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Abstract

Large Language Models (LLMs) are expected to possess comprehensive medical
knowledge to support real-world clinical applications. While domain-specific
fine-tuning effectively injects medical knowledge into LLMs, it often causes catas-
trophic forgetting of previously acquired knowledge and instruction-following ca-
pabilities. In this paper, we investigate this issue and reveal a pattern of proximity-
dependent forgetting: knowledge that is semantically or topically close to the
injected content is more likely to be forgotten, while unrelated knowledge shows
minimal degradation. Moreover, we observe that existing mitigation techniques
fail to address this type of forgetting effectively. Motivated by this observation
and inspired by human learning mechanisms, we propose InternAL (Internal
Knowledge Augmentation Learning), a novel approach that leverages LLMs’ own
internal knowledge to mitigate forgetting. InternAL first probes internal knowledge
closely related to the injection by prompting the model with questions derived
from the injected knowledge. This knowledge is then used to augment the original
injection dataset, guiding the model to retain related prior knowledge during train-
ing. Experimental results on multiple LLMs (LLaMA, Qwen) demonstrate that
InternAL significantly mitigates proximity-related forgetting while maintaining
strong knowledge injection performance. Our findings provide new insights into
the nature of catastrophic forgetting in medical knowledge injection and highlight
a promising direction for robust domain adaptation in LLMs. Code and datasets
are available at https://github. com/THUMLP/InternAL!

1 Introduction

Large language models (LLMs) achieve remarkable success across a wide range of domains [[1-35]]
and exhibit great potential in specialized fields such as medicine. However, unlike general tasks,
solving real-world clinical problems demands a deep understanding of domain-specific knowledge.
While general-domain LLMs encode substantial world knowledge through pretraining and perform
well on certain medical benchmarks [0, [7], recent studies [8} 9] suggest that their medical knowledge
remains inadequate for supporting real-world clinical applications. Such findings highlight the need
for effective strategies to inject essential medical knowledge into LLMs.

Existing post-pretraining knowledge injection methods can be broadly categorized into Inference-time
injection and Fine-tuning-based injection. Inference-time injection methods [10H13]], often realized
through Retrieval-Augmented Generation (RAG), retrieve relevant knowledge from external sources
and integrate it into the model’s inference process. These methods effectively provide up-to-date
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Figure 1: Left: Catastrophic forgetting exhibits a proximity-dependent pattern: knowledge closely
related to the injected knowledge is more likely to be forgotten; Right: Our proposed Internal
Knowledge Augmentation Learning (InternAL) method for mitigating catastrophic forgetting.

knowledge to LLMs, but their performance heavily relies on the quality of the retrieved content
and may fail when the knowledge is required implicitly. On the other hand, fine-tuning-based
injection methods [[7, [14-16] train the model on datasets containing the target knowledge through
fine-tuning, enabling the model to effectively apply the injected knowledge both explicitly and
implicitly. However, such methods often suffer from catastrophic forgetting [17], where the model
forgets previously acquired knowledge and instruction-following abilities after fine-tuning. Though
several methods [[18H24] have been proposed to mitigate catastrophic forgetting, their effectiveness in
the medical domain has not been thoroughly investigated.

In this paper, we focus on fine-tuning-based methods and investigate the problem of catastrophic
forgetting in medical knowledge injection. Specifically, we aim to address the following research
questions: RQ1: What kind of knowledge is more likely to be forgotten during knowledge injection?
RQ2: How effective are existing methods in mitigating catastrophic forgetting? and RQ3: How to
effectively mitigate catastrophic forgetting in medical knowledge injection?

To answer these three research questions, we first conduct medical knowledge injection based on
approximately 20k triples covering 21 types of medical knowledge extracted from the large-scale
medical knowledge graph PrimeKG [25], and evaluate the injected model on a series of general and
medical benchmarks. We observe that catastrophic forgetting exhibits a proximity-dependent pattern
(illustrated in Figure[Th): knowledge closely related to the injected knowledge is more prone to
forgetting, while knowledge that is more distant tends to be less affected. Moreover, existing
mitigation methods show limited effectiveness, especially in preserving knowledge that is highly
related to the injected content.

Motivated by these findings, we further propose a novel method (depicted in Figure [Tp) called
Internal Knowledge Augmentation Learning (InternAL), as a first attempt to mitigate catastrophic
forgetting by leveraging the related internal knowledge of the target LLM. Specifically, we first
extract relevant knowledge from the target LLM by prompting the LLM with questions generated
based on the injected knowledge. We then incorporate this retrieved internal knowledge into the
original injection dataset and fine-tune the model on the augmented data, thereby improving its ability
to retain prior knowledge that is closely related to the injected content. The experimental results
on several representative LLMs (e.g., LLaMA, Qwen) demonstrate that our method significantly
mitigates forgetting of prior knowledge, particularly for knowledge that is closely associated with the
injected content. Our contributions can be summarized as follows:

* We investigate the problem of catastrophic forgetting in medical knowledge injection and reveal
a proximity-dependent forgetting pattern, where knowledge closely related to the injected
knowledge is more likely to be forgotten.

* We evaluate several existing methods for mitigating catastrophic forgetting and find that they are
not effective enough in the medical domain, especially in retaining relevant medical knowledge.

* We propose InternAL, a novel method that augments the injection process with internally re-
trieved knowledge from the LLM itself. Our method significantly alleviates forgetting, especially
for knowledge that is semantically proximate to the injected content.



2 Related Work

Knowledge Injection Existing knowledge injection methods can be categorized into the following
two types: (1) Inference-time injection [[10H13]] (i.e. RAG) methods incorporate knowledge retrieved
from external sources at inference time, enabling LLMs to access up-to-date information without
additional fine-tuning. However, applying RAG in the medical domain presents several challenges,
such as the difficulty of aligning queries with domain-specific content and the inability to retrieve
or represent implicit knowledge that is required in many clinical reasoning tasks; (2) Fine-tuning-
based injection[[1,|14-H16]] methods train LLMs on datasets containing the target knowledge through
fine-tuning. However, these methods often lead to catastrophic forgetting on prior knowledge and
instruction-following abilities. In this paper, we aim to investigate and mitigate the catastrophic
forgetting problem in the medical domain.

Mitigating Catastrophic Forgetting Existing studies on mitigating catastrophic forgetting can be
categorized into three types: (1) Replay-based methods[[18,[19]], which alleviate catastrophic forgetting
by replaying old knowledge during training. This is typically achieved by mixing knowledge-injection
samples with original training data; (2) Parameter-Efficient Fine-Tuning (PEFT) methods[20, [21]],
which mitigate forgetting by freezing most of the model parameters and updating only a small subset
during fine-tuning; (3) Knowledge editing methods [22H24]], which aim to inject new knowledge
by first locating the relevant representation regions in the model and then performing small-scale
parameter updates in those regions. In this work, we further investigate the effectiveness of these
methods in mitigating catastrophic forgetting within the medical domain.

Internal Knowledge Awakening There are also some studies that activate the internal knowledge
of LLMs to improve their performance on knowledge-intensive tasks. These methods typically
leverage prompting techniques [26] or fine-tuned small language models [27] to guide the LLMs to
recall and utilize their internal knowledge in the reasoning process. The main difference between
these methods and our work is that these methods focus on improving the model’s performance on
knowledge-intensive tasks, while our work aims to mitigate catastrophic forgetting by augmenting
the knowledge injection process with relevant internal knowledge.

3 Catastrophic Forgetting is Proximity-Dependent

To mitigate catastrophic forgetting during medical knowledge injection, it is essential to first in-
vestigate which types of knowledge are more susceptible to forgetting (RQ1) and whether existing
mitigation strategies are effective enough in this domain (RQ2). We begin by formulating the problem,
and then describe our experimental setup, results and detailed analysis to answer these questions.

3.1 Problem Formulation

Suppose we are given an LLM M, and a set of knowledge triplets Kinject = { (i, 74, ti)}ﬁvzl to

be injected, where h;, r;, and ¢; denote the head entity, relation, and tail entity of the ith triple,
respectively. The basic optimization objective of a fine-tuning-based knowledge injection process can
then be formulated as follows:

N
1
M1 = finject (Mo; Kinject) = argmax — Z;log (P (tilhi, i) (1

where finjecs 18 the knowledge injection process, Py (¢;|h;, ;) is the probability of predicting the
tail entity ¢; given the head entity h; and relation r; using the model M. We denote the model after
injection as M. To measure the forgetting of prior knowledge caused by the knowledge injection
process, we can evaluate the model M; on an external benchmark D;.s;, which contains M test

samples {(z;, yJ)}jil Then the catastrophic forgetting of prior knowledge can be measured by:
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where Sp, ., (M) is the performance (e.g., accuracy, f1-score, etc.) of the model M on the test
dataset Dyest, F(M1| M) denotes the absolute forgetting of prior knowledge, and RF (M| M)
denotes the relative forgetting—i.e., the proportion of performance drop relative to the original model.

One of our core questions (RQ1) is to investigate what types of knowledge are more vulnerable
to forgetting during medical knowledge injection. Prior work [22} 23] has shown that knowledge
representations in LLMs exhibit locality, where highly-related facts tend to share representation
space. Inspired by this, we hypothesize that the proximity between the injected knowledge and the
knowledge embedded in the test set Dy, denoted by Sim (Cinject, Ksest ), significantly influences
the extent of forgetting F (M| M; Diest) 0n the test set. We will validate this hypothesis through
experiments in the following sections.

3.2 Experimental Setup

Datasets For Knowledge Injection We leverage PrimeKG [25], a comprehensive biomedical
knowledge graph that integrates knowledge from 20 curated biomedical knowledge bases (e.g.,
UMLS [28]], DrugBank [29]]). PrimeKG encompasses over 4 million triples spanning 29 diverse
types of medical knowledge, making it a rich and representative resource for medical knowledge
injection into LLMs. In our study, we select 21 important categories of medical knowledge, such as
disease phenotypes, drug indications/contraindications/side effects, and protein functions/interactions.
Considering the large scale of PrimeKG, we randomly sampled ~ 1k triples for each type of
knowledge, resulting in a total of 20,864 triples. To identify which knowledge should be injected and
to evaluate the effectiveness of the injection, we generate kst four-option multiple-choice questions

({qg }?:Sf) for each sampled knowledge triple z These questions are designed to evaluate the

model’s basic understanding of the corresponding knowledge. We then evaluate the original model
M, using these questions and measure its accuracy Acc;(M,) on each knowledge triple z;:

Ktest
1 . .
Acc; (M) = e E I(p;(M) =13) 4
es ]:1

where pé (M) is the predicted answer of the model M for the 5" question qzj corresponding to z;, l; is

the label of ¢7, and I(-) is the indicator function. Knowledge triples with an accuracy below 0.25 (i.e.,
lower than random guessing on 4-option questions) are selected to construct the injection set Kipject.

Based on this, we construct a corresponding test set Dinject = {7 |2i € Kinject, 1 < J < Ktest } t0
evaluate the effectiveness of knowledge injection. We also create two complementary test sets: (1)
triples with accuracies above 0.75 are used to build a test set D, for assessing knowledge forgetting;
and (2) based on all 20,864 sampled knowledge triples, we further construct a comprehensive test set
Diotal to evaluate the overall effectiveness of the knowledge injection process. Further details on the
construction process and statistics of the injected dataset are provided in appendix [A]

Injection Sample
For a list of medical entities A: leprosy, B:
VIPoma, C: bronchitis, D: glycogen storage
disease, E: ..., F: ... among the given list, the
indications of Loracarbef include option C

Injected Knowledge (Loracarbef, indication, bronchitis)
(Loracarbef, indication, bronchitis)

Negative Sampling VIPoma, leprosy, glycogen
(Loracarbef, mindication) External KG storage disease, ...

Figure 2: An overview of the Reference-style Knowledge Injection (RefInject) method.

Knowledge Injection Method We develop a knowledge injection method named Referencing-style
Knowledge Injection (RefInject) that converts structured knowledge triples into natural language
instances suitable for fine-tuning. Specifically, for each triple z; = (h;, r;,t;), we sample m — 1
negative tail entities £}%, ¢5°, - -+ , ¢, from PrimeKG, and construct a referencing-style demon-
stration (see Figure [2). The LLM learns to predict the correct option (underlined in the figure)
corresponding to the ground-truth tail entity ¢; among m candidates. To prevent the model from

exploiting superficial patterns (e.g., entity co-occurrence), we follow the method proposed in [30]

2We generate multiple test questions for each knowledge triplet to ensure the robustness of evaluation results.



and generate k diverse samples for each triple, with the correct answer randomly assigned to different
positions across samples. We set m = 10 and & = 20 in our experiments, as larger values yield
diminishing returns. More details (e.g., hyperparameters) can be found in appendix B}

Baselines For Mitigating Catastrophic Forgetting We construct representative baseline methodﬂ
to mitigate catastrophic forgetting during knowledge injection, including: (1) General-domain
Fine-Tuning (GenFT): continual fine-tuning on general-domain instruction data to restore instruction-
following ability. In our study, we use the MMLU development set (285 examples) for SFT; (2)
Parameter-Efficient Fine-Tuning (PEFT): we apply LoRA[21]], which updates only a small subset of
parameters; (3) Knowledge Editing: we adopt MEMIT [23]] and AlphaEdit [24], both achieving state-
of-the-art performance in editing factual knowledge. More implementation details of the baseline
methods (e.g., hyperparameters setting, training epochs, etc.) are provided in appendix [C|

Evaluation Benchmarks To investigate what type of knowledge is more likely to be forgotten, we
evaluate the forgetting of the injected model on a series of general and medical benchmarks. Specifi-
cally, we leverage MMLU [31] (Non-medical subset, denoted as MMLU-O), ARC-challenge [32]
(ARC-C) and CommonSenseQA [33] (CSQA) to evaluate the model’s performance on general
knowledge. For the medical domain, we utilize MedQA [34], MMLU medical subset (MMLU-
Med). The details of these benchmarks as well as the evaluation settings (prompt formats, inference
hyperparameters) are provided in appendices [D]and [E]

Backbone Models We primarily conduct experiments on four well-known LLMs: Llama3-8B [3]
and Qwen3 1.7B, 8B, and 32B [33]], chosen for their availability and strong performance on a range of
general-domain tasks. Due to resource constraints, we conduct full-parameter fine-tuning only on the
smaller models (Llama3-8B and Qwen3-1.7, 8B), and apply LoRA to the largest model (Qwen3-32B).
In our study, we use the instruction-tuned version of these models.

3.3 Results and Analysis
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Figure 3: Relative performance (%) of LLMs on evaluation benchmarks after knowledge injection,
normalized to their original performance. Error bars represent the standard deviation across 3 runs.

Knowledge Closer to Injected Facts Is More Prone to Forgetting We perform knowledge
injection on the selected LLMs using the RefInject method and evaluate forgetting across evaluation
benchmarks. The relative performance (normalized to the performance before injection) of the
injected models is shown in Figure 3] We observe that the performance of the injected models on all
the medical benchmarks (Deya1, MedQA and MMLU-Med) drops significantly, while the performance
on general benchmarks (MMLU-O, ARC-C, CSQA) remains relatively stable. For example, Llama3-
8B experiences a >30% drop in relative performance on the MedQA benchmark, while it retains
over 90% of its original performance on all the general benchmarks. Such phenomenon indicates that
LLM:s are prone to forgetting knowledge in domains closely related to the injected content—such as
the medical domain in this study—during the injection process.

To investigate the phenomenon of proximity-dependent forgetting in a more fine-grained view, we
divide the medical benchmarks into proximal and relatively distal sets based on the knowledge

3Replay-based methods are not applicable in our study, because the old data for pretraining and instruction
fine-tuning existing LLMs is typically not publicly available.



proximity between the injected knowledge set Dipject and the evaluation samples. For the PrimeKG-
based evaluation set (Devya1), samples are classified as proximal if they share the same head entity and
relation with any injected knowledge triple; otherwise, they are considered distal. For MedQA and
MMLU-Med, where explicit knowledge triples per test sample are unavailable, we embed both the
test samples and the injected knowledge into a shared space using the MedEmbed model [36], and
compute cosine similarity to estimate proximity. A threshold of 0.8 is then used to select samples
that are considered proximal. The detailed splitting process is provided in appendix [F}

Table 1: Performance (%) of the original and injected models on medical benchmarks, divided
according to the proximity to the injected knowledge.

Model Deval MedQA MMLU-Med
Proximal Distal Proximal Distal Proximal Distal
Llama3-8B 88.9 91.9 56.0 48.8 84.0 68.1
+KHOW]CdgC Injection 51 .2\][42'4% 61 ~9¢32.6% 35.1 137.4% 34'0\L30v4% 64'1¢23.7% 53'4l21~6%
Qwen3-1.7B 86.8 89.2 40.3 36.4 68.9 57.7
+Knowledge Injection 56'2~L35~3% 66.0¢26.0% 29'0~L28-0% 27.9¢23.4% 49.9\1275% 48.5¢15_8%
Qwen3-8B 88.7 91.8 64.7 56.1 92.2 77.4
+Knowledge Injection 64.0¢27.8% 74'1¢19~3% 51.61’20'3% 47'1$16~2% 84-1,1,8.8% 71'41,7.8%
Qwen3-32B 89.0 92.8 72.2 67.7 93.0 80.4

+Kn0wledge Injection 63-3¢28,8% 65.5¢29.5% 59'6~L17~5% 59'3i12~4% 80.0¢14,0% 74'7~L7~0%

Table [T] presents the performance of the original and injected models on the medical benchmarks,
divided into proximal and distal subsets, with subscripts showing the relative forgetting. Across all
datasets, we observe that the forgetting of proximal knowledge is generally more severe than that
of distal knowledge. For example, in the case of Llama3-8B, the relative forgetting on proximal
knowledge is 42.4, 37.4, and 23.7 across benchmarks, while it is only 32.6, 30.4 and 21.6 for distal
knowledge. These results validate our hypothesis that the proximity between the injected knowl-
edge and the test samples significantly influences the extent of forgetting, and that knowledge
that is more closely related to the injected knowledge is more likely to be forgotten.

Table 2: Performance (%) of the original (Llama3-8B) and injected models using various methods on
the medical and general benchmarks.

Model \ Medical \ General
‘ Diotal Dinject Deoval MedQA MMLU-Med ‘ MMLU-O ARC-C CSQA
Original 51.5 9.7 914 50.7 69.8 59.8 75.4 66.4
MEMIT 53.4 36.9 75.9 48.0 66.2 58.3 75.0 65.3
AlphaEdit | 52.3 32.7 77.1 447 64.9 574 73.9 64.8
RefInject 65.0 774  60.3 34.2 54.5 53.8 69.7 64.9
+LoRA 66.9 75.9 65.3 36.7 55.3 55.6 72.1 65.0
+GenFT | 68.8 734 714 41.8 64.0 59.6 76.0 69.3

Existing Mitigation Methods Are Not Effective Enough for Knowledge Closely Related to
Injected Knowledge We further investigate the effectiveness of methods for mitigating catastrophic
forgetting in the knowledge injection process, with the results on Llama3-8B summarized in Table 2]
(full results are provided in appendix [G)). While knowledge editing methods (MEMIT, AlphaEdit)
retain original knowledge well, their performance on injected knowledge is poor (36.9 and 32.7 on
Dinject), resulting in limited overall injection effectiveness (+1.9 and +0.8 on Dya1). A possible rea-
son is that these methods modify only a limited number of model parameters, which may insufficient
for enabling LLMs to generalize the injected knowledge effectively. In contrast, LoORA and GenFT
retain most of RefInject’s injection effectiveness, achieving accuracies of 75.9 and 73.4 on Djyject and
overall performance of 66.9 and 68.8 on D; .1, respectively. While these approaches also mitigate
forgetting of the original knowledge to a certain degree, notable degradation remains, particularly on
medical benchmarks. Notably, fine-tuning with general-domain instruction data (GenFT) effectively



restores most of performance on general-domain datasets, but forgetting on medical benchmarks
persists (e.g., 41.8 vs. 50.7 on MedQA). Our findings suggest that though the catastrophic forgetting
of knowledge injection can be mitigated to some extent by existing methods, they are not effective
enough regarding either the injection effectiveness or the retention of original knowledge.

4 Mitigating Catastrophic Forgetting via LLMs’ Internal Knowledge

4.1 Methodology

Schema of Internal Knowledge Augmentation In this section, we propose a novel method called
Internal Knowledge Augmentation Learning (InternAL) as a first attempt to mitigate catastrophic
forgetting by leveraging related internal knowledge from the target LLM. An overview of the proposed
method is presented in Figure[d] Our findings in the previous section indicate that knowledge more
closely related to the injected content is particularly susceptible to forgetting. To address this, we first
extract the relevant knowledge from the target model M:

’Cinner = fprobe(MO; K:inject) (5)

where firobe is the probing function that extracts the internal knowledge relevant to Kipject from
the model M. Then, the original knowledge injection process can be augmented with the internal

knowledge Kinner:
./\/l(llug = f~aug (MO, ]Cinjecta ICinner) (6)

inject

By attending to the relevant internal knowledge during the injection process, the proposed InternAL
method aims to mitigate the forgetting of the most relevant knowledge to the injected knowledge.

Injection Sample

) Original Sample Generation For a list medical entities A: leprosy, B: VIPoma,
Injec?ed Knowledge C: bronchitis, D: , E: b
(Loracarbef, indication, bronchitis) F: ... among the given list, the indications of

Loracarbef include option C, D, E

Internal-aware | pharyngitis,
Augmentation | sinusitis, ...

Internal Knowledge Probing Module (f};ope)

Generate Pharyngitis and

tonsillitis, sinusitis ...

(Loracarbef, indication, )

Probing Question merge | (Loracarbef, indication, )

What diseases are [uli impetigo, ... (Loracarbef, indication, )
> PP,

7 Lo (Loracarbef;, indication, )

tonsillitis, Otitis media ...

=
LLM Self Response Internal Related Knowledge

Figure 4: Overview of the proposed Internal Knowledge Augmentation Learning (InternAL) method.

Internal Knowledge Probing (f,:o1ne) To extract the internal knowledge from the target LLM, we
develop a internal knowledge probing module that first generates a probing question @); based on
the head entity h; and relation r; of the injected knowledge triple (h;,r;,t;) with templates. Such
question is designed to prompt the model to recall all the possible tail entities that have the relation
r; with the head entity ;. Then we prompt the target LLM M using the probing question K = 5
times to generate K different LLM responses R}, R7,--- , RX. Finally, we extract the tail entities
from the generated responses and filter out the duplicates to form the internal knowledge set /Cipper:

K
ICinner = {(hivrivt/)‘t/ € U fextract(Ri‘C)v 1 S 1 S N} (7)
k=1

where fextract 1S the function that extracts the tail entities from the generated responses, implemented
by prompting the target LLM. More details on the probing process, including the templates and
generation hyperparameters, can be found in appendix [H]



Internal-aware Sample Augmentation(f;,% ) After extracted internal knowledge relevant to the

injected knowledge, we augment the sample generation process with the extracted internal knowledge.
Specifically, for each injected knowledge triple z; = (h;,7;,t;), we sample n relevant tail entities

Lyth, -+t from Kinper that share the same head entity and relation with z;, and sample m —n — 1
negative tail entities ¢}, ¢5°,--- ,t,*¢ | from PrimeKG. Similar to the RefInject method, we

construct a referencing-style demonstration using the sampled tail entities. The LLM is trained to
select multiple correct options from m candidates, including both the injected tail entity ¢; and the
relevant tail entities t7,t5,--- ,t,. We keep the m and k consistent with RefInject, and random
choose n from 0 to 3 for each sample to prevent the model from learning statistical biases. The
generated samples are then used to fine-tune the target LLM M to obtain the injected model M{"7.
Further details on the sample augmentation process can also be found in appendix [H]

Table 3: Performance (%) of the baseline knowledge injection method (RefInject) and the proposed
method (InternAL). The lowest relative forgetting on each benchmark is underlined.

| Medical | General
Model
"Dtoml Dinject  Deval MedQA MMLU-Med‘ MMLU-O ARC-C CSQA
Llama3-8B 515 9.7 914 50.7 69.8 59.8 75.4 66.4
+RefInjeCt 65.0 77.4 60'3~L34~0% 34.2&32‘6% 54.5¢21A9% 53'8~L10~0% 69-7,1,746% 64.9J’2A3%

+RefInject+GenFT 68.8 734 71.4¢21‘9% 41.8¢17_6% 64-0.],843% 59.6]}0'2% 76'0T047% 69‘3'?444%
+InternAL (OllI'S) 69.3 743 70.9¢22'4% 39'5~L22-2% 56.8¢18'7% 54“71,8.5% 70~3J,649% 60.9»]/&3%
+InternAL+GenFT| 71.2 714 77.4¢15‘4% 45. lill.l% 66.1‘L5‘3% 60'4T1»0% 75'7T0<3% 69.8T5‘1%

Qwen3-1.7B 426 9.7 88.7 37.5 59.0 52.5 71.6 66.4
+Reﬂnject 60.4 63.0 64. 1¢27‘7% 28.8‘L23.1% 49-4¢16.3% 47.3¢9'9% 60'2$15-9% 53.1¢2()_0%
+RefInject+GenFT 629 604 72.8¢17'9% 31-3¢16.6% 55~0J,6.8% 52.1‘1’0.9% 68.1¢449% 63.3»]/4]7%
+InternAL (Ours) 63.5 59.3 75'1~L15~3% 32'O~L14~7% 51-4&12‘8% 47'6i9»4% 61~6,L13A9% 58'3~L12~2%
+InternAL+GenFT| 65.1 58.7 79~2J,1048% 33.3¢11_1% 58.()’]'1‘7% 52.0]}1'1% 68.5J’4‘3% 61.81'6‘9%

Qwen3-8B 493 94 91.4 58.5 79.0 67.2 87.3 80.3
+Reﬂnject 68.6 72.1 72.2¢21‘0% 48.3¢17_4% 72‘7l8-0% 63-01,6.2% 83.4¢4‘5% 76.8~L4‘3%
+RefInjeCt+GenFT 70.0 70.4 76-6,L16A2% 50'8i13~2% 75.6Jﬁ4A3% 69-1T2.8% 87.3‘1,0‘0% 78.6l2A1%
+InternAL (Olll'S) 732 72.0 82.0¢10‘2% 51'1$12-7% 74.9¢5‘1% 65'9l1»9% 84.9172‘8% 76.7¢4‘5%
+InternAL+GenFT| 73.7 70.8 84-0$8.0% 52-3¢10.6% 76~9J,2.6% 70'2T4~5% 87'7T045% 78.2»]/25%

Qwen3-32B 593 10.2 92.4 68.2 80.8 68.5 86.9 83.5
+RefInject 63.4 694 65.2¢29'4% 59-6¢12.6% 78.3¢3'1% 67.6J[1'3% 85.3¢149% 84.6T1'3%
+RefInjeCt+GenFT 66.8 73.6 68.6‘L25A7% 6O~2,L11A8% 79-9J,1A1% 70'9T3»5% 88.8T2‘2% 84'1T0-7%
+InternAL (OllI’S) 66.5 64.7 72.8¢21‘1% 63.3J’7'1% 79'3l1-9% 67.7]}1'3% 86.9“)‘1% 82.&]’0‘9%
+InternAL+GenFT| 73.5 67.7 83. 1~L10~0% 63'4i7-0% 81 '9T1~3% 72.615}9% 89'9T3<4% 83.0J’0A7%

4.2 Results and Analysis

Effectiveness of InternAL across Benchmarks We conduct experiments to evaluate the effec-
tiveness of the proposed InternAL method in mitigating catastrophic forgetting during knowledge
injection, comparing it against the original Reflnject method, both with and without general-domain
Fine-Tuning (GenFT). The results are presented in Table[3] We observe that InternAL significantly
alleviates catastrophic forgetting across all medical benchmarks and backbone models, while main-
taining stable performance on general-domain benchmarks. For instance, on the MedQA benchmark,
Llama3-8B fine-tuned with InternAL reduces relative forgetting by 10.4 compared to the original
Reflnject method (22.2 vs. 32.6). Furthermore, InternAL can be combined with GenFT to further
mitigate the forgetting of original knowledge. For example, Llama3-8B achieves 77.4 on Dey,) after
applying InternAL+GenFT, reducing relative forgetting by 6.5 compared to RefInject+GenFT (15.4
vs. 21.9). These results suggest that while general-domain instruction tuning (GenFT) effectively re-
stores the model’s instruction-following capability, applying the proposed InternAL method provides
additional gains in preserving the original knowledge.

Effectiveness on Proximal vs. Distal Knowledge We investigate the effectiveness of the proposed
InternAL method on the proximal and distal subsets of the medical benchmarks, with results presented
in Table |4l We observe that though InternAL can effectively mitigate forgetting on both proximal



Table 4: Performance (%) of RefInject and InternAL on proximal and distal subsets of medical
benchmarks (using Llama3-8B as backbone).

Model Deval MedQA MMLU-Med
Proximal Distal Proximal Distal Proximal Distal
Llama3-8B 88.9 91.9 56.0 48.8 84.0 68.1
+Reﬂnject 51‘2~L42<4% 61-9¢32.6% 35.1¢37.4% 33'9~L30-6% 64‘1l23'7% 53'4l21-6%

+Reﬂnject+GenFT 62~4¢29.8% 72'9¢20.6% 45'8¢18.2% 40.3¢17_4% 76~7¢8.7% 62~5¢8.3%
+InternAL (Olll'S) 63.6¢2845% 72.2¢21_4% 43'1~L23-2% 38.2¢21_9% 66.71'20_7% 55~6L18.4%
+InternAL+GenFT 7].2¢19.9% 78'4i14‘7% 50.0¢10‘7% 43‘3~L11‘3% 80.3¢4‘5% 64.4¢5‘4%
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Figure 5: Relative performance (%) of Llama3-8B trained with different knowledge injection methods
on various evaluation benchmarks, with varying numbers of injected knowledge triples. All results
are normalized to the model’s performance prior to injection.

and distal subsets, the mitigating effect is more pronounced on the proximal subset. For example,
on the MedQA benchmark, InternAL reduces relative forgetting by 14.2 on the proximal subset
(37.4 vs. 23.2) and 8.7 on the distal subset (30.6 vs. 21.9). This indicates that the proposed method
is particularly effective in preserving the knowledge that is more closely related to the injected
knowledge, which is consistent with our hypothesis.

Effectiveness across Injection Scale We further validate the proposed InternAL method across
different scales of knowledge injection by conducting experiments with varying ratio of injected
knowledge to the original injection set [Cipject (i.€., 0.2, 0.4, 0.6, 0.8). The results presented in Figure
[5] show that the proposed InternAL method generally outperforms the original RefInject method
across all scales of knowledge injection and the performance drops much slower than RefInject on
medical benchmarks. This indicates that internal knowledge augmentation better preserves essential
medical knowledge as the scale of knowledge injection increases.

Representation-Level Analysis To further understand how InternAL mitigates catastrophic forget-
ting, we analyze the representation changes before and after knowledge injection based on Llama3-8B
and Qwen3-8B. Then, we compute the average representation shift on the evaluation set Dey,) to
quantify the extent of representation change caused by knowledge injection on the unlearned knowl-
edge. The results are presented in Figure[6] We observe that InternAL consistently results in a smaller
average representation shift than RefInject, especially on the middle layers, which are known to
capture more knowledge-related information [23]]. This suggests that InternAL effectively preserves
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Figure 6: Average representation shift on the evaluation set D, after knowledge injection using
ReflInject and InternAL methods.

the original knowledge representations during the injection process, thereby mitigating the forgetting.

4.3 Extended Discussion

Impact on Hallucination Level Although the augmented knowledge used in InternAL is generated
by the target LLM itself and may contain factual errors, its hallucination level is inherently limited by
the model and therefore does not introduce additional hallucinations. To validate this, we conduct a
human evaluation on the hallucination level before and after knowledge injection, and the results in
appendix [I| show that the proposed method does not further increase the hallucination level.

Generalizability to Other Domain While our study mainly focus on the medical domain, the
proposed InternAL method may also be applicable to other domains. To verify this, we conducted
a small-scale study in the human geography domain. Results in appendix [J]] show that InternAL
effectively mitigates catastrophic forgetting during knowledge injection in this domain as well,
indicating its potential generalizability.

Generalizability to Other Knowledge Formats While our method primarily focuses on structured
knowledge, it can also be extended to other formats, such as unstructured texts. To test this, we
conducted a preliminary study on free-form medical texts (e.g., clinical guidelines) and adapted
InternAL for this setting. Results in appendix [K]show that InternAL effectively mitigates catastrophic
forgetting here as well, demonstrating its potential generalizability on unstructured data.

5 Conclusion

In this paper, we explore the challenge of catastrophic forgetting in large language models during
medical knowledge injection. Our experiments reveal a clear proximity-dependent forgetting phe-
nomenon: knowledge that is semantically or topically close to the injected content is more prone to be
forgotten. We evaluate several existing mitigation techniques and find them inadequate in preserving
knowledge that is closely related to the injected knowledge. To address this, we propose Internal
Knowledge Augmentation Learning (InternAL), a novel approach that leverages the LLMs’ internal
knowledge to enhance the injection process. Experimental results show that InternAL consistently
mitigates forgetting across diverse medical benchmarks while preserving most of the injection ef-
fectiveness. We hope our findings shed light on the underlying properties of catastrophic forgetting
in medical knowledge injection and highlight a promising direction for future work that harnesses
LLMs’ internal knowledge to address this issue.

Limitations. There are two main limitations in our work. First, our study mainly focus on the
catastrophic forgetting in the medical domain, and the behavior of catastrophic forgetting in other
domains may differ (though we have conducted some preliminary studies in other domains as
discussed in appendix[J). Second, while we propose a novel method to mitigate catastrophic forgetting,
it is still far from completely resolving the catastrophic forgetting problem. Future work should focus
on extracting more relevant internal knowledge and developing more effective augmentation methods
to mitigate catastrophic forgetting in knowledge injection.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Introduction
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Conclusion
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details for reproducing the experiments are provided in the Section 3, 4
and Appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The code and data are provided in the supplemental material and will be made
publicly available after the review process.
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* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details for experimental settings are provided in the Section 3, 4 and
Appendix.
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* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in the Figure 3, and the statistical significance of the
results is further discussed in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics
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Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed in the Conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release any data or models that have a high risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models and datasets used in the paper are properly cited and the corre-
sponding licenses are listed in Appendix [A]and B.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The original dataset is described in Appendix [A]
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: The usage of LLMs is described in the Section 3.2 and 4.1.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Dataset for Knowledge Injection

PrimeK(f] is a large-scale biomedical knowledge graph that contains over 4 million triples, covering
a wide range of medical concepts and relationships. It is constructed from 20 different biomedical
knowledge bases, including UMLS, DrugBank, OMIM, and others. In our study, we utilize PrimeKG
to construct dataset for knowledge injection and evaluation of catastrophic forgetting. An overview
of the dataset construction process is shown in Figure

% Conducting
inject - - Injection
© Acc<0.25
“1 e Evaluating
Dinjece 3 O & T _ Injection
Q Effectiveness
© L
Sample Generate i Kees: T
P n | EEEL gy | Test, =
Model M, X
PrimeKG odel Mo eval Q O O
(~4M triplets) Q hco=075 5 5 5 Evaluating
- D, —— Catastrophic
J yKees eval . . . atastrop
Zn {an}; 5" © © © Forgetting
Sampled Set Multi-choice Questions Datasets for Knowledge
(20,864 triplets) (20 questions for each) Injection and Evaluation

Figure 7: An overview of the dataset construction process based on PrimeKG.

To support our study, we selected 21 crucial knowledge types from PrimeKG as listed in Table [6]
and randomly sampled 1,000 triples from each type given the large scale of PrimeKG. To identify
knowledge not well acquired by the LLM prior to injection, we first generated multiple-choice
questions (MCQs) for each sampled triplet and evaluated the original model M, based on its
performance. An example of the question generation process is shown in Figure [§] with templates
provided in Table|5| For each triplet, we created kst = 20 questions, each comprising one correct
answer (the triplet’s tail) and three distractors randomly sampled from PrimeKG.

Triplets on which the model scored below 25% (i.e., below the random-guessing threshold) were
selected for knowledge injection, and the corresponding MCQs were used to evaluate whether
the LLM successfully learned the injected knowledge. To evaluate catastrophic forgetting, we
additionally constructed a test set comprising triplets where the model scored above 75% on the
generated questions, since these triplets are likely to be well learned by the model. Detailed statistics
for both injection and evaluation are summarized in Table|[6]

Farber Iipogranulomatosis,w Question: Which of the following phenotypes is most
Phenotype present, > likely a characteristic phenotype of Farber
Myoclonus J lipogranulomatosis?
Options:
Negative Sampling A: Stress/infection-induced lactic acidosis

B: Undetectable visual evoked potentials
C: Shortening of all proximal phalanges of the fingers

Stress/infection-induced lactic acidosis, ... R D: Myoclonus

Answer: D

(i

PrimeKG

Figure 8: An example of generating a multiple-choice question based on a knowledge triplet.

*PrimeKG is licensed under MIT License.
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Table 5: Question templates and injection references for constructing the injection and evaluation
datasets.

Relation Type

Question Template

Injection Reference

protein-interact with-protein
drug-has carrier-protein
drug-has enzyme-protein
drug-has target-protein

drug-has transporter-protein

drug-has contraindication-disease

drug-has indication-disease

drug-has off-label use-disease

drug-interact with-drug

protein-associated with-phenotype

disease-phenotype present-phenotype

protein-associated with-disease

drug-side effect-effect

protein-interacts with-molecular function

protein-interacts with-cellular component

protein-interacts with-biological process

exposure-interacts with-protein

exposure-linked to-disease

exposure-interacts with-biological process

protein-interacts with-pathway

protein-expression present in-anatomy

Which of the following proteins is
most likely to interact with [head]?
Which of the following proteins is
most likely the carrier of [head]?
Which of the following proteins is
most likely the enzyme of [head]?
Which of the following proteins is
most likely the target of [head]?
Which of the following proteins
is most likely the transporter of
[head]?

Which of the following diseases
most likely prohibits the use of
[head]?

Which of the following diseases is
an indication of [head]?

Which of the following diseases
is most likely an off-label use of
[head]?

Which of the following drugs
most likely has an interaction with
[head]?

Which of the following pheno-
types is most likely associated with
[head]?

Which of the following phenotypes
is most likely a characteristic pheno-
type of [head]?

Which of the following diseases is
most likely associated with [head]?
Which of the following effects is
most likely a characteristic side ef-
fect of taking [head]?

Which of the following molecular
functions is most likely to interact
with [head]?

Which of the following cellular com-
ponents is most likely to interact
with [head]?

Which of the following biological
processes is most likely to interact
with [head]?

Which of the following proteins is
most likely to interact with [head],
an environmental exposure?

Which of the following diseases is
most likely linked to exposure to
[head]?

Which of the following biological
processes is most likely to interact
with exposure to [head]?

Which of the following pathways is
most likely to interact with [head]?
In which of the following anatom-
ical structures is the expression of
[head] most likely present?

proteins that can interact with [head]
carriers of [head]

enzymes of [head]

targets of [head]

transporters of [head]

contraindications of [head]

indications of [head]

off-label uses of [head]

drugs that have an interaction with
[head]

phenotypes that associate with
[head]

phenotypes of [head]

diseases that associate with [head]
side effects of [head]

molecular functions that interact
with [head]

cellular components that interact
with [head]

biological processes that interact
with [head]

proteins that interact with exposure
to [head]

diseases that are linked to exposure
to [head]

biological processes that interact
with exposure to [head]

pathways that interact with [head]

anatomical structures where [head]
present
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Table 6: Statistics of datasets generated from PrimeKG for knowledge injection and catastrophic
forgetting evaluation.

Relation Type #triplets for injection #triplets for test
Llama3-8B  Qwen3-8B  Llama3-8B  Qwen3-8B

protein-interact with-protein 461 461 189 237
drug-has carrier-protein 132 277 447 232
drug-has enzyme-protein 305 146 395 492
drug-has target-protein 212 242 579 556
drug-has transporter-protein 159 168 506 425
drug-has contraindication-disease 402 420 243 234
drug-has indication-disease 81 74 724 759
drug-has off-label use-disease 378 763 239 32

drug-interact with-drug 384 431 254 231
protein-associated with-phenotype 440 440 263 245
disease-phenotype present-phenotype 312 277 362 393
protein-associated with-disease 483 477 264 245
drug-side effect-effect 316 357 311 291
protein-interacts with-molecular function 47 69 768 780
protein-interacts with-cellular component 351 487 350 283
protein-interacts with-biological process 223 216 522 541
exposure-interacts with-protein 647 622 147 135
exposure-linked to-disease 505 525 183 187
exposure-interacts with-biological process 435 442 222 218
protein-interacts with-pathway 160 159 558 570
protein-expression present in-anatomy 662 597 99 105
Total 7095 7650 7625 7191
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B Details of Knowledge Injection Method

As introduced in Section 3.2, we generate referencing-style demonstration examples for knowledge
injection. An example of the generation process is shown in Figure [0

Injection Sample
For a list of medical entities A: leprosy, B:
VIPoma, C: bronchitis, D: glycogen storage
disease, E: ..., F: ... among the given list, the
indications of Loracarbef include option C

Injected Knowledge (Loracarbef, indication, bronchitis)
(Loracarbef, indication, bronchitis)

Negative Sampling VIPoma, leprosy, glycogen
(Loracarbef, mindication) External KG storage disease, ...

Figure 9: An example of generating referencing-style injection samples.

Specifically, for each triplet (h;,r;,t;), we first generate an injection reference by filling the head
entity h; into the template corresponding to the relation r;, as listed in Table [5| For the example
in Figure[9] the injection reference is “the indications of Loracarbef”. Then, we use the following
template to generate the injection example for fine-tuning:

For a list of medical entities A: ..., B: ..., C: ..., ..., I: ..., J: ..., among the given list,
[injection reference] include option [answer].

where the options are the tail entity ¢; and m — 1 distractors randomly sampled from PrimeKG and
the answer is the option index of the tail entity ¢;. For each triplet, we generate k¥ = 20 injection
examples, each with a different set of distractors and a different option index for the tail entity. The
injection examples are then used to fine-tune the LLMs.

For fine-tuning, we choose Llama3—8B-InstructE] and Qwen3-8BE] as backbone models. We use
the causal language modeling (CLM) objective, which is to maximize the likelihood of the model
generating the answer given the options and the injection reference. We set the batch size to §,
warmup ratio to 0.05, number of epochs to 1 for both Llama3-8B and Qwen3-8B. For learning rate,
we set le-5 and 2e-5 for Llama3-8B and Qwen3-8B respectively, to balance the injection effectiveness
and catastrophic forgetting. We use the AdamW optimizer with a weight decay of 0.01 and a cosine
learning rate scheduler. The training is performed on a single NVIDIA A800 GPU with 80GB
memory. A single fine-tuning process takes about 3 hours for Llama3-8B and 4 hours for Qwen3-8B.

C Details of Baseline Methods for Mitigating Catastrophic Forgetting

We have implemented several baseline methods for mitigating catastrophic forgetting, including
knowledge editing methods (MEMIT and AlphaEdit), general-domain finetuning (GenFT), and
parameter-efficient finetuning methods (LoRA).

For knowledge editing methods, we follow the original implementation of MEMIT and AlphaEdit to
generate a set of editing templates for each knowledge type, as presented in Table[7} To deal with the
case of multiple correct answers, we concatenate the correct answers into a single string, separated
by commas. For hyperparameters, we varied the batch size across [100, 500, whole dataset] and the
learning rate across [le-1, Se-1]. We found that a batch size of the whole dataset and a learning rate
of Se-1 achieved the best performance for both MEMIT and AlphaEdit on our datasets.

For GenFT, we used the development set of the MMLU benchmark that includes a total of 285
examples. We conducted a grid search across different number of epochs [1, 3, 5] and learning rates
[2e-5, 1e-5, Se-6], and found that 3 epochs with a learning rate of le-5 achieved the best performance.
The other hyperparameters were set to the same values used in the knowledge injection process.

For LoRA, we set the rank to 16 and alpha to 32 to balance the performance and the number of
trainable parameters. We also set the dropout rate to 0.05 and the batch size to 8. The learning rate
was set to 3e-05 to reach a similar injection effectiveness as the full-parameter finetuning for a fair
comparison. The other hyperparameters were set to the same values used in the knowledge injection
process.

SLlama3-8B-Instruct is licensed under Llama3 License.
5Qwen3-8B is licensed under Apache-2.0 License.
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Table 7: Templates for generating samples utilized in knowledge editing baselines.

Relation Type Editing Template

protein-interact with-protein [head] can interact with the following proteins:
drug-has carrier-protein [head] can be carried by the following proteins:
drug-has enzyme-protein [head] can be metabolized by the following enzymes:
drug-has target-protein [head] targets the following proteins:

drug-has transporter-protein [head] is transported by the following proteins:
drug-has contraindication-disease [head] has a contraindication for the following diseases:
drug-has indication-disease [head] is indicated for the following diseases:
drug-has off-label use-disease [head] is used off-label for the following diseases:
drug-interact with-drug [head] has an interaction with the following drugs:
protein-associated with-phenotype [head] is associated with the following phenotypes:
disease-phenotype present-phenotype [head] presents with the following phenotype:
protein-associated with-disease [head] is associated with the following diseases:
drug-side effect-effect [head] has the following side effects:

protein-interacts with-molecular function  [head] can interact with the following molecular functions:
protein-interacts with-cellular component  [head] can interact with the following cellular compo-

nents:

protein-interacts with-biological process [head] can interact with the following biological pro-
cesses:

exposure-interacts with-protein Exposure to [head] can interact with the following pro-
teins:

exposure-linked to-disease Exposure to [head] can be linked to the following diseases:

exposure-interacts with-biological process Exposure to [head] can interact with following biological
processes:

protein-interacts with-pathway [head] can interact with the following pathways:

protein-expression present in-anatomy [head] has expression present in the following anatomical
structures:

D Details of Evaluation Benchmarks

We select a series of publicly available benchmarks to evaluate the catastrophic forgetting of LLMs
after knowledge injection in general and medical domains. Specifically, we choose the following
benchmarks:

* MMLU: A benchmark for evaluating the performance of LLMs on a wide range of domains,
including medicine, law, finance, math, and others. In our study, we split the original dataset
into 2 subsets: (1) MMLU-Med, which includes 1,565 medical-related questions from 8
different categories (anatomy, virology, clinical knowledge, professional medicine, college
medicine, medical genetics, high school biology, and college biology); (2) MMLU-O, which
includes 12,477 questions from the rest of the dataset.

* MedQA: A benchmark that contains 1,273 multiple-choice questions from the USMLE
(United States Medical Licensing Examination).

* ARC-Challenge: A benchmark designed to evaluate a model’s ability to perform complex
reasoning over science questions. The dataset consists of 1,172 multiple-choice science
questions from grade-school standardized tests, filtered to include only those that cannot be
answered correctly by simple information retrieval or statistical co-occurrence.

* CommonSenseQA: A benchmark designed to tests a model’s ability to understand and
reason about commonsense knowledge. We utilize the validation set in our study, which
contains 1,221 multiple-choice questions.
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E Details of Evaluation Settings

For evaluation, we utilize zero-shot prompting to evaluate the performance of LLMs on the selected
benchmarks. Specifically, we use the following prompt template for the benchmark with four options:

Question: [question]

Options:

A: [optionl]
B: [option2]
C: [option3]
D: [option4]

Your answer format should be like “Answer: [A-D]”.

Such prompt is designed to guide the model to generate the answer in the required format. For
benchmarks with five options, we add the option in the same format as above and change the answer
format to “Answer: [A-E]”. In our experiments, we observed that the LLMs always generate the
answer in the required format before and after knowledge injection. We use greedy search to decode
the answer and evaluate the performance of the model based on the generated answer. For each
benchmark, we report the accuracy of the model.

F Details of Proximity-based Analysis

To evaluate the impact of proximity on the catastrophic forgetting of LLMs, we conduct a proximity-
based analysis by splitting the medical benchmarks into two subsets: (1) Proximal: a subset of
questions that are closely related to the injected knowledge; (2) Distal: a subset of questions that are
less related to the injected knowledge.

For the evaluation set generated from PrimeKG (D,..1), we select the samples that share the same
head entity and relation with any injected triplet as the proximal subset, and the rest as the distal
subset:

DY — () € Deyar|Vi5, 3(h, 1, t) € Kinjeer St h=hi AT =13} )
Dovai™ = Devar \ DL ©)

Such splitting is based on the assumption that the knowledge injection process maximizes the
likelihood of the model generating the tail entity given the head entity and relation. Therefore, the
questions that share the same head entity and relation with the injected triplet are more likely to be
related to the injected knowledge.

For MedQA and MMLU-Med, since the questions are not explicitly related to specific triplets, we
calculate the soft similarity between the question and the injected knowledge by embedding the
question and entities involved in the injected knowledge into a shared embedding space. Specifically,
we first use the MedEmbe(ﬂ model to generate the embeddings. Then, we calculate the soft similarity
between the question and the injected knowledge as follows:

, Nopti
max cos(gf,e) + > 27" max cos(gi*,e)
e€E&inject e€E&inject

i i»gin'cc = 10
Slm(q ! t) Noptions+1 ( )

where Emb(z) - Bxub(y)

mb(z) - Emb(y
cos(x,y) = (11)

) = TEmb (o)l o] Emb(y)]s
and

ginject = {h|V(h7T‘7 t) S ’Cinject} U{t‘v(harv t) S ,Cinject} (12)

and Noptions 1S the number of options in the question, ¢f is the question content, and ¢;* is the k-th
option. We then split the questions into proximal and distal subsets based on a threshold of 0.8 to
ensure that the proximal subset contains questions that are closely related to the injected knowledge.

"MedEmbed is licensed under Apache-2.0 License.
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G Full Results of Catastrophic Forgetting Evaluation

We provide the full results of the catastrophic forgetting evaluation on the medical and general
benchmarks in Table [§] Note that we only implement the knowledge editing methods (MEMIT
and AlphaEdit) for Llama3-8B, as the original implementation of MEMIT and AlphaEdit is not
available for Qwen3-1.7B, 8B, and 32B. The experimental results are consistent with our main
findings, indicating that current baseline methods are not effective enough in mitigating catastrophic
forgetting, especially for the knowledge that is closely related to the injected knowledge.

We also list the results of RefInject and InternAL on the proximal and distal subsets across Llama3-8B
and Qwen3-1.7B, 8B, and 32B in Table[9] The experimental results demonstrate that the proposed
InternAL method is effective in mitigating the catastrophic forgetting of knowledge closer to the
injected knowledge. The performance of RefInject and InternAL across different injection scales

Table 8: Performance (%) of the original and injected models using various methods on the medical
and general benchmarks.

Model ‘ Method ‘ Medical ‘ General
| Diotal  Dinject  Devar  MedQA  MMLU-Med | MMLU-O ARC-C  CSQA
Original 515 97 914 507 69.8 59.8 754 664
MEMIT 534 369 759 480 66.1 58.3 750 654
Llama3.gp | AlphaEdit 523 327 711 447 64.9 57.4 739 648
RefInject 650 774 603 342 54.5 53.8 69.7  64.9
+LoRA 669 759 653 367 553 55.6 721 649
+GenFT 688 734 714 418 64.0 59.6 760  69.3
Original 426 97 887 375 59.0 52.5 716 664
MEMIT - - - - - - - -
AlphaEdit - - - - - - - -
Qwen3-1.7B | g ofinject 604 630 641 288 494 473 602  53.1
+LoRA 597 702 537 254 447 488 629 594
+GenFT 629 604 728 313 55.0 52.1 63.1 633
Original 493 94 914 585 79.0 67.2 873 803
MEMIT . y . § . - - §
AlphaEdit . . - . . . . .
Qwen3-8B | pfinject 68.6 721 722 483 72.7 63.0 834 768
+LoRA 672 719 689 458 71.2 64.1 844 79.0
+GenFT 700 704 766  50.8 75.6 69.1 873  78.6
Original 593 102 924 682 80.8 68.5 869 835
MEMIT . R - - - . . .
AlphaEdit - - - - - - - -
Qwen3-32B | p finject (LoRA) | 634 694 652  59.6 783 67.6 853 846
+LoRA N . : . N : : .
+GenFT 668 736 686  60.2 79.9 70.9 888  84.1

on Qwen3-8B in also presented in Figure [I0] The experimental results demonstrate a similar trend
as that of Llama3-8B, indicating that InternAL is effective in mitigating the catastrophic forgetting
of LLMs across different injection scales, especially for the knowledge that is closely related to the
injected knowledge.

H Details of Internal Knowledge Augmentation Learning

Internal Knowledge Probing To probe the internal knowledge from the target LLM, we first gener-
ate a probing question for each head-relation pair in the injection set ({(h;, 7;)|(hi, 74, t;) € Kinject })
using the probing templates listed in Table[I0} We then use the generated probing question to query
the LLM K = 5 times, resulting in 5 probing answers for each probing question (R}, R?,--- | R?).
We set the decoding temperature to 0.6 to balance the diversity and accuracy of the probing answers.

Subsequently, we extract the tail entities from the probing answers by prompting the target LLM
with the following instruction: “[Extraction Question]. Return a list of entities that satisfy the query,
separated by a vertical bar (‘I°). If no entity meet the query, output ‘None*. Paragraph: [paragraph].”
The extraction question is generated based on the extraction templates listed in Table[T0]

Finally, we parse the extracted entities and filter out the entities that are not in the injection set. We
then use the extracted knowledge (Kinner) to augment the knowledge injection process.
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Table 9: Performance (%) of RefInject and InternAL on proximal and distal subsets of medical
benchmarks.

Model Method Deval MedQA MMLU-Med
Proximal Distal Proximal Distal Proximal Distal
Original 88.9 91.9 56.0 48.8 84.0 68.1
+Reflnject 51‘2L42<4% 61~9L32.6% 35.11'37'4% 33'9l30~6% 64'1~L23<7% 53‘4i«21-6%
Llama3-8B +Reflnject+GenFT 62-4129‘8% 72'9L20-6% 45-81,18,2% 40.3&174% 76-7J,8.7% 62.5@;‘3%
+InternAL 63~6¢28.5% 72.2¢21_4% 43.11}23»2% 38.2¢21_9% 66.7‘L20_7% 55~6¢18.4%
+InternAL+GenFT 71'2L1949% 78.4¢14.7% 50'0~L10~7% 43'3l11-3% 803l45% 644154%
Original 86.8 89.2 37.2 39.5 60.8 54.0
+RefInject 56.2#;5‘3% 66‘0L26.0% 28.91(22‘4% 28'3l28~4% 49'8¢18A0% 48‘1i11-0%
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Figure 10: Relative performance (%) of Qwen3-8B trained with different knowledge injection
methods on various evaluation benchmarks, with varying numbers of injected knowledge triples. All
results are normalized to the model’s performance prior to injection.

Internal-aware Sample Augmentation As introduced in Section 4.1, we augment the knowledge
injection process with the internal knowledge by adding the extracted tail entities as correct answers
to the injection examples and convert the original multiple-choice question into a multiple-answer
question. Specifically, for each triplet (h;,r;, t;) for injection, we first retrieve the corresponding
internal knowledge i) — {(h,r,t)|]h = hiyy,r = 7;,(h,r,t) € Kipner}- Then the maximum

mner
number of correct options is set to n™** = max(|lCi(r'fri’e’;") + 1,4). We limit the maximum number

of correct options to 4 to ensure the difficulty of the question.

Then, we conduct uniform sampling to select the number of correct options n ~ Uniform|[1, n™2¥],
(hi,rs)

and randomly sampling » — 1 tail entities from C; '’ *’ to combine with the original tail entity ¢;
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Table 10: Question templates used for probing and extracting the related internal knowledge.

Relation Type

Probing Template

Extraction Template

protein-interact with-protein

drug-has carrier-protein

drug-has enzyme-protein

drug-has target-protein

drug-has transporter-protein

drug-has contraindication-disease

drug-has indication-disease

drug-has off-label use-disease

drug-interact with-drug

protein-associated with-phenotype

disease-phenotype present-phenotype

protein-associated with-disease

drug-side effect-effect

protein-interacts with-molecular function

protein-interacts with-cellular component

protein-interacts with-biological process

exposure-interacts with-protein

exposure-linked to-disease

exposure-interacts with-biological process

protein-interacts with-pathway

protein-expression present in-anatomy

What genes or proteins are involved in
protein-protein interactions with the protein
[head]?

What proteins carry the drug [head]?

‘What proteins metabolize the drug [head]?
What proteins are targeted by the drug
[head]?

What proteins transport the drug [head]?

What diseases are contraindicated by the
drug [head]?

‘What diseases are indications for the drug
[head]?

What diseases are treated off-label by the
drug [head]?

What drugs have a drug-drug interaction
with [head]?

‘What effects or phenotypes are associated
with [head]?

‘What phenotypes are present in the disease
[head]?

‘What diseases are associated with [head]?
What side effects are caused by the drug
[head]?

‘What molecular functions are associated

with [head]?

What cellular components interact with
[head]?

‘What biological processes interact with
[head]?

What genes or proteins interact with the
exposure of [head]?

‘What diseases are linked to the exposure of
[head]?

What biological processes interact with the
exposure of [head]?

‘What pathways does [head] involve in?

‘What anatomical locations show expression
of [head]?

Given the paragraph below, extract all the
proteins that are involed in protein-protein
interactions with "[head]".

Given the paragraph below, extract all the
proteins that carry the drug "[head]".
Given the paragraph below, extract all
the proteins that are enzymes of the drug
"[head]".

Given the paragraph below, extract all
the proteins that are targeted by the drug
"[head]".

Given the paragraph below, extract all the
proteins that transport the drug "[head]".
Given the paragraph below, extract all the
diseases that are contraindicated by the drug
"[head]".

Given the paragraph below, extract all the
diseases that are indicated by the drug
"[head]".

Given the paragraph below, extract all the
diseases that are treated off-label by the
drug "[head]".

Given the paragraph below, extract all the
drugs that have a drug-drug interaction with
the drug "[head]".

Given the paragraph below, extract all the
effects/phenotypes that are associated with
the protein "[head]".

Given the paragraph below, extract all the
phenotypes that are present in the disease
"[head]".

Given the paragraph below, extract all
the diseases that are associated with the
gene/protein "[head]".

Given the paragraph below, extract all the
side effects of the drug "[head]".

Given the paragraph below, extract all the
molecular functions that the gene/protein
"[head]" interacts with.

Given the paragraph below, extract all the
cellular components that the gene/protein
"[head]" interacts with.

Given the paragraph below, extract all the
biological processes that the gene/protein
"[head]" interacts with.

Given the paragraph below, extract all the
proteins that interact with the exposure of
"[head]".

Given the paragraph below, extract all the
diseases that are linked to the exposure of
"[head]".

Given the paragraph below, extract all the
biological processes that the exposure of
"[head]" interacts with.

Given the paragraph below, extract all the
pathways that the gene/protein "[head]" in-
volves in.

Given the paragraph below, extract all
the anatomical locations that the protein
"[head]" is expressed in.

as the correct options. The distractors are randomly sampled from the PrimeKG dataset. The final
injection example is then generated by filling the head entity h;, relation r;, and the selected correct
options into the template as follows:

For a list of medical entities A: ..., B: ...

,Co, L

[injection reference] include option [list of answers].

M

..., among the given list,

In this way, we can augment the knowledge injection process with the related internal knowledge,
avoiding the catastrophic forgetting of the knowledge that is closely related to the injected knowledge.
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I Hallucination-Level Analysis

Though the augmented knowledge used in the proposed method may contain some noise, it is
generated by the target model prior to injection, meaning that its hallucination level is inherently
bounded by that of the model, with no external noise introduced. To validate this, we selected five
relation types in PrimeKG and, for each, randomly chose five head entities. We then prompted
the model with open-ended questions to generate tail entities and measured precision through
manual evaluation. We compare the precision of the original model and that of the model after
applying InternAL, as shown in Table[T1] Experimental results show that the model trained with
InternAL achieves higher precision, suggesting that the proposed approach not only avoids amplifying
hallucinations, but may even help reduce them. We speculate that this may be because hallucinations
in the original model that contradict the newly injected knowledge are partially suppressed during the
injection process, thereby reducing the overall hallucination level.

Table 11: Precision (%) of the original model and the model after applying InternAL on the generated
tail entities for selected relation types in PrimeKG.

Precision Original InternAL (ours)
drug-has indication-disease 47.7 90.0
protein-interacts with-biological process 45.3 64.0
disease-phenotype present-phenotype 83.3 84.7
drug-side effect-effect 87.6 92.4
exposure-linked to-disease 49.6 59.5
Total 62.7 78.1

J Generalizability to Other Domains

Though the proposed InternAL method is primarily designed for medical knowledge injection, it
has the potential to be generalized to other domains. To verify this, we further conducted an addi-
tional small-scale study beyond the medical field. Specifically, we selected human geography as the
target domain and extracted all sister city relationships from Wikidata (i.e., long-term partnerships
between cities established through official agreements), sampling 20,000 city pairs for experimen-
tation. Following the same methodology used in the paper, we constructed evaluation questions
to identify a subset of knowledge that was poorly mastered by the model (6,857 pairs selected for

injection, denoted as K. SiSCily), and a well-mastered subset with model accuracy over 75% (4,145

inject o
pairs selected for evaluating forgetting, denoted as D). We then applied both the baseline

method (ReflInject) and our proposed method (InternAL) for knowledge injection. For evaluation,

we leverage sister-city-based test sets Disnljse(;ty and D37 as well as on a suite of general-domain
benchmarks. Furthermore, to evaluate the model’s forgetting of domain-related but semantically
distant knowledge, we constructed an additional test set, CityLoc, by generating 7,174 questions
based on the latitude and longitude information of cities extracted from Wikidata. We also studied
the effect of general-domain finetuning (GenFT), an effective approach for mitigating catastrophic

forgetting in the general domain.

Experiments are conducted based on Llama3-8B, and the results are provided in Table [I2] The
results above show that (1) direct knowledge injection (RefInject) leads to a 25% forgetting rate on

Des‘i,zlcny and a 5.4% forgetting rate on CityLoc, while general-domain finetuning (GenFT) fails to

effectively address the substantial forgetting on DSSCY and CityLoc; (2) Our method (InternAL)

N eval
significantly mitigates forgetting on D5 (from 64.3 to 82.0) and on CityLoc (from 67.2 to 72.6).
This demonstrates that our method can effectively reduce catastrophic forgetting in other domains

beyond medicine, especially for knowledge that is closely related to the injected knowledge.
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Table 12: Performance (%) of LLMs on human geography benchmarks after injecting knowledge
using the baseline and proposed methods.

Model Dyis™ D™ CityLoc

Llama3-8B 9.1 89.3 72.6
+ReflInject 93.9 64.3 67.2
+RefInject+GenFT 93.0 69.0 66.8
+InternAL (ours) 93.9 82.0 72.6
+InternAL+GenFT 94.5 83.9 72.1

K Generalizability to Other Data Formats

Though the proposed method InternAL is primarily designed for the injection of structured medical
knowledge, it can also be generalized to unstructured knowledge formats, such as clinical guidelines.
To verify this, we conducted an additional small-scale study using clinical guidelines as the injection
knowledge. Specifically, we randomly sampled 2,000 clinical guidelines from a publicly available
dataset [37], and used GPT-4.1 to generate 5 multiple-choice questions (MCQs) for each guideline.
A subset of these questions was manually reviewed and found to be largely reliable for evaluation.
We used these MCQs to evaluate the performance of LLaMA3-8B and selected 185 guidelines with
accuracy below 50% as the injection knowledge set (Kipject), and 1,542 guidelines with accuracy
above 75% as the evaluation set (Dey,) to monitor forgetting. We adopt continued pretraining (CPT)
as our approach for knowledge injection. Given the limited amount of injection data, we utilize
commonly used data augmentation techniques, generating multiple paraphrased versions of the
training samples in order to enhance the diversity of injection. Built on that, we further extend our
proposed method (InternAL) to the unstructured knowledge. Specifically, we first extract key medical
entities from each training sample using the target LLM, then prompt the model to recall relevant
knowledge associated with these entities, and finally integrate the recalled knowledge into training
samples to construct enriched pretraining texts.

The evaluation results are summarized in Table[I3] We observed the following phenomena from the
results: (1) Continued Pretraining (CPT) achieves considerable performance on tasks related to the
injected knowledge, but leads to significant forgetting, which exhibits proximity-dependent forgetting
characteristics (a drop of 7.8 on Dy, an average decrease of 6.3 on medical benchmarks, and an
average decrease of 4.2 on general datasets); (3) Incorporating the internal relevant knowledge of
LLMs into the training data (InternAL) can effectively mitigate forgetting, especially on the medical
evaluation sets.

Table 13: Performance (%) of LLMs on medical and general benchmarks after injecting knowledge
in the form of unstructured text using different methods.

M \ Medical \ General
ethod
| Dinject Deva MedQA MMLU-Med | MMLU-O ARC-C CSQA
Llama3-8B 29.7 937 50.7 69.8 59.8 754 664
+CPT 496 859 443 63.6 55.8 72.1 61.0
Relative Forgetting | - 8.3 12.6 8.9 6.7 4.4 8.1
+InternAL (ours) 47.0 87.8 46.0 65.8 56.7 724 625
Relative Forgetting | - 6.3 9.3 5.7 5.2 4.0 5.9
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