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Abstract

This paper investigates the dynamical properties of tokens in pre-trained Trans-
former models and explores their application to improving Transformers. To this
end, we analyze the dynamical system governing the continuous-time limit of the
pre-trained model and characterize the asymptotic behavior of its solutions. Specif-
ically, we characterize when tokens move closer to or farther from one another
over time, depending on the model parameters. We provide sufficient conditions,
based on these parameters, to identify scenarios where tokens either converge
to zero or diverge to infinity. Unlike prior works, our conditions are broader in
scope and more applicable to real-world models. Furthermore, we investigate how
different forms of positional encoding – specifically absolute and rotary – affect
these dynamical regimes. Empirical evidence reveals that the convergence scenario
adversely impacts model performance. Motivated by these insights, we propose
simple refinements to Transformer architectures that mitigate convergence behavior
in models with absolute or rotary positional encoding. These findings support
theoretical foundations and design principles for improving Transformer models.

1 Introduction
Transformers [51] have revolutionized multiple domains, demonstrating remarkable success in
natural language processing [10, 8, 2, 4, 41], computer vision [13, 43, 38, 32], machine learning
[48, 23, 29], and reinforcement learning [22, 5]. Their widespread adoption is largely driven by their
ability to leverage large-scale pretraining, enabling efficient knowledge transfer to downstream tasks
[40, 12, 39]. Unlike traditional architectures that rely on recurrence or convolution, Transformers are
built upon a self-attention mechanism. This mechanism dynamically computes relationships among
all tokens in an input sequence, assigning importance scores that dictate how strongly each token
influences the others. As a result, self-attention effectively captures intricate dependencies across long
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sequences, making it highly proficient in contextual representation learning [30, 53, 7, 49, 36, 37].
By modeling global interactions across an input, Transformers have surpassed earlier deep learning
architectures, solidifying their position as the dominant paradigm in modern artificial intelligence.

Only a limited number of studies in the literature provide a theoretical understanding of the internal
structure of learned representations in pre-trained Transformer models (see Section A for a com-
prehensive list of relevant works). Notably, in the seminal papers [17, 16], the authors modeled
Transformers as interacting particle systems and demonstrated that tokens tend to cluster around
specific limiting objects determined by the initial tokens, thereby confirming the context-awareness
of representations learned by Transformers. It was also observed in [15] that, in the self-attention
dynamic, although tokens collapse to a single cluster in infinite time, they remain trapped near a
configuration of several clusters for an exponentially long period of time. The authors in [3] analyzed
a pure-attention hardmax Transformer model in a similar manner under a discrete framework. A
key limitation of these works lies in their reliance on unrealistic and impractical assumptions on
model parameters, primarily introduced to support the development of richer theoretical results and
technical proofs. Moreover, by focusing exclusively on theoretical analysis, these studies have not
yet offered practical applications or insights for improving model performance.

A comprehensive list of related works can be found in Appendix A.

1.1 Our Contribution

In this paper, we investigate the internal dynamics of tokens in self-attention mechanisms, together
with the effects of absolute and rotary positional encoding, under more realistic and practical assump-
tions on model parameters, extending prior theoretical studies that often rely on restrictive conditions.
We focus on the continuous-time limit of pre-trained Transformer models and systematically analyze
the asymptotic behavior of token trajectories – such as convergence, divergence, and token distances –
over time. Our contribution is fourth-fold:

1. We provide conditions that predict whether tokens in self-attention converge to zero or diverge
to infinity. The conditions are more general than those considered in prior works (e.g., [17, 16])
and the theoretical results are validated on pre-trained Transformer models.

2. We show that absolute positional encoding has little effect on token dynamics, while rotary
encoding significantly alters them to promote the divergence of tokens.

3. We empirically verify that the convergence of tokens to zero negatively impacts model perfor-
mance. In contrast, in divergence scenarios, tokens organize into a small number of groups,
with tokens within the same group diverging to infinity in a consistent direction. This is often
beneficial for model performance.

4. Building on these findings, we propose simple yet effective improvements to mitigate conver-
gence scenarios in Transformers with absolute or rotary positional encodings.

To verify our findings, we conducted language modeling experiments on WikiText-103 [34] and
EnWik8 [20], and object recognition on ImageNet-1K [11]. The results support our theoretical claim
and provide insights to improve Transformer models.

Organization. The paper is organized as follows. Section 2 introduces the continuous-time
dynamical system representing a pre-trained Transformer. Section 3 presents our main theoretical
and empirical results on token dynamics in self-attention. Section 4 extends the analysis to absolute
and rotary positional encodings. Section 5 provides empirical validation and proposes improvements
to positional encoding schemes. Proofs and additional experiments are provided in the Appendix.

Notations. Through this paper, || · || denotes the Euclidean norm of a vector. For each subset
A ⊆ RD, we denote by conv(A) the convex hull of A, which is the smallest convex set containing
A in RD. For a square matrix B, we denote by qB the quadratic form associated to B and by
Bsym = 1

2 (B +B⊤) the symmetric part of B. When B is positive definite, we write B ≻ 0. In case
B is negative definite, we write B ≺ 0.

2 Background: Continuous-time Limit of Attention
In this section, we present the dynamical system that represents the continuous-time counterpart of a
pre-trained Transformer model.
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2.1 Continuous-time Limit of a Deep Neural Network

We build on prior work in the literature that explores the dynamical systems underlying the continuous-
time limits of deep neural networks (DNNs). A prominent example of DNNs is residual neural
network (ResNet). Each layer in a ResNet is a residual block that transforms an input vector x ∈ RD

into an output vector z = x+ y(x, θ) ∈ RD, where y = y(x, θ) is a two-layer feed-forward neural
network parameterized by θ. The continuous-time counterpart of ResNet is represented as a flow map
that takes an input vector x(0) ∈ RD and produces an output vector x(T ) ∈ RD, governed by the
associated dynamical system:

x′(t) = y(x(t), θ(t)), t ∈ (0, T ).

There is a substantial body of research examining the interpolation, approximation, and controllability
properties of such DNN architectures [28, 54, 27, 47, 44, 6].

2.2 Self-Attention Dynamics

In contrast to ResNet, Transformer operates on a sequence of D-dimensional tokens rather than
solely on individual inputs. Central to the Transformer architecture is the self-attention map. Let
X = [x1 . . . xL]

⊤ ∈ RL×D be an input sequence of L tokens with D features. Each token
is a (column) vector xi ∈ RD. The self-attention map transforms X into the output sequence
Y = [y1 . . . yL]

⊤ ∈ RL×Dv defined as

Y = softmax

(
(X ·Q) · (X ·K)⊤√

Dk

)
·X · V. (1)

The matrices Q,K ∈ RD×Dk and V ∈ RD×Dv are learnable parameters, and they are called the
query, key and value matrices. In our context, we will always assume that Dv = D, thus V is a
square matrix. We can rewrite equation (1) as

yl = V ⊤ ·
L∑

i=1

(
ex

⊤
l ·W ·xi∑L

j=1 e
x⊤
l ·W ·xj

)
· xi,

for l = 1, . . . , L, where W := 1√
Dk

Q ·K⊤, which is a matrix in RD×D.

To better understand the internal learning representations of a pre-trained Transformer model, we
consider the differential system that governs the continuous-time dynamics of self-attention:

dxl(t)

dt
= V ⊤ ·

L∑
i=1

(
exl(t)

⊤·W ·xi(t)∑L
j=1 e

xl(t)⊤·W ·xj(t)

)
· xi(t), (2)

for l = 1, . . . , L, with the initial conditions (x1(0), . . . , xL(0)) = (x10, . . . , xL0) ∈ (RD)L. The
dynamical system for the self-attention with positional encoding will be discussed later in Section 4.

Building on the methodologies introduced in [17, 3], we focus our analysis specifically on the
self-attention mechanism - a core component of Transformer architectures - and the role of skip
connections within the associated dynamical system. To facilitate tractable analysis, we omit other
token-wise operations such as layer normalization and feed-forward networks, and we assume time-
invariant model parameters Q, K, and V . While this assumption is primarily for analytical simplicity,
it also aligns with parameter-sharing strategies used in models like ALBERT [26] to reduce training
costs.

Remark 2.1 (Scope and Generality). Although our theoretical setup adopts simplifying assumptions,
this is standard practice in theoretical work to make the analysis feasible while preserving the
ability to capture core empirical behaviors. Several influential studies follow similar simplifications
[17, 16, 15, 3]. Notably, our framework generalizes key aspects of [17, 3] by relaxing certain
assumptions. Our results are also validated against pre-trained Transformer models, confirming that
the theoretical insights carry over to real-world settings.

3 Dynamical Properties of Tokens in Self-Attention
We present our main theoretical and empirical results on the dynamical properties of tokens in
self-attention dynamics in this section.
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Quadratic Space. To analyze the dynamical properties of tokens in a more general context, we
conduct our study within the framework of quadratic spaces. Each matrix B ∈ RD×D is associated
with a quadratic form qB : RD → R, defined as qB(u) = u⊤ · B · u for each u ∈ RD. The pair
(RD,qB) is referred to as a quadratic space. The quadratic form qB is uniquely determined by the
symmetric component Bsym = 1

2 (B
⊤ +B) of B. This means that, for arbitrary matrices B and B′,

we have qB = qB′ if and only if Bsym = B′
sym. In the special case where qB is positive definite

(i.e., Bsym ≻ 0), qB corresponds to the square of a norm. Conversely, when qB is negative definite
(i.e., Bsym ≺ 0), qB corresponds to the negative of a squared norm. In particular, in the case Bsym is
a definite matrix, the map

|| · ||B =

{√
qB(·), if Bsym ≻ 0,√
−qB(·), if Bsym ≺ 0,

is actually a norm on RD, and it is equivariant to the standard Euclidean norm || · ||. Therefore, the
dynamical properties of tokens as elements of the quadratic space (RD,qB) faithfully reflect their
dynamical behavior in the standard Euclidean space (RD, ∥ · ∥).

Dynamical Properties of Tokens. To start the analysis of the dynamical properties of tokens, we
assume that (x1(t), . . . , xL(t)) ∈ C([0,+∞))

L is the unique solution of the dynamical system (2).
The existence and uniqueness as well as the well-posedness of this solution was proved in [17,
Proposition 6.2]. We consider the function f : R× RD → R defined by

f(t, u) = log

 L∑
j=1

eu
⊤·W ·xj(t)

 , u ∈ RD, (3)

Then the dynamical system (2) can be written as

A · d

dt
xl(t) =

∂

∂u
f(t, xl(t)), (4)

where A = W · (V ⊤)−1, provided that V is invertible. Based on this observation, we characterize
the dynamical properties of tokens via A and W . In particular, we will show that:

1. Distances between Tokens. If A ≺ 0, then all tokens will move closer to each other as time
t approaches infinity. In contrast, if A ≻ 0, the tokens will either maintain constant distances
or move farther away from each other as time t approaches infinity (see Theorem 3.1).

2. Convergence Scenario. If A ≺ 0 and W ≻ 0, then all tokens will tend to zero as the time t
tends to infinity (see Theorem 3.4). Furthermore, our simulations with randomly selected
model parameters suggest that the convergence scenario occurs whenever Asym ≺ 0 and
Wsym ≻ 0.

3. Divergence Scenario. Our simulations with randomly selected model parameters suggest
that the divergence scenario occurs whenever the condition “Asym ≺ 0 and Wsym ≻ 0" is
violated. In the special case when V has at least one positive eigenvalue and W is arbitrary,
we prove that all tokens will diverge to infinity under certain assumption on the initial data
(see Theorem 3.6).

We will theoretically prove and empirically validate these observations in the subsequent subsections.
The choice of parameters used in the simulation is described in Appendix D.1.

3.1 Distances between Tokens

We characterize the dynamical properties of the distances between tokens using the quadratic forms
qA associated to the matrix A = W · (V ⊤)−1. In particular, we prove that:

Theorem 3.1 (Distances between Tokens). If A is symmetric, then the map t 7→ qA(xi(t)− xj(t))
is non-decreasing on [0,+∞). As a consequence,

(a) if A ≻ 0, then ||xi(t)− xj(t)||A is non-decreasing on [0,+∞);

(b) if A ≺ 0, then ||xi(t)− xj(t)||A is non-increasing on [0,+∞).
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Figure 1: Distances between tokens over time. Left: When Asym ≻ 0, the distances between tokens do not
decrease. Right: Conversely, when Asym ≺ 0, the distances between tokens do not increase.
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Figure 2: Token trajectories under two configurations. Left: When Asym is negative definite and Wsym is positive
definite, all tokens converge to zero as time t → ∞. Right: When A = 2W , tokens diverge to infinity over
time, forming a few distinct groups that move in aligned directions.

Intuitively, Theorem 3.1 states that the tokens will move closer to each other when A is negative
definite, while the tokens will either maintain constant distances or move farther away from each other
when A is positive definite. This result can be intuitively understood from equation (4). Indeed, one
can verify that f is a convex function in u. Therefore, the subtraction xi(t)−xj(t) will have the same
orientation as ∂

∂uf(t, xi(t))− ∂
∂uf(t, xj(t)), which is equal to the derivative d

dtA · (xi(t)− xj(t)).
As a consequence, the quantity d

dtqA(xi(t) − xj(t)) is always non-negative. The formal proof of
this theorem can be found in Appendix B.1.

Remark 3.2 (Distances between Tokens). In case A is not necessarily symmetric, we observe
from randomly chosen of model parameters that the distance ||xi(t) − xj(t)||A is non-decreasing
(respectively, non-increasing) whenever Asym ≻ 0 (respectively, Asym ≺ 0).

Figure 1 illustrates the distances between tokens when Asym is positive (on the left side) and when
Asym is negative (on the right side). As shown in Figure 1, token distances remain constant or increase
when Asym ≻ 0, and remain constant or decrease when Asym ≺ 0, confirming Theorem 3.1.

3.2 Convergence Scenario

Our simulations with randomly selected model parameters suggest that the convergence scenario
occurs whenever Asym ≺ 0 and Wsym ≻ 0. In this section, we actually prove that when A ≺ 0 and
W ≻ 0, then all tokens will tend to zero as t approaches infinity. First, we established a relation
between the quadratic forms qA and qW in general setting below:

Proposition 3.3. Assume that V is an invertible matrix and A = W · (V ⊤)−1 is symmetric. Then,

d

dt
qA(xl(t)) ≥ 2− 2L

eqW (xl(t))
,

for all l = 1, . . . , L and t ∈ [0,+∞). As a consequence, if A ≺ 0 and Wsym ≻ 0, then all tokens are
bounded, i.e there exists c > 0 such that ||xl(t)||A < c for all t ∈ [0,+∞) and l = 1, . . . , L.

In the case A ≺ 0 and W ≻ 0, we prove a stronger result as stated in the following theorem:

Theorem 3.4 (Convergence Scenario). If A ≺ 0 and W ≻ 0, then all tokens converge to zero, i.e.
limt→+∞ xl(t) = 0 for all l = 1, . . . , L.
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(a) Token norms decrease un-
der the convergence scenario
(Asym ≺ 0 and Wsym ≻ 0 ).

(b) Token norms diverge under
the divergence scenario (Asym ≻
0 and Wsym ≻ 0).

(c) Tokens form distinct groups with
similar trajectory shapes in diver-
gence scenario.

Figure 3: Token dynamic in pre-trained model when omitting LayerNorm and feed-forward network

The special case where A = −ID and W = ID was already proved in [17, Section 8.2]. We
generalize their results to a more practical setting which requires weaker assumptions on the model
parameters. The proofs of Proposition 3.3 and Theorem 3.4 can be found in Appendix B.2.
Remark 3.5 (Convergence Scenario). We observe from randomly chosen of model parameters that
when Asym ≺ 0 and Wsym ≻ 0, all tokens will converge to zero. Otherwise, the tokens are likely to
divergent to infinity.

Figure 2a depicts the trajectories of tokens for the scenario analyzed in Theorem 3.4. Under these
conditions, all tokens converge to zero as t → ∞, thus confirming Theorem 3.4.

3.3 Divergence Scenario

Our simulation on random selections of model parameters suggests that the divergence scenario is
likely to occur whenever the assumption “Asym ≺ 0 and Wsym ≻ 0" in Remark 3.5 is violated. In
this subsection, we prove that in the special case where the value matrix V has at least one positive
eigenvalue, the divergence scenario indeed occurs under certain assumptions on the initial data.

For each nonzero vector n ∈ RD, we denote by Hn the closed half-space of RD with normal vector
n such that zero belongs to its boundary ∂Hn. In this case, ∂Hn represents the hyperplane containing
zero with normal vector n. In the following, we project the tokens onto the affine line along the
eigenvector corresponding to a positive eigenvalue of V to see when token tend to infinity.
Theorem 3.6 (Divergence Scenario). Assume that the value matrix V has at least one positive
eigenvalue. Let n be an eigenvector of V corresponding to a positive eigenvalue. Then

min
1≤i≤L

(
n⊤xi0

)
≤ n⊤e−tV ⊤

xl(t) ≤ max
1≤i≤L

(
n⊤xi0

)
,

for all t ∈ [0,+∞) and l = 1, . . . , L.

As a consequence, if the initial points x10, . . . , xL0 are all in one side of the hyperplane ∂Hn, and if
V has only positive eigenvalues, then limt→+∞ ∥xl(t)∥ = +∞ for all l.

The proofs of Theorem 3.6 can be found in Appendix B.3. Figure 2b illustrates the divergence
scenario with A = 2W (thus V = 2ID). We further empirically verify that the divergence-scenario
constraints arise in practical pretrained models; see Appendix D.6.2.

3.4 Tokens’ Dynamic in Practical Transformers Architecture

This section presents an empirical study of token dynamics in a practical Transformer architecture.
We analyze a 24-layer model pre-trained on WikiText-103 [34], enforcing our theoretical framework
by constraining the symmetric matrices Wsym and Asym to be either positive definite or negative
definite (see Appendix D.2 for details).

We begin by empirically verifying the convergence–divergence behavior of simplified model variants
that omit feed-forward networks and LayerNorms, directly validating our theoretical results. When
Asym ≺ 0 and Wsym ≻ 0, token norms contract monotonically across layers, potentially collapsing
toward zero if number of layers increased (Figure 3a). By contrast, under Asym ≻ 0 and Wsym ≻ 0,
norms grow without bound (Figure 3b), consistent with Proposition 3.3. Replicating these experiments
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Figure 4: Tokens’ trajectory in the later layers of a Transformer forms clusters with similar shapes in model
(left) with LayerNorm, no feedforward, and (right) with both LayerNorm and feedforward.

on the GPT-2 pre-trained model [40]–with LayerNorms and feed-forward networks removed–exhibits
the same divergent behavior (see Appendix D.6.3).

We then demonstrate clustering behavior in both simplified and full models. With Asym ≻ 0 and
Wsym ≻ 0, projecting token trajectories into two dimensions reveals groups with aligned directional
patterns (Figure 3c). Even in the full configuration with FFNs and LayerNorms, the model maintains
persistent directional clustering in deeper layers (Figure 4). Finally, we observe similar clustering
behavior on GPT-2 without enforcing any constraints (see Appendix D.5.1).

4 Beyond Self-Attention Dynamic: Effect of Positional Encoding
In practice, Transformer models typically incorporate positional encodings into self-attention mecha-
nisms to enhance expressivity and computational efficiency. In this section, we analyze how positional
encodings influence token dynamics. Among common approaches, absolute and rotary positional
encodings are predominant. We demonstrate that, under rotary positional encoding, tokens are
more likely to exhibit divergent behavior rather than convergent dynamics in comparison with the
self-attention with/without absolute positional encoding.

4.1 Absolute Positional Encoding.

The self-attention map with absolute positional encoding [51, 50] transforms the input sequence X
into the output sequence Y as

yl = V ⊤ ·
L∑

i=1

(
e(xl+pl)

⊤·W ·(xi+pi)∑L
j=1 e

(xl+pl)⊤·W ·(xj+pj)

)
· (xi + pi),

for l = 1, . . . , L, where pi = [pi,1, . . . , pi,D]⊤ ∈ RD. A common choice is to either learn the
positional embeddings pi jointly with the model parameters, or to fix them using a sinusoidal scheme:

pi,j =

{
sin(i · 10000−

j
D ), if j is even,

cos(i · 10000−
j−1
D ), if j is odd.

The differential system that governs the continuous-time dynamics of the self-attention with absolute
positional encoding is given by

dxl(t)

dt
= V ⊤ ·

L∑
i=1

(
e(xl(t)+pl)

⊤·W ·(xi(t)+pi)∑L
j=1 e

(xl(t)+pl)⊤·W ·(xj(t)+pj)

)
· (xi(t) + pi), (5)

for l = 1, . . . , L.

Remark 4.1 (Absolute positional encoding has minimal impact). The dynamical properties of
the self-attention with and without absolute are similar, since the above differential system can be
transformed into the original self-attention dynamic (2) by the transition xl 7→ xl + pl. In particular,
it follows from Theorem 3.4 that: when A ≺ 0 and W ≻ 0, the solution X(t) of equation (5) will
converge to the sequence P = (−p1, . . . ,−pL). In addition, it follows from Theorem 3.6 that, in
case V has at least one positive eigenvalue, tokens will diverge to infinite under certain assumptions
on the initial conditions.
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Figure 5: By introducing the additional term ∆Wli, the system’s behavior shifts from a convergent regime (left)
to a divergent regime (right).

4.2 Rotary Positional Encoding.

In contrast to absolute positional encoding, for even dimension D, the rotary positional encoding [31,
45] maps the input X into the output Y as

yl = V ⊤ ·
L∑

i=1

(
ex

⊤
l ·Wli·xi∑L

j=1 e
x⊤
l ·Wlj ·xj

)
· xi, (6)

for l = 1, . . . , L, where

Wli =
1√
Dk

(
Q ·K⊤ +Q ·RD

θ,i−l ·K
⊤) ∈ RD×D, (7)

with Q,K are two additional learnable matrices and

RD
Θ,m = blockdiag

((
cosmθ1 − sinmθ1
sinmθ1 cosmθ1

)
, . . . ,

(
cosmθD/2 − sinmθD/2

sinmθD/2 cosmθD/2

))

where Θ =
{
θi = 10000−2(i−1)/D, i = 1, 2, . . . , D/2

}
.

The continuous-time dynamics of the self-attention with rotary positional encoding can be described
via the differential system

dxl(t)

dt
= V ⊤ ·

L∑
i=1

(
exl(t)

⊤·Wli·xi(t)∑L
j=1 e

xl(t)⊤·Wlj ·xj(t)

)
· xi(t), (8)

for l = 1, . . . , L. Rotary positional encoding is an essential component of latent attention which is at
the core of Deepseek [31].

Remark 4.2 (Rotary positional encoding encourages token divergence). Unlike absolute positional
encoding, the rotary positional encoding exhibits markedly different behavior as its encoding en-
courages token divergence. Indeed, the additional term ∆Wli = Q · RD

θ,i−l ·K
⊤

in the query-key
interaction matrix Wli, as defined in equation (7), can inhibit the system from entering the conver-
gence regime, as shown in Figure 5. As a result, in self-attention mechanisms with rotary positional
encoding, the divergence scenario tends to occur more frequently compared to those employing
absolute or no positional encoding.

To support our findings, we visualize the evolution of token norms and pairwise L2 distances in
a pre-trained Transformer model without LayerNorm and feed-forward layers, comparing Rotary
Positional Encodings (RoPE) with sinusoidal positional encodings. Figure 6 shows that both token
norms and token distances diverge faster with RoPE than with sinusoidal encodings, suggesting that
RoPE mitigates the convergence aspect in self-attention.
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Figure 6: Token norm and distance throughout layers of a pre-trained model with RoPE and Sinusoidal positional
encoding.

Table 1: Performance of Transformers with sinusoidal
positional encoding across scenarios on language mod-
eling task.

Scenario EnWik8 WikiText-103 PPL (↓)
BPC (↓) Valid Test

Baseline 1.331 31.63 32.37
Convergence 1.350 32.24 33.05
Intermediate 1.345 31.91 32.78
Divergence 1.324 31.12 32.07

Table 2: Top 1 and Top 5 Validation Accuracy of
DeiT (learnable positional encoding) across differ-
ent scenarios on ImageNet1K.

Scenario Top 1 Acc (↑) Top 5 Acc (↑)

DeiT Baseline 71.80 91.01
Convergence 71.34 90.64
Intermediate 71.60 90.91
Divergence 71.96 91.05

5 Experiments
In this section, we provide empirical validation of our theoretical findings and introduce enhancements
to absolute positional encoding and Rotary Positional Embedding (RoPE) in practical Transformer
models. We conduct experiments on three benchmark tasks: language modeling on WikiText-103 [34]
and EnWik8 [20], and image classification on ImageNet-1K [11]. Our goals are twofold: (1) to show
that convergence behavior adversely affects the performance of Transformers and should thus be
mitigated; and (2) to demonstrate that encouraging divergence in Transformers improves performance.
Throughout the experiments, we compare our modified Transformers with the baseline Transformers
of the same configuration. Our results are averaged over 5 runs. Detailed information about the model
architecture, hyperparameters, and training procedures is provided in Appendix D.

5.1 Negative Effects of the Convergence Scenario

We empirically examine the impact of convergence and divergence dynamics predicted by our analysis
across different Transformer architectures. Specifically, we evaluate models on the WikiText-103 and
EnWik8 language modeling tasks using sinusoidal positional encoding, and on ImageNet-1K using a
Vision Transformer variant DeiT [50] which uses learnable positional encoding. The parameters in
attention layers are explicitly constrained to conform to these distinct scenarios. In the convergence
scenario, we impose the conditions Wsym ≻ 0 and Asym ≺ 0. Conversely, in the divergence scenario,
we require Wsym ≻ 0 and Asym ≻ 0. We additionally examine an intermediate scenario in which
Wsym ≻ 0 and Asym contains an equal number of positive and negative eigenvalues. Further details
on the benchmark setup and the implementation of these constraints are provided in Appendix D.3
and Appendix D.2, respectively.

Table 1 reports model performance across the baseline and three constrained settings. As the con-
straints shift toward convergence, performance consistently deteriorates. In contrast, the divergence
setting achieves the best results, yielding the lowest BPC and perplexity. On WikiText-103, the
divergence case outperforms the convergence and baseline settings by reducing validation perplexity
by 1.12 and 0.51, respectively. On EnWik8, it lowers test BPC to 1.324, compared to 1.350 under
convergence and 1.331 under the baseline. These results suggest that divergence constraints improve
model performance, while convergence constraints have a detrimental effect.
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Table 3: Bits Per Characters (BPC) and Perplexity (PPL) of Transformers with Rotary Positional Encoding
across different scenarios on EnWik8 and WikiText-103 language modeling.

Scenario EnWik8 Pretrain WikiText-103 Pretrain
Test BPC (↓) Valid PPL (↓) Test PPL (↓)

Transformer + RoPE 1.295 31.37 32.35
Transformer + RoPE + λID 1.288 31.10 32.09
Transformer + RoPE + λA 1.281 31.06 32.04
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Figure 7: Mean token distance (left) and mean token norm (right) across Transformer layers in a pre-trained
model without LayerNorm or feedforward network.

To analyze the impact of convergence and divergence constraints, we plot the mean token norm and
mean pairwise L2 distance across layers (without LayerNorm or feed-forward). As shown in Figure 7,
both metrics decrease under the convergence constraint, whereas they rise under the intermediate and
divergence regimes, with divergence exhibiting the steepest increase. These empirical trends validate
our theoretical analysis in Section 3 and suggest that the intermediate setting combines aspects of
both convergence and divergence regimes.

5.2 Promoting Divergence in Rotary Positional Embedding

Motivated by the influence of the additional term ∆Wli on the query-key interaction matrix Wli in
promoting divergent token dynamics under RoPE, we propose a simple yet effective modification to
further mitigate convergence - an undesirable regime shown to negatively affect model performance.
Specifically, we add a learnable regularization term λID or λA ∈ RD×D to Wli, where λ is a
learnable negative scalar, ID is the identity matrix, and A is a learnable diagonal matrix with strictly
positive entries. This modification effectively learns to subtract a positive quantity from the diagonal
of Wli, promoting negative eigenvalues, thus discouraging convergence scenario in attention layers.

We provide empirical evidence on WikiText-103 and EnWik8 demonstrating our findings’ practical
relevance. As shown in Table 3, even minimal intervention yields measurable gains. On EnWik8,
adding λID reduces Test BPC from 1.295 to 1.288, and λA further reduces it to 1.281. On WikiText-
103, both variants outperform RoPE, with λA achieving a 0.3-point improvement in Validation and
Test perplexity. These results, while modest, are consistent with our theoretical predictions and
validate the utility of encouraging divergence in self-attention dynamics.

6 Conclusion
We analyzed token dynamics in self-attention and leveraged these insights to improve Transformer
performance. Through theoretical investigation, we derived conditions under which tokens converge
or diverge during self-attention and explored how positional encodings - such as absolute and rotary -
affect these dynamics. Empirical evaluations on pre-trained Transformers supported our findings,
highlighting the negative impact of token convergence on performance. To address this, we proposed
simple enhancements to self-attention that yielded measurable improvements. A limitation of our
analysis is its focus on self-attention, omitting components like layer normalization and feed-forward
networks. However, empirical validation confirms our conclusions remain relevant in practice.
Extending our framework to the full Transformer architecture is a promising direction for future
research.
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A Related Works
Transformers as Interacting Particle Systems. Particle systems offer a novel perspective to
understand the dynamics of Transformer models and inspire architectural innovations. In [33], the
Transformer architecture is mathematically framed as a numerical ODE solver for a convection-
diffusion equation in a multi-particle dynamic system. Similarly, leveraging insights from numerical
ODE solvers, [14] introduces TransEvolve, a temporal evolution scheme inspired by interacting
particle dynamics. Furthermore, the ODE governing Transformer dynamics is closely connected
to the extensive literature on nonlinear systems, including flocking phenomena [19], the Kuramoto
model [25, 1], consensus formation [24, 35], opinion formation [21, 42], and systems of self-driven
particles [52].

Clustering Effects of Transformers. Research on interacting particle systems has shown that
tokens in Transformer models exhibit a long-time clustering phenomenon. Geshkovski et al proved
in [17] that tokens cluster around limiting objects determined by their initial values, highlighting
their context awareness. This was extended to the study of metastability of self-attention with layer
normalization in [16, 15]. Additionally, [3] proved that tokens in pure-attention hardmax Transformer
models asymptotically converge to clustered equilibria.

B Dynamical Properties of Tokens in Self-Attention
Recall that the dynamical system governing the continuous-time dynamic of the self-attention is
given by:

dxl(t)

dt
= V ⊤ ·

L∑
i=1

(
exl(t)

⊤·W ·xi(t)∑L
j=1 e

xl(t)⊤·W ·xj(t)

)
· xi(t), l = 1, . . . , L, (9)

with the initial condition (x1(0), . . . , xL(0)) = (x10, . . . , xL0) ∈ (RD)L. In this system, W =
Q ·K⊤. The matrices Q,K, V are learnable matrices and they are called queries, keys and values
matrices, respectively. In our setting, the parameters W and V are assumed to be time-independent.

Set A = W · (V ⊤)−1. We will prove the following observations in the subsequent subsections.

Distances Between Tokens. If A ≺ 0, then all tokens will tend to move closer and closer to
each other as time t approaches infinity. In contrast, if A ≻ 0, the tokens will either tend
to maintain constant distances or move farther away from each other as time t approaches
infinity (see Theorem B.2).

Convergence Scenario. If A ≺ 0 and W ≻ 0, then all tokens will tend to zero as the time t
tends to infinity (see Theorem B.6).

Divergence Scenario. If V has at least one positive eigenvalue and W is arbitrary, then all
tokens will diverge to infinity under certain assumption on the initial data (see Theorem 3.6).

B.1 Distances Between Tokens Over Time

In this subsection, we analyze the dynamical properties of the distances between tokens as the time t
increases. We start with the following lemma, which can be seen as a refinement of [17, Lemma 7.1].

Lemma B.1. Let W be an arbitrary matrix in RD×D. For each x1, . . . , xL in RD, the function
f : RD → R defined by

f(u) = log

 L∑
j=1

eu
⊤·W ·xj

 , u ∈ RD,

is a convex function.
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Proof. For arbitrary u, v ∈ RD, we have

ef(u)+f(v) − e2f(
u+v
2 ) =

(
L∑

i=1

eu
⊤·W ·xi

)
·

 L∑
j=1

ev
⊤·W ·xj

−

(
L∑

k=1

e(
u+v
2 )

⊤·W ·xk

)2

=
∑
i,j

1

2

(
e(u+v)⊤·W ·xi + e(u+v)⊤·W ·xj

)
−
∑
i,j

e
u+v
2 ·W ·xi+

u+v
2 ·W ·xj

=
∑
i,j

1

2

(
e

u+v
2 ·W ·xi − e

u+v
2 ·W ·xj

)2
≥ 0.

Therefore, f(u) + f(v) ≥ 2f
(
u+v
2

)
. Hence, f is convex.

The function f defined in the above lemma is not strictly convex as the equality happens when
u+ v = 0.

Theorem B.2. Let (x1(t), . . . , xL(t)) ∈ C∞([0,+∞)])L be a solution of the dynamical system (9).
Assume that V is invertible and A = W · (V ⊤)−1 is symmetric. Then the map t 7→ qA(xi(t)−xj(t))
is non-decreasing on [0,+∞).

As a consequence,

(a) if A ≻ 0, then ||xi(t)− xj(t)||A is non-decreasing on [0,+∞);

(b) if A ≺ 0, then ||xi(t)− xj(t)||A is non-increasing on [0,+∞).

Proof. Fix an arbitrary time s ∈ (0,+∞). Let f be the function defined in Lemma B.1 (with xj

there is replaced by xj(s) in this proof). Then we see that

∂f

∂u
(u) = W ·

L∑
i=1

eu
⊤·W ·xi(s)∑L

j=1 e
u⊤·W ·xj(s)

· xi(s).

Therefore, from the dynamical system (9), we have

∂f

∂u
(xl(s)) = A · d

ds
xl(s), l = 1, . . . , L. (10)

Since f is convex, we have

(xi(s)− xj(s))
⊤
(
∂f

∂u
(xi(s))−

∂f

∂u
(xj(s))

)
≥ 0.

From equation (10), we have

(xi(s)− xj(s))
⊤ ·A ·

(
d

ds
xi(s)−

d

ds
xj(s)

)
≥ 0.

Since A is symmetric, it follows from the above inequality that:

d

ds
qA(xi(s)− xj(s)) ≥ 0.

This shows that the map t 7→ qA(xi(s)− xj(s)) is non-decreasing on [0,+∞). The items (a) and
(b) are obtained due to the definition of || · ||A.

B.2 Convergence Scenario

In this section, we will prove that when A ≺ 0 and W ≻ 0, the solution of the dynamical system (9)
tends to zero as t approaches infinity. The special case where A = −ID and W = ID was already
proved in [17, Section 8.2]. We borrow the proof technique from [17, Section 8.2] and carefully
refine it so that it applies to a broader generalization.
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Proposition B.3. Let (x1(t), . . . , xL(t)) ∈ C∞([0,+∞)])L be a solution of the dynamical sys-
tem (9). Assume that V is invertible and A = W · (V ⊤)−1 is symmetric. Then, we have

d

dt
qA(xl(t)) ≥ 2− 2L

eqW (xl(t))
,

for all l = 1, . . . , L and t ∈ [0,+∞). As a consequence, if A ≺ 0 and Wsym ≻ 0, then ||xl(t)||A is
bounded for all l = 1, . . . , L.

Proof. Since A is symmetric, we have
1

2

d

dt
qA(xl(t)) = xl(t)

⊤ ·W · (V ⊤)−1 · d

dt
xl(t)

=

∑L
i=1 e

xl(t)
⊤·W ·xi(t) · xl(t)

⊤ ·W · xi(t)∑L
j=1 e

xl(t)⊤·W ·xj(t)

≥
∑L

i=1 e
xl(t)

⊤·W ·xi(t) − L∑L
j=1 e

xl(t)⊤·W ·xj(t)

= 1− L∑L
j=1 e

xl(t)⊤·W ·xj(t)
.

In the above estimation, to obtain the inequality in the third line, we used the fact that eλλ ≥ eλ − 1
for all λ ∈ R. As a consequence, we have

d

dt
qA(xl(t)) ≥ 2− 2L

eqW (xl(t))
, (11)

as claimed.

Next, assume that A ≺ 0 and Wsym ≻ 0. There is a constant c > 0 such that || · ||2A ≥ c|| · ||2W . Then
it follows from equation (11) that

− d

dt
||xl(t)||2A ≥ 2− 2L

ec||xl(t)||2A
,

or equivalently,
d

dt
||xl(t)||2A ≤ −2 +

2L

ec||xl(t)||2A
,

Hence, ||xl(t)||2A ≤ 1
c log

(
e−2ct

(
ec||xl(0)||2A − L

)
+ L

)
, which is bounded.

The following lemma studies the limitation of the derivative of tokens in case A ≺ 0 and W ≻ 0.
Lemma B.4. Let (x1(t), . . . , xL(t)) ∈ C∞([0,+∞)])L be the unique solution of the dynamical
system (9). Set A = W · (V ⊤)−1. If A ≺ 0 and W ≻ 0, then∫ +∞

0

∥∥∥∥ d

ds
xl(s)

∥∥∥∥2
A

ds < +∞,

for all l. In particular, we have limt→+∞
d
dtxl(t) = 0 for all l.

Proof. Consider the function h : [0,+∞) → R defined by

h(t) =

L∑
i=1

L∑
j=1

exi(t)
⊤·W ·xj(t).

Then h is a positive function. Since W is symmetric, the derivative of h is

d

dt
h(t) = 2

L∑
i=1

L∑
j=1

exi(t)
⊤·W ·xj(t) · d

dt
xi(t)

⊤ ·W · xj(t)

= 2

L∑
i=1

d

dt
xi(t)

⊤ ·W ·

 L∑
j=1

exi(t)
⊤·W ·xj(t) · xj(t)


= 2

L∑
i=1

d

dt
xi(t)

⊤ ·A · d

dt
xi(t) ·

 L∑
j=1

exi(t)
⊤·W ·xj(t)

 .
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Since A ≺ 0, we have d
dtxi(t)

⊤ ·A · d
dtxi(t) = −

∥∥ d
dtxi(t)

∥∥2
A

. Therefore, we can proceed the above
expression as

d

dt
h(t) = −2

L∑
i=1

∥∥∥∥ d

dt
xi(t)

∥∥∥∥2
A

·

 L∑
j=1

exi(t)
⊤·W ·xj(t)

 , (12)

which is nonpositive. As a consequence, h(t) is non-increasing. Thus, limt→+∞ h(t) exists and
finite.

Next, since A ≺ 0 and W ≻ 0, it follows from Proposition B.3 that xl(t) are bounded for all
l = 1, . . . , L. Therefore, there exists ϵ > 0 such that

L∑
j=1

exi(t)
⊤·W ·xj(t) ≥ ϵ,

for all t ∈ [0,+∞) and i = 1, . . . , L. It follows from equation (12) that

d

dt
h(t) ≤ −2ϵ

∥∥∥∥ d

dt
xl(t)

∥∥∥∥2
A

.

By taking the integral both sides, we see that∫ +∞

0

∥∥∥∥ d

ds
xl(s)

∥∥∥∥2
A

ds ≤ 1

2ϵ
(h(0)− lim

s→+∞
h(s)) < +∞.

The lemma is then proved.

We will also require the following lemma, which holds for any matrix W whose symmetric component
Wsym is either positive definite or negative definite. The special case where W = ID was established
in [17, Lemma 8.8]. Our proof, however, is simpler and extends to more general matrices W .
Lemma B.5. Assume that Wsym is (either positive or negative) definite. Let x∗

1, . . . , x
∗
L be point in

RD such that
L∑

j=1

e(x
∗
l )

⊤·W ·x∗
j · x∗

j = 0, ∀l = 1, . . . , L.

Then x∗
1 = . . . = x∗

L = 0.

Proof. Consider the function g : RD → R defined by

g(u) =

L∑
l=1

eu
⊤·W ·x∗

l , ∀u ∈ RD.

Then for arbitrary u, v ∈ RD, we have

g(u) + g(v)− 2g

(
u+ v

2

)
=

L∑
l=1

(
e

1
2u

⊤·W ·x∗
l − e

1
2v

⊤·W ·x∗
l

)2
≥ 0.

Therefore g is convex. From the hypothesis, we have

∇g(x∗
1) = . . . = ∇g(x∗

L) = 0.

This means that x∗
1, . . . , x

∗
L are global minimum of g and the values of g at these points are all equal.

Since g is convex, g achieves the global minimal value on the convex hull conv({x∗
l }Ll=1). As a

consequence, we have

g(x∗
i ) = g(x∗

j ) = g

(
x∗
i + x∗

j

2

)
,

for all i, j. Therefore,

0 = g(x∗
i ) + g(x∗

j )− 2g

(
x∗
i + x∗

j

2

)
=

L∑
l=1

(
e

1
2x

⊤
i ·W ·x∗

l − e
1
2x

⊤
j ·W ·x∗

l

)2
.
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This happens only when
1

2
x⊤
i ·W · x∗

l =
1

2
x⊤
j ·W · x∗

l ,

or equivalently,
(xi − xj)

⊤ ·W · x∗
l = 0,

for all l = 1, . . . , L. In particular, we have

qW (x∗
i − x∗

j ) = (x∗
i − x∗

j )
⊤ ·W · x∗

i − (xi − xj)
⊤ ·W · x∗

j = 0.

Since Wsym is definite, qW is nondegenerate and x∗
i = x∗

j . Thus x∗
1 = . . . = x∗

L. The only possibility
is x∗

1 = . . . = x∗
L = 0.

We are ready to prove the main result of the convergence scenario.
Theorem B.6. Let (x1(t), . . . , xL(t)) ∈ C∞([0,+∞)) be a solution of the dynamical system (9). If
A ≺ 0 and W ≻ 0, then limt→+∞ xl(t) = 0 for all l = 1, . . . , L.

Proof. Set X(t) = (x1(t), . . . , xL(t)). We need to prove that limt→+∞ X(t) = 0. Assume that
this is not the case. According to item (a) of Proposition B.3, X(t) lies in a compact subspace
of (RD)L. Therefore, there exists a sequence {tk}k in [0,+∞) such that limk→+∞ tk = +∞
and limk→+∞ X(tk) = X∗ for some X∗ = (x∗

1, . . . , x
∗
L) ∈ (RD)L and X∗ ̸= 0. As a conse-

quence, we have limk→+∞ xl(tk) = x∗
l for each l = 1, . . . , L. While, according to Lemma B.4,

limk→+∞
d
dtxl(tk) = 0. Therefore, from the dynamical system (9), we obtain

L∑
i=1

e(x
∗
l )

⊤·W ·x∗
i∑L

j=1 e
(x∗

l )
⊤·W ·x∗

j

· x∗
i = 0, l = 1, . . . , L. (13)

Then it follows from Lemma B.5 that x∗
1 = . . . = x∗

L = 0. However, this contradict to the fact that
X∗ ̸= 0. Hence, limt→+∞ X(t) = 0 and the theorem is proved.

B.3 Divergence Scenario

To simplify the technical details, we will consider the case where A = λW , i.e. V = 1
λID, for some

positive real number λ. The case where A and W have the same signs but A ̸= λW may require
certain adaptations. In particular, we will prove that when V = λID and W is arbitrary, all tokens
tend to infinity at an exponential rate (under certain assumptions on the initial conditions). The case
where V = W = ID was already solved in [17, Section 8]. We borrow the technique from there and
modify it to ensure it works for all V = λID and arbitrary W .

In the following, for each subset H ⊆ RD, we denote by conv(H) the convex hull of H , which
is the smallest convex set containing H in RD. For a point u, the notation d(u,H) represents the
Euclidean distance from u to H , which is defined as

d(u,H) = inf
v∈H

∥u− v∥.

If H is a closed half-space of RD with an outer normal vector n and u /∈ H , then

d(u,H) = n⊤ · (u− projH(u)) ,

where projH(u) is the projection of u onto H .

We begin with the following lemma, whose proof can be found in [17].
Lemma B.7. Let H be a closed half-space of RD with an outer unit normal vector n. Let
u1, . . . , uL : [0,+∞) → RD be an arbitrary sequence of differentiable functions. For each
t ∈ [0,+∞), set

Min(t) = {1 ≤ l ≤ L |d(ul(t), H) = min
1≤i≤L

d(ui(t), H)}.

Then we have
d

dt
min

1≤i≤L
d(ui(t), H) = min

i∈Min(t)

(
n⊤ · d

dt
ui(t)

)
.

Proof. This lemma is already proved in the proof of [17, Proposition 8.2].
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The following proposition refines [17, Proposition 8.2], where the condition V = W = ID was
assumed. Here, we extend the proof by relaxing this condition and demonstrating that the result
remains valid for matrices of the form V = λID with λ > 0, without imposing any constraints on W .
Another proof of this proposition can also be found in [21, Proposition 2.1].
Proposition B.8. Assume that V = λID for some real number λ > 0 and W is an arbitrary
matrix in RD×D. Let (x1(t), . . . , xL(t)) ∈ C∞([0,+∞)])L be the unique solution of the dynamical
system (9). Then

e−|λ|txl(t) ∈ conv
(
{xi0}Li=1

)
,

for all l = 1, . . . , L and t ∈ [0,+∞).

Proof. Let zl(t) = e−λtxl(t). Then we have

d

dt
zl(t) = e−λt

(
d

dt
xl(t)− λxl(t)

)
= e−λt

(
λ

L∑
i=1

ee
2λtz⊤

l ·W ·zi∑L
j=1 e

e2λtz⊤
l ·W ·zi

eλtzi(t)− λeλtzl(t)

)

= λ

L∑
i=1

(
ee

2λtz⊤
l ·W ·zi∑L

j=1 e
e2λtz⊤

l ·W ·zi

)
(zi(t)− zl(t)).

Therefore, the function (z1(t), . . . , zL(t)) satisfies the dynamical system:

dzl(t)

dt
=

L∑
i=1

Pl,i(t, z1(t), . . . , zL(t)) · (zi(t)− zl(t)), l = 1, . . . , L, (14)

with the initial conditions zl(0) = xl0, where

Pl,i(t, z1, . . . , zL) =
ee

2λtz⊤
l ·W ·zi∑L

j=1 e
e2λtz⊤

l ·W ·zi
· λ.

We claim that, for every closed half-space H of RD such that conv({xi0}Li=1) ∩H = ∅, the map
α : [0,+∞) → R defined by

α(t) = min
1≤i≤L

d(zi(t), H)

is non-decreasing. Indeed, using item (a) of Lemma B.7, we have

d

dt
α(t) = min

i∈Min(t)

(
n · d

dt
zi(t)

)
= min

i∈Min(t)

(
L∑

i=1

Pl,i(t, z1(t), . . . , zL(t)) · n⊤ · (zj(t)− zi(t))

)
.

On the right hand side, we have

n⊤ · (zj(t)− zi(t)) = n⊤ · (zj(t)− projH(zj(t)))− n⊤ · (zi(t)− projH(zi(t)))

+ n⊤ · (projH(zj(t))− projH(zj(t)))

= d(zj(t), H)− d(zi(t), H)

which is nonnegative since i ∈ Min(t). Therefore, d
dtα(t) ≥ 0 and α is non-decreasing. As a

consequence, we have
d(zl(t), H) ≥ min

1≤i≤L
d(xl0, H) > 0,

for all l = 1, . . . , L and t ∈ [0,+∞). This means that, zl(t) is outside H as long as
H ∩ conv({xl0}Li=1) = ∅. Hence,

zl(t) ∈
⋂

H closed half-space
H∩conv({xl0}L

i=1)=∅

H =
⋂

H′ open half-space
H′⊃conv({xl0}L

i=1)

H ′ = conv
(
{xl0}Li=1

)
.

The proposition is then proved.
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In the following, for each nonzero vector n ∈ RD, we denote by Hn the closed half-space of RD

with normal vector n such that zero belongs to its boundary ∂Hn. In this case, ∂Hn represents the
hyperplane containing zero with normal vector n.

Theorem B.9. Assume that the value matrix V has at least one positive eigenvalue. Let n be an
eigenvector of V corresponding to a positive eigenvalue. Then

min
1≤i≤L

(
n⊤xi0

)
≤ n⊤e−tV ⊤

xl(t) ≤ max
1≤i≤L

(
n⊤xi0

)
,

for all t ∈ [0,+∞) and l = 1, . . . , L.

As a consequence, if the initial points x10, . . . , xL0 are all on one side of the hyperplane ∂Hn, and if
V has only positive eigenvalues, then

lim
t→+∞

∥xl(t)∥ = +∞, for all l.

Proof. Let zl(t) = e−tV ⊤
xl(t). Then the function (z1(t), . . . , zL(t)) satisfies the dynamical system:

dzl(t)

dt
=

L∑
i=1

Pl,i(t, z1(t), . . . , zL(t)) · V ⊤ · (zi(t)− zl(t)), l = 1, . . . , L, (15)

with the initial conditions zl(0) = xl0, where

Pl,i(t, z1, . . . , zL) =
ez

⊤
l ·etV ·W ·etV

⊤
·zi∑L

j=1 e
z⊤
l ·etV ·W ·etV ⊤ ·zj

.

Let λ > 0 be the eigenvalue associated to n. By multiplying n⊤ into both sides of equation (15), and
set yl(t) = n⊤ · zl(t), we obtain

dyl(t)

dt
=

L∑
i=1

Pl,i(t, z1(t), . . . , zL(t)) · λ · (yi(t)− yl(t)), l = 1, . . . , L, (16)

with the initial conditions yl(0) = n⊤ · xl0 ∈ R. By using the same argument in Proposition B.8,
with zl is replaced by yl here, we see that

yl(t) ∈ conv
(
{yi0}Li=1

)
,

and hence,
min

1≤i≤L
yi0 ≤ yl(t) ≤ max

1≤i≤L
yi0,

for all t ∈ [0,+∞) and l = 1, . . . , L. Therefore,

min
1≤i≤L

(
n⊤ · xi0

)
≤ n⊤ · e−tV ⊤

· xl(t) ≤ max
1≤i≤L

(
n⊤ · xi0

)
,

as claimed.

In case the initial points x10, . . . , xL0 are all one side of the hyperplane ∂Hn, then either
min1≤i≤L

(
n⊤ · xi0

)
> 0 or max1≤i≤L

(
n⊤ · xi0

)
< 0. In both case, there is ϵ > 0 such that∣∣∣n · e−tV ⊤

· xl(t)
∣∣∣ > ϵ

for all t ∈ [0,+∞) and l. Hence, when V has only positive eigenvalues, we must have

lim
t→+∞

∥xl(t)∥ = +∞, for all l.

The theorem is then proved.

C Effects of Absolute and Rotary Positional Encodings
In this section, we analyze the influence of absolute and rotary positional encodings on the dynamical
behavior of tokens within self-attention mechanisms.
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C.1 Absolute Positional Encoding
Recall that the dynamical system governing the continuous-time limit of the self-attention with
absolute positional encoding is given by

dxl(t)

dt
= V ⊤ ·

L∑
i=1

(
e(xl(t)+pl)

⊤·W ·(xi(t)+pi)∑L
j=1 e

(xl(t)+pl)⊤·W ·(xj(t)+pj)

)
· (xi(t) + pi), (17)

for l = 1, . . . , L, with the initial conditions
(x1(0), . . . , xL(0)) = (x10, . . . , xL0) ∈ (RD)L.

Here pi = [pi,1, . . . , pi,D]⊤ ∈ RD. A common choice is to either learn the positional embeddings pi
jointly with the model parameters, or to fix them using a sinusoidal scheme: with

pi,j =

{
sin(i · 10000−

j
D ), if j is even,

cos(i · 10000−
j−1
D ), if j is odd.

This differential system can be easily transformed into equation (2) by the transition xl 7→ xl + pl.
Therefore, the dynamical properties of the self-attention with and without absolute are the similar as
we will see in the following corollaries.
Corollary C.1. Let (x1(t), . . . , xL(t)) ∈ C∞([0,+∞)) be a solution of the dynamical system (17).
If A ≺ 0 and W ≻ 0, then limt→+∞ xl(t) = −pl for all l = 1, . . . , L.
Corollary C.2. Let X(t) = (x1(t), . . . , xL(t)) ∈ C∞([0,+∞))L be a solution of the differential
system (17). Assume that the value matrix V has at least one positive eigenvalue. Let n be an
eigenvector of V corresponding to a positive eigenvalue. Then

min
1≤i≤L

(
n⊤(xi0 + pi)− e−tV ⊤

pl

)
≤ n⊤e−tV ⊤

xl(t) ≤ max
1≤i≤L

(
n⊤(xi0 + pi)

)
− e−tV ⊤

pl,

for all t ∈ [0,+∞) and l = 1, . . . , L.

As a consequence, if the points x10 + p1, . . . , xL0 + pL are all on one side of the hyperplane
∂Hn + e−tV ⊤

pl, and if V has only positive eigenvalues, then
lim

t→+∞
∥xl(t)∥ = +∞, for all l.

C.2 Rotary Positional Encoding
In this section, we assume that the token dimension D is an even number. In contrast to absolute po-
sitional encoding, the continuous-time dynamics of the self-attention with rotary positional encoding
can be described via the differential system [46]

dxl(t)

dt
= V ⊤ ·

L∑
i=1

(
exl(t)

⊤·Wli·xi(t)∑L
j=1 e

xl(t)⊤·Wlj ·xj(t)

)
· xi(t), (18)

for l = 1, . . . , L, where

Wli =
1√
Dk

(
Q ·K⊤ +Q ·RD

θ,i−l ·K
⊤)

, (19)

with Q,K,Q,K ∈ RD×D are two additional learnable matrices and

RD
Θ,m =



cosmθ1 − sinmθ1 0 0 · · · 0 0
sinmθ1 cosmθ1 0 0 · · · 0 0

0 0 cosmθ2 − sinmθ2 · · · 0 0
0 0 sinmθ2 cosmθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cosmθD/2 − sinmθD/2

0 0 0 0 · · · sinmθD/2 cosmθD/2


and Θ = {θi = 10000−2(i−1)/D, i ∈ [1, 2, . . . , D/2]}.

Rotary positional encoding is an essential component of latent attention, which lies at the core
of DeepSeek [31]. Unlike absolute positional encoding, the differential system governing rotary
positional encoding exhibits markedly different behavior. In cases where token trajectories diverge to
infinity under absolute positional encoding, we observe a similar divergence scenario in the presence
of rotary positional encoding, as demonstrated below:
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Corollary C.3. Let X(t) = (x1(t), . . . , xL(t)) ∈ C∞([0,+∞))L be a solution of the differential
system (18). Assume that the value matrix V has at least one positive eigenvalue. Let n be an
eigenvector of V corresponding to a positive eigenvalue. Then

min
1≤i≤L

(
n⊤xi0

)
≤ n⊤e−tV ⊤

xl(t) ≤ max
1≤i≤L

(
n⊤xi0

)
,

for all t ∈ [0,+∞) and l = 1, . . . , L.

As a consequence, if the points x10, . . . , xL0 are all on one side of the hyperplane ∂Hn, and if V has
only positive eigenvalues, then

lim
t→+∞

∥xl(t)∥ = +∞, for all l.

Proof. Apply the same argument as in the proof of Theorem B.9.

Remark C.4. In contrast to absolute positional encoding, rotary positional encoding induces notably
different dynamical behavior by promoting token divergence (even for the cases when tokens converge
to a finite point in the absolute positional encoding). Specifically, the presence of the additional term
Q ·RD

θ,i−l ·K
⊤

in the query-key interaction matrix Wli, as defined in equation (19), can hinder the
system from transitioning into a convergence regime. Consequently, self-attention equipped with
rotary positional encoding tends to exhibit divergence behavior more frequently than those using
absolute encoding or no positional encoding at all.

D Additional Experimental Details
D.1 Parameter settings used in the simulations
D.1.1 Figure 1: Distances between tokens over time
On the left side of Figure 1, we choose

• A =

(
1.72628 −3.79592

−0.914069 3.49779

)
whose symmetric component Asym has positive eigenval-

ues 5.12809 and 0.0959758;

• W =

(
0.534636 −0.798866
−1.17152 −1.92153

)
; and

• the initial values x10 = (−1.17525, 1.99834), x20 = (−0.0231564, 0.591678), x30 =
(−0.94811,−1.37996), x4 = (1.00246,−1.69335).

On the right side of Figure 1, we choose

• A =

(
−1.43778 −1.10989
0.563455 −0.401696

)
whose symmetric component Asym has negative eigenval-

ues −1.50541 and −0.334061;

• W =

(
0.433083 −0.0371911
−0.715343 −1.53568

)
; and

• the initial values x10 = (0.123688, 0.20691), (x20 = (0.53086, 1.47281), x30 =
(−0.78388,−1.24115), x40 = (1.63476, 0.321809).

D.1.2 Figure 2: Token trajectories under convergence and divergence scenarios
In Figure 2a, we choose the following parameters:

• A =

(
−2.94058 −2.12076
−5.14498 −4.58104

)
, thus the symmetric component Asym has negative eigenval-

ues −7.48513 and −0.0364942;

• W =

(
0.902496 −2.37879
4.36478 3.84768

)
, thus the symmetric component Wsym has positive eigen-

values 4.15119 and 0.598979.

Figure 2b illustrates the divergence scenario with A = 2W (thus V = 2I) and

W =

(
−0.404078 0.982735
−0.567909 0.600242

)
.
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D.1.3 Figure 5: Token trajectories shift to divergence regime in RoPE

On the left of Figure 5, we choose

• Q =

(
0.07331137 0.17647239
−0.32738218 −0.43457359

)
• K =

(
−2.54009796 1.82991692
−0.95688637 0.60349328

)
, thus Wsym have positive eigenvalues 0.03766541

and 0.15005164

• V = −1.5I

On the right of Figure 5, we choose the additional parameters

– Q =

(
−3.01517413 2.4430872
2.11630464 1.40111342

)
– K =

(
5.03454859 −3.12492845
4.58643881 −2.00780098

)
,

D.1.4 Figure 9: Token trajectories in convergence and divergence regime

On Figure 9a (convergence case), we choose the following parameters:

• Q =

(
−1.18765511 0.8975229
−0.7793589 0.79105257

)
• K =

(
−1.97520362 −1.98198651
2.24167927 2.93460903

)
• Q =

(
1.04027991 −0.12991073]
−1.32542484 1.08074871

)
• K =

(
−1.00477795 −0.48804888
−0.42151108 0.02556926

)
• V = −I

On Figure 9b (divergence case), we choose the following parameters:

• Q =

(
2.068739 −1.83750201

−0.75622145 0.4784381

)
• K =

(
−1.12583337 −1.40120114
−2.79629618 −3.24668939

)
• Q =

(
−0.67880222 1.21234986
−0.67132474 0.90406252

)
• K =

(
0.57406142 2.88899216
−1.10421806 0.75603913

)
• V = 1.5I

D.2 Implementation of Convergence, Divergence, and Intermediate scenarios.

We propose a strategy to guarantee that the model falls into the three scenarios described in Section 5.1
and Section 3.4. In particular, we introduce a reparameterization of the matrices Q, K, and V that
enforces the positive or negative definiteness of the matrices

Wsym =
1

2

(
W +W⊤) , Asym =

1

2

(
A+A⊤) , (20)

where W = QK⊤ and A = W (V ⊤)−1. We first describe the approach to guarantee the positive
definiteness of Asym and Wsym and subsequently extend the framework to accommodate negative
definiteness and intermediate cases.
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Ensuring the Positive Definiteness of Asym. To enforce the positive definiteness of Asym, we leverage
the LDLT decomposition [18]. Specifically, we parametrize:

Asym = LaDaL
⊤
a , (21)

where La is a lower triangular matrix with ones on the diagonal, and Da is a diagonal matrix with
strictly positive elements. The positivity of Da is ensured by applying the Softplus function:

Da = diag(Softplus(da)). (22)

Parametrization of A and W . Given Asym, from Eq. 20 we obtain

A = Asym +Xa, (23)

where Xa is an antisymmetric matrix satisfying Xa = −X⊤
a . A natural parametrization for such a

matrix is:
Xa = Ta − T⊤

a , (24)
Consequently, the final parametrization of A ensuring positive definiteness of Asym is

A = La diag(Softplus(da))L
⊤
a + Ta − T⊤

a . (25)

A similar parametrization applies to W to enforce the positive definiteness of Wsym:

W = Lw diag(Softplus(dw))L
⊤
w + Tw − T⊤

w . (26)

The above formulations ensures that both Wsym and Asym maintain the desired definiteness properties
while allowing for a flexible parametrization of W and A.

Parametrization of Q, K, and V . In terms of Q, K, and V , the aforementioned formulations
equivalent to: {

Q ·K⊤ = Lw diag(Softplus(dw))L
⊤
w + Tw − T⊤

w ,

Q ·K⊤ ·
(
V ⊤)−1

= La diag(Softplus(da))L
⊤
a + Ta − T⊤

a .
(27)

We designate Q, Lw, dw, La, da, Tw, and Ta as learnable parameters. The key and value projection
matrices for self-attention are then computed as:K =

[
Q−1 · Lw diag(Softplus(dw))L

⊤
w + Tw − T⊤

w

]⊤
,

V =
[(
La diag(Softplus(da))L

⊤
a + Ta − T⊤

a

)−1 ·
(
Lw diag(Softplus(dw))L

⊤
w + Tw − T⊤

w

)]⊤
.

(28)

This parametrization guarantees that Asym and Wsym are positive definite.

Adjustments for Negative Definite and Intermediate Cases. The definiteness of Asym and Wsym
is determined by the sign of the elements in Da and Dw, respectively. In the positive definite case,
these elements are constrained to be positive using the Softplus function. To adapt to the negative
definite and intermediate cases, we control the sign of the elements in Da and Dw by multiplying
the output of Softplus with a vector containing only −1 for the negative definite case or a vector
containing an equal number of 1 and −1 for the intermediate case.

This approach ensures that our parametrization is flexible enough to accommodate different definite-
ness requirements while maintaining learnability and numerical stability.

D.3 Details on Language Modeling experiments
D.3.1 Dataset
WikiText-103. [34] The WikiText-103 dataset comprises approximately 268,000 unique words. Its
training set includes around 28,000 articles, totaling 103 million tokens. On average, this corresponds
to text blocks of about 3,600 words per article. The validation and test sets each consist of 60 articles,
containing 218,000 and 246,000 tokens, respectively.

EnWik8. [20] The Enwik8 dataset is a byte-level corpus comprising 100 million bytes extracted
from Wikipedia. In addition to standard English text, it includes markup, special characters, and
content in multiple languages. The standard split provides 90 million bytes for training and 5 million
for testing.
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D.3.2 Wikitext103 Model and Training Configurations

Model. We utilize the Transformer-XL [9] (https://github.com/kimiyoung/transformer-xl) architec-
ture for word-level language modeling on the WikiText-103 dataset. The model comprises 16 layers,
each with a hidden size of 410. Multi-head attention is implemented with 10 heads, each having a
dimensionality of 41. The position-wise feedforward networks have an inner dimension of 2100.
Regularization is applied via a dropout rate of 0.05 on residual connections. For Rotary positional
embedding, the rotational dimension used is 16.

Training Configurations. Training is conducted using the Adam optimizer with a learning rate of
0.00025. A linear warmup is applied for the first 1,000 steps, followed by a cosine annealing schedule
over a total of 200,000 training steps. The model is trained with a target sequence length of 150 tokens
and no memory length, effectively disabling the segment-level recurrence mechanism. Evaluation
is performed with a slightly longer target length of 156 tokens. Training utilizes 2 NVIDIA A100
SXM4 80GB GPUs with a total batch size of 60.

D.3.3 EnWik8 Model and Training Configurations

Model. We trained an autoregressive Transformer model on the Enwik8 dataset using the x-
transformers (https://github.com/lucidrains/x-transformers) library. The model follows a GPT-style
architecture, comprises a 6-layer Transformer decoder. Each layer uses 8 attention heads and a model
dimension of 512. For tokenization, byte-level encoding was used, resulting in a vocabulary size of
256 unique tokens. Both training and generation sequences were fixed at 1024 tokens.

Training Configurations. Data was sampled into overlapping sequences of length 1025 (1024 input
tokens plus 1 target token). We used the Adam optimizer with a learning rate of ×10−4, and applied
gradient clipping with a maximum norm of 0.5. Gradients were accumulated over 4 steps to simulate
larger batch sizes. A batch size of 4 was used, with gradient accumulation yielding an effective batch
size of 16. The model was trained for 100,000 iterations. Validation was performed every 100 steps,
and text samples were generated every 500 steps with a generation length of 1024 tokens. Training
was performed on a NVIDIA A100 SXM4 80GB GPU.

D.4 Details on ImageNet-1K object recognition task

D.4.1 Dataset

ImageNet-1K. [11] This dataset spans 1000 object classes and contains 1,281,167 training images,
50,000 validation images. The model learns to predict the class of the input image among 1000
categories. We report the top-1 and top-5 accuracy on all experiments.

D.4.2 Model and Training Configurations

Models. We adopted the DeiT [50] (https://github.com/facebookresearch/deit) architecture, a
lightweight Vision Transformer (ViT) variant designed for efficient image classification. The model
used is Tiny version, which divides each 224×224 input image into non-overlapping 16×16 patches,
resulting in a sequence of 196 tokens. Each patch is linearly projected into a 192-dimensional embed-
ding space. The Transformer encoder consists of 12 layers, each employing multi-head self-attention
with 3 heads, and an MLP block with a hidden dimension four times the embedding size (i.e., 768).
Biases are included in the query, key, and value projections, and layer normalization is applied
with an epsilon value of 1e-6. The model includes a learnable [CLS] token and absolute positional
embeddings. No distillation token or teacher model was used, and no architectural modifications
(e.g., convolutional stems or hybrids) were introduced.

Training Configurations. The model was trained on the full ImageNet-1k training set for 300
epochs using the AdamW optimizer with a base learning rate of 5 × 10−4, and weight decay of
0.05. The learning rate followed a cosine decay schedule, with a linear warmup phase over the first
5 epochs, and a minimum learning rate of 10−5. A stochastic depth rate (drop path) of 0.1 were
used for regularization. Data augmentation included RandAugment, Mixup with α = 0.8, CutMix
with α = 1.0, label smoothing with ϵ = 0.1, and random erasing with a probability of 0.25. The
model was trained with a batch size of 64 across 4 NVIDIA A100 SXM4 80GB GPUs using mixed
precision. Exponential Moving Average (EMA) of model weights was maintained with a decay factor
of 0.99996.
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(a) With LayerNorm, without feedforward. (b) With both LayerNorm and feedforward.

Figure 8: Tokens’ trajectory in the later layers of a pre-trained GPT-2 model forms clusters with similar shapes.

D.5 Additional visualizations

D.5.1 Tokens’ trajectory in pre-trained Transformers

We provide additional visualization on pre-trained GPT-2 model to observe the trajectory of tokens.
As illustrated in Figure 8, tokens trajectories in later layers still forms clusters with similar shapes.

D.5.2 Token trajectories with RoPE

We provide additional simulations of token trajectories in the system of Equation 8 for the convergence
(Figure 9a) and divergence case (Figure 9b).
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(a) Convergence case of Self-Attention + RoPE. To-
kens tend to converge to zero when t → ∞.
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(b) Divergence case of Self-Attention + RoPE. Tokens
tend to diverge to ∞ when t → ∞.

Figure 9: Self-Attention with RoPE under (a) convergence and (b) divergence settings.

D.6 Additional Results

D.6.1 Full Evaluation Results

In this section, we demonstrate the means and standard deviations of the experiments we executed.
Table 4, 5, 6 show the means and standard deviations of our experiments in Section 5.2, Section 5.1.

D.6.2 Condition verification on pretrained Transformers

We performed an empirical analysis of real-world pretrained Transformer models to verify the
conditions in our theory. Specifically, for each model, we measured the mean percentage across

28



Table 4: Bits Per Characters (BPC) and Perplexity (PPL) of Transformers with Rotary Positional Encoding
across different scenarios on EnWik8 and WikiText-103 language modeling.

Scenario EnWik8 Pretrain WikiText-103 Pretrain
Test BPC (↓) Valid PPL (↓) Test PPL (↓)

Transformer + RoPE 1.295± 0.003 31.37± 0.14 32.35± 0.18
Transformer + RoPE + λID 1.288± 0.002 31.10± 0.16 32.09± 0.17
Transformer + RoPE + λA 1.281± 0.002 31.06± 0.11 32.04± 0.14

Table 5: Bits Per Characters (BPC) and Perplexity (PPL) of Transformers with sinusoidal positional encoding
across scenarios on EnWik8 and WikiText-103 language modeling.

Scenario EnWik8 Pretrain WikiText-103 Pretrain
Test BPC (↓) Valid PPL (↓) Test PPL (↓)

Baseline 1.331± 0.002 31.63± 0.12 32.37± 0.10
Convergence 1.350± 0.003 32.24± 0.15 33.05± 0.13
Intermediate 1.345± 0.002 31.91± 0.11 32.78± 0.12
Divergence 1.324± 0.002 31.12± 0.11 32.07± 0.13

Table 6: Top 1 and Top 5 Validation Accuracy of DeiT (learnable positional encoding) across different scenarios
on ImageNet1K.

Top-1 Acc (↑) Top-5 Acc (↑)

DeiT baseline 71.79± 0.02 90.99± 0.02
+ convergence 71.37± 0.02 90.65± 0.01
+ intermediate 71.62± 0.03 90.94± 0.02
+ divergence 71.93± 0.02 91.03± 0.03

all layers of (i) “near-zero” eigenvalues of the value matrix V (using threshold ϵ = 10−3), and (ii)
positive eigenvalues of the symmetrized matrices Wsym and Asym.

Table 1 reports the mean ± standard deviation of these percentages for GPT-2 XL, DistilGPT2, and
LLaMA-2 13B. We observe that: (i) In all cases, V exhibited 0% near-zero eigenvalues, indicating
that FGPTV is invertible in practice. (ii) The proportion of positive eigenvalues in both Wsym

and Asym is approximately 50%, which matches the divergence regime predicted by Remark 3.5 if
omitting FFNs and LayerNorms. The divergence behaviour of a pretrained model is also illustrated
in ’baseline’ case of Figure 6 in Section 5.1.

These findings align with theoretical expectations: (i) the set of singular matrices has measure zero in
continuous parameter spaces, and (ii) unconstrained weight matrices, whether randomly initialized or
learned, tend to have eigenvalue distributions symmetric about zero. We also repeated this analysis
on a randomly initialized model (GPT-2 XL reinit) and obtained similar results (approximately 50%
positive eigenvalues in Wsym, Asym, and no near-zero eigenvalues in V ).

D.6.3 Layerwise Token Norms and Pairwise Distances in GPT-2

We measured the distance between tokens and token norms across layers using test sequences consist
of 100 tokens from WikiText-103. Two variants considered: simplified (GPT-2 with no FFNs or
LayerNorms) and full GPT-2 models.

In the simplified model (Figures 10a and 10b), both the mean distance between tokens and the mean
token norm grow exponentially across layers, consistent with the behavior of the divergence scenario.

In contrast, for the full GPT-2 model (which includes FFNs and LayerNorms), we observe that both
token norms and distances increase in the early layers but plateau or decline in the later layers (see
Figures 10c and 10d). This behavior deviates from our theoretical predictions, indicating that our
result does not fully hold in the presence of LayerNorms and FFNs. A comprehensive theoretical and
empirical analysis of these effects is a promising direction for future work.
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Table 7: Mean ± std. dev. of eigenvalue statistics (in %).

Model % positive eigval of Wsym % positive eigval of Asym % near-zero-eig of V

GPT2-xl 50.20± 3.76 49.99± 0.06 0.00± 0.00
DistilGPT2 46.01± 4.36 49.96± 0.16 0.00± 0.00
Llama2 13B 52.35± 2.84 50.00± 0.02 0.00± 0.00
GPT2-xl reinit 50.20± 2.85 49.99± 0.06 0.00± 0.00
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(d) Mean token norm (full GPT-2)

Figure 10: Layerwise token of a 100-token sequence. Top: GPT-2 without FFNs/LayerNorms; Bottom: full
GPT-2. Left: mean distance between tokens; Right: mean token norm.

Additionally, we present extended experimental results using a broader range of sequence lengths
and a larger set of test sequences to provide a more comprehensive analysis of token behavior.
In Figures 11b and 11a, we report the mean token norm and the mean distance between tokens,
respectively, for sequence lengths of 16, 64, 100, 128, and 256 tokens. For each length, the reported
values are averaged over 100 randomly selected sequences from the test set of WikiText-103.

E Broader Impact
This work advances the theoretical understanding of token dynamics in Transformer models, providing
insights that could enhance model stability and performance across various applications. While
primarily theoretical, these findings may inform the development of more robust AI systems. However,
as with any advancement in AI, there is a potential for misuse in applications. We encourage the
community to consider these implications and promote responsible use of such technologies.
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Figure 11: Sequence-length sensitivity in GPT-2 without FFNs/LayerNorms (100 sequences per length).
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have mentioned the Limitations in Section 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

31



• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have provided the full set of assumptions and complete proof for the
theoretical results in Appendix B
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided all experimental setup in Appendix D. Besides, we also
provide the code to reproduce the results in the paper, which can be found in the supplemental
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

32



(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the code in the supplemental material, with sufficient
instructions to reproduce the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details, which can be found in
Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided error bars for an experiment in Section D.6.1. Besides, all
the experiments are averaged over 5 runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided information about computing resources needed in Ap-
pendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impact of the work performed in Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: The paper has credited all code and data that has been used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The source code of the paper is based on existing source (which has been
credited properly). We also provide README file to run the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

37

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Our Contribution

	Background: Continuous-time Limit of Attention
	Continuous-time Limit of a Deep Neural Network
	Self-Attention Dynamics

	Dynamical Properties of Tokens in Self-Attention
	Distances between Tokens
	Convergence Scenario
	Divergence Scenario
	Tokens' Dynamic in Practical Transformers Architecture

	Beyond Self-Attention Dynamic: Effect of Positional Encoding
	Absolute Positional Encoding.
	Rotary Positional Encoding.

	Experiments
	Negative Effects of the Convergence Scenario
	Promoting Divergence in Rotary Positional Embedding

	Conclusion
	Related Works
	Dynamical Properties of Tokens in Self-Attention
	Distances Between Tokens Over Time
	Convergence Scenario
	Divergence Scenario

	Effects of Absolute and Rotary Positional Encodings
	Absolute Positional Encoding
	Rotary Positional Encoding

	Additional Experimental Details
	Parameter settings used in the simulations
	Figure 1: Distances between tokens over time
	Figure 2: Token trajectories under convergence and divergence scenarios
	Figure 5: Token trajectories shift to divergence regime in RoPE
	Figure 9: Token trajectories in convergence and divergence regime

	Implementation of Convergence, Divergence, and Intermediate scenarios.
	Details on Language Modeling experiments
	Dataset
	Wikitext103 Model and Training Configurations
	EnWik8 Model and Training Configurations

	Details on ImageNet-1K object recognition task
	Dataset
	Model and Training Configurations

	Additional visualizations
	Tokens' trajectory in pre-trained Transformers
	Token trajectories with RoPE

	Additional Results
	Full Evaluation Results
	Condition verification on pretrained Transformers
	Layerwise Token Norms and Pairwise Distances in GPT-2


	Broader Impact

