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Summary
Many real-world control and optimization problems require making decisions over a finite

horizon to maximize performance. This paper proposes a reinforcement learning framework
that approximately solves the finite-horizon Markov Decision Process (MDPs) by combining
Gaussian Processes (GP) with Q-learning. The method addresses two key challenges: the
tractability of exact dynamic programming in continuous state-control spaces, and the need
for sample-efficient state-action value function approximation in systems where data collec-
tion is expensive. Using GPs and backward induction, we construct state-action value function
approximations that enable efficient policy learning with limited data. To handle the compu-
tational burden of GPs as data accumulates across iterations, a subset selection mechanism
is introduced which uses M-determinantal point processes that draw diverse, high-performing
subsets. Theoretical analysis establishes probabilistic uniform error bounds on the convergence
of the GP posterior mean to the optimal state-action value function for convex MDPs with de-
terministic dynamics. Empirical case studies are explored through a linear quadratic regulator
problem and online optimization of a non-isothermal semi-batch reactor. Improved learning
efficiency is shown relative to the use of proximal policy optimization with a neural network
policy and state-action value function approximation.

Contribution(s)
1. The paper presents a framework for learning Gaussian process state-action value function

approximations using Q-learning for deterministic finite horizon Markov Decision Pro-
cesses.
Context: Prior work has explored the use of Gaussian process models within the infinite
horizon context (Engel et al., 2005; Grande et al., 2014; Chowdhary et al., 2014).

2. A subset selection strategy is proposed to ensure the online computational tractability of
control inference using M-determinantal point processes to build a GP approximation of
the state-action value function, that balances global coverage with local accurate modeling
in highly performing regions of the state-control space (Kulesza et al., 2012; Moss et al.,
2023)
Context: Previous works take the approach of building variational approximations globally
to the exact GP state-action value function approximation (Grande et al., 2014).

3. We provide probabilistic error bounds and asymptotic convergence rates for the error in
modeling the optimal state-action value function for convex MDPs with deterministic dy-
namics.
Context: We build on previous work on probabilistic error bounds derived in Lederer et al.
(2021b).



Gaussian Process Q-Learning for Finite-Horizon Markov Decision Process

Gaussian Process Q-Learning for Finite-Horizon
Markov Decision Process

Anonymous authors
Paper under double-blind review

Abstract
Many real-world control and optimization problems require making decisions over a1
finite time horizon to maximize performance. This paper proposes a reinforcement2
learning framework that approximately solves the finite-horizon Markov Decision Pro-3
cess (MDP) by combining Gaussian Processes (GPs) with Q-learning. The method4
addresses two key challenges: the tractability of exact dynamic programming in contin-5
uous state-control spaces, and the need for sample-efficient state-action value function6
approximation in systems where data collection is expensive. Using GPs and backward7
induction, we construct state-action value function approximations that enable efficient8
policy learning with limited data. To handle the computational burden of GPs as data9
accumulate across iterations, we propose a subset selection mechanism that uses M-10
determinantal point processes to draw diverse, high-performing subsets. Theoretical11
analysis establishes probabilistic uniform error bounds on the convergence of the GP12
posterior mean to the optimal state-action value function for convex MDPs with deter-13
ministic dynamics. The proposed method is evaluated on a linear quadratic regulator14
problem and online optimization of a non-isothermal semi-batch reactor. Improved15
learning efficiency is shown relative to the use of proximal policy optimization with a16
neural network policy and state-action value function approximation.17

1 Introduction18

Sequential decision-making problems with finite time horizons appear across numerous domains.19
These problems are often naturally modeled as finite-horizon Markov Decision Processes (MDPs),20
where decisions must optimize the total cost incurred over a predetermined time window. Fed-21
batch process control and online optimization is a prominent example within the process systems22
engineering (PSE) community (Mesbah, 2016; Bradford et al., 2020), where optimal policy identi-23
fication is inherently challenging due to difficulties in system model identification and uncertainty24
propagation over the decision horizon. While optimal solutions to these problems can theoretically25
be obtained through dynamic programming (DP), three significant challenges emerge in practice: (i)26
the intractability of exact DP in continuous state-action spaces, (ii) the lack of an exact descriptive27
process model, and (iii) the need for sample efficiency when data collection is expensive.28

This paper introduces a reinforcement learning framework that addresses these challenges by com-29
bining the statistical modeling power of Gaussian Processes (GPs) with Q-learning. Previous works30
have predominantly explored the use of GPs to approximate state-space models (Kuss & Rasmussen,31
2003; Deisenroth et al., 2015; Bradford et al., 2020; Mowbray et al., 2022), with relatively few tak-32
ing a purely model-free approach. For example, Savage et al. (2021) exploited GP models for33
state-action value learning. However, the paper provides no mechanism for updating the underlying34
dataset, for example through a Monte Carlo or Q-learning estimator and therefore is not guaranteed35
to identify the optimal policy. The GP temporal difference learning (GPTD) algorithm detailed in36
Engel et al. (2005) is tailored for prediction problems by explicitly modeling rewards and exploit-37
ing the structure of the Bellman equation, to identify the value function of a stationary policy that38
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has generated the modeled data. The algorithm can be extended for on-policy control through the39
use of SARSA. Nevertheless, the authors do not exploit the uncertainty of the state-action value40
function posterior process to balance exploration and exploitation; and, as we argue subsequently,41
off-policy updates are preferable. Chowdhary et al. (2014) have explored the development of GP-42
based Q-learning algorithms; however convergence is dependent upon non-trivial selection of a43
regularization parameter. Grande et al. (2014) provide a GPQ learning algorithm with an update44
rule that assumes the observed rollout estimate and the approximation belong to a joint Gaussian45
distribution. This assumption likely only holds for a subset of MDPs.46

Unlike traditional state-action value function approximation methods that rely on neural networks47
(Azizzadenesheli & Anandkumar, 2019) or linear models, GPs offer significant advantages: they48
provide epistemic and aleatoric uncertainty quantification that can be exploited for decision mak-49
ing through the use of bandit strategies, can incorporate prior domain knowledge through kernel50
selection, and inherently balance model complexity as data are collected.51

The contributions of this work are as follows. We pose a framework for learning optimal con-52
trol using Q-learning and GPs in finite-horizon MDPs with deterministic dynamics and justify the53
composition of the two. The computational challenges associated with the use of GPs are handled54
through implementation of a principled subset selection mechanism using M-determinantal point55
processes (M-DPPs) (Kulesza & Taskar, 2012; Moss et al., 2023). This mechanism enables efficient56
scaling of control inference with increasing dataset size, despite the cubic complexity of exact GP57
inference. We provide theoretical analysis showing probabilistic uniform error bounds on the con-58
vergence of the GP posterior mean to the optimal state-action value functions, specifically examining59
how approximation errors propagate through finite horizons in convex MDPs. Empirical validation60
on both a linear quadratic regulator (LQR) system and a non-isothermal semi-batch chemical reactor61
optimization problem demonstrate the algorithm’s sample efficiency. This is a significant advantage62
in real-world processes where experiments involve substantial costs and time investment.63

In summary, we develop a GP-based Q-learning framework for finite-horizon MDPs, implement a64
practical approach using M-DPPs for strategic subset selection, and establish theoretical guarantees65
on convergence within the domain of convex finite-horizon MDPs. The rest of this paper is struc-66
tured as follows: Section 2 presents preliminaries, Section 3 the GPQL algorithm, Section 4 the case67
studies, conclusions in Section 5 and analysis in Appendix A.268

2 Preliminaries69

2.1 Finite-horizon Markov decision process70

Consider a finite-horizon Markov Decision Process (MDP) which is defined by the 5-tuple <71
X ,U ,P,Φ, T >. Specifically, the states are described by a compact state set, x ∈ X ⊂ Rnx ,72
with the controls restricted to a compact set, u ∈ U ⊂ Rnu . The underlying decision process73
adheres to discrete-time state transitions described by a conditional probability density function,74
P : X × U × X → [0,∞) over a time horizon, T = {0, . . . , T}. For convenience, in the following75
we denote the state-control pair, z = [x,u]⊺, and corresponding set, Z = X × U . We restrict the76
presentation to consider deterministic state-transitions, such that one may define77

P(xt+1 | xt,ut) =

nx∏
i=1

δ(xi,t+1 − fi(xt,ut)) ,

where δ(·) indicates the dirac-delta function. xi,t ∈ R the ith state component, and f(x,u) =78
[f1(x,u), . . . , fnx(x,u)]⊺ a discrete-time dynamic model of the system,79

xt+1 = f(xt,ut) . (1)

The objective of decision making is to select controls, according to a non-stationary state-feedback80
policy, π(·) = (π0(·), . . . , πT−1(·)), with Ut ∼ πt(ut | xt), to minimize the expected sum of81
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stage-costs allocated by a cost function, Φ(x,u), incurred over a finite discrete-time horizon,82

min
π

Eπ [Q
π
t (X0, U0) | X0 = x0]

Qπ
t (x,u) := Φ(x,u) + Eπ

[
T−1∑

k=t+1

Φ(Xk, Uk)

∣∣∣∣∣Uk ∼ πk(uk | xk)

]
.

(2)

Note that although the initial state, x0, is assumed to be known with certainty, in general the state83
itself is uncertain due to the definition of the policy as a conditional probability density function.84

According to the principle of optimality, however, the optimal policy is a deterministic function of85
state and acts to greedily minimize the state-action value function at a given time within the horizon,86

π∗(xt) ∈ argmin
π

Qπ
t (xt, πt(xt)) . (3)

In principle, the optimal policy can be identified through dynamic programming (DP). However, DP87
becomes intractable in large or continuous state-control spaces and is reliant on a known model of the88
system, which is unavailable in general. This directs attention to the use of model-free approximate89
methods, such as Q-learning, which, in the tabular sense, aim to approximate the state-action values90
associated with state-control pairs in a given dataset,91

D = {Dt}t=0:T−1 , Dt =
{(

x(i)t ,u(i)
t , x(i)t+1,Φ(x

(i)
t ,u(i)

t )
)}

i=1:N
.

As the cardinality of dataset, N , increases, the approach provided by maintaining fixed point es-92
timates of the state-action value function faces an explosion in memory cost. This challenge is93
typically handled through the construction of function approximators, e.g., deep Q-learning.94

2.2 Gaussian process95

GPs are probabilistic models that describe the relationship between a finite number of evalua-96
tions of a multivariate, scalar-valued function via a joint multivariate Gaussian distribution. Con-97
sider the input locations, Z = {z1, . . . , zN}, corresponding noiseless function evaluations, Y =98
{f(z1), . . . , f(zN )}, test location, z∗, and function value, y∗. The zero-mean GP prior asserts,99 [

Y
y∗

]
∼ N

([
0
0

]
,

[
K(Z,Z) k(Z, z∗)
k(Z, z∗)⊺ k(z∗, z∗)

])
(4)

with k(z, z′) ∈ R denoting the kernel function, k(Z, z∗) ∈ RN the covariance of the function values100
between the input locations and test point, k(z∗, z∗) ∈ R the variance of the function value at the test101
point, and K(Z,Z) denoting the gram matrix representative of the covariance of the function values102
evaluated at the input locations, Z. Bayesian inference gives the predictive posterior distribution:103

µ(z∗) = k(Z, z∗)⊺K(Z,Z)−1Y

k(z∗, z∗) = k(z∗, z∗)− k(Z, z∗)⊺K(Z,Z)−1k(Z, z∗) ,
(5)

with y∗ ∼ N (µ(z∗),k(z∗, z∗)) providing a description of the posterior at z∗. One may also be104
interested in a general description of the posterior process,105

f(·) | Y ∼ GP (µ(·),k(·, ·)) , (6)

which may be used to approximate the state-action value function using the available data. A policy106
may then be defined to exploit the posterior process for decision-making, generalizing to continuous107
state-control spaces. Such a policy may be defined by greedily exploiting functions drawn from108
the posterior, which involves solving minimization problems. This motivates discussion regarding109
properties of the optimal solution map and value function.110
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2.3 Optimal value functions and solution maps of nonlinear programs111

Consider the optimal (possibly point-to-set) solution map, u∗ ∈ G∗(x) and optimal value func-112
tion, g∗(x), of the following parametric nonlinear program with constant constraint map (Fiacco &113
Ishizuka, 1990),114

G∗(x) := argmin
u∈U

g(x,u)

g∗(x) := min
u∈U

g(x,u) ,
(7)

with g(x,u) indicating a multivariate, scalar valued objective function.115

Assumption 1 The nonlinear objective function is continuous in both x and u, with (x,u) ∈ Z .116

Property 1 Let Assumption 1 hold. The optimal value function, g∗(x), is continuous (Fiacco &117
Ishizuka, 1990; Aubin & Frankowska, 1999), and the optimal solution map, G∗(x), is upper semi-118
continuous on x ∈ X (Sundaram, 1996).119

Strict convexity assumptions are typically required for the solution map to be single-valued and120
continuous (Fiacco & Ishizuka, 1990; Aubin & Frankowska, 1999).121

3 Methodology122

In the following section, we present a methodology that leverages GPs to approximate the state-123
action value function. This directs the presentation of the following problem statement.124

3.1 Problem statement125

Consider the finite-horizon MDP introduced in Section 2.1. Additionally, for simplicity in subse-126
quent analysis, the following assumptions are imposed on the dynamics and cost function to ensure127
that the state-action value function could be well approximated by a continuous function.128

Assumption 2 (Continuous Dynamics) The underlying state transition probability density func-129
tion, P(·), can be parameterized by xt+1 = ft(xt,ut), where ft : Z → X is a continuous function,130
∀t ∈ {0, . . . , T − 1}.131

Assumption 3 (Policy Continuity) The policy, π(u | x) is a conditional probability density func-132
tion continuous with respect to x and with support provided by the compact set, X .133

Property 2 (State-Action Value Function Continuity) Assume that the cost function, Φ : Z → R134
is continuous over the compact set (x,u) ∈ Z . Together with Assumptions 2–3, this implies the state-135
action value function induced under a policy, Qπ

t : Z → R+ is continuous ∀t ∈ {0, . . . , T − 1}.136

The reasoning behind Property 2 follows (i) the expectation taken over an input continuous prob-137
ability density function yields the expectation itself input continuous, and (ii) the composition of138
continuous functions yields a continuous function.139

Proposition 1 Let Property 2 hold. The value function associated with the nonlinear program,140

min
u∈U

Qπ
t (x,u) ,

satisfies Property 1.141

Theorem 1 Let Proposition 1 hold, then the optimal state-action value function, Qπ∗

t (x,u) is a142
continuous function defined on (x,u) ∈ Z , ∀t ∈ {0, . . . , T − 1}. This can be proven by backward143
induction starting from the terminal cost function.144

.145
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3.2 Gaussian process Q-Learning (GPQL)146

Having formalized the problem setting, we now direct our attention to the contribution of this work.147
Namely, we introduce Gaussian process Q-Learning (GPQL), which is well suited to solving the148
problems described, and adheres to the general framework for policy iteration.149

3.2.1 Gaussian process state-action value function approximation150

We propose to approximate the state-action value function, Qπ
t (·) using GP models and consider151

the construction of independent GP models for each time-step. Specifically, we assume a dataset,152
Dt ∀t, which provides some discretization of the state-control space, z ∈ Z , from which state-153
action values may be estimated via fixed-point estimates, Qπ

t = {Qπ
t (z) ∀z ∈ Dt}, as in the tabular154

setting. A joint prior distribution defines the predictive model of the state-action value, Qπ
t,∗, at a155

new state-control pair, z∗ ∈ Z ,156 [
Qπ

t

Qπ
t,∗

]
∼ N

([
0
0

]
,

[
Kt(Z,Z) kt(Z, z∗)
kt(Z, z∗)⊺ kt(z∗, z∗)

])
. (8)

Through conditioning the posterior process may be obtained, Qπ
t (·) | Qπ

t ∼ GP (µπ
t (·),kπ

t (·, ·)),157
as defined in Section 2.2. In principle, given knowledge of the underlying problem structure, one158
can select a kernel appropriately, such that the state-action value function lies within the class of159
functions well represented by the GP. Considerations for selection are outlined later in Section 3.2.3.160

It is worth highlighting that the complexity of GP model inference scales cubically with the number161
of datapoints, N . In practice, we use the M -determinantal point process (M -DPP) to select a subset162
of the state-action value point estimates to build an approximation. A subset of M ≤ N points, ZM ,163
are sampled from Dt, according to their probability under the M -DPP,164

P(ZM ⊆ Z) ∝ |LZM
|

|LZM
| = |K(ZM , ZM )| ·

∏
z∈ZM

q(z)2 , (9)

which is proportional to the trace of the Gram matrix weighted by the quality of the points as eval-165
uated by q(z), ∀z ∈ ZM . This is a strategy that was reported in Kulesza et al. (2012), and has166
since been utilized within the context of Bayesian optimization with sparse GPs (Moss et al., 2023).167
Intuitively, it selects points to balance performance under the quality function and coverage of the168
state-control space as evaluated by the kernel. Here, we utilize the strategy to simply build an exact169
GP estimator providing a local model in promising regions of the state-control space. The greedy170
method utilized in Chen et al. (2018); Moss et al. (2023) is implemented for convenience.171

3.2.2 Thompson sampling for policy improvement172

Within the course of approximate policy improvement, the GP model is exploited to generate a173
policy which balances exploration and exploitation. Specifically, a Thompson sampling (TS) policy,174
π(u | x), is deployed (Wilson et al., 2020). The policy is defined through minimization of state-175
action value functions, Qπ

t (·), sampled probabilistically from the GP posterior,176

πt(u | x) = Pr

(
u ∈ argmin

ū∈U
Qπ

t (x, ū) | Qπ
t

∣∣∣∣ Qπ
t (·) | Q

π
t ∼ GP (µπ

t (·),kπ
t (·, ·))

)
. (10)

This enables one to exploit the GP-based state-action value function approximation to both explore177
and exploit the decision-space—effectively leveraging the quantification of epistemic uncertainty to178
generate data under a behavior policy, which may then be used to learn the target optimal policy.179

Remark 1 In principle, the TS behavior policy is upper semi-continuous in the state, and does not180
satisfy Assumption 3. However, this does not impact the state-action value function approximation181
problem posed as discussed in the subsequent section.182
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3.2.3 Q-Learning with backward induction183

Having defined means to both approximate the state-action value function using point-estimates and184
exploit it for decision-making, we now discuss updates of the point estimates, Qπ

t . In any given185
rollout of the TS policy, one generates data that may be used to update the existing dataset,186

Dn,t =
{(

x(n)t ,u(n)
t ,Φ(x(n)t ,u(n)

t ), x(n)t+1

)}
, Dt ← Dt ∪ Dn,t ∀t .

This new dataset may be used to update the GP posterior state-action value function approximations187
working from the final decision-step, given Qπ

T−1 = {Φ(xT−1,uT−1), ∀(xT−1,uT−1) ∈ DT−1},188
and propagating information backwards over the horizon via the following update,189

Qπ
t (xt,ut)← Qπ

t (xt,ut) + α

(
Φ(xt,ut) + min

ut+1∈U
µπ
t+1(xt+1,ut+1)−Qπ

t (xt,ut)

)
∀ (xt,ut,Φ(xt,ut), xt+1) ∈ Dt, ∀t < T − 1 ,

(11)

with α ∈ (0, 1] denoting a Robbins Munro step-size. This is a deterministic update rule based on the190
mean posterior GP approximation of the future cost-to-go. In principle, in the deterministic finite191
horizon setting one may keep α = 1; however, we found Robbins-Munro step sizes empirically192
preferable. The updated state-action value point-estimates are then used to construct updated GPs.193

The following analysis is provided as a comment on the considerations for approximation.194

Assumption 4 The cost function, Φ : Z → R is a strictly convex function draw from Φ ∼195
GP(0, k(·, ·)) with convex kernel, k ∈ KPD, on the compact set, Z × Z .196

Theorem 2 Let Assumption 2 and 4 hold and ensure that the state-action value point estimates,197
Qπ

T−1, are updated through (11). For the general case of nonlinear dynamics, the point estimates198
do not lie in the same class of functions as the cost function in Assumption 4.199

Theorem 3 Assume an initial dataset generated through a policy satisfying Assumption 3 from a200
finite horizon MDP satisfying Assumptions 2 and 4. Provided the optimal future cost-to-go estimate201
from the posterior mean in (11) is the value function of a nonlinear program satisfying Property 1,202
the state-action value estimates are described by a continuous function for all timesteps.203

Theorems 2 and 3 motivate the use of the off-policy Q-learning update1. The implication is that,204
regardless of the behavior policy, the state-action value estimates yielded by (11) are well approx-205
imated by a continuous function, although one not necessarily within the same class as the cost206
function. The proof of Theorem 2 follows trivially from the assumption of nonlinear dynamics. The207
proof of Theorem 3 is general beyond GP approximation and follows the reasoning from Section 2.3.208
We note that, if the initial step size is set α = 1, then the assumption for the initial state-action value209
estimates to have been generated by a policy satisfying Assumption 3 may be relaxed. The practical210
implications of Theorem 2 are relatively minimal given the establishment of representer theorems211
(Williams & Rasmussen, 2006) and approximation capacity of universal kernels (Micchelli et al.,212
2006). In the case of affine dynamics and convex cost the following Corollary can be stated.213

Corollary 1 Assume time-varying or time-constant affine dynamics, and a cost function, Φ : Z →214
R+, strictly convex on the compact space, Z . Under the assumption of a strictly input convex kernel,215
positive definite Gram matrix, and restriction for all Qπ

t+1 be strictly non-negative, then the optimal216
future cost-to-go is a convex function of the current state-control pair. Hence the iterates yielded by217
(11) are well approximated by a convex function.218

Corollary 1 is exemplified by the case of the LQR, where the state-action value function is a219
quadratic function of the state and control, as is the cost function, for all time indices in the horizon.220

1Note that these results do not necessarily hold for on-policy updates such as SARSA if the rollout policy does not have
continuity properties, which is often the case.
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The restriction imposed on all Qπ
t+1 to be non-negative can be enforced by simply bounding the221

iterates produced by (11). Algorithm 1 describes GPQL as proposed. In the Appendix A asymp-222
totic analysis and probabilistic error bounds are provided for for the case of a convex MDP with223
deterministic dynamics, building upon Corollary 1.224

Algorithm 1 Gaussian Process Q-Learning

1: Input: Dynamics, P(·) with compact state set X , compact control set U , a cost function, Φ(·), and discrete
time horizon, t ∈ {0, . . . , T −1}. A posterior Gaussian process state-action value function approximation
Qπ

t (·) | Qπ
t ∼ GP(µπ

t ,k
π
t (·, ·)), ∀t, estimated from initial data, Qπ

t , and an initial policy πt.

2: while evaluation budget available do
3: Approximate Policy Evaluation: Update Qπ

t (·) | Qπ
t ∼ GP(µπ

t ,k
π
t (·, ·)), ∀t

4: Rollout the policy, π(·) by sampling P(·)
5: Collect (xt, ut,Φ(xt, ut), xt+1) and store in Dt, ∀t.
6: for t ∈ {T − 1, . . . , 0} do
7: Update the data Qπ

t according to (11).
8: Update the posterior process Qπ

t (·) | Qπ
t ∼ GP(µπ

t ,k
π
t (·, ·))

9: end for

10: Approximate Policy Improvement: Update the policy, π

11: Define the Thompson Sampling policy, π, through the updated posterior processes via (10).
12: end while
13: Return: Optimized policy π∗ and function approximation Q∗.

4 Experiments225

We evaluate GPQL computationally on two control tasks: an LQR problem, and a non-isothermal226
semi-batch reactor, which highlights the practical applicability of our method to real-world systems.227

4.1 Linear Quadratic Regulator228

The LQR problem provides an ideal benchmark for our approach as it satisfies Assumptions 2 and229
7 with its affine dynamics, exhibits the convexity properties required by Properties 2 and 5, and230
exemplifies the conditions in Corollary 1 where the state-action value function belongs to the same231
function class as the cost function. We formulate an LQR problem using a double integrator sys-232
tem (position and velocity control) with dynamics and cost matrices defined in Appendix B.1 with233
time horizon T = 6. For this system, we employed a positive definite convex kernel to align with234
Corollary 1 and initialized with 5 episodes generated from a Sobol sequence on control trajectories.235
Figure 1 shows the final policy2 that our GPQL algorithm identifies consistently approaches the ora-236
cle’s performance after collection of 25 further batches3. We compare to a standard PPO (Schulman237
et al., 2017) implementation and found that it requires approximately 5000 batches to reach the same238
level of performance that GPQL achieves in a total of 30. Figure 2 illustrates the convergence by239
showing the state and control trajectories. The algorithm’s learned policy (blue) closely aligns with240
the oracle’s optimal trajectories (red) after training. This demonstrates that our method not only241
minimizes cost but also recovers the underlying optimal control structure of the LQR problem with242
relatively small datasets.243

4.2 Semi-Batch Reactor244

The second experiment involves a benchmark non-isothermal semi-batch reactor control problem245
(Bradford & Imsland, 2018; Bloor et al., 2024). The system expresses a series reaction mechanism:246

2The final policy greedily exploits the posterior mean function.
3Here a batch refers to a rollout of the policy within the system over the discrete time horizon.
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Figure 1: From left to right: Learning curve for the LQR case study for GPQL training. Learning
curve for the LQR case study for the entire PPO training. Learning curve for the Semi-batch
Reactor case study. GPQL shown in blue for the LQR case with initial dataset size of 5, and in blue,
green and cyan for the Semi-batch Reactor case with initial dataset sizes of 10 and 30, respectively.
PPO is orange and the oracle in dashed red. The shaded area shows a single standard deviation.

0 1 2 3 4 5 6
Time

0.0

0.5

1.0

Po
si

tio
n

0 1 2 3 4 5 6
Time

1.0

0.5

0.0

Ve
lo

ci
ty

0 1 2 3 4 5 6
Time

1

0

1

C
on

tro
l

GPQ (Median) Oracle

Figure 2: State and control trajectories for the LQR case study. Median states and controls from five
repeats (blue) closely align with the oracle’s optimal trajectories (red). Shaded areas represent one
standard deviation.
A

k1−→ B
k2−→ 3C, where the first reaction is exothermic and the second is endothermic. The state vec-247

tor x = [CA,CB,CC,T,V]
⊺ tracks species concentrations, temperature, and reactor volume, while248

control inputs u = [Tc,F]
⊺ represent cooling jacket temperature and feed flow rate. The objective249

is to maximize the final amount of product C—the cost function is detailed in the supplementary.250

Due to the nonlinearity of this system, we employed a Matérn-5/2 kernel for our GP models. We251
evaluated GPQL with different initial dataset sizes (10 and 30 batches). We allow the TS pol-252
icy to collect a further 25 batches and compare the final policy (greedily exploiting the posterior253
mean function) against an oracle nonlinear model predictive controller (NMPC) with perfect system254
model. Figure 1 shows the produced learning curves. With 30 initial batches, the starting perfor-255
mance is notably higher than with 10 batches, demonstrating the value of a larger initial dataset. An256
initial performance dip occurs in early training episodes due to the exploration behavior of TS.257

Figure 3 compares the state and control trajectories to those of the oracle. The learned policy closely258
tracks the oracle except for early states and controls. As the initial dataset size increases to 30259
batches, GPQL approaches the performance of the oracle, confirming that our method provides260
significant advantages in scenarios where experimental data is limited and costly.261

5 Conclusions and Future Work262

This paper introduces GPQL, an approach for solving finite-horizon MDPs by using GPs to approx-263
imate state-action value functions. Our method addresses the challenges of continuous state-control264
spaces while maintaining computational tractability through strategic subset selection. We establish265

8
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Figure 3: State and control trajectories for semi-batch reactor. The learned policy (blue) closely
tracks the oracle (red) for key state variables and control inputs. Shaded areas represent one standard
deviation.

theoretical guarantees on the continuity of state-action value functions and convergence properties,266
with particular analysis for convex MDPs. Our empirical evaluation on both LQR problems and267
a non-isothermal semi-batch reactor demonstrates that GPQL achieves near-optimal performance268
with limited data.269

Future work includes extending our analysis to the case of uncertain dynamics. Additionally, in-270
vestigating the application of the algorithm to MDPs with state chance constraints additionally im-271
posed would enhance its practical utility for real-world control problems where state and control272
constraints are common.273

A Analysis for Convex Markov Decision Process274

A.1 Convex nonlinear programs275

We start by extending the properties stated for the optimal solution maps and value functions for276
nonlinear programs.277

Assumption 5 (Convex objective function) The objective function g(x,u) is strictly convex in both278
arguments.279

Assumption 6 (Convex and compact constraint set) Assume that U ⊂ Rnu denotes a non-empty280
compact and convex constraint set.281

Property 3 (Optimal solution mapping) Let Assumptions 5 and 6 hold, then the optimal solution282
map, G∗(x) is a single-valued mapping and continuous in x (Fiacco & Ishizuka, 1990).283

Property 4 (Value function convexity) Let Assumptions 5 and 6 hold, then the value function,284
g∗(x), is convex in x (Fiacco & Ishizuka, 1990).285

Remark 2 With additional assumptions such as regularity conditions and higher order continuity286
of the constraint and objective functions, one can make stronger assertions regarding the differen-287
tiability of solution maps (Barratt, 2018).288

A.2 Convex Markov Decision Process289

We begin by making the following assumptions on the problem statement.290

Assumption 7 (Affine Dynamics and Convex Control Set) Assume that the underlying state291
transition probability density function, P(·), is parameterized by xt+1 = ft(xt,ut), where ft : Z →292
X is an affine function, ∀t ∈ {0, . . . , T − 1}. The the control set, U ⊂ R, is compact and convex.293

9



Under review for RLC 2025, to be published in RLJ 2025

Property 5 (Cost and State-Action Value Function Convexity) Assume that the cost function,294
Φ : Z → R+ is positive definite convex function on the compact set (x,u) ∈ Z , with Lipschitz295
constant, LΦ. Together with Assumptions 3 and 7, this implies the state-action value function in-296
duced under a policy, Qπ

t : Z → R+ is Lipschitz continuous with Lipschitz constant LQπ
t
,∀t ∈ T297

and a positive definite convex function in both arguments.298

The intuition behind Property 5 leverages (i) the additive structure of the state-action value function;299
(ii) the deterministic affine dynamics preserve the convexity of the future cost-to-go as a function of300
the current state-control pair; and (iii) that the expectation preserves convexity (Boyd, 2004).301

Theorem 4 Let Property 2 hold. The solution mapping and value function associated with the302
nonlinear program,303

min
u∈U

Qπ
t (xt,ut) ,

satisfies Property 3 and 4, respectively.304

An example of the setting posed here is the well-known LQR, where the dynamics are restricted to305
be affine, and the cost function a positive definite quadratic function of the state and control. It is306
well known that under these conditions the value function,307

V π
t (x) = Eπ [Q

π
t (x, Ut) | Ut ∼ πt] ,

is convex quadratic in x, and the state-action value function is quadratic is the state and control.308

A.3 Gaussian process Q-learning through backward induction309

We now formalize results on the approximation of state-action values for the convex MDP.310

Assumption 8 Assume the cost function, Φ : Z → R+, is a strictly convex function drawn from a311
GP, GP(0, k(·, ·)), with strictly convex kernel function k(·, ·) ∈ KPD on the compact set, Z × Z .312

Proposition 2 Let the Gaussian posterior process, GP (µπ
t (·),kπ

t (·, ·)), be defined using a strictly313
input convex kernel function, k(·, ·), with a zero-mean prior. Let the initial observed function values,314
Qπ be non-negative and the Gram matrix be full rank and positive definite. The initial posterior315
process mean, µπ

t (x,u), is strictly convex on (x,u) ∈ Z .316

Proposition 3 Let Proposition 2 and Assumption 8 hold. The solution mapping,317
argminu∈U µπ

t (x,u), adheres to Property 3 and the optimal value function, minu∈U µπ
t (x,u),318

adheres to Property 4.319

Theorem 5 Assume the problem statement provided in Appendix A.2 and Propositions 2 and 3. The320
iterative updates for point estimates of state-action values, Qπ

t , generated by (11) satisfy Property 5321
and belong to the same function class as the cost function.322

A.4 Analysis323

In the following section, we analyze the asymptotic convergence of the mean of the posterior Gaus-324
sian process presented to the true optimal state-action value function and derive probabilistic uniform325
error bounds following the previous work of Lederer et al. (2021b). In this analysis we set M = N326
within the M-DPP subset selection strategy (essentially switching it off) for construction of the GP327
models. Consider the problem statement provided in Appendix A.2, and let Assumption 8 hold.328
We proceed by firstly stating a probabilistic uniform error bound for the Lipschitz continuous and329
convex state-action value function at the final time step.330

Theorem 6 Assume N samples of the state-action value function at the final time step for control.331
A posterior process is obtained as,332

Qπ
T−1(·)|Q

π
T−1 ∼ GP(µπ

T−1(·),kπ
T−1(·, ·)), (12)

10
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where the posterior mean µπ
T−1(z) and variance σ2

T−1(z) = kπ
T−1(z, z) are continuous with Lips-333

chitz constants LµT−1
and LσT−1

on Z . As proposed in Lederer et al. (2021a, Theorem 9), for a334
given δT−1 ∈ (0, 1) and grid-space constant, τ(N), used to discretize Z through the generation of335
Qπ

T−1, one has,336

P
(
|Qπ

T−1(x,u)− µπ
T−1(x,u)| ≤

√
βT−1(τ)σT−1(x,u) + γT−1(τ), ∀(x,u) ∈ Z

)
≥ 1− δT−1

(13)

where,337

βT−1(τ) = 2 log

(
M(τ,Z)
δT−1

)
γT−1(τ) = (LµT−1

+ LQπ
T−1

)τ +
√

τ(N)βT−1(τ)LσT−1

with M(τ(N),Z) denoting the τ -covering number of Z and LQπ
T−1

denoting the Lipschitz constant338
of the state-action value function, Qπ

T−1(·).339

By making additional assumptions on the data-generating policy, letting α = 1 in (11), and follow-340
ing arguments made in Lederer et al. (2021b) we can establish an asymptotic convergence rate for341
the approximation of the state-action value function at the final time-step a decision is made.342

Assumption 9 The virtual grid constant τ(N) is chosen to decrease quadratically with the number343
of samples:344

τ(N) ∈ O(N−2) . (14)

This assumption imposes the following requirement on the sampling policy πs(N): For any state345
x ∈ X , the policy must ensure that subsequent samples are taken with decreasing distance to the346
virtual grid points at a rate of at least O(N−2).347

Theorem 7 (Asymptotic Convergence) : Consider the posterior mean µπ
T−1(·) and the true func-348

tion QT−1(·) defined on the compact set Z . For any sequence of training data DT−1 as N → ∞,349
if there exists a class K∞ function α : R → R+, where α is strictly increasing with α(0) = 0 and350
limr→∞ α(r) =∞, with its convergence rate dependent on the choice of kernel such that351

σN (x,u) ∈ O
(

1

α(N)

)
⊂ O

(
1√

log(N)

)
∀(x,u) ∈ Z, (15)

To analyze the convergence, the set Z is overapproximated by a hypercube with edge length θ. For352
this d-dimensional hypercube, the τ -covering number can be bounded by353

M(τ,Z) ≤

(
θ
√
d

2τ

)d

, (16)

With the choice of virtual grid constant given in Assumption 9, the covering number grows polyno-354
mially with N :355

M(τ(N),Z) ∈ O(N2d), (17)

which leads to356
γ(N) ∈ O(N−1), (18)

Under these conditions, we can establish the following convergence rate:357

sup
(x,u)∈Z

∥µπ
T−1(x,u)−Qπ

T−1(x,u)∥ ∈ O

(√
log(N)

α(N)

)
a.s (19)
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With Lipchitz continuity of the posterior mean state-action value function approximation, the fol-358
lowing derives a probabilistic error bound in approximation of the the optimal value function in the359
final decision step.360

Proposition 4 (Final value function bound) Let u∗
g ∈ argminu g(x,u) and g∗(x) =361

minu∈U g(x,u) then by the convexity of Φ(·) and compactness of Z , we have that362

|µπ
T−1(x,u∗

QT−1
)− µ∗

T−1(x)| ≤ LµT−1
|u∗

QT−1
− u∗

µT−1
| (20)

Proposition 5 (Final Optimal Value Function Bound) Given the above, we can set a bound on363
the difference in the value function Q∗

T−1(x) and µ∗
T−1(x) for a given x ∈ X as364

P
(
|µ∗

T−1(x)−Q∗
T−1(x)| ≤√

β(τ)σT−1(x,u∗
µT−1

) + γ(τ) + LµT−1
|u∗

QT−1
− u∗

µT−1
|, ∀x ∈ X

)
≥ 1− δ (21)

In principle the analysis provided so far can apply to any system with a Lipschitz continuous cost365
function. However, when we propagate backwards, our analysis becomes limited to convex MDPs366
as in this case we preserve the Lipschitz continuity of the ground truth state-action value functions.367
We now proceed to introduce a probabilistic error bound and asymptotic convergence rates for the368
remaining time steps in the horizon.369

Assumption 10 For any time step k ∈ [t, T − 1], let δk ∈ (0, 1) be chosen such that370 ∑T−1
k=T−(t+1) δk ≤ 1.371

Theorem 8 (Finite Horizon Optimal Value Function Error Bound) Under the Assumptions372
above and by applying the union bound together with the error bound from Proposition 5 at each373
time step, we obtain the probabilistic error bound for discrete time index, t:374

P
(
| Q∗

t (xt)− µ∗
t (xt) |≤

T−1∑
k=t

(√
βk(τ)σk(xk,u∗

k) + γk(τk) + Lµk
|u∗

Qk
− u∗

µk
|
)
∀xt ∈ X

)
≥ 1−

T−1∑
k=t

δk (22)

where the state term, xk,∀k > t within the standard deviation of the posterior process comprising375
the first term on the right hand side of the inequality within the probability operator, is yielded376
through forward evaluation of the decision process under the optimal policy generated from the377
posterior mean, xk+1 = f(xk,u∗

µk
).378

Theorem 8 provides a probabilistic uniform error bound between the optimal state-action value379
function and the Gaussian posterior process mean approximation for an available dataset.380

Theorem 9 (Asymptotic Error Convergence) Following from Theorem 8, as the number of data381
points N → ∞, the posterior variance term σt(·) decreases as O(1/α(N)) uniformly over all382
timesteps k ∈ [t, T ], leading to an overall convergence rate of O(

√
log(N)/α(N)) for the GP383

approximation error to the optimal Q-functions Q∗
k(·) across the entire time horizon.384
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Supplementary Materials463

The following content was not necessarily subject to peer review.464
465

B Experimental Setup466

B.1 Linear Quadratic Regulator467

min
u0,...,uT−1

x⊺
TQT xT +

T−1∑
k=0

(xT
kQxk + uT

kRuk) (23)

s.t xk+1 = Axk +Buk (24)
x0 = x(0) (25)
uL ≤ uk ≤ uU (26)
∀k ∈ T \ {T} (27)

where xk ∈ Rnx represents the state vector, uk ∈ Rnu is the control input vector, A ∈ Rnx×nx and468
B ∈ Rnx×nu define the discrete-time system dynamics, Q ∈ Rnx×nx and R ∈ Rnu×nu are positive469
semi-definite and positive definite cost matrices for state and control respectively, QN ∈ Rnx×nx470
is the terminal state cost matrix, uL and uU are the lower and upper control bounds respectively,471
and N denotes the finite time horizon. In the LQR experiment, the following dynamics matrices are472

used A =

[
0 1
0 0

]
and B =

[
0
1

]
. Cost matrices are set as Q =

[
1.0 0.0
0.0 0.1

]
and R = 0.1.473

B.2 Semi-Batch Reactor474

The dynamics of the semi-batch reactor are shown below:475

dCA

dt
=

F

V
(CA,in − CA)− k1CA (28)

dCB

dt
= − F

V
CB + k1CA − k2CB (29)

dCC

dt
= − F

V
CC + k2CB (30)

dT

dt
=

UA(Ta − T)− FA0CPA
(T− Tb)

[CACPA
+ CBCPB

+ CCCPC
]V + NH2SO4CPH2SO4

(31)

+
[(∆HR1)(−k1CA) + (∆HR2B)(−k2CB)]V

[CACPA
+ CBCPB

+ CCCPC
]V + NH2SO4CPH2SO4

(32)

dV

dt
= F (33)

The variables in the system are denoted as follows: CA, CB, and CC represent the concentrations476
(mol/dm3) of species A, B, and C; T is the reactor temperature (K); V is the liquid volume (m3); F477
is the flow rate of pure A entering the reactor (m3/h); Ta is the temperature of the heat exchanger478
(K); CPA

, CPB
, CPC

are the specific heat capacities of components A, B, and C; ∆HR1A and ∆HR2B479
are the reaction enthalpies for the first and second reactions; k1 and k2 are temperature-dependent480
rate constants.481

The cost function is defined,482

Φ(x,u) =

{
−CC(t+ 1)V(t+ 1) if t = T − 1

0 else
. (34)
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