d with a
discrete search space of a step size of 0.1.

A.2 Data sample efficiency

Figure A2 shows the history of the active learning performance to evaluate the sampling efficiency of the
algorithms with 20-dimension. Similar to Figure 4, 14 methods are evaluated against the current minimum
across different data acquisition scenarios. Consistent with obversation in high dimensional problems, no
single method demonstrates consistent dominance across all tasks. For the Ackley-20 function, DA and
MCMC demonstrate rapid convergence to the global minimum of f(x). In the Rastrigin-20 function, TuRBO5
and DA outperforms other approaches. Interestingly, search methods such as TuRBO5 constantly achieves
lower values, whereas others, e.g. Diff-Evo, appear to become trapped in local minima.

A.3 Surrogate model setups

Training details We used 1D convolutional neural networks (1D-CNN) as the surrogate model to fit the
synthetic functions. We initiated each surrogate model training with 2,000 uniformly sampled data points
from the parameter space of the corresponding synthetic function to train the surrogate model, where 1,600
samples were used for the training set and 400 samples for the testing set. Adam Optimizer was employed
with a learning rate of 0.001, and the activation function utilized is the Exponential Linear Unit (ELU). The
loss function is the mean square error (MSE) for all synthetic functions except Rastrigin where we used
mean absolute percentage error (MAPE). The 1D-CNN model is trained for 500 epochs with early stopping
patience of 30 and a batch size of 64. Additionally, the outputs for some of the functions are transformed
to avoid the scaling problem for surrogate model training, the corresponding transformation (if applied) is
defined in the corresponding sections as follows.

Ackley The 1D-CNN comprises 5 convolutional layers with filter sizes of 128, 64, 32, 16, and 8 respectively,
each using a kernel size of 3. It also includes 2 max-pooling layers with a pooling size of 2, 2 dropout
layers with a dropout rate of 0.2, followed by a flatten layer, 2 fully connected layers with 128 and 64 units
respectively, and an output layer. To obtain a better fitting, we employed a transformation of 100/(f(x)+0.01)
to the output of the Ackley function f(x).
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Figure A2: Additional experiments on the influence of dimensionality on the performance.
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Figure A3: Mean Pearson correlation (r) vs. mean flatness (ω) for surrogate models (CNN, Random Forest,
XGBoost) across benchmark functions and dimensions (10d–200d). Each point represents a function, color-
coded by type.
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Rastrigin The 1D-CNN consists of 6 convolutional layers with filter sizes of 256, 128, 64, 32, 16, and
8 respectively. The kernel sizes are 5, 5, 3, 3, 3, and 3 respectively, with strides of 1, 2, 2, 1, 1, and 1
respectively. Following these convolutional layers is a flatten layer, 2 fully connected layers with 128 and 64
units respectively, and an output layer.

Rosenbrock The 1D-CNN comprises 6 convolutional layers with filter sizes of 128, 64, 32, 16, 8, and 4
respectively, each using a kernel size of 3. Additionally, there are 3 max-pooling layers with a pooling size of 2,
2 dropout layers with a dropout rate of 0.2, followed by a flatten layer, 1 fully connected layer with 64 units,
and an output layer. To obtain a better fitting, we employed a transformation of 100/(f(x)/100d + 0.01) to
the output of the Rosenbrock function f(x) in its d-dimensional form.

Griewank The model architecture is the same as Rosenbrock. We employed the transformation 10/(f(x)/d+
0.001) to the output of the Griewank function f(x) in its d-dimensional form.

Schwefel The 1D-CNN consists of 7 convolutional layers with filter sizes of 256, 128, 64, 32, 16, 8, and
4 respectively. The kernel size is set to 5 with a stride of 1 for all layers. These are followed by a flatten
layer, 6 fully connected layers with 128, 64, 32, 16, and 8, respectively, and an output layer. We re-scaled the
output of the Schwefel function f(x) with a factor of 0.01.

Michalewicz The 1D-CNN comprises 5 convolutional layers with filter sizes of 128, 64, 32, 16, and 8
respectively, each using a kernel size of 3 with a stride of 1. Additionally, there are 3 max-pooling layers with
a pooling size of 2, 2 dropout layers with a dropout rate of 0.2, followed by a flatten layer, 1 fully connected
layer with 64 units, and an output layer.

Levy The 1D-CNN comprises 6 convolutional layers with filter sizes of 128, 64, 32, 16, 8, and 4 respectively,
each using a kernel size of 3 with a stride of 1. Additionally, there are 3 max-pooling layers with a pooling
size of 2, 2 dropout layers with a dropout rate of 0.2, followed by a flatten layer, 1 fully connected layer with
64 units, and an output layer.

Sphere The model architecture is the same as Levy.

A.4 Setups for AL search strategies

For the benchmark of synthetic function tasks, the AL search strategies were conducted without information
on the ground truth oracle functions. The implementations of VOO, SOO, and DOO were sourced from an
established repository 1, while the methods including CMA-ES, Differential Evolution (Diff-Evo), and Dual
Annealing (DA) were derived from the Scipy optimize module, and Shiwa was obtained from Nevergrad 2.
The implementation of Bayesian Optimization is from 3. The implementation of TuRBO5 is from 4. The
implementation of LAMCTS is from 5. The implementation of IPOP-CMA-ES and BIPOP-CMA-ES is from
6. The implementation of SAASBO is from 7(Balandat et al., 2020). All algorithms were employed with the
default setting in the reference implementation.

A.5 Additional Neural network architecture search details

NAS is an automated approach for identifying optimal neural network architectures by systematically exploring
and evaluating a wide range of network configurations to achieve superior performance on a specific task.

1https://github.com/beomjoonkim/voot
2https://github.com/facebookresearch/nevergrad
3https://github.com/bayesian-optimization/BayesianOptimization
4https://github.com/uber-research/TuRBO
5https://github.com/facebookresearch/LaMCTS
6https://github.com/CyberAgentAILab/cmaes
7https://github.com/pytorch/botorch/blob/main/tutorials/saasbo/saasbo.ipynb
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Dataset and optimization target To benchmark the efficacy of AL search strategies in optimizing
neural network structures within the context of active learning, we choose the NAS-Bench-101 dataset
(Ying et al., 2019), which contains over 400,000 unique convolutional neural networks along with their
corresponding performance metrics, trained on the CIFAR-10 dataset (Hinton et al., 2012). Each neural
network is represented by a 7×7 upper-triangular adjacency matrix with up to 9 edges, where nodes represent
specific operations and edges denote the connection relationships between these operations. The first operation
represents the input, and the last represents the output, while the remaining five components can be selected
from 3×3 convolution, 1×1 convolution, or 3×3 max-pooling. The objective of the NAS task is to identify an
optimized neural network structure that achieves the highest classification accuracy on the test set (test acc).

Neural network architecture encoding We adopt a truncated 40-bit path-based encoding scheme
(White et al., 2021) to represent the neural network structure, where each bit corresponds to a specific path
from the input layer to the output layer, incorporating various operators along the way. For optimization
algorithms like CMA-ES, Dual Annealing, LAMCTS, and TuRBO5, which require a well-defined search
domain, we parameterize the neural network structure into a 36-dimensional vector within the continuous [0,
1] space, as adopted from prior work (Letham et al., 2020). The first 21 entries correspond to the adjacency
matrix, where the largest values set the respective elements in the matrix to 1. The remaining 15 entries
represent the one-hot encoding of 5 components, each with three possible operations. For MCMC and
Random Search, optimization is performed directly at the adjacency matrix level.

Surrogate model We train a 1D-CNN model to map the path encoding into the test acc. The 1D-CNN
consists of 5 convolutional layers with filter sizes of 128, 64, 32, 16, and 8, respectively, each using a kernel
size of 3. It also includes 2 max-pooling layers with a pooling size of 2, 2 dropout layers with a dropout rate
of 0.2, followed by a flatten layer, 2 fully connected layers with 128 and 64 units, respectively, and a final
output layer. The loss function used is mean square error (MSE).

Setups for AL search strategies The optimization process begins by generating 200 random initial data
points from NAS-Bench-101, which are used to train the initial surrogate model. In the active learning loop,
optimization algorithms then sample 20 optimized successors by refining the surrogate model, expanding the
dataset. The updated surrogate model is subsequently used in the next iteration of the loop, continually
improving the optimization process.

• MCMC: The acceptance rate is defined as exp(−δ/T ), where δ represents the difference between
the proposal point and the current best point. If δ > 0, indicating the proposal point is better than
the current best, the proposal is accepted outright; otherwise, it is accepted with the calculated
acceptance rate. The temperature parameter, T, decreases exponentially with each iteration, starting
at an initial value of 0.01, with a half-life of 200 iterations.

• CMA-ES: 0.25 sigma0, 300 maxfevals, with other parameters using default settings.

• DA: 5 maxiter, 300 maxfun, with other parameters using default settings.

• LAMCTS: 40 ninits, 0.1 Cp, 100 iterations, with other parameters using default settings.

• TuRBO5: 50 n_init, 300 max_evals, 5 n_trust_regionsm, 10 batch_size, 2000 max_cholesky_size,
50 n_training_steps, with other parameters using default settings.

A.6 Additional Lunar landing problem details

The Lunar Lander problem is a widely recognized benchmark environment in the OpenAI Gym toolkit,
frequently utilized in reinforcement learning research to evaluate control strategies. The task involves
controlling a simulated lunar module to achieve a safe landing on the moon’s surface.
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Action Space and Reformulation The environment provides four discrete action options: (i) do nothing,
(ii) fire the left engine, (iii) fire the main engine, and (iv) fire the right engine. While this problem is
traditionally framed as a trajectory planning task with cumulative objectives, we reformulate it into a
non-cumulative optimization problem by fixing the initial conditions. The goal is to design an optimal
sequence of 100 discrete actions to maximize the reward, where the action space includes 0 (do nothing), 1
(fire left engine), 2 (fire main engine), and 3 (fire right engine). To ensure consistency, the environment reset
seed is fixed at 42 to generate a consistent initial state.

Search algorithms The setups of the search algorithms in the AL pipelines are as follows:

• Random: Random seed is set to 42.

• DOO: 0.1 explr_p with other parameters using default settings.

• SOO: Default settings.

• VOO: 1 explr_p with other parameters using default settings.

• Shiwa: Default settings.

• CMA-ES: Default settings.

• DA: Default settings.

• MCMC: Default settings.

A.7 Additional cyclic peptide design details

Pipeline The pipeline for cyclic peptide SL consists of three components: (1) AlphaFold2 with cyclic offsets
to predict the structure of protein-cyclic peptide complexes (Kosugi & Ohue, 2023); (2) ProteinMPNN to
ensure the diversity of designed cyclic peptide sequences (Dauparas et al., 2022); and (3) Rosetta’s interface
analyzer to evaluate the quality of the designed interface (Leaver-Fay et al., 2011). Given the structure of the
desired protein and the corresponding interaction hotspot, the pipeline begins with an optimization method
that iteratively searches for the sequence yielding the highest AlphaFold2 pLDDT (predicted Local Distance
Difference Test) score, which indicates the confidence level of the predicted structure. The optimized sequence
is fed into ProteinMPNN to generate a pool of diverse sequences. Finally, the product of two Rosetta binding
metrics—shape complementarity (SC) and the change in Solvent Accessible Surface Area (dSASA)—is used
to filter the output sequences, with the best-fit design likely to have high SC and dSASA values (Muratspahić
et al., 2023).

Simulation Settings The structure of the protein and cyclic peptide complex is predicted using AlphaFold2-
multimer with cyclic offsets, as implemented in ColabDesign (Kosugi & Ohue, 2023). ProteinMPNN is also
employed in ColabDesign with a batch size of 128. The SC and dSASA values for the predicted structure of
the protein and cyclic peptide complex are computed using the PyRosetta Interface Analyzer (Chaudhury
et al., 2010).

AL search strategy setups To ensure a fair comparison across AL search strategies, we limited the
number of oracle function evaluations to approximately 1000. The specific settings are detailed as follows.

• Diff-Evo: a population size of 15 with a maximum of 1000 function evaluations.

• DA: 50 iterations with a maximum of 1000 function evaluations.

• TuRBO5: 20 initial samples with 5 trust regions, followed by up to a maximum of 1000 evaluations
in batches of 5.

• BO: 50 initial samples followed by 950 iterations.
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Table A1: Optimized reconstruction parameters by different AL search strategies for the MoS2 dataset.
semiangle cutoff

(mrad)
energy

(kV)
number of
iterations step size identical

slices iteration
slice thicknesses

(Å)
number of

slices
defocus

(Å)
C12
(Å)

phi12
(rad)

C30
(Å)

C21
(Å)

phi21
(rad)

C23
(Å)

phi23
(rad)

Ground truth 20.0 80 - - - - - -130 20 0.79 -2.0×104 30 0.53 15 0.29
Diff-Evo 23.4 73 20 0.65 4 4.6 16 -185 6.0 0.95 -9.4×104 95 0.06 84 1.00
DA 22.0 269 18 0.87 33 5.4 21 -118 50.0 0.61 -4.1×104 62 0.15 47 0.87
TuRBO5 18.0 242 20 0.57 2 18.1 29 -8 4.0 0.60 -5.6×104 42 0.57 19 0.54
BO 22.4 254 10 0.71 2 34.4 17 -166 16.0 0.83 -5.4×104 89 0.3 16 0.03

A.8 Additional electron ptychography details

Simulation settings The MoS2 dataset uses an 80 kV probe energy, a 20 mrad probe-forming semi-angle, a
set of probe aberration coefficients of defocus -130 Å, two-fold astigmatism (C12) 20 Å, two-fold astigmatism
angle (Phi12) 0.785, three-fold astigmatism (C23) 15 Å, three-fold astigmatism angle (Phi23) 0.295, axial
coma (C21) 30 Å, axial coma angle (Phi21) 0.534, spherical aberration (C30) −2 × 104 Å. The dataset
consists of 51 diffraction patterns with a 0.312 Å scanning step size in the real space. In addition, all
diffraction patterns in both datasets were corrupted with Poisson noise of 10,000 e/Å2 for this task. The
ptychographic reconstruction is performed with a multi-slice approach using py4DSTEM (Savitzky et al.,
2021), a comprehensive open-source package for different modes of 4D-STEM data analysis.

Evaluation metrics In addition to the NMSE score, we evaluate the quality of electron ptychographic
reconstruction using two extra metrics: probe and object reconstruction errors. First, the probe reconstruction
error calculates the normalized mean square error between the reconstructed and the simulated probes in
the real space. While the ptychographic algorithm itself does not have the access to the ground truth probe
function, a successful ptychographic reconstruction must accurately retrieve both the probe function and the
object transmission function. As we deliberately exaggerated the aberrations of the probe in the MoS2 dataset,
this metric can act as another useful metric to evaluate the reconstruction. Second, the object reconstruction
error computes the normalized mean square error between the median-angle-annular-dark-field signal (without
added noise) and the phase of the object transmission function. This metric directly demonstrates the quality
of the retrieved object transmission function.

Hyper-parameter settings We used 20 samples for initialization of all AL search strategies. We set
the independent trust regions to 5 for TuRBO. The rest hyper-parameters take the default values for the
individual AL search strategies.

Optimization results The optimization history (Figure A5) shows that TuRBO achieves the lowest
NMSE after 500 samples, while other methods are trapped into local minima. Table A1 summarizes the
reconstruction parameters for each AL search strategies. Figure A4 visualizes the reconstructed amplitude of
the probe functions with different AL search strategies.
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Figure A4: Visualization of amplitude (of the probe functions) reconstructed using parameters obtained from
the corresponding AL search strategies. The second row visualizes the normalized mean square error between
the ground truth and the reconstructed amplitude values.

Figure A5: Optimization history of AL search strategies on the MoS2 dataset.
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