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ABSTRACT

High-quality, instance-level segmentations are crucial for developing multi-view
vision-centric systems, such as self-driving vehicles and mobile robots, yet their
annotation acquisition is prohibitively expensive. While human-in-loop labelling
paradigms like SAM2 show great promise in monocular videos, adapting them
to multi-cameras scenarios is hindered by two fundamental flaws: spatially, an
ignorance of cross-view geometry leads to severe tracking ambiguity; and tempo-
rally, the exponential memory demands preclude real-time performance. To ad-
dress these challenges, we propose MST-SAM, a novel streaming framework for
robust, multi-view instance segmentation and tracking through spatio-temporal
bank. Our method introduces two core components: (1) a Spatio-Positional Aug-
mentation (SPA) module that bridges SAM2’s 2D-centric design with 3D scene
geometry. It learns a unified positional prior from camera transformations, en-
abling tokens to reason about their absolute spatial location across different views.
(2) a Memory View Selection (MVS) strategy that prunes the temporal memory
bank, significantly reducing the computational overhead of the multi-view system
while maintaining high algorithm performance. We validate our method on the
nuScenes and Waymo datasets using a custom multi-view instance segmentation
benchmark we introduce, where MST-SAM sets a new state of the art and demon-
strates strong generalization.

1 INTRODUCTION

Recent advances in vision-centric systems, such as autonomous driving and mobile robotics, have
underscored the critical need for high-quality, spatiotemporally consistent, instance-level annota-
tions to support their perception models Lee et al. (2023); Ren et al. (2024); Cuttano et al. (2025).
However, the high cost of dense multi-camera video labeling remains a bottleneck, driving research
toward scalable, automated solutions.

Mainstream methods can be categorized into two pipelines. The first category of methods re-
volves around human-in-the-loop annotation pipelines built upon the Segment Anything Model 2
(SAM2) Kirillov et al. (2023); Ravi et al. (2024). Characterized by its online, low-cost, and highly
interactive nature, this approach has emerged as a leading paradigm. It not only facilitates the effi-
cient annotation of challenging “hard cases” but also allows users to perform fine-grained refinement
on instance segmentation within a single frame via iterative prompting. However, its direct appli-
cability to multi-camera systems remains limited Xu et al. (2025). The second category comprises
modular approaches based on the BEV representation. These methods are centered on online detec-
tion and tracking algorithms, typically forming a cascaded pipeline of object detection, 3D tracking,
and a SAM backend for segmentation. While these methods offer real-time capabilities, they often
do so at the expense of accuracy and stability Tan et al. (2025); Li et al. (2022); Liu et al. (2023).

To leverage SAM2’s zero-shot capabilities in multi-view settings, we first establish a baseline,
SAM2-MV, using a simple Spatio-Temporal Bank that serializes multi-view inputs into a pseudo-
sequence for compatibility with SAM2. the original SAM2 framework. Nevertheless, this straight-
forward solution suffers from fundamental design deficiencies, rendering it unsuitable for multi-
camera contexts: Spatially, the model lacks robust 3D geometric priors Li et al. (2025), only relies
on fragile 2D features and positional embeddings leads to severe tracking ambiguity for dense ob-
jects under ego-motion and fails to re-associate instances across abrupt viewpoint changes, causing
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Figure 1: MST-SAM: To extend SAM2 for multi-camera systems, we propose MST-SAM, which
introduces a Spatio-Positional Augmentation (SPA) module for geometric reasoning and Memory
View Selection (MVS) strategy for efficient query. Building upon a baseline SAM2-MV (with a
Spatio-Temporal Bank), MST-SAM achieves robust and consistent segmentation across multiple
cameras, while maintaining a computational overhead comparable to the original SAM2.

frequent identity switches and tracking losses (Figure 1). Temporally, its memory design suffers
from a combinatorial explosion in multi-camera streams. The memory bank’s size, scaling with the
number of views, imposes a prohibitive computational burden that renders real-time performance
infeasible and introduces massive information redundancy Xu et al. (2025).

To overcome these limitations, we propose MST-SAM, a novel spatio-temporal strategy that enhance
the naive Spatio-Temporal Bank, to achieve robust cross-view instance segmentation. This strategy
is realized through two synergistic core components: (1) A Spatio-Positional Augmentation (SPA)
module that injects crucial 3D geometric priors into the 2D feature space. This module leverages
transformation matrices to establish a frustum projection between camera views. A lightweight,
shared-weight network then encodes this geometric relationship into positional embeddings. By
applying these embeddings to both memory and query tokens, the SPA module explicitly grounds
them in a unified 3D space, enabling robust geometric reasoning and cross-view association. (2) A
Memory View Selection (MVS) strategy that resolves the trade-off between temporal consistency
and efficiency. Instead of naively accumulating features, the MVS assigns a dedicated memory to-
ken to each tracked instance. It then employs a selective update mechanism, which distills only the
most salient information from recent frames for fusion via memory attention. This on-demand strat-
egy ensures long-term temporal consistency while drastically reducing computational and storage
overhead. The main contributions of this paper are:

• We propose MST-SAM, the first online framework to successfully adapt large segmentation
models for robust instance tracking in multi-camera systems.

• Our Spatio-Positional Augmentation (SPA) module resolves cross-view ambiguity by pio-
neering a joint optimization of geometric priors and visual features at the feature level.

• We design a Memory View Selection (MVS) strategy that resolves the performance-
efficiency trade-off in multi-camera streams.

• We establish a new multi-view instance segmentation benchmark where our method sets a
new state-of-the-art (SOTA) on both nuScenes and Waymo datasets.

2 RELATED WORKS

2.1 OBJECT SEGMENTATION AND TRACKING IN VIDEOS

Video Object Segmentation (VOS) and its language-guided variant, Referring Video Object Seg-
mentation (RVOS) Ravi et al. (2025); Liu et al. (2025); Qin et al. (2025), aim to track and segment

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Multi-view Video Streams 

Transformation Streams 

Memory
Attention

SPA

SAM
Encoder

❄

Prompt

Mask Decoder

Prompt Encoder

Memory 
Encoder

Positional
Encoding

Memory Bank

0 1 2

3 4 5

6 7 8

MVS

t1 t2 tn

Memory View Selection

Fix-length Multi-view Temporal Token

tim
e

view

Figure 2: Architecture of the MST-SAM framework. The framework comprises two extra compo-
nents upon SAM2-MV: the Spatio-Positional Augmentation (SPA) module and the Memory View
Selection (MVS) strategy.

specified targets throughout a video sequence. Recent approaches have evolved from memory-based
models that maintain temporal context to Transformer-based models that excel at object association.

Despite these advances, mainstream VOS methods are constrained by their reliance on 2D visual
appearance cues Pont-Tuset et al. (2018); Oh et al. (2019); Voigtlaender et al. (2019). This reliance
renders them fragile to common challenges like heavy occlusion and confusion from visually similar
distractors Cheng & Schwing (2022); Cheng et al. (2021). Efforts to address these issues have led to
a clear dichotomy: offline methods achieve high robustness by processing entire video sequences at
once, but are unsuitable for real-time applications. Conversely, online methods prioritize low latency
for streaming scenarios but are prone to error accumulation and identity drift. The recent advent of
large-scale segmentation models like SAM2 offers a powerful new foundation Rajič et al. (2023);
Kirillov et al. (2023). However, as models trained predominantly on static images, they inherit
the same dependency on 2D appearance and do not resolve this long-standing trade-off between
robustness and efficiency Yang et al. (2023); Ravi et al. (2024); Xu et al. (2025); Yang et al. (2021).

2.2 3D INSTANCE-LEVEL TRACKING

The dominant paradigm in 3D instance tracking is Tracking-by-Detection (TBD), which separates
3D detection from a subsequent association step Weng et al. (2020). The core challenge is data
association, where current methods face a trade-off. Geometry-based metrics (e.g., 3D IoU) are
robust but rely on expensive LiDAR data, while appearance-based features from cameras are detail-
rich but prone to ambiguity Yin et al. (2021); Bai et al. (2022).

Consequently, state-of-the-art trackers often resort to LiDAR-camera fusion, which, despite its high
performance, increases system cost and complexity. Camera-only trackers remain a more scalable
alternative, but have historically struggled to match the robustness of fusion-based systems Kim
et al. (2021); Pang et al. (2021); Wang et al. (2021). This highlights a critical need for methods
that can integrate robust geometric reasoning directly into a camera-only framework, without the
overhead of additional sensors or explicit 3D reconstruction.

3 OUR APPROACH

3.1 PRELIMINARY

Our approach addresses the task of prompt-guided, spatio-temporal 4D instance segmentation within
vision-only, multi-view scenarios. Formally, given a multi-view video sequence of Tv frames, and
the associated vehicle ego-motion and sensor calibration data (intrinsics K and extrinsics E) via
poses, the task is initialized with a single point prompt (i, t0, w, h). This prompt identifies a target
instance at coordinates (w, h) in a specific camera view i at a reference frame t0. The objective is to
predict a set of consistent binary masks, sit, that segments the specified instance across all relevant
views and subsequent frames.

To tackle this challenge, we propose MST-SAM, a framework designed to adapt the powerful,
image-level Segment Anything Model 2 (SAM2) for this dynamic Ravi et al. (2024), multi-view
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setting. As illustrated in Figure 2, our method is built upon two core innovations designed to be
seamlessly integrated with a baseline SAM2 architecture.

The Spatio-Positional Augmentation (SPA) module is introduced to enforce spatio-temporal consis-
tency. Its primary role is to provide robust geometric guidance for the segmentation model across
different camera views and over time.

The Memory View Selection strategy is designed to enable real-time performance. It achieves this
by intelligently managing computational resources and minimizing redundant processing.

3.2 FRAMEWORK OVERVIEW

The Segment Anything Model 2 (SAM2) is a potent architecture engineered for promptable object
segmentation within a single video stream. It operates recursively, processing frames sequentially
and maintaining temporal context via a dedicated memory mechanism. Its workflow at a given
timestep t can be summarized as follows:

Feature Extraction (Encoder): An image encoder, EI , independently extracts features Ft from the
current frame It with formula: Ft = EI(It).
Memory Attention: These features Ft are fused with a memory bank M , which encapsulates the
target’s historical appearance, to yield memory-aware features Fmem,t Ravi et al. (2024).

Mask Decoder: A mask decoder DM then leverages the fused features Fmem, t and an encoded
prompt EP to predict the final segmentation mask St Kirillov et al. (2023).

Memory Encoder: Finally, a memory encoder EM updates the memory bank to Mt using infor-
mation from the current frame, preparing it for the next timestep. While highly effective for single
videos, SAM2’s design is inherently uni-stream. Its memory mechanism propagates information
temporally along a single camera’s timeline, making it ill-suited for multi-view systems.

Our proposed MST-SAM model introduces a naive adaptation strategy, the Spatio-Temporal
Bank, which serializes the multi-view video stream (I1t , I

2
t , . . . , I

N
t , I1t+1, . . . ) into a single pseudo-

sequence. This enables seamless integration with the native SAM2 architecture, allowing core mod-
ules like the memory attention and memory encoder to be reused without modification. We designate
this baseline model as SAM2-MV. Despite being the most direct approach, it is critically flawed and
introduces two fundamental challenges:

Although this appears to be the most straightforward approach to retain SAM2’s core architecture,
it is critically flawed and introduces two fundamental challenges:

• Spatio-Temporal Ambiguity: The model loses geometric context, becoming unable to
distinguish a temporal step (from t to t+1) from a viewpoint shift (from camera i to i+1).
This leads to inconsistent tracking across views.

• Computational Inefficiency: The memory sequence length is multiplied by the number
of views (N ), drastically increasing the computational load of the memory mechanism and
processing redundant information from overlapping camera perspectives Ravi et al. (2024).

Addressing these specific challenges is the primary motivation for our work. The following sections
detail the modules we designed to resolve this ambiguity and inefficiency.

3.3 SPATIO-POSITIONAL AUGMENTATION

To resolve the spatio-temporal ambiguity inherent in serialized multi-view streams, we introduce
the Spatio-Positional Augmentation (SPA) module. The overall process, illustrated in Figure 5,
is designed to endow the model with explicit geometric awareness. It achieves this by generating
and fusing two distinct forms of positional information: (1) It retains the standard 2D positional
encoding Pimg, which captures the relative spatial structure within a single frame. (2) Crucially, it
introduces a simple but novel frustum-based geometric encoding P3d, which is generated by lifting
2D pixel coordinates into a unified 3D space using the camera’s intrinsic and extrinsic parameters.

4
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Figure 3: The Spatio-Positional Augmentation (SPA) generates a 3D-aware Geometric PE (posi-
tional embedding) using camera parameters and fuses it with a standard 2D Image PE.

By combining these two encodings, SPA provides each feature token with a rich positional prior
that understands both its location on the 2D image plane and its origin within the 3D world, thereby
directly addressing the ambiguity between viewpoint shifts and temporal progression.

The necessity for our SPA module stems from the fundamental limitations of the standard 2D po-
sitional encoding, Pimg. While effective for providing relative position information within a single
frame, this approach has a critical flaw in a multi-camera context: it is inherently agnostic to the
camera’s extrinsic and intrinsic parameters. Consequently, a pixel at coordinate (u, v) in the front
camera and a pixel at the same coordinate (u, v) in a side camera are assigned identical positional
values. This ambiguity makes it impossible for the model to differentiate between a genuine change
in the scene over time and a simple switch in camera viewpoint. To break this symmetry and resolve
the ambiguity, we must introduce a positional encoding that is aware of 3D geometry.

Our solution, the frustum-based geometric encoding P3d, directly generates this 3D-aware signal.
As depicted in the top path of Figure 3, the core mechanism is Frustum Lifting. This process lifts
2D pixels from any source view (be it the current frame or a historical memory frame) into the
unified 3D coordinate system of the current base frame.

Specifically, for each pixel (u, v), we hypothesize its location along a viewing ray by sampling a
set of N discrete depths, D = d1, d2, . . . , dN . Each pixel-depth pair is then back-projected from
the source camera’s 2D image plane into a 3D point in the base frame’s coordinate system. The
transformation for a single depth hypothesis di is formulated as:

xu,v,di = Tbase←src ·K−1src · [u · di, v · di, di, 1]T (1)

In Equation 1, Ksrc is the 4 × 4 homogeneous intrinsic matrix of the source camera. The transfor-
mation Tbase←src is critical, as it unifies points from different cameras and different timestamps into
a single reference frame: the ego-actor’s coordinate system at the current time tbase. This composite
transformation elegantly handles both spatial and temporal alignment by chaining two operations:

Camera-to-Ego Transformation Tego(tsrc←cam(tsrc), the camera’s extrinsic matrix, which transforms
the point from the source camera’s local coordinate system to the ego-actor’s coordinate system at
that same source timestamp, tsrc. Ego-Motion Transformation Tego(tbase)←ego(tsrc), this matrix ac-
counts for the vehicle’s movement between the source’s timestamp tsrc and the current base times-
tamp tbase. The complete transformation is thus formulated as:

Tbase←src = Tego(tbase)←ego(tsrc) ·Tego(tsrc)←cam(tsrc) (2)

This formulation ensures that whether a pixel comes from a side camera in the current frame or the
front camera from a past frame, its resulting 3D points are all expressed relative to the ego’s current
position and orientation.

With all 3D points xu,v,di
unified in the base frame, we distill this information into a single feature

vector for each pixel. This is a two-stage process of point-wise encoding followed by aggregation:

First, to create a feature for each point on the viewing ray, we concatenate the 3D coordinates xu,v,di

with their corresponding depth value di. This combined vector is processed by a lightweight MLP
to produce a point-wise geometric encoding, P (i)

3d . This allows the model to learn features sensitive

5
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Figure 4: Visualization of our Memory View Selection (MVS) strategy in action. The filter prunes
irrelevant historical views (faded) while selecting high-quality features (bright, with masks) and the
initial anchor frame (t = 0) to build a compact and effective memory bank.

to both the absolute position in space and the distance from the camera.

P
(i)
3d (u, v) = MLP(Concat(xu,v,di

, di)) (3)

Next, the set of N point-wise encodings, collectively describing the geometry of the pixel’s viewing
ray, is aggregated into a single unified geometric encoding P3d using an aggregation function like
max-pooling, which selects the most salient geometric features along the ray:

P3d(u, v) = Aggregate
i=1,...,N

(
P

(i)
3d (u, v)

)
(4)

Finally, to complete the Spatio-Positional Augmentation (SPA), this learned geometric encoding P3d
is fused with the standard 2D sinusoidal encoding Pimg via element-wise addition.

PSPA(u, v) = Pimg(u, v) + P3d(u, v) (5)

The resulting fused encoding, PSPA, is then applied to all image and memory tokens. By enrich-
ing the original 2D positional information with a learned, 3D-aware geometric prior, this process
effectively resolves the spatio-temporal ambiguity, making the model fully aware of the underlying
camera geometry and temporal vehicle motion.

3.4 MEMORY VIEW SELECTION STRATEGY

To manage the prohibitive memory and computational costs of processing long video streams, we
introduce the Memory View Selection strategy. As shown in Figure 4, this module intelligently
prunes the memory bank based on the principle of Spatio-Temporal Continuity: assuming relevant
information is concentrated in recent, high-quality views.

The filtering process is executed at each inference step, governed by a set of prioritized rules:

Anchor Frame: The features from the initial “conditioning frame” are always retained, serving as
a stable anchor of the target’s appearance to prevent long-term drift.

Prioritized Selection: For all other historical frames, we apply a selection hierarchy:

• Mask-First: We prioritize features from views that produced a valid segmentation mask,
as a mask is a strong positive signal of the target’s presence.

• Same-Camera Fallback: If no view at a timestamp has a valid mask, we fall back to
selecting the feature from the same camera source as the current view, leveraging spatial
continuity to maximize view overlap.

Recency Pruning & Assembly: Any historical feature outside a predefined temporal window that
consistently fails the above criteria is discarded to prevent stale information from accumulating.

6
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Figure 5: Qualitative comparison of segmentation with SAM2-MV on the Waymo Open dataset.
Different colors represent different objects. The displayed image has been resized for better visual
effects. Where the red boxes denote identity confusion and orange boxes denote identity mismatch.

From the remaining filtered pool, the k most recent features are selected, combined with the anchor
frame, and fed to the Memory Attention module.

This strategy is designed as a practical instantiation of the Information Bottleneck principle for
temporal processing. It dynamically distills the redundant spatio-temporal stream into a compact
yet potent memory bank, seeking to retain only the information maximally relevant to the core task
of long-term identity preservation. The resulting representation effectively balances informational
richness with computational efficiency. Our subsequent ablation studies, where we analyze various
filtering criteria, empirically confirm that this principled distillation approach achieves a superior
accuracy-efficiency trade-off (Table 2).

3.5 LOSS FUNCTION

We adopt the established training objective and robust optimization strategy from SAM-2 to en-
sure a fair comparison. The total loss, Ltotal, is a linear combination of three distinct losses: mask
prediction, IoU prediction, and object presence prediction Lin et al. (2018); Milletari et al. (2016):

Ltotal = Lmask + LIoU + Lpresence (6)

where Lmask is the mask supervision loss, defined as a weighted sum of Focal Loss (Lfocal) and Dice
Loss (Ldice): Lmask = λfocalLfocal + Ldice. LIoU is the MAE loss for the predicted IoU score, and
Lpresence is the Cross-Entropy loss for object presence prediction.

4 EXPERIMENTS

4.1 DATASETS AND BENCHMARKS

We conduct a comprehensive evaluation of our method on two benchmarks derived from large-
scale autonomous driving datasets: nuScenes Caesar et al. (2020) and the Waymo Open Dataset
(WOD) Sun et al. (2020). Both are sourced from multi-camera systems and are characterized by an
abundance of dynamic instances. To ensure a thorough and fair evaluation, we categorize instances
based on their visibility across camera views into two distinct types: (1) Cross-view Objects: In-
stances that appear sequentially across multiple camera views. (2) Single-view Objects: Instances
that are captured exclusively within a single camera’s field of view throughout the sequence. More
details about Waymo open dataset and nuScenes dataset are shown in the Appendix.

4.2 IMPLEMENTATION DETAILS AND BASELINES

Our model is initialized with pre-trained weights from the official SAM2 release. To adapt it to
multi-view tracking, we follow the overall fine-tuning protocol of SAM2, updating all components

7
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except the memory encoder, which remains frozen during training. This preserves the rich pre-
trained visual representations while enabling the model to learn cross-view associations.

We train using a hybrid sampling strategy on Waymo and nuScenes datasets, with 80% cross-view
instances (encouraging multi-view consistency) and 20% single-view instances (to regularize train-
ing and maintain single-view performance). We use the AdamW optimizer, a cosine learning rate
schedule starting at 5× 10−6, and train for 12 epochs.

We evaluate our model against several baselines, SAM2-MV: This variant equips SAM2 with
a spatio-temporal bank strategy, utilizing a memory bank window of size 8; MST-SAM-L: A
lightweight variant of our model. It removes the Memory View Selection (MVS) strategy and the
Ego-Motion Transformation component from the Spatial Prompt Aggregation (SPA) module. Con-
sequently, spatial aggregation is confined to the current frame. This version utilizes a memory bank
window of size 18; MST-SAM-G: A simplified variant that removes the MVS strategy but retains
the complete SPA module. This configuration is designed to isolate and evaluate the contribution of
geometric-aware prompt aggregation. It uses a memory bank window of size 18; MST-SAM-M: A
variant where the MVS module is streamlined to incorporate only the anchor frame mechanism and
the mask-first prompting strategy. The memory bank window size is set to 8; MST-SAM: Our full
proposed model, which integrates all components including the complete MVS and SPA modules.
It operates with a memory bank window of size 8; FastPoly-SAM: A two-stage baseline that first
performs 3D tracking with FastPoly Li et al. (2024) and then projects the tracks onto 2D views to
prompt a SAM Kirillov et al. (2023) backend for dense segmentation. Further architectural details
are available in the Appendix.

4.3 QUANTITATIVE EXPERIMENTS

Table 1: Main quantitative results on cross-view benchmark. A.2

Method Waymo nuScenes Latency (ms) ↓
J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑

SAM2-MV 84.92 84.23 85.62 92.07 91.67 92.46 72.1
Fast-Poly-SAM 71.22 69.14 73.31 74.11 75.32 72.89 47.2
MST-SAM-G 91.71 90.89 92.51 92.73 92.20 93.26 233.5
MST-SAM-M 90.39 89.57 91.21 91.88 91.22 92.54 73.2
MST-SAM 91.78 90.91 92.64 93.18 92.56 93.80 71.2

As shown in Table 1, we present a comprehensive quantitative evaluation of our method on the
Waymo and nuScenes datasets. Our analysis covers overall performance, individual component
contributions, comparisons with alternative methods, and the accuracy-efficiency trade-off.

Our full model, MST-SAM, demonstrates clear superiority, achieving the highest performance
across all evaluated models. On the challenging Waymo dataset, it obtains a J&F score of 91.78.
This marks a substantial +6.86 improvement over the powerful SAM2 baseline (84.92), validating
the significant benefits of our integrated multi-view tracking and segmentation architecture.

To dissect the contribution of each proposed module, we analyze the performance progression across
our internal variants. The leap from MST-SAM-G to MST-SAM (91.71 → 91.78) underscores the
contribution of the MVS strategy in fusing temporal information. It is crucial to note that MST-SAM
achieves this superiority despite using a much smaller memory window (8 vs. 18 for the variants),
which further emphasizes the efficiency and effectiveness of our temporal fusion strategy. We further
compare our integrated model against FastPoly-SAM, a baseline representing a classic cascaded
(“track-in-3D-then-segment-in-2D”) paradigm. While FastPoly-SAM achieves a competitive score
of 71.22, our MST-SAM still outperforms it. We attribute this to our end-to-end architecture, which
jointly optimizes perception and association. This integrated design effectively mitigates the error
propagation issues inherent in pipeline approaches, where inaccuracies from the 3D tracker can
directly degrade the quality of the subsequent segmentation.

Beyond accuracy, our method strikes an excellent balance with efficiency. MST-SAM delivers its
state-of-the-art performance at a practical latency of only 71.2 ms. For applications with stricter
real-time constraints, the MST-SAM-M variant offers a compelling alternative.
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Table 2: Quantitative evaluation and zero-shot generalization on the cross-view benchmark A.2.
All models are trained on a single dataset to assess in-domain performance and cross-dataset gener-
alization. A → B means training on the A dataset and evaluating on the B dataset.

Method Waymo → Waymo Waymo → nuScenes nuScenes → Waymo nuScenes → nuScenes latancy
J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑ (ms) ↓

SAM2-MV 84.92 84.23 85.62 92.07 91.67 92.46 84.92 84.23 85.62 92.07 91.67 92.46 72.1
MST-SAM-L 92.46 91.70 93.18 93.85 93.39 94.32 92.03 91.23 92.03 94.18 93.48 94.87 233.1
MST-SAM-G 92.01 91.18 92.83 94.01 93.45 94.57 92.04 93.30 91.65 93.00 93.48 93.53 233.5
MST-SAM-M 90.14 89.38 90.90 93.49 92.86 94.12 89.74 88.85 90.64 93.61 93.05 94.18 73.2
MST-SAM 91.06 90.36 91.76 93.39 92.85 93.94 90.61 89.66 91.57 92.48 91.66 93.31 71.2

Table 3: Quantitative evaluation and zero-shot generalization on the generic object benchmark A.2.

Method Waymo → Waymo Waymo → nuScenes nuScenes → Waymo nuScenes → nuScenes
J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑ J&F ↑ J ↑ F ↑

SAM2-MV 84.90 84.35 85.50 91.70 91.21 92.20 84.90 84.35 85.50 91.70 91.21 92.20
MST-SAM-L 85.60 84.64 86.56 92.14 91.49 92.80 84.60 84.08 85.24 93.23 92.60 93.85
MST-SAM-G 86.13 85.45 86.80 92.42 91.89 92.95 84.92 84.23 85.62 92.90 92.30 93.41
MST-SAM-M 83.73 83.20 84.26 91.53 90.94 92.11 81.55 80.88 82.24 93.54 92.53 94.04
MST-SAM 84.91 84.38 85.43 92.72 92.13 93.31 83.77 83.20 84.34 93.45 92.91 93.99

4.4 ABLATION STUDIES

Table 2 and Table 3 present our detailed quantitative analysis, which validates the effectiveness of
our proposed modules and their ability to preserve generalization.

Effectiveness of SPA. The efficacy of our Spatio-Positional Augmentation (SPA) module is im-
mediately evident from Table 2. Even the local augmentation pipline MST-SAM-L outperforms
the SAM2 baseline, improving the J&F score from 84.92 to 92.46 on the Waymo→Waymo task.
This confirms that introducing geometric priors via SPA is crucial for adapting SAM2’s powerful
segmentation capabilities to the multi-view domain.

Efficiency and Intelligence of MVS. The MVS strategy is designed to resolve the accuracy-
efficiency trade-off. While a model with a full memory bank like MST-SAM-G suffers from pro-
hibitive latency 233.5 ms, our full model, MST-SAM, equipped with MVS, operates at a real-time
latency of 71.2 ms. Crucially, this efficiency is not achieved by naive memory truncation; MST-
SAM significantly outperforms the MST-SAM baseline (91.06 vs. 90.14 J&F). This demonstrates
that MVS intelligently filters the memory bank, preserving critical information and achieving a
near-optimal balance between performance and speed.

Preservation of Generalization Ability. A key concern is whether our multi-view adaptations
degrade the model’s inherent generalization. Table 3 demonstrates this is not the case. The perfor-
mance of our MST-SAM on generic (non-cross-view) object benchmark remains on par with the
original SAM2, confirming our modules do not cause catastrophic forgetting. Interestingly, variants
with larger memory banks even show a slight performance boost. This highlights the value of a
rich memory context and reinforces the importance of our memory view selection strategy, which
efficiently manages this valuable information without high computational costs.

5 CONCLUSION

In this paper, we proposed MST-SAM, a novel online framework to overcome the spatial ambiguity
and prohibitive memory costs of adapting single-view segmentation models to multi-view streaming
environments. Our method introduces a Spatio-Positional Augmentation (SPA) module to inject
geometric priors for robust cross-view tracking and a Memory View Selection (MVS) strategy to
ensure computational efficiency. Extensive experiments on nuScenes and Waymo show that MST-
SAM sets a new state of the art on our proposed benchmark, demonstrating a practical path toward
scalable semi-automated annotation and robust online perception for autonomous systems.
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A APPENDIX

A.1 MORE DETAILS OF TRAINING DETAILS

We follow the overall fine-tuning setup of SAM2, adopting a parameter-efficient fine-tuning (PEFT)
strategy to adapt the foundation model to our cross-view task. All models are initialized from the
official SAM2 checkpoints. During training, we freeze the memory encoder while allowing gradi-
ents to propagate through all other components, including the image encoder, prompt encoder, and
mask decoder. This approach strikes a balance between training efficiency and effective adaptation:
by keeping the memory encoder fixed, we preserve the temporal consistency modeling capabilities
learned during pre-training, while enabling the rest of the network to adjust to the new task domain.

To train our model effectively, we introduce a hybrid data sampling strategy designed to balance
the learning of cross-view consistency with single-view generalization. In each training batch, we
combine instances from two sources:

• Cross-view Instances (80% of batch): These are object instances tracked across multiple
synchronized camera views. This data is pivotal for training the model to learn robust fea-
ture associations and maintain consistent identity representations despite significant view-
point changes. They directly address the core challenge of cross-view segmentation.

• Single-view Instances (20% of batch): These are instances that appear in only a single
camera’s field of view. Their inclusion acts as a regularization mechanism, preventing the
model from overfitting to the potentially sparse multi-view data. Furthermore, it ensures
the model retains strong segmentation performance in scenarios involving heavy occlusion
or when objects are only partially visible, enhancing its overall robustness.

A.2 EVALUATION METRICS AND BENCHMARKS

To provide a comprehensive and multi-faceted evaluation of segmentation quality, we adopt two
widely-recognized metrics that assess both region-level accuracy and boundary-level precision.

• Region Similarity (J ), commonly known as the Jaccard Index or Intersection over Union
(IoU), quantifies the spatial overlap between the predicted mask (M ) and the ground-truth
mask (G). It provides a holistic measure of how well the predicted region corresponds to
the actual object area and is calculated as:

J =
|M ∩G|
|M ∪G|

• Contour Accuracy (F) serves as a complementary metric that focuses specifically on the
quality of the segmentation boundary. It is defined as the F-measure, which is the harmonic
mean of precision and recall calculated over the boundary pixels. This metric is crucial for
evaluating the model’s ability to delineate fine details and is computed as:

F =
2 · Precision · Recall
Precision + Recall

Finally, to provide a single, unified score for overall comparison and ranking, we report the Overall
Performance (J&F), which is the arithmetic mean of the J and F scores.

To comprehensively assess the performance of MST-SAM, we establish two distinct evaluation
benchmarks: the Cross-view Benchmark and the Comprehensive Benchmark.:

• Cross-view Benchmark, this benchmark is specifically designed for the instance segmen-
tation task on multi-camera datasets. For evaluation, it exclusively considers instances that
appear in two or more camera views throughout the temporal sequence. This benchmark
aims to specifically measure the model’s ability to associate and segment the same object
across different perspectives.

• Generic object benchmark, this benchmark evaluates the overall instance segmentation
performance on multi-camera datasets. The evaluation scope includes all instances that
have appeared at any point in any camera view within the entire temporal sequence, with
no restriction on the number of views.
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A.3 MODULAR BASELINE

The FastPoly-SAM method Li et al. (2024), which we reference in the main text, represents a mod-
ular, pipelined framework for multi-view instance segmentation, also enabling the annotation of
specific target instances across views. As depicted in Figure 6-(a), its workflow is composed of sev-
eral distinct stages. Initially, a detector processes the raw sensor inputs to generate bounding boxes.
Subsequently, in the initial frame, a filtering step selects the target instance IDs designated for seg-
mentation. For all subsequent frames, a tracking model maintains the instance trajectories. These
tracks are then projected onto the 2D image planes using camera transformation matrices. Finally,
the resulting 2D bounding boxes serve as prompts for a downstream SAM module, which executes
the final segmentation.

Figure 6: Analysis of the Modular Baseline Architecture and its Performance.

However, as illustrated in Figure 6-(b) and quantitatively demonstrated in Table 1, such a cascaded
paradigm suffers from fundamental limitations. These include critical failure modes such as Pro-
jection Occlusion, Identity Switches, and complete Tracking Failures. Consequently, the method
exhibits a significant performance deficit on key evaluation metrics. We attribute this inferiority to
the fact that its explicit, yet rigid, utilization of 3D information is insufficient to meet the complex
demands of practical annotation tasks.

A.4 MORE VISUALIZATION

we provide more visualization results at Figure 7, Figure 8, Figure 9, and Figure 10.
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Figure 7: More qualitative comparison of segmentation with SAM2-MV on the Waymo Open
dataset. Different colors represent different objects. The displayed image has been resized for
better visual effects. The results of MST-SAM outperform the ground truth annotated with Xu et al.
(2025).
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Figure 8: More qualitative comparison of segmentation with SAM2-MV on the nuScenes dataset.
Different colors represent different objects. The displayed image has been resized for better visual
effects.
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Figure 9: More visualization results of MST-SAM on the Waymo Open dataset. The displayed
image has been resized for better visual effects.
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Figure 10: More visualization results of MST-SAM on the nuScenes dataset. The displayed image
has been resized for better visual effects.
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