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PPDM++: Parallel Point Detection and Matching
for Fast and Accurate HOI Detection

Yue Liao, Si Liu, Yulu Gao, Aixi Zhang, Zhimin Li, Fei Wang, Bo Li

Abstract—Human-Object Interaction (HOI) detection aims to understand human activities by detecting interaction triplets. Previous
HOI detection methods adopt a two-stage instance-driven paradigm. Unfortunately, many non-interactive human-object pairs
generated by the first stage are the main obstacle impeding HOI detectors from high efficiency and promising performance. To remedy
this, we propose a novel top-down interaction-driven paradigm, detecting interactions first and bridging interactive human-object pairs
through interactions. We formulate HOI as a point triplet <human point, interaction point, object point> and design a Parallel Point
Detection and Matching (PPDM) framework. We further take advantage of two-stage methods and propose a novel framework,
PPDM++, that detects the interactive human-object pairs by PPDM, then extracts region features for each pair to predict actions. The
core of PPDM/PPDM++ is to convert the instance-driven bottom-up paradigm to an interaction-driven top-down paradigm, thus
avoiding additional computation costs from traversing a tremendous number of non-interactive pairs. Benefiting from the advanced
paradigm, PPDM/PPDM++ has achieved significant performance gains with high efficiency. PPDM-DLA-34 has achieved 19.94 mAP
with 42 FPS as the first real-time HOI detector, and PPDM++-SwinB achieves 30.1 mAP with 17 FPS on HICO-DET dataset. We also
built an application-oriented database named HOI-A, a supplement to the existing datasets.

Index Terms—Human-Object Interaction Detection, Visual Relationship Detection, One-stage Detector, Dataset.

1 INTRODUCTION

Intelligent human activities analysis for human-centric vi-
sual scenarios is a fundamental task in the computer vision
area. Human-object Interaction (HOI) detection concentrates
on instance-level human interactive activities analysis in
a static image. In specific, the goal of the HOI detection
task is to detect interactive human and object pairs and
classify their interactive actions in an image, thus generating
a series of HOI triplets <Human Box, Object Box, Action>.
HOI detection is considered a structural understanding of
human-centric scenarios, which is an important step toward
the high-level semantic understanding tasks, e.g., image
caption, and visual question answer. Moreover, HOI de-
tection takes is able to support a broad range of practical
applications, such as dangerous activity alerts, smart retail,
and human-machine interaction.

With the development of deep learning, HOI detection
[48], [15], [14], [13], [16], [27], [37] has attracted increasing
attention recently. As shown in Figure 2(a), previous HOI
detection methods [4], [37], [16], [27], [44], [25] are mostly
built upon object detection methods with an instance-driven
bottom-up mechanism and a two-stage serial architecture.
Such methods first employ an instance detector [12], [38] to
produce a series of human and object instances as proposals.
Then, an interaction classification network is adopted to
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Fig. 1. mAP versus inference speed (the processed image number
per second) on the HICO-DET test set. Our PPDM-DLA outperforms
the traditional two-stage methods with an inference speed of 41.67 fps
(0.024s). It is the first HOI detection method to achieve real-time speed.
Our PPDM++ has achieved about 3 mAP improvement over PPDM in
the same backbone setting. Our PPDM++ with the ‘Swin-transformer
base’ backbone can achieve 30.1 mAP with an inference speed of
17FPS.

match interactive human and object instance pairs and
recognize their interactive actions in a bottom-up manner.
The matching and classification of conventional methods
are mostly straightforward but inefficient processes, where
the output instance proposals are firstly filtered to pro-
duce M human and N object proposals and matched pair-
wisely to form M x N human-object proposals, and then
a classification module is adopted to classify the interac-
tions of each human-object proposal. The serial and isolated
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Fig. 2. The comparison of the traditional two-stage serial framework, our novel one-stage PPDM framework, and our novel two-stage framework
based on PPDM, namely PPDM++. (a) The traditional two-stage framework first adopts an instance detector to detect human and object instances
and generate human-object proposals by densely connecting the detected human and object instances. Secondly, an action classification model is
designed to recognize the action type for each proposal one by one. (b) We reformulate HOI detection as a point detection and matching problem
in a two parallel branches framework. We represent the human/object box as the center points, widths, and heights. Based on this, we design
an interaction point, i.e., the midpoint of the human and object point, to link an interactive human-object pair and represent the corresponding
actions. Simultaneously, we define two displacements from each interaction point to the human/object, where the human point and the object
point originating from the same interaction point are considered interactive pairs. (c) We further integrate our PPDM formulation into the two-stage
framework and propose a novel two-stage framework, dubbed PPDM++. PPDM++ directly detects the interactive human-object pairs firstly by
PPDM, then extract region features for each human-object pair to predict the corresponding action type.

two-stage architecture heavily limits the effectiveness and
efficiency of the two-stage algorithms. For effectiveness, the
instance proposals are generated and filtered based on the
detection confidence only while ignoring the interactive-
ness between a human-object instance pair, thus causing
low-quality human-object proposals. Moreover, develop-
ing human-object pairwise proposals in a dense-connection
manner has significantly increased the number of negative
non-interactive proposals. However, an image only consists
of a few interactive human-object pairs. In this case, this
process not only costs a lot of computation resources unnec-
essarily but also increases the difficulty of finding positive
samples influencing the effectiveness.

To remedy the limitation of the two-stage framework,
we rethink the definition and attempt to extract key points
as an intrinsical expression of instances, then represent an
HOI as a point triplet <human point, interaction point,
object point>. Based on this definition, we develop a top-
down interaction-driven idea, where we find the interaction
point first and then locate the corresponding human and
object points. To this end, we reformulate HOI detection as
a point detection and matching problem and design a novel
one-stage parallel HOI detection framework, Parallel Point
Detection and Matching (PPDM). As shown in Figure 2(b),
our proposed PPDM breaks up the complex task of HOI
detection into two simpler parallel tasks and is composed
of two parallel branches. The first branch is points detection,
which predicts HOI triplets (interaction, human and object
points), and the corresponding sizes (width and height),
as well as local offsets for human and object points. To
predict the interaction between human and object, we select
an interaction point that has the best semantic information
to predict the interaction. And to match each interaction
point with the human point and the object point, we de-
sign two displacements from the interaction point to its
corresponding human and object point. The second branch
is points matching, which predicts two displacements from
the interaction point to its corresponding human point and
object point to match each interaction point with the human
point and the object point. The human and object points

originating from the same interaction point are considered
matched, and the three points form an HOI triplet. Our
PPDM is the interaction-driven manner, where we locate
interaction points first, and interaction points guide match-
ing human-object pairs. In this way, we obtain high-quality
human-object pairs considering their interactiveness and de-
tection confidence together. It is different from the human-
object proposal generation stage in two-stage methods,
where all detection human/object boxes indiscriminately
form the human-object proposals to feed into the second
stage. Moreover, in the point matching branch, the matching
is only applied around limited numbers of filtered candidate
interaction points. This saves a lot of computational costs
since it avoids classifying all human-object proposals in
the proposal classification stage of traditional two-stage
methods.

Our novel one-stage PPDM framework offers significant
improvements in both efficiency and effectiveness com-
pared to traditional two-stage methods. However, we have
identified a limitation in its interaction feature represen-
tation, which is insufficient with just a single interaction
point. To address this limitation, we have integrated our
novel PPDM formulation into a two-stage HOI detection
framework. This integration enhances the original PPDM
by providing a more comprehensive interaction feature rep-
resentation while maintaining efficient interactive human-
object pair detection. In traditional two-stage methods, there
is a drawback of redundant non-interactive human-object
proposals. However, the second stage in these methods
is capable of extracting sufficient interaction features for
positive human-object pairs, which enhances the represen-
tation of interactions. To overcome this limitation and focus
on the essential elements, we propose a new two-stage
HOI detection paradigm called PPDM++. This paradigm
directly detects interactive human-object pairs in the first
stage using our PPDM. Subsequently, it extracts sufficient
interaction features for each human-object pair to predict
the corresponding action type, similar to the second stage
in traditional two-stage methods. To initiate this paradigm,
we have implemented a simple framework to verify its ef-
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fectiveness. We remove the classification function of PPDM
and construct a Human-object Proposals Extractor (HPE)
by pooling interaction and object point heatmaps from the
PPDM point detect branch into a single channel. Then,
we employ a simple and typical multi-branch interaction
classification head to predict action and object types based
on the features of the human-object region. The purpose of
this simple interaction classification head is to validate the
effectiveness of our PPDM-driven two-stage paradigm, and
it can be easily replaced by superior interaction prediction
modules in recent two-stage HOI detection methods. By
adopting the PPDM++ framework, we are able to address
the inherent limitation of traditional two-stage methods
while retaining the advantages of two-stage frameworks.
Specifically, PPDM++ allows for the extraction of represen-
tative and sulfficient interaction features in a straightforward
manner.

Next, we focus our attention on the HOI detection
dataset. Existing datasets such as HICO-DET [37] and V-
COCO [15] have made a significant contribution to the
development of HOI detection. These datasets are very
general. However, in practical applications, several limited,
frequent HOI categories need to be paid special attention
to. To this end, we collect a new Human-Object Interaction
for Applications dataset (HOI-A) with the following fea-
tures: 1) specially selected 10 kinds of HOI categories with
wide application values, such as smoke and ride. 2) huge
intra-class variations including various illuminations and
different human poses for each category. HOI-A consists
of 47,908 images with 10 action types and 11 kinds of
interactive objects forming 17 HOI triplets categories. The
HOI-A is more application-driven and severs as a good
supplement to the existing datasets. Furthermore, we or-
ganized a series of HOI detection challenges based on our
HOI-A Dataset on ICCV 2019 the 2nd Person In Context
workshop/challenge and CVPR 2021 the 3rd Person In
Context workshop/challenge !, which attracted more than
100 worldwide competitors.

As shown in Figure 1, experiments are conducted on the
public benchmarks HICO-DET [4] and V-COCO [15], and
our newly collected HOI-A dataset, and the results show
that our PPDM and PPDM++ are able to achieve state-of-
the-art performances in terms of accuracy and speed.

Our contributions are summarized as follows: 1) We
reformulate the task of HOI detection as a point detection
and matching problem and propose a novel interaction-
driven one-stage PPDM framework. 2) We present the
first real-time HOI detection algorithm which outperforms
conventional state-of-the-art algorithms on the challenging
HICO-DET, V-COCO, and HOI-A benchmarks. 3) We de-
sign a novel two-stage HOI detection pipeline based on
our PPDM formulation, which directly locates interactive
human-object pairs in the first stage to break the limitation
from redundant non-interactive human-object proposals. 4)
We build a large-scale application-oriented HOI detection
dataset to supplement existing datasets.

This work is extended from our conference version [29].
We substantially revise and significantly extend the previ-
ous work in several aspects. Firstly, we propose a novel

1. http:/ /www.picdataset.com/

two-stage HOI detection pipeline based on our PPDM,
namely PPDM++, which transforms PPDM into a human-
object pair proposals extractor to directly detect interactive
pairs to break the limitation from redundant human-object
proposals of traditional two-stage methods. Secondly, the
original PPDM is only applied to CNN-based networks
as backbones. In this version, we try transformer-based
backbones for PPDM and PPDM++. Thirdly, we verify the
effectiveness of our proposed PPDM and PPDM++ on one
more dataset, V-COCO. Fourthly, we enlarge and refine
the HOI-A dataset, including more samples for each action
category and accurate annotations. Finally, we elaborate
more technical details and conduct more comprehensive ex-
perimental analysis, including ablation studies, quantitative
comparisons, and qualitative analysis.

2 RELATED WORKS
2.1 Two-stage HOI Detection Methods

Conventional HOI detection methods before PPDM [29] are
mostly with a two-stage framework. Firstly, such methods
adopt a pre-trained object detection model [38] to detect all
humans and objects in an image and then pair the detected
humans and objects one by one to generate a series of
human-object pairwise proposals. Secondly, a well-designed
interaction prediction model is applied to predict the action
categories for each detected human-object proposal. The re-
search core of two-stage methods lies in the second stage to
design a powerful interaction prediction model. Reviewing
the conventional two-stage architectures, we summarize the
paradigm into multi-stream and graph-based. The second
stage of the multi-stream paradigm [11], [45], [44], [9], [19]
mainly employs multiple convolutional streams to process
cropped human and object region features, relative spatial
features, or even human posture features to predict the
action type for each human-object pair step-by-step. The
graph-based paradigm [37], [10], [47], [42], [18], [51] first
constructs a graph among a series of nodes composed
of the detected human and object instances and then de-
signs graph convolution modules to reason the interaction
types between graph nodes based on the graph. Besides
researches on architecture design, recent methods further
explore richer features to represent HOIs, e.g., linguistic
features [1], [22], [53] or human structural message [44], [9],
(7], [55], [16].

The above methods are all proposals based, thus their
performance is limited by the quality of proposals. Addi-
tionally, the existing methods have to spend much compu-
tational cost on proposals generation and feature extraction
process. To address these drawbacks, we propose a novel
one-stage and interaction-driven framework to reform HOI
detection task.

2.2 One-stage HOI Detection Methods

The proposal of PPDM has led to a wave of unprecedented
advances for HOI detection using the one-stage pipeline.
Different from two-stage methods, it outputs human-object
interaction triplets directly without additional object detec-
tors. Inspired by PPDM, point-based, box-based, and query-
based methods dominate the development in the commu-
nity. The point-based method [29], [54], [32]s first defines
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Fig. 3. The Framework of our One-stage PPDM. For the visual feature extraction, we adopt a dense prediction network, which produces high-
resolution feature maps, to extract the appearance feature from an input image. Then we assemble two parallel branches. a) Point Detection
Branch. With the extracted visual feature, we utilize three independent convolution blocks to estimate the heatmaps of the human/object center
points and the action points. Besides, we regress the 2-D size and the local offset for each human/object point to generate the final box. b)
Point Matching Branch. We first regress the displacements from the action point to the human point and object point, respectively, with separate
convolution modules. Then, based on the estimated points and displacements, we match each action point with the corresponding human and

object points to produce a set of HOI triplet results.

the key point as an interaction agent and then obtains the
human-object pair through an interaction agent. The box-
based methods [20], [8], [3] most adopt a union box to match
human and object pair. The query-based methods recently
made a giant leap with the advancement of transformer
architecture [43]. It leverages self-/cross-attention to extract
the global information of interaction and then yield the final
triplet result through a set prediction [5], [59], [50], [21], [40].

2.3 HOI Detection Datasets.

We summarize HOI detection datasets into three categories
from the label granularity: instance-level, part-level, and
pixel-level. Instance-level HOI detection datasets are the
most commonly used and fundamental annotation forms,
which represent humans and objects as a series of bound-
ing boxes and label the interaction categories between
the human and object. There are mainly three instance-
level HOI detection benchmarks: VCOCO [15], HICO-
DET [4], HCVRD [58], HoO [36]. The V-COCO is a relatively
small dataset collected from the typical object detection
dataset MS-COCO [31]. It selects 10, 346 images from MS-
COCO and annotates with 26 actions based on the original
bounding-box annotation. The HICO-DET is a large-scale
HOI detection dataset for general scenes, and it has 47,776
images with 117 verbs and 80 object categories same as
COCO. The HCVRD [58] is selected from the general visual
relationship detection dataset, Visual Genome [23]. It has
52, 855 images, 927 predicate categories, and 1, 824 kinds of
objects. H20 is a new dataset proposed for the detection of
Human-to-Human or Object Interactions (H2OlIs), including
both human and non-human objects. Comprising 10,301
images from the V-COCO dataset, it has been augmented
with 3,666 images selected in the wild (similar to COCO
dataset), mostly featuring interactions between people. Be-
yond traditional HOI detection datasets, the HCVRD not

only focuses on human actions but also is concerned about
more general human-centric relationships, e.g., spatial rela-
tionships, and possessive relationships. Part-level HOI de-
tection datasets [26] provide more fine-grain bounding-box
annotations for human parts, where such datasets define
and annotate a set of human part boxes, e.g., head, hands,
legs et. al. Moreover, part-level datasets provide part-object
interaction for fine-grain interaction understanding. Pixel-
level HOI detection datasets [33] replace bounding boxes
with finer pixel-wise segmentation masks for instance-level
datasets. In addition to common objects, the pixel-wise HOI
detection datasets also pay attention to the interactions
between humans and stuff.

In this paper, we concentrate on the instance-level HOI
detection task. We review the previous HOI detection
datasets and find that such datasets aim to cover all common
actions in general scenes. However, for real application
scenarios, we expect to be more focused. Therefore, we
build up a new HOI-A dataset, which has about 41K images
only annotated with limited typical kinds of actions with
practical significance.

3 PARALLEL POINT DETECTION AND MATCHING

In this section, we present a detailed introduction of the
pipeline of our proposed PPDM, which predicts the human-
object interactive pairs and the action category simultane-
ously, thus generating the HOI triplets directly in a one-
stage manner. In Section 3.1, we first overview the frame-
work of PPDM. Then in Section 3.2, we introduce how to
detect the human and object center points as well as the
action point. Next in Section 3.3, we present how to match
the estimated points to generate the HOI triplets. Finally, in
Section 3.4, we show the end-to-end training process and
the inference details.
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3.1 Overview Framework

The HOI detection task is defined to detect the <human,
object, action> HOI triplets, where human is composed of
the subject bounding box and class, the object is composed
of the object bounding box and class, and action indicates
the interaction class. For such a complicated task, the in-
tuitive idea is to break it up into several simpler tasks
for independent optimization. Therefore, we propose the
Parallel Point Detection and Matching (PPDM) framework
which assembles two parallel branches for the final HOI
detection results. The proposed PPDM framework is shown
in Figure 3, and it includes two branches, i.e., point detection
and point matching. For the point detection branch, we pre-
dict each set of the corresponding center points, width and
height, and local offset for representing one box candidate
for both human and object. Besides, we also estimate the
action point, which is defined as the midpoint of the one
corresponding <human point, object point > pair. For the
point matching branch, we predict the displacements be-
tween the action point and the corresponding human point
and object point. Then, for the matching rule, we consider
each human point and object point originated by the same
action point as one matched pair.

3.2 Point Detection Branch
3.2.1

The point detection branch aims to detect the human bound-
ing box, the object bounding box as well as the action point
by detecting the center points and locating the point offsets.
For the human box, its center point (z",3") € R? and its
width and height (w", k") € R? constitute its fundamen-
tal box info. Then, the additional point offset dc™* € R?
is predicted to recover discretization error caused by the
output stride. For the object box, the similar strategies are
implemented, and the variables are denotes as (z°,4°) € R?,
(w°, h°) € R? and 8c°® € R2. Besides, we define the action
point (2%, y?) € R? as the midpoint of a pair of human point
(z",y") and object point (x°,y°). In this way, the receptive
field of the action point can cover the interactive region of
the human and object pair, thus the feature of (x%,y®) is
feasible to estimate the action a. To be noted, the i** human
box among the total M/ human boxes are represented as
(zh y?),i € [1,M], and we simplify it as (2", y") if there
is no confusion. The similar omission is also extended to
(z,9°) and (2, y*).

Objective Definition

3.2.2 Point Location

We transfer the point detection task into a heatmap estima-
tion task following the key-point prediction method [41] by
spreading the one-hot ground-truth point to a heatmap with
a Gaussian kernel. As shown in Figure 3, given an image
I € R¥?>*HXW ag input, we adopt a keypoint heatmag pre-
diction network to extract its visual feature V € RC»* 4 & ,
where W and H are the width and height of I, and d is
the output stride of the network. For the low-resolution
reception field of the extracted heatmap, we calculate the
corresponding low-resolution ground-truth center points.

For the human point (z",4"), the low-resolution point is

(@h g = (L%j, L%J) The low-resolution object point

is similarly defined as (Z°,9°) = (L%J, L%J) Then, we

can calculate the ground-truth action point for the low-
resolution heatmap by (2, §%) = (L%J, \_gh;goj)

In this way, we spread the three ground-truth low-
resolution points (Z",§"), (i°,§°) and (% 7%) into
three corresponding Gaussian heatmaps, i.e., the human

. rTh H W . .
point heatmap H"™ € [0,1]@* T, object point heatmap
H° ¢ [0,1 Cox%'7 and action point heatmap H* ¢
[0, 1]CGX%XT, where C, and C, are the number of cat-
egories for the objects and the actions respectively. In
this way, the channel number of the ground-truth object
heatmap and action heatmaps are C, and C, respectively,
and only the channel representing the specific object class or
action class is non-zero. The three heatmaps are conducted
by three independent convolution blocks upon the visual
feature V. Each convolution block is composed by a 3 x 3
convolution layer with ReLU, followed by a 1 x 1 convolu-
tion layer and a sigmoid function.

To regress the three ground-truth low-resolution
heatmaps and the estimated heatmaps by the three con-
volution blocks, we apply an element-wise focal loss [30].
Take the action point as an example, with the estimated
heatmap H® and the ground-truth heatmap H@, the loss
is calculated as:

(1 - -ﬁgwy)a IOg(ﬁ;clxy) f{l(clacy =1

A

1 2

L, = 4 E E (1- H,?l.y)A'B(H,‘jxy)a else 1)
ko wy log(1 — H"a,,,,),

where A is the number of action points that equals the
number of ground-truth HOI triplets in the image, and H kzy
is the heatmap score at location (x, y) for the k*" category in
the estimated heatmaps H®. Following the default setting
in [24], [57], [6], a and (8 are set as 2 and 4, respectively.
The human point loss L} and the object point loss L, are
calculated in the same way.

3.2.3 Size and Offset Regression

In order to obtain human and object boxes precisely, we
regress the box size and the local offset from their center
points. We add four convolution blocks upon the visual
feature V' to predict the width/height size and the local
offset for the human and object boxes respectively, where
each block consists of one 3 x 3 convolution layer with ReLU
followed by one 1 x 1 convolution layer.

For regressing the box size and the local offset, we
compute the L1 loss for each low-resolution ground-truth
human center point (", 7") and object center point (7°, §°).
The local offset loss L, and the size regression loss L,
are formulary similar, and we show L,¢ as an example.
We first define the ground-truth local offset for the hu-
man center point (Z",7") as the point location offset at
thei low-resolution reception field, i.e., (5&,147,1), 5?5;L77;;L)) =

(- ", % — §"). Then, the offset loss L,y is given as the

average of the human box loss Lf)‘f and object box loss Lg .

1

Lof= ——
F=M¥N

(Lgf + Loy) 2
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Lop= > (160 gn) = 0engm)
(xh’,gh)esh (3)
HO(an gny = Oen g )
or = D (8Fe g0y = 0o o]

(z°,5°)€Se (4)
N N
(g0 goy = O(ao,go)):

where S" and S° denote the sets of ground-truth human
points and object points respectively. M is the number of
human point set S" and N is the number of object point
set S°. In the training dataset, M is not necessarily equal to
N since one human may have interactive relationships with
various objects, and form multiple HOI triplets.

3.3 Point Matching Branch
3.3.1 Objective Definition

The point matching branch aims to link the human box
with the interactive object box to form one HOI triplet,
and the action point is adopted as the matching bridge.
In detail, the action point serves as the anchor to pair the
human and object box. As shown in Figure 3, two displace-
ments are estimated for each anchor, i.e., the displacement
between action point and human point d*" = (d3",d3"),
and the displacement between action point and object point
d*® = (d3°,d;°). Then, the human point and object point
can be coarsely predicted as (2%, y*)+d*" and (2%, y®) +d*°
respectively. Each displacement estimation is implemented
with one 3 x 3 convolution layer with ReLU followed by
one 1 x 1 convolution layer. At the low-resolution reception
field, the size of each displacement feature map for human

and object is 2 x % X %.

3.3.2 Displacement Regression

For training the point matching branch, we adopt L1 loss
to regress the displacement of each action point. For the
action point (Z%,3%), the low-resolution ground-truth dis-
placement to the human pomt (", g") is computed as

(d(xa . d?ﬁa gy) = (@ - " g% — g"). Similarly, the
ground truth displacement to the object pomt ( ,g") is
computed as (d{%. ;o) doi/a goy) = (@ —3°,9° — §°). The

human and object dlsplacerrlent predictions for (53“73]“)
are (d?;a’g,%),d(gaﬂa)) and (dzga’ga),d‘()ga,ga)) respectively.
Then the displacement regression loss L,; and L, can be
calculated as

1
Lan = > ~ s
GERTIEL 5)

7h Th
+ |d(;a’,ga) (iya’ga)|v

d(:z:a g%) ‘

Lao :A D e go) = g
CERIDISE (6)
ox oy
|d U d(ma "a)‘?

where S¢ denotes the set of ground-truth action points, and
A is the number of action points which is also the size of S°.

3.3.3 Triplet matching

With the action point predictions and the human/object
displacement regressions, we need to judge whether a hu-
man/object point can be matched to the action point to
form an HOI triplet. We consider two conditions: 1) the hu-
man/object point needs to be close to the coarse estimated
point by action point plus the corresponding displacement;
2) the human/object point needs to have a high confidence
score. Based on these two considerations, for the action
point (2%, 9%), we first rank all the detected human/object
points in the point set 57 and 5°, and then select the optimal
points to match with the action point.

~ ~ 1 sa  ~a

(0, o) = argmin cr, (", 9%
(@hgh)esh ™ (@ ) @
— (d{F oy, d?fa,, ) = (@ g"))

(#5p, Uop) = argmin ———(|(2%,9°)
(&2.9°)€8° = (3°.9°) . ©®

( (w g )7d(();ca ga )_ (i,o’on)D

where C'(Th ) and C? ) denote the confidence scores for

(@,
the estimated human point (&"

respectively.

,9"") and object point (°, §°)

3.4 Training and Inference

With the point location losses L,, Ly and L,, the displace-
ment losses L,j, and L,,, the size regression loss L and the
offset loss L, the final training loss can be obtained as the
weighted summation of the above losses:

Lppdm =Lg+Lyp+ Lo+ )\(Lah + Lao + Ls) + Lofa (9)

where the weight A is set as 0.1 following [24], [57].

The inference process is to generate the point matched
HOI triplets with high confidence. Firstly, we operate a
3 x 3 max-pooling on the human, object, and action point
heatmaps to distill the estimated points, similar to NMS
operation. Secondly, we rank the point confidence scores
C", C° and C to generate the top K human points S”,
object points S° and action points 5%, The ranking is across
the object and action categories. Next, we select matched
human point and object point for each high confidence
action point according to Equation 7 and 8. For a matched
optimal human box (&}, 9 ), the final human box can be
represented as

(ih _ w(%pyynp) “h h(m"pvyop
rf 2 ayrf 9 )
i (10)
w »h  fh
“h (&h,.90,) Ah (&h,.95,)
erf + ; L ) Tf + 12 p*)7
~h ~h _ »h
where 2, = ah » + 5 ) and g;; = yop + 5 (&1 gh)

denote the human pomt focation with the offset re-
finement, and the size of the corresponding box is
(w(igp,@gp), hn an )) The object box for the matched object
point (&7, ggp) is represented in a similar manner. Finally
we get the optimal set of HOI triplets with the confidence

score C’rh h C’O C’"'( .o for each triplet.
I Y
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Fig. 4. The framework of our two-stage PPDM++. The serial pipeline consists of two modules: Human-object Proposals Extractor (HPE)
and Interaction Classification Head. The former follows PPDM to detect human, object, interaction points, and the corresponding sizes and
displacements, forming a series of human-object bounding-boxes pairs through the PPDM head. The latter consists of three models that first
extract each human-object pair and their union region features by Region Features Extractor, then feed them into two parallel components. The
instance detection module that concentrates on instances refines bounding-box localization through Bounding-box Regression Branch and obtains
object type through Object Classification Branch. The action classification module leverages human-object pairs and their union region features,
respectively, to predict action types. Finally, the mean function fuses the action logic, resulting in the final action type.

4 Two-STAGE PIPELINE WITH PPDM

In this section, we introduce a novel end-to-end two-stage
HOI detection pipeline based on our proposed PPDM,
namely PPDM++. As shown in Figure 4, we first adopt
PPDM to extract a series of interactive human-object pairs,
then adopt an additional interaction classification head to
classify action types for the detected human-object pairs. In
this way, PPDM++ can not only maintain the high efficiency
of PPDM by directly locating interactive pairs but also
extract representative interaction features like traditional
two-stage methods. In the following, we first overview the
pipeline of PPDM++ in Section 4.1, then clarify how to mod-
ify PPDM into a Human-object Proposal Extractor (HPE)
in Section 4.2, next elaborate the architecture of the second
stage, and finally demonstrate the training and inference
strategies.

4.1 The Overview of Two-stage Pipeline

In PPDM++, we break up the coupled task of HOI detection
into two serial steps with an end-to-end framework. In the
first step, we follow PPDM to detect human, object, and
interaction points and obtain the corresponding sizes and
displacements, forming a series of interactive human-object
bounding-boxes pairs with type-free, <Human box, Object
box>. In the second step, we first extract the human-object
pair region features cropped by the human, object, and their
union boxes, then we design a simple interaction classifica-
tion head to predict their object and action types. Therefore,
we can obtain the final HOI predictions by combining the
results of the above two steps.

4.2 PPDM as Human-object Proposal Extractor

PPDM is tailored for extracting interactive human-object
pairwise proposals effectively. To exploit this, we pool in-
teraction and object point heatmaps in the PPDM point

detect branch into one channel for interaction point and
instance point location but remove its classification function,
and the rest are remained to build the HPE. Therefore,
HPE is able to concentrate on human-object pairs detection
free from classification tasks. Specifically, similar to the
original PPDM, we first obtain a series of human, object,
and interaction points with a 2D location format, then match
each interaction point with the most satisfactory human and
object points through the triplet matching rule proposed
in Section 3.3.3. Thus, HPE takes an image I as input and
outputs a series of human-object bounding-box pairs:

([ th el by, (12,42,12,09), 5000 € [1, K™} = Fipe(I),

2%y Yg [ RR R R 7

where the first two elements in the set denote the
1rb” (left, top, right,bottom) format human and object
bounding boxes, and the third element represents the con-
fidence score of the detected human-object pair obtained
by multiplying the human object and interaction points
confidence scores.

4.3

After human-object pairs detection, we design an interaction
classification head to predict the corresponding action types
and object class, and then refine human and object bounding
boxes in the second stage. Given a human-object pair, we fol-
low the typical process in general two-stage object detection
methods to employ ROI align [17] to crop region features
from the last-level feature of the backbone, V, based on the
human box, object box, and their union box, respectively:

V"= Forop (V5102072 00),

2 U ARG AN A A e A

V2 = Furop(V5 10,80, 79,19),

Interaction Classification Head

K2 2971 Y e

V" = Fopop(V;min (1, 12), min(t?, 2),

? 1% 177

max(r?, r¢), max(b?, b?)),

101 17

1)

where I, denotes ROI align operation and Vih, V.2 and
V;* are all with a C, x H"™* x W"* sized shape.
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The interaction classification head takes extracted fea-
tures as inputs and adopts two parallel components, i.e.,
instance detection module, and action classification mod-
ule, to obtain final interaction triplets. Specifically, the in-
stance detection module plays a similar role in the second
stage of traditional two-stage object detectors and aims
to predict object class and regress bounding-boxes offsets,
8o = (I; — l;,t; — t;,7 — 74,b; — b;). It consists of two
branches where one branch takes V' as input to predict the
object class, and the other branch takes the concatenation
of V* and V° as input and outputs the bounding-boxes
offsets. The action classification module consists of three
branches to respectively take V", V° and V% as input
to predict action types, and then the fused types score is
obtained by a mean function for the final decision. This
process can be denoted as:

pi, = Fi(V"),pg = F(V°),p} = F(V"),
p" = (py +po +p)/3.0;
po _ FO(VO)7P6 _ Fé([Vh,VO])7

(12)

where p° and p® indicate action and object classification
logits, respectively, and p°® denotes the predicted 4D box
offsets. All branches F°(-), F°(-), F?(-), and F2(-) share the
same architecture except output channel of last classification
layer. For each branch, we first adopt a convolution to
transform the ROI features into latent space, resulting in
the final classification logits or offsets.

Moreover, we also explore integrating human pose and
spatial features for action classification following traditional
two-stage HOI detectors. Here, we simply use two addi-
tional parallel branches to process such two features and
yield action logits, p;, and pg. The final form is expressed as
follows:

p" = (py + P, + Pl +p, +p5)/5.0 (13)

Besides, note that we implement a simple baseline architec-
ture for the second stage to verify the effectiveness of our
novel Two-stage PPDM pipeline. The second stage is easy
to be replaced with state-of-the-art two-stage HOI detection
methods to achieve advanced performance.

4.4 Training and Inference

In this subsection, we introduce the sampling mechanism
and loss function during training and post-processing dur-
ing inference.

The training process includes sampling strategies and
optimization. During training, we first generate a series of
human-object pairwise proposals through HPE following
the steps in Sec. 3.4 and sample top-K}, human-object
pairwise proposals by confidence scores. Suppose the IoU
between the human and object boxes in a human-object
proposal and the corresponding boxes in any ground-truth
human-object pair is greater than 0.5. In that case, we
mark this proposal as a positive sample. Since a human-
object pair may have more than one action, a human-
object proposal is allowed to match with several ground-
truth. In contrast, if the IoU is less than 0.5, the proposal
is regarded as a negative sample. To ensure the training
stability of the second stage, we set the ratio of positive

and negative samples as 1:1 and the number of samples
as Ksampie. For the training strategies, we adopt the same
optimization strategy as PPDM introduced in 3.4 and mark
the loss as Ly, for the first stage of PPDM++, HPE. In the
second stage, we also use Focal Loss for action and object
classification to keep consistency with the first stage, and
L1 loss is for offset regression following traditional object
detector, Faster-RCNN [38]. These losses are computed by:

L= Ahpethe + >\ocLoc + )\acLac + )\regLreg (14)

where Appe and Ly, denotes the loss weight and loss
function of the first stage of PPDM++, HPE, and the form
of Lppe is similar to the Lypqm in EQ. 9. Lo, Lac, and Ly.eq
represent the object classification, action classification, and
regression losses, respectively.

During inference, we first follow the same process in
training to sample top-K}, human-object pairwise propos-
als by HPE. Then, we predict an action logit vector for
each proposal and sample top-K},; HOI triplets across all
proposals and action categories. Finally, we follow CDN [50]
to conduct a pairwise NMS for the top-K},,; HOI triplets to
generate the final predictions.

5 HOI-A DATASET

Previous HOI datasets, e.g.,, HICO-DET [37] and V-
COCO [15], have greatly promoted the relative research of
the HOI area. However, such datasets mostly concentrate
on the common action categories, where some of them have
less practical value. We want to pay special attention to the
limited frequent but more important HOI categories, and
this is not emphasized in previous datasets. Therefore, we
introduce a new dataset named Human-Object Interaction
for Application (HOI-A) for practical application. Our HOI-
A dataset has two versions, e.g., HOI-A 2019 and HOI-
A 2021, where HOI-A 2021 is a refinement and extension
of HOI-A 2019. In this section, we introduce the HOI-A
2021 version, while the HOI-A 2019 is introduced in our
conference version [29].

We list the selected action categories and the corre-
sponding interactive object classes of the HOI-A dataset
in Table 1. All the action categories are selected driven by
the significance of practical application. In this way, each
action category of the HOI-A dataset can be applied in a
specific scenario. For example, ‘smoking’ can be applied to
monitoring smoking behavior at smoking-prohibited sites
such as petrol stations and airplanes. Take ‘talk on’ as
another example. We can detect some dangerous actions,
e.g., talking on the phone during driving which is consid-
ered dangerous driving behavior and should be reminded
in some auto-driving systems. Table 2 demonstrates the
detailed definition for each action category of our proposed
HOI-A dataset.

5.1 Dataset Collection

In this subsection, we will present the image collection
process for the HOI-A dataset from two aspects, i.e., positive
image collection and negative image collection.

For positive image collection, we collect images through
two approaches: 1) camera shooting and 2) crawling. The
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TABLE 1
The list and occurrence numbers of the verbs of the corresponding
objects in the HOI-A dataset.

Verbs Objects # Instance
smoking cigarette 10692
talk on mobile phone 21667
play (mobile phone) mobile phone 7983
eat food 1681
drink drink 8822
ride bike, motorbike, horse 7429
hold cigérette, mobile phone, food 54445

drink, document, computer

kick sports ball 600
read document 1755
play (computer) computer 1772

camera shooting approach is important to enlarge the intra-
class variation since we can design diverse camera shooting
conditions. We employ 50 performers to perform the actions
designed in the HOI-A dataset with different poses and
take photos of them with both RGB camera and IR camera.
The camera shooting procedure is executed under various
illumination and scene conditions. The crawling approach
is another important way to complement positive samples.
To crawl data from the internet, we generate a series of
keywords including the HOI triplet phrase following such
format ‘a person [Verb-ing] a/an [Object]’, the action pair
with the format ‘[Verb-ing] a/an [Object]’, and the action
names. The retrieved images from the internet are then
cleaned and prepared for annotation.

For negative image collection, we define two kinds of
negative samples for each set of <human, action, object
> triplet. The first situation is that the image has the
concerned object but has no interactive actions. For example,
in Figure 5(f), the man is not smoking a cigarette although
the cigarette exists in the image. In this case, the image is
collected as a negative sample. The second situation is that
the concerned action happens, but no interactive objects
exist in the image. For example, Figure 5(e) seems to be a
man smoking at a glance, however, the image actually has
no cigarette with a closer look. For this situation, we design
an ‘attack’ manner to collect the hard negative samples. We
first train a multi-label action classifier with the annotated
positive samples, which outputs the confidence of each
action category of the input image. Then, we require the
performers to arbitrarily attack the classifier with the pre-
defined action but no interactive objects. Finally, we record
the photo of a successful attacking case to be one hard
negative sample.

5.2 Dataset Annotaion

The HOI-A dataset annotation process includes box anno-
tation and action annotation. Firstly, we annotate all the
objects of pre-defined classes with a bounding box and
the corresponding category. To be noted, the human is
regarded as a specific category of all the objects during
the box annotation process. Secondly, we show the image
visualization with the boxes and corresponding IDs, and
annotate whether a human box ID is interactive with an
object box ID. Therefore, we record the interactive <human
ID, action ID, object ID> set as one annotated triplet. To
guarantee annotation accuracy, 3 annotators annotate one

N W)
b. <human, smoke, cigarette> c¢. <human, smoke, cigarette>
indoor in car & intense illumination

a. <human, smoke, cigarette>
outdoor

d. <human, smoke, cigarette>
in dark scene

e. Attacking smoke: no cigarette f. no predefined interaction
negative sample negative sample

Fig. 5. Example images of our HOI-A dataset. We take <human, smoke,
cigarette> as an example. The (a)-(d) show huge intra-class variations
of <human, smoke, cigarette> in the wild. The (e)-(f) show two kinds of
negative samples.

TABLE 2
The definitions of the verbs in HOI-A dataset.

Verbs Definitions
1.The cigarette is in the mouth; 2. The
ki cigarette in the hand with smoke around it.
Smoxing 3. The burning cigarette in the hand
(part of the cigarette is soot)
talk on The mobile phone is held in hand near the ear.
play The mobile phone is held in hand away from
(mobile phone) ear, and the person looks at the mobile phone.
1. The food is held near the mouth and
the person is eating; 2. The food in the hand
eat (probably away from the mouth), but there
is an obvious act of chewing.
drink The water cup is near the
mouth and the person is drinking.
. The person rides on horses, bicycles,
ride I
electric bicycles or motorcycles.
hold Smoking, call, drink, etc., as long as
there is something held in the hand(s).
One must take the action of kicking.
kick (If it is only the ball next to the feet, but without
the action of kicking, it is not kicking.)
Including newspapers, books, and other paper
read . i .
materials, requiring eyes to look at the materials
play (computer) including the use of desktops, laptops, etc.

image repeatedly, and only the triplets annotated by more
than 2 annotators are regarded as qualified annotations.

5.3 Dataset Properties

Variation. As we mentioned in Section 5.1, we capture
photos with different scenes and conditions in the image
collection process to enlarge the intra-class variation. In
detail, for each type of HOI triplet in the HOI-A dataset, we
take photos with 3 general scenes (i.e., indoor, outdoor, and
in-car), 3 lighting conditions (i.e., dark, natural and intense),
various human poses and different angles. Besides, we shoot
each of the photos with both RGB and IR cameras.

Scale. The HOI-A dataset contains 47, 908 annotated images
with 11 object categories and 10 action categories, which
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TABLE 3
Performance comparison on the HICO-DET test set. We use ‘A’, ‘P’, ‘L’ to denote the appearance feature, human pose information, and the
language feature for interaction classification, respectively.

Default Know Object
Method Feature | Full Rare  Non-Rare | Full Rare  Non-Rare | Inference Time (ms)| FPS1
DETR-based Methods:

HOI-trans [59] A 2346 1691 25.41 19.24 19.24 28.22 68 14.71
HOTR [21] A 2510 17.34 27.42 - - - 75 13.33
AS-Net [5] A 28.87 2425 30.25 31.74 27.07 33.14 75 13.33

QPIC-R50 [40] A 29.07 21.85 31.23 31.68 24.14 33.93 68 14.71

CDN-R50 [50] A 3144 2739 32.64 34.09 29.63 35.42 68 14.71

UPT [52] A 31.66 2594 33.36 35.05 29.27 36.77 65+61=126 7.94
RCNN-based Methods:

Shen et. al [39] A+P 6.46 4.24 7.12 - - - - -

HO-RCNN [4] A 7.81 5.37 8.54 10.41 8.94 10.85 - -

InteractNet [13] A 9.94 7.16 10.77 - - - 145 6.90
GPNN [37] A 13.11 9.34 14.23 - - - 197 + 48 = 245 4.08

Xu et. al [46] A+L 1470  13.26 15.13 - - - - -
iCAN [11] A 14.84 1045 16.15 16.26 11.33 17.73 92 + 112 =204 4.90
PMFNet-Base [44] A 1492 11.42 15.96 18.83  15.30 19.89 - -
Wang et. al [45] A 16.24 11.16 17.75 17.73  12.78 19.21 - -
No-Frills [16] A+P 17.18 1217 18.68 - - - 197 + 230 + 67 = 494 2.02
TIN [27] A+P 1722 1351 18.32 19.38 15.38 20.57 92 + 98 + 323 =513 1.95
RPNN [55] A+P 17.35 12.78 18.71 - - - - -
PMFNet [44] A+P 17.46  15.65 18.00 20.34 1747 21.20 92 + 98 + 63 = 253 3.95
Our Point-based Methods:
PPDM-DLA A 1994 13.01 22.01 22.63 1593 24.63 24 41.67
PPDM-Hourglass A 21.73 13.78 24.10 2458 16.65 26.84 71 14.08

PPDM-SwinT A 2226 12.64 25.13 2419 1424 27.17 40 25

PPDM-SwinB A 2759  18.07 30.44 29.11 18.85 32.71 58 17.54

PPDM++-DLA A 2334 16.64 26.34 2622 1946 28.23 47 21.28

PPDM++-Hourglass A 2582 18.54 27.99 28.53  20.90 30.81 90 11.11
PPDM++-SwinT A 2549 1877 27.49 28.13 21.28 30.17 59 16.95
PPDM++-SwinB A 30.10 23.73 32.00 31.80 24.93 33.85 79 12.66

+ 1 Transformer Encoder Layer A 30.84 23.96 32.90 3244 2498 34.67 83 12.05
+ Multi-level ROI Features A 31.20 25.02 33.05 32.85 26.18 34.84 97 10.31

forms 17 kinds of HOI combinations. In detail, HOI-A
has 52,904 human instances, 70,951 object instances and
116, 846 action instances. Each human interacts with 2.2
objects on average. We present the number of instances for
each verb in Table 1. The instance number is at least 360
while 60% of the verbs appear more than 6, 500 times in the
dataset. To the best of our knowledge, HOI-A is already the
largest existing HOI dataset in terms of the image number
per action category. In HOI-A, the "hold’ is the most frequent
verb because ‘hold” often appears simultaneously with other
verbs. For example, if someone is playing mobile phone, he
should also hold the phone. For the experiments, we split
the dataset into two parts, 38,067 images for training and
9,841 images for testing. For fair evaluation, we keep the
same ratios of each verb in the training set and test set.

6 EXPERIMENTS

In this section, we introduce the experimental details, where
experimental settings in Section 6.1, the comparisons with
traditional methods in Section 6.2, ablation studies in Sec-
tion 6.3, and detailed qualitative analysis in Section 6.4.

6.1
Datasets. Experiments are conducted on three HOI detec-
tion benchmarks, including HICO-DET [4], V-COCO, and

proposed HOI-A datasets, to prove the effectiveness of pro-
posed PPDM and PPDM++. HICO-DET consists of 47,776

Experimental Setting

images (38,118 for training and 9,658 for testing). It has
600 HOI categories in the form of <action, object> over
117 action categories, and 80 object categories, same as MS-
COCO dataset [31]. 138 types of them are considered as
the rare HOIs which appear less than 10 times, and 462
kinds of HOIs are regarded as the non-rare set. V-COCO
is the subset of MS-COCO, which consists of 5,400 images
in the ‘trainval” dataset and 4,946 images in the test set.
Each human is annotated with binary labels for 29 different
action categories. We transform the annotations of V-COCO,
HICO-DET, and HOI-A datasets into a unified form to
facilitate the experiments. For the annotation of each image,
we first include all human and object bounding boxes in a
list, then represent an HOI as <h-id, o-id, v-id>, where h-
id and o-id denote the index of the corresponding human
and object boxes in the list, and v-id is the action categories
index.

Metric. Following the standard scheme, we use mean av-
erage precious (mAP) to examine the model for three
benchmarks. A predicted triplet is considered a true pos-
itive sample if it detects the human and object accurately,
i.e., the Interaction-over-Union (IOU) between the detected
bounding-box and ground-truth is large than 0.5 and pre-
dicts the correct action category. Specially, we compute AP
per HOI class in HICO-DET and V-COCO and compute AP
per verb class in the HOI-A dataset.

Implementation Details. We adopt two dense prediction
CNN-based backbones, Hourglass-104 [35], [24] and DLA-

Authorized licensed use limited to: Peking University. Downloaded on July 16,2024 at 02:01:41 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOl 10.1109/TPAMI.2024.3386891

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, X 20XX 11

34 [49], [57], and a popular transformer-based backbone,
Swin-Transformer [34], as the visual feature extractor of
PPDM and PPDM++ to conduct our experiments. For the
CNN backbones, we follow CenterNet [57] to use the mod-
ified versions for point prediction tasks. We initialize the
feature extractor with the weights from CenterNet pre-
trained on MS-COCO [31]. CenterNet [57] only provided the
pre-trained weights for the CNN-based backbones, so we
construct a Swin-Transformer-based CenterNet and trained
it on the MS-COCO dataset. We adopt an FPN-style ar-
chitecture for Swin-Transformer, and its performances on
MS-COCO are 38.4 and 42.5 for SwinT and SwinB, respec-
tively. Here, for Swin-Transformer, we pre-train it on the
MS-COCO dataset with 140 epochs. All experiments are
implemented with PyTorch 1.5 and CUDA 10.0. We train
CNN-based backbone for PPDM and PPDM++ with Adam
on 8 1080Ti GPUS, while transformer-based architectures are
trained with AdamW with 4 A100 GPUs.

Next, we introduce parameter settings during PPDM
and PPDM++ training and inference. We follow Center-
Net [57] to transform the input image as fixed size 512 x 512
with ‘random scale and random shift then crop” data aug-
mentation, and the corresponding output feature size is
128 x 128 for all backbones. We train all backbones for 110
epochs and step the learning rate at the 90th epoch by 10
times. The batch size for DLA-34 is 64, and the initialization
learning rate is 3e-4. We train the hourglass-based model
with a 16 sized mini-batch with a le-4 initialization learning
rate. For Swin-based models, we adopt a 3e-5 learning
rate with a 60 batch size. We set the number of selected
predictions K as 100. For the loss weights setting, we follow
CenterNet to set the first-stage PPDM loss weights, and the
interaction and box classification loss weights are 10 and the
regression loss weight is 1 in the second stage.

6.2 Comparison to State-of-the-art

We conduct experiments on three HOI detection bench-
marks and compare our proposed PPDM and PPDM++ with
previous state-of-the-art HOI detection methods from the
performance and efficiency views (HICO-DET in Table 3,
V-COCO [15] in Table 4 and HOI-A in Table 5). Note
that we only compare the methods published earlier than
PPDM [28] since recent methods [40], [5], [50], [59] benefit
from the superior query mechanism in the transformer de-
tection framework, e.g., DETR [2], to achieve strong perfor-
mances. However, our PPDM and PPDM++ adopt the dense
prediction detection pipeline. Moreover, such methods are
also inspired by the PPDM proposed one-stage framework.
Next, we show a detailed comparison and analysis of the
three benchmarks, respectively.

HICO-DET. As shown in Table 3, comparing conventional
instance-driven two-stage methods, our novel interaction-
driven one-stage framework PPDM has significantly out-
performed such methods across all backbones, though pre-
vious methods employ additional features. Especially when
equipped with the advanced transformer-based backbone,
Swin-transformer, our PPDM is able to achieve 27.59 mAP
only with appearance features. Furthermore, benefiting
from sufficient interaction feature representation, our pro-
posed PPDM++ further improves the performance, where

TABLE 4
Performance comparisons on V-COCO test set. We mark the
appearance feature, human pose feature, and language feature as ‘A’,
‘P’, and ‘L, respectively.

Methods [ Feature [ AP
DETR-based Methods:

HOI-trans [59] A 52.9
AS-Net [5] A 53.9
HOTR [21] A 55.2
QPIC [40] A 58.3

CNN-based Methods:

Gupta et. al [15] A 31.8

InteractNet [13] A 40.0
RPNN [55] A+P 475

UnionDet [22] A 475

TIN (RPpCp) [27] A+P 47.8
VCL [19] A 48.3

C-HOI [56] A 48.3

DRG [10] A+L 51.0
VSGNet [42] A4S 51.7
PMFNet [44] A+P 52.0
PPDM-Hourglass [29] A 50.9
PPDM++-Hourglass [29] A 54.3

PPDM++ with SwinB backbone has achieved 30.10 mAP.
In the same backbone setting, the performance improve-
ment from PPDM to PPDM++ is about 2.5 mAP, which
is a significant gain proving the strong interaction feature
representation of PPDM++.

V-COCO. See Table 4, we conduct experiments based on
the Hourglass backbone in the V-COCO dataset. Our PPDM
and PPDM++ have achieved comparable and superior per-
formance comparing traditional two-stage methods, where
our PPDM++ has outperformed the previous state-of-the-
art two-stage method, PMFNet, 2.3 point. This is primarily
attributed to the inherent characteristics of the V-COCO
dataset, including its scale and origin (derived from the MS-
COCO dataset), which substantially influences performance
metrics, heavily reliant on the choice of pretrained detection
models. Compared to methods based on DETR, our ap-
proach does not exhibit superiority. Notably, DETR demon-
strates a more robust performance compared to CenterNet-
Hourglass.

TABLE 5
Performance comparison on HOI-A 2019 and 2021 test sets.

Method Dataset mAP (%) Time (ms)
Faster Interaction Net  HOI-A 2019 56.93 -
GMVM HOI-A 60.26 -
C-HOI [56] HOI-A 2019 66.04 -
iCAN [11] HOI-A 2019 4423 194
TIN [27] HOI-A 2019 48.64 501
PPDM-DLA HOI-A 2019 67.45 27
PPDM-Hourglass HOI-A 2019 71.23 71
QPIC-R50 [40] HOI-A 2021 77.57 67
CDN-R50 [50] HOI-A 2021 78.25 67
PPDM-Hourglass HOI-A 2021 76.23 71
PPDM++-Hourglass ~ HOI-A 2021 79.12 89

HOI-A. Since HOI-A is a newly collected dataset, there are
no existing results from conventional methods. Aiming to
build up a benchmark and conduct a sufficient comparison,
we select two typical open-source HOI detection methods
and the top-3 results from the leaderboard of the ICCV
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Fig. 6. Qualitative comparison between iCAN (top) and our PPDM (bottom) through HOI prediction visualization on HICO-DET. We use ‘Purple’ and
‘Red’ to represent humans and objects, respectively, and link the interactive human and object pairs with a green line. For a clear vision, we only
keep the three most confident predictions for visualization, where the top 3 predictions are separated by different colors (1-blue, 2-yellow, 3-pink).

2019 PIC challenge HOI detection track ?. Additionally, we
compare our PPDM and PPDM++ to the baseline methods
in two versions of HOI-A, ie., HOI-A 2019 and HOI-A
2021. Our PPDM has outperformed the winning method, C-
HOI [56], though C-HOI adopts a powerful instance detec-
tor to produce proposals. Additionally, we choose iCAN [11]
and TIN [27] to construct the baselines on HOI-A 2019
dataset. We follow the original settings in such methods
to pre-train an instance detector, i.e., Faster-RCNN, on the
HOI-A dataset and train their corresponding HOI classi-
fiers. Comparing such two-stage methods, our PPDM has
achieved a significant improvement. Additionally, we fur-
ther conduct experiments on HOI-A 2021 dataset to verify
the effectiveness of our PPDM and PPDM++. In such an
extension and clean version, our PPDM is able to achieve
more satisfactory performance. Comparing recent DETR-
based methods, QPIC [40] and CDN [50], our PPDM++
has also achieved superior performance. Thus, our PPDM
and PPDM++ can achieve a very high absolute performance
in such practical significant HOI label space, significantly
pushing the HOI toward practical application.

Efficiency Analysis. We conduct a detailed efficiency com-
parison and analysis on a single RTX 1080Ti GPU. Note
that we only report the inference speed of open-source
methods, and the speed computation includes all steps from
an image to produce final HOI predictions, i.e., instance
detection, HOI classification, and human pose estimation.
Taking HICO-DET as the exemplar dataset, PPDM-DLA
is the first real-time HOI detection method with 42 fps,
which is about 10 times faster than the state-of-the-art
two-stage method, PMFNet, due to the superior parallel
bottom-up framework. Though the second stage increases
the computation cost, PPDM++ is still significantly faster
than the previous two-stage methods. Especially, PPDM++
with a heavy backbone, SwinB, is also 3 times faster than
PMFNet. The inference time of the same methods in the
HOI-A dataset is less than those in the HICO-DET dataset
since the number of HOI categories in the HOI-A dataset
is fewer than in the HICO-DET dataset leading to fewer

2. http:/ /www.picdataset.com/challenge /leaderboard /hoi2019

parameters and less computation.

Comparion with DETR-based Methods. We select several
representative DETR-based HOI detection methods for com-
parison. Comparing recent SOTA DETR-based methods, our
PPDM or PPDM++ remains a performance gap in the same
backbone setting. The gap between our PPDM or PPDM++
between recent SOTA methods lies in the different detec-
tion frameworks, i.e., point-based v.s. query-based, where
DETR [2] is a stronger object detection paradigm than
CenterNet [57]. Though equipped with a strong backbone
SwinB, CenterNet has achieved similar object detection
performance with DETR-R50 (42.5% wv.s. 42.0%). Under
the ‘similar detection performance’ setting, our PPDM++
with SwinB (30.10%) has achieved comparable or superior
performance with the typical DETR-based HOI detection
methods, e.g., QPIC [40] (29.70%), HOTR [21] (25.10%),
HOI-trans [59] (26.61%), AS-Net [5] (28.87%) in HICO-
Det dataset. It proves that our PPDM++ is a competitive
HOI detection paradigm. In the efficiency comparison, the
inference time of single-branch DETR-based HOI detection
methods QPIC and HOI-trans in a single Nvidia 1080Ti is
68ms, and of the two-branch methods HOTR and AS-Net
is 75ms. Our PPDM++-SwinB is able to achieve comparable
inference speed with these methods, though with a large-
scale backbone.

Moreover, the transformer encoder in DETR can pro-
vide rich global context information, which is beneficial
for interaction understanding since complex interaction
understanding requires querying useful features from the
whole image, e.g., human pose, interactive region, scene
context, and spatial location information. We have con-
ducted experiments by adding a single transformer encoder
layer followed by the Swin-B backbone. With this modifi-
cation, though the object detection performance of Center-
Net has not improved (42.1%), the HOI detection perfor-
mance has improved 0.74% (30.1%-30.84%). Additionally,
we have conducted experiments based on the ‘extracting
human/object/union region features from multi-resolution
backbone feature maps’ setting on the HICO-Det dataset,
where we have achieved 31.20% mAP.

Compared to recent SOTA DETR-based HOI detection
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methods, their performance improvement mainly comes
from complex and superior interaction prediction modules
(UPT [52]) or extra fine-grain human part annotations or
large-scale pre-trained models. However, PPDM++ is a
novel paradigm, and its performance is also able to improve
by refining the second stage with recent complex and supe-
rior interaction prediction modules.

6.3 Ablation Study

In this subsection, we conduct ablation studies to analyze
the effectiveness of components in PPDM and PPDM++.

TABLE 6
Ablation studies on HICO-DET Test Set.

Method [ Full Rare  Non-Rare Time

Union Center 18.65 12.11 20.61 24

PPDM-DLA 1994 13.01 22.01 24

+ UA branch 21.65 14.47 23.79 43

+ UA&UH branch 22.05 14.54 24.29 45

+ UA&UH&UO branch | 22.65 14.89 24.97 45

PPDM++-DLA 2334 16.64 26.34 47

- PNMS 2246 16.23 24.32 42

- Reg&PNMS 22.37  16.06 24.23 42

Backbones. In Table 3, we explore the effectiveness of our
PPDM and PPDM++ with various visual backbones, i.e.,
DLA-34, Hourglass-104, SwinT, and SwinB, and conduct
experiments and evaluation on the HICO-DET dataset.
Here, we conduct a comparison with the CNN-based back-
bone and transformer-based backbone. CenterNet equipped
with DLA-34 or SwinT can achieve very similar perfor-
mance in the MS-COCO dataset, while in HOI detection,
PPDM/PPDM++ with SwinT outperforms it with DLA-34 a
large margin, about 2 mAP. Moreover, with SwinB back-
bone, PPDM and PPDM++ can achieve powerful perfor-
mance while keeping a faster speed than Hourglass-104. We
conclude that transformer-based backbones can provide a
larger receptive field and global context, which are beneficial
to interaction understanding.

Interaction Point Selection. We further explore the location
of interaction points selection and verify the reasonability
of the midpoint choice. To this end, we select another
reasonable-sound point, the center of the union of human
and object bounding-boxes, as the interaction point to per-
form an experiment. See the ‘Union Center” setting in Ta-
ble 6. With this interaction point, the mAPs drop 1.29 points
compared with the original midpoint setting. We attribute
this performance drop that two objects may often interact
with the same human while in the human box, thus causing
complete overlap between the center points of their union
boxes. In this case, the union center setting fails to detect
such two HOI triplets at the same time.

Interaction Head Setting. Here, we conduct a series of ex-
periments to analyze the effectiveness of different branches
for interaction classification. As shown in Table 6, we first
only adopt union features ("UA branch’) to predict actions
and achieve 21.65 mAP. When adding human region fea-
tures (‘UH branch’) to assist action prediction, the perfor-
mance has improved 0.4 mAP. And fusing object region
features has further boosted the performance. Finally, we
integrate the relative spatial features into the union branch,

which has achieved 0.59 performance gain. Thus, employ-
ing diversity interaction feature representation can produce
accurate HOI predictions. However, we only attempt a
simple interaction head architecture to verify the effective-
ness of our PPDM++ framework. Adapting superior HOI
classification mechanisms in two-stage methods can further
improve PPDM++'s performance.

Post-Processing. Here, we analyze the post-processing oper-
ations in our PPDM++ during inference. Firstly, we produce
the HOI predictions without using PNMS, which causes
a 0.88 mAP drop. Secondly, we remove the bounding-box
refinement operation by the second-stage regression branch.
In this case, the performance has dropped 0.1 mAP.

Strong Detector. We have implemented a more stronger
detection framework, employing DeformableDETR-SwinL,
fine-tuned on the HICO-DET dataset, for generating human
and object bounding boxes. This approach supersedes our
previous method of predicting boxes. Specifically, for the
task of point triplets matching, we derive human and object
points from these enhanced bounding boxes, which are
then utilized to form the final Human-Object Interaction
(HQI) triplets. The integration of these superior boxes has
notably improved our model’s performance. Concretely, our
modified PPDM++-Swin-B model now attains a mAP of 33.4
on the HICO-DET dataset, marking an improvement of ap-
proximately 3 mAP points. Additionally, when applying the
DeformableDETR-SwinL detector, trained on the MS-COCO
dataset, for the V-COCO dataset, our PPDM++-Hourglass
model achieves an AP of 56.76. These enhancements clearly
demonstrate the significant benefits of employing advanced
detection mechanisms in augmenting HOI detection capa-
bilities.

6.4 Qualitative Analysis

In this subsection, we present a comparison and analysis
from a qualitative view, thoroughly.

Prediction Visualization and Comparison. Here, we con-
duct a detailed comparison of the traditional two-stage
framework with our one-stage PPDM framework in a result
visualization manner. For this goal, we choose the repre-
sentative two-stage method iCAN [11] for comparison. We
summarize several general bad cases in the two-stage frame-
work and show the visualization results in Figure 6, where
we select and visualize three predicted HOI results with
the highest confidence scores for each image. Due to the
serial two-stage framework, the most common case is that
traditional two-stage easily gives high confidence for a non-
interactive instance, which has a high instance detection
confidence. As shown in Figure 6(b) and Figure 6(c), since
iCAN suffers from large-scale negative samples generated in
the first stage, it tends to predict a series of high-confidence
HOI triplets of ‘non-interaction’ type. In contrast, our PPDM
can significantly alleviate such problems from a bottom-
up interaction-driven pipeline. See Figure 6(d). Though the
pilot in the airplane is so small and heavily occluded and
hard to be detected in an instance detector, our PPDM can
accurately predict the HOI triplets with high confidence in
these cases. We attribute it that PPDM is interactive-driven
and free from pre-predicted proposals. Therefore, PPDM
concentrates on the HOI understanding and is a superior
HOI detection pipeline.
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Fig. 7. We visualize the interaction points and the corresponding displacements, where the Red and purple lines respectively denote displacements

from the interaction point (green) to humans and objects.

Element Visualization. Here, we show the detailed visu-
alizations for predicted elements in our PPDM, i.e., points
and displacements. As shown in Figure 7, our PPDM can
accurately predict interaction points located at the mid-
point of the corresponding human and object center points,
though the human is far away from the object or lies in
the object region. For further displacement understanding,
we also show the displacements in Figure 7. PPDM is able
to produce accurate displacement predictions where the
interaction point plus the displacement is very close to the
corresponding instance center point.

7 CONCLUSION

In this paper, we propose a novel formulation for the HOI
detection problem, where we break the traditional two-stage
top-down instance-driven framework into a novel one-stage
bottom-up interaction-driven framework, PPDM. We define
an HOI triplet as a point triplet and adopt the interaction
as the midpoint of the corresponding human and object
center points, and design a parallel framework. In this way,
we locate interaction first and then find the corresponding
interactive instances. In this way, our PPDM can easily
concentrate on the interactive regions and produce accurate
HOI predictions. Moreover, our PPDM is the first real-
time HOI detection method since it is free from traditional

serial searching HOI classification manner. Additionally, we
integrate our novel PPDM formulation into a two-stage
pipeline, PPDM++, for sufficient interaction representation.
Though our PPDM++ is a two-stage method, it is also
an interaction-driven pipeline, which saves a lot compu-
ation cost. Our PPDM++ futher improve the performance
of PPDM. Finally, we build up an newly HOI detection
benchmarks for practical application, namely, HOI-A.
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