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ABSTRACT

Vision-language models (VLMs) trained via reinforcement learning with verifi-
able reward (RLVR) have shown notable progress in scaling test-time compute
effectively. In this work, we investigate how synthesized RL data can further
improve RLVR. To this end, we propose SynthRL—a scalable and guaranteed
pipeline for automatic data scaling in reasoning-oriented RL training. SynthRL
comprises three key stages: (1) selecting seed questions with appropriate distri-
bution, (2) augmenting them into more challenging variants while preserving the
original answers, and (3) a guaranteed verification stage that ensures near-perfect
correctness and difficulty enhancement. Our empirical experiments demonstrate
SynthRL’s scalability and effectiveness. When applied to the MMK12 dataset,
SynthRL synthesizes over 3.3K additional verifiable, challenging questions from
approximately 8K seed samples. Models trained with our synthesized data achieve
consistent gains across five out-of-domain visual math reasoning benchmarks,
with a significant improvement over baseline models trained on seed data alone.
Notably, detailed analysis reveals that the gains are more pronounced on the most
challenging evaluation samples, highlighting SynthRL’s effectiveness in eliciting
deeper and more complex reasoning patterns.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a promising
paradigm, significantly enhancing the reasoning capabilities of language and vision-language mod-
els (Guo et al., 2025; Shao et al., 2024; Liu et al., 2025b; Yu et al., 2025; Yuan et al., 2025; Zeng
et al., 2025). At the same time, the data-centric approaches are increasingly recognized as critical
for advancing the boundary of model intelligence (Bai et al., 2025; Abdin et al., 2025; Luo et al.,
2024; Bai et al., 2024; Xu et al., 2024; 2023). Motivated by these insights, we raise a critical yet
underexplored challenge: Can we scale the RLVR training data with correctness and distribution
guarantees to achieve better performance?

Directly addressing this challenge remains non-trivial, as it is difficult to formulate it as a standard
optimization problem. Although existing data selection methods may offer partial solutions in terms
of distribution (Zhou et al., 2023; Li et al., 2025b; Xia et al., 2024; Wettig et al., 2024; Liu et al.,
2023b; Tong et al., 2024), they are constrained by the original data volume and distribution, being
less effective in scenarios where data is originally scarce and biased (Guo et al., 2024; Li et al., 2025a;
Dong et al., 2023). Instead, we pursue a complementary and more practical direction—data synthe-
sis—guided by the intuition that under RLVR settings, more challenging yet still correct training
samples can provide richer learning signals. To this end, we introduce SynthRL, a streamlined
and scalable pipeline specifically designed to effectively scale the RLVR training data for VLMs.

Specifically, our synthesis strategy employs a straightforward generation process coupled with
guaranteed verification—an approach tailored for reinforcement learning where answer verifiability
is paramount. This automated yet effective pipeline operates via a three-stage process:

1. Seed Data Selection: Seed questions for synthesis are identified by analyzing the pass count
of Monte Carlo rollout by the target model. Questions exhibiting high pass rates are selected,
as their limited challenge to the target model offers minimal training signals, rendering them
ideal for complexity enhancement.
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Figure 1: Improvement over baseline Qwen2.5-VL-7B-Instruct on five out-of-domain visual mathe-
matical reasoning benchmarks: MathVerse, MathVision, MathVista, WeMath, and DynaMath. The
chart compares performance of five different models across these benchmarks. The ‡ symbol indicates
models trained by ourselves, which includes both Qwen2.5-VL-7B-GRPO-MMK12‡ and SynthRL-
7B‡ (ours). SynthRL-7B additionally uses synthesized samples. The exact accuracy percentages for
SynthRL-7B are shown in parentheses above each bar.

2. Targeted Synthesis: A powerful VLM is leveraged to generate more challenging variants of
the selected questions while preserving the original ground-truth answers. This is achieved using
minimal prompting that prioritizes an escalation in difficulty by requiring deeper reasoning.

3. Verification: A guaranteed verification step to filter synthesized data, confirming question validity,
answer preservation, and an actual increase in difficulty. With the propose-solve mechanism,
this verification ensures near-perfect correctness of newly synthesized training samples.

This pipeline efficiently scales existing datasets with more valuable training examples without
human intervention. Applied to the MMK12 (Meng et al., 2025) dataset, our method generated
over 3.3k verified harder questions from approximately 8k seed samples. Models trained with our
synthesized data demonstrated substantial improvements across five out-of-domain visual math
reasoning benchmarks (MathVerse (Lu et al., 2023), MathVision (Wang et al., 2024a), MathVista (Lu
et al., 2023), WeMath (Qiao et al., 2024), and DynaMath (Zou et al., 2024)). For instance, significant
performance gains were observed compared to models trained on seed data alone, including boosts of
+1.9% on MathVerse, +2.0% on WeMath, and +1.3% on DynaMath using the 8k seed dataset. Notably,
this positive impact on performance is consistently observed across various data scales. Detailed
analysis reveals these improvements are most pronounced on challenging evaluation examples,
confirming our approach’s effectiveness in addressing complex reasoning scenarios.

2 RELATED WORKS

Vision-language model reasoning. Vision-Language Models (VLMs) have rapidly evolved from
foundational integration techniques (Alayrac et al., 2022; Li et al., 2023b) and effective visual
instruction tuning (Liu et al., 2023a; 2024; Li et al., 2024b;a) to specialized mathematical reasoning
approaches like Math-LLaVA (Shi et al., 2024) and MAVIS (Zhang et al., 2024b). While advanced
models like GPT-4o (Hurst et al., 2024) and Gemini (Gemini Team, 2023) show strong general visual
understanding, a gap persists in robust visual reasoning requiring sophisticated analysis and complex
inference. Reinforcement Learning (RL) is emerging to address this, extending from methods
enhancing LLM reasoning (Guo et al., 2025; Shao et al., 2024; Kimi Team, 2025a). For VLMs, R1-
type RL applications have shown success in specific subdomains like geometry and object counting
(Peng et al., 2025; Huang et al., 2025; Chen et al., 2025b; Deng et al., 2025). Notably, recent studies
(Meng et al., 2025; Yang et al., 2025; Liu et al., 2025a) has applied rule-based RL to achieve significant
gains in broader multimodal mathematical reasoning for VLMs without in-domain training data.

Data synthesis. Data synthesis is vital for VLMs, providing scalable, diverse, and high-quality
training data to enhance performance across applications (Cui et al., 2024; Wang et al., 2024b; Li
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Figure 2: Illustration of our SynthRL pipeline. (1) Difficulty-based Seed Selection identifies
suitable questions based on Monte Carlo rollout pass rates, (2) Data Synthesizer transforms selected
questions into more challenging variants while preserving the original answer A, and (3) Correctness
and Difficulty Guaranteed Verifier ensures both answer preservation and increased difficulty.

et al., 2023a). Initially focused on improving instruction following capabilities (Liu et al., 2023a;
2024) and aligning with human preferences through methods like multi-turn conversations and
feedback mechanisms (Li et al., 2024d;c), recent research increasingly employs data synthesis to
advance visual reasoning Zhang et al. (2024b); Yao et al. (2024); Luo et al. (2025). This newer
focus includes generating sophisticated datasets for complex instructions or using techniques such
as reverse chain-of-thought (Zhou et al., 2025; Du et al., 2025; Hu et al., 2025) to address tasks in
geometric (Deng et al., 2024), mathematical (Shi et al., 2024), and navigational reasoning (Zhou
et al., 2024), thereby significantly expanding VLM reasoning capabilities. However, leveraging data
synthesis for RL training in VLMs remains a largely underexplored frontier.

3 SYNTHRL: SCALABLE AND VERIFIABLE DATA SYNTHESIS

We propose an automated and guaranteed pipeline for synthesizing more challenging RL training
data, as illustrated in Figure 2. Our approach (1) refines the seed task distribution through difficulty
assessment (Section 3.2), (2) employs a synthesizer to generate harder variants of these questions
(Section 3.3), and (3) validates these variants with exact correctness and difficulty guarantees (Section
3.4). This methodology unlocks another smart way of data synthesis for reasoning-oriented RL,
where a more challenging data distribution and strict answer correctness are crucial. The detailed
algorithmic procedure of our approach is provided in Appendix H.

3.1 PRELIMINARY: REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Before presenting our pipeline, we briefly outline the Reinforcement Learning with Verifiable
Rewards (RLVR) framework. RLVR requires only a dataset D = {(x, y∗)} of inputs and correct
outputs, without annotated reasoning steps. The model generates its own reasoning steps and receives
a verifiable reward r(y, y∗) based on the final answer. The policy πθ is trained to maximize the
expected reward: 1

JRLVR(θ) = E(x,y∗)∼D,y∼πθ(·|x)[r(y, y
∗)]. (1)

A key challenge in RLVR is scalability, due to the high cost of annotated data. Our method, SynthRL,
addresses this by synthesizing additional training examples to augment the dataset, enabling the
model to learn from both curated and synthetic data.

3.2 DIFFICULTY-BASED SEED SELECTION

Difficulty assessment. The first step in our synthesis pipeline is selecting suitable questions from
a seed dataset Dseed. Suitability is based on the question’s difficulty relative to a specific VLM, the
target model πtarget. This model serves both as the initial policy for RL training and as the benchmark

1We implement this using Group Relative Policy Optimization (GRPO), detailed in Appendix B.
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for assessing question difficulty. We treat difficulty as model-dependent, recognizing that a question
may be easy for one model but hard for another. To assess question difficulty for πtarget, we apply a
Monte Carlo rollout procedure. For each image-question-answer triplet (I,Q,A) ∈ Dseed, we define
the rollout pass count as:

Cpass(I,Q,A;πtarget) =

N∑
j=1

I(A(j)
pred = A) (2)

where A
(j)
pred is the answer predicted by πtarget for (I,Q) in the j-th stochastic forward pass, sampled

as A
(j)
pred ∼ πtarget(·|I,Q); N is the number of Monte Carlo rollouts (N = 16 in our context by

default); and I(·) is the indicator function, returning 1 if its argument is true, and 0 otherwise. Cpass
ranges from 0 to N , with lower values indicating harder questions for πtarget, as the model less
consistently predicts the correct answer. Evaluating Cpass across Dseed helps identify questions that
are too easy (i.e., high Cpass), which can then be targeted for transformation into more challenging
variants. Selection criteria (e.g., thresholds) can be tuned based on downstream task requirements.
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Figure 3: Distribution of rollout pass
count on MMK12.

Difficulty-aware selection. For each question-answer pair
(I,Qori, A) in the processed dataset Dseed, we compute its
rollout pass count cori = Cpass(I,Qori, A;πtarget) using
Equation 2 with respect to the target model πtarget. As
shown in Figure 3, these counts are heavily skewed toward
the extremes, with many samples either consistently failed
(cori ≈ 0) or solved (cori ≈ N ). Since such extremes offer
limited gradient signals for RL training (Yu et al., 2025;
Yuan et al., 2025), we focus on questions the model solves
reliably, selecting those with cori ≥ 12 as inputs for the
synthesis stage (Section 3.3).

3.3 DATA SYNTHESIZER

The Synthesizer module generates more challenging vari-
ants of selected questions while preserving the original ground truth answer. For each sample
(I,Qori, A) from Dseed, selected for its high rollout pass count (Section 3.2), a powerful general-
purpose VLM (ϕ) transforms Qori into a candidate question requiring deeper reasoning.

For every input sample (I,Qori, A), the synthesizer aims to produce a candidate question. The
synthesis VLM is prompted with only the image I and the original question Qori. The specific prompt
template used is:

Synthesizer Prompt
Given an image and the following question, transform it into a significantly more challenging
version that requires deeper reasoning but maintains the same answer.

Original Question:
{question}
Your Response Format:
New Question: {Your transformed question}

In this stage, the placeholder “{question}” is replaced with Qori, while the ground truth answer
A is deliberately withheld from the synthesis VLM. This setup compels the model to focus on
the semantic relationship between Qori and the image I , rather than relying on A to produce
superficial paraphrases. Consequently, it fosters the generation of questions that require deeper visual
reasoning yet remain answerable with A. The output for each input (I,Qori, A) is a candidate triplet
(I,Qcand, A), where Qcand is a synthesized variant of Qori, later evaluated by the verifier module
(Section 3.4) for quality and difficulty.

3.4 CORRECTNESS AND DIFFICULTY GUARANTEED VERIFIER

The verifier module validates synthesized questions, ensuring both task validity and difficulty increase.

4
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Candidate Evaluation. For each candidate question Qcand generated from an original sample with
rollout pass count cori, we apply the same rollout pass count metric as in Equation 2:

ccand = Cpass(I,Qcand, A;πverifier) (3)

Verification Criteria. A candidate question is deemed valid if it meets both of the following
conditions:

1. Correctness Criterion: ccand ≥ Tmin, ensuring the question remains answerable with the original
answer. Here, Tmin represents the minimum number of successful rollouts required to consider a
question correct. When a candidate question passes this threshold, it provides strong evidence that
the question is valid and correctly preserves the original answer.

2. Difficulty Criterion: ccand ≤ cori −∆hard, confirming the candidate question is measurably more
difficult than the original. The parameter ∆hard defines the minimum required increase in difficulty,
measured as a reduction in pass count.

Achieving Guaranteed Synthesis. Our verification guarantees stem from a key design choice: the
synthesizer is instructed to create harder questions with the same answer. Though the synthesizer
aims to preserve the answer, not every generated question will succeed. The verifier resolves this
uncertainty by evaluating each candidate against the original answer using the target model. When
πtarget reaches the original answer a reasonable number of times (meeting the Correctness Criterion), it
confirms the question is both valid and preserves the intended answer. Simultaneously, the Difficulty
Criterion ensures only questions that genuinely challenge the model are accepted.

The final output of our three-stage pipeline is a collection of verified triplets (I,Qcand, A), each
representing a harder variant of an original question designed to provide more informative gradient
training for reinforcement learning fine-tuning.

4 DATASET

4.1 SEED AND SYNTHESIZED DATASETS

Seed Dataset. We use MMK12 (Meng et al., 2025) as our seed dataset, consisting of 8,099 question-
answer pairs. For reliable verification in our pipeline, we preprocess the dataset by converting multiple-
choice questions to free-form answer format and removing Yes/No questions. This preprocessing
prevents reward hacking through random guessing during the verification stage, resulting in our seed
dataset with 8,072 open-ended answers. For data scaling effect analysis, we also create 2k and 4k
versions of the seed dataset as detailed in the Appendix D.

Synthesized Dataset. We use Gemini-2.5-Flash-Preview-04-17 (Gemini Team, 2023) as
our synthesizer model ϕ. We select source questions with high rollout pass counts (at least 12 out
of 16 successful predictions) from Dseed for transformation. For verification, we set the solvability
criterion threshold Tmin = 4 to guarantee question validity and answer preservation, and the difficulty
criterion ∆hard = 2 to ensure candidates are measurably more challenging than their original versions.
This process yields 3,380 verified harder variants, each preserving the original ground truth answer.
We refer to the combined dataset of original MMK12 questions and their synthesized variants as
A-MMK12, totaling 11,452 samples. We apply the same synthesis process to the 2k and 4k versions.
examples of our synthesized questions are provided in Appendix I.

4.2 DATA ANALYSIS

To understand our synthesized dataset’s characteristics, we analyze pass rate distributions and
reasoning complexity. The left side of Figure 4 compares the original MMK12 dataset with our
complete A-MMK12 dataset. The original MMK12 has a mean pass rate of 9.04, while A-MMK12
shows a lower mean of 8.24, indicating increased overall difficulty.

The right side of Figure 4 provides a more focused comparison between the selected seed exam-
ples and their synthesized variants. Selected seed questions have a high mean pass rate of 15.10,
while synthesized questions have a significantly lower mean of 6.33. This confirms our approach
successfully creates more challenging variants from relatively easy seed examples.
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Figure 4: Pass rate distributions across datasets. The left figure compares the original MMK12
dataset with our complete A-MMK12 dataset. The right figure compares the selected seed examples
with their synthesized variants. The synthesized questions show a more balanced distribution across
moderate difficulty levels, while seed questions cluster at the extremes.

The most notable difference appears in the distribution shape. The seed dataset shows high concentra-
tions at the extreme ends of 0 and 16 passes, while synthesized questions display a more balanced
distribution across intermediate difficulty levels from 4 to 14. This broader distribution provides a
smoother difficulty progression during training, helping models develop better reasoning capabilities.

As shown in Figure 5, synthesized questions require more reasoning steps with a mean of 34.90
compared to original seed questions with a mean of 26.16. This 33% increase in reasoning steps
indicates that our synthesis process creates problems requiring more elaborate reasoning chains.
Questions with multi-step reasoning better exercise a model’s ability to decompose problems and
maintain coherent reasoning, essential for robust visual reasoning capabilities.

5 EXPERIMENTS

5.1 SETUP
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Figure 5: Distribution of reasoning steps between se-
lected seed questions and synthesized questions.

Implementation Details. Follow-
ing (Meng et al., 2025; Huang et al., 2025;
Wang et al., 2025), we initialize our policy
model with Qwen2.5-VL-7B-Instruct (Bai
et al., 2025), well-suited for subsequent RL
training due to its robust foundational ca-
pabilities. This same model serves as both
the target model and verifier model in our
methodology. For reinforcement learning
training, we use the EasyR1 (Zheng et al.,
2025) framework built on verl (Sheng
et al., 2024), with specialized support for
VLMs. All experiments are conducted
using 8 NVIDIA H100 80GB HBM3
GPUs with a global batch size of 128, a rollout batch size of 512, a rollout temperature of 1.0, a
consistent learning rate of 1e-6, and 8 rollouts. We use EasyR1’s standard reasoning template for
training (see Appendix F). We train every dataset with sufficient training steps until convergence.
Complete implementation details are provided in Appendix G.

Following recent research findings (Liu et al., 2025b; Yu et al., 2025), we remove the KL divergence
constraint with the reference model in the GRPO algorithm to promote broader exploration. All parts
of the model, including the vision encoder, are unlocked during training to maximize performance
on visual reasoning tasks. Our main experiments compare two configurations: (1) Baseline models
trained only on the original seed dataset, and (2) SynthRL models trained on A-MMK12.

Evaluation Benchmarks. To assess model performance, we implement a comprehensive evaluation
strategy across multiple benchmarks. We examine out-of-domain generalization capabilities using

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across visual reasoning benchmarks. Accuracy scores (%) are
reported for each benchmark. Bold values indicate best performance, underlined values indicate
second best. Models marked with ⋆ are evaluated using our evaluation pipeline. Dataset sizes are
color-coded: SFT data, RL data, and synthesized RL data.

Model #Data Benchmark Accuracy (%)

MathVerse MathVision MathVista WeMath DynaMath Avg.

Close-source Models

Claude3.7-Sonnet (Anthropic, 2025) – 52.0 41.3 66.8 – – –
GPT-4o (Hurst et al., 2024) – 50.2 30.4 63.8 – – –
Gemini2.0-flash-001 (Gemini Team, 2023) – 59.3 41.3 70.4 – – –

Open-source Models

LLaVA-OneVision-7B (Li et al., 2024b) – 26.2 – 63.2 – – –
Kimi-VL-16B (Kimi Team, 2025b) – 44.9 21.4 68.7 – – –
Mulberry-7B (Yao et al., 2024) – – – 63.1 – – –
InternVL-2.5-8B-Instruct (Chen et al., 2024) – 39.5 19.7 64.4 – – –
Qwen-2.5-VL-7B-Instruct (Bai et al., 2025) – 47.9 25.4 68.2 63.3 55.7 52.1

RL-tuned Models with Verifiable Reward

R1-VL-7B (Zhang et al., 2025) 260K+10K 40.0 24.7 63.5 – – –
Vision-R1-7B (Huang et al., 2025) 200K+10K 52.4 – 73.5 – – –
R1-OneVision-7B⋆ (Yang et al., 2025) 155K+10K 46.1 22.5 63.9 62.1 53.7 49.7
OpenVLThinker-7B⋆ (Deng et al., 2025) 35K+15K 48.0 25.0 71.5 67.8 57.5 54.0
MM-Eureka-Qwen-7B⋆ (Meng et al., 2025) 15K 50.5 28.3 71.5 65.5 58.1 54.8
ThinkLite-7B-VL⋆ (Wang et al., 2025) 11K 50.2 27.6 72.7 69.2 55.7 55.1
VLAA-Thinker-Qwen2.5-7B⋆ (Chen et al., 2025a) 126K+25K 49.9 26.9 68.8 67.9 59.8 54.7

SynthRL⋆ (Ours)

2K
MMK12 2K 51.1 28.2 70.7 70.2 58.2 55.8
A-MMK12 2K+0.8K 50.5 29.7 72.4 68.7 59.0 56.0

4K
MMK12 4K 50.3 29.8 73.7 70.1 58.9 56.5
A-MMK12 4K+1.6K 52.5 29.0 74.0 70.5 60.0 57.2

8K
MMK12 8K 51.6 30.0 73.9 70.6 58.8 57.0
A-MMK12 8K+3.3K 53.5 29.6 74.2 72.6 60.1 58.0

five specialized visual reasoning datasets: MathVerse (Zhang et al., 2024a), MathVision (Wang et al.,
2024a), MathVista (Lu et al., 2023), WeMath (Qiao et al., 2024) and DynaMath (Zou et al., 2024).

For consistent evaluation across models, we develop a standardized evaluation suite capable of
assessing both our trained checkpoints and most publicly available R1-related checkpoints. We use
vLLM (Kwon et al., 2023) for efficient inference acceleration (denoted with ⋆), while incorporating
reported results for models where direct evaluation was not feasible. Response evaluation uses
greedy decoding with Gemini-2.0-Flash-001 (Gemini Team, 2023) as the judge for parsing generated
outputs. We follow each model’s provided system prompts and output formatting rules, though small
differences from published results may exist due to our specific judge model and evaluation setup.
Following the setting from (Zeng et al., 2025), we report the performance of the checkpoint that
obtains the best average performance on the 5 benchmarks for all experiments.

5.2 RESULTS

Main Finding 1: Out-of-domain generalization. Our primary experiments in Table 1 show
that SynthRL consistently improves performance across multiple out-of-domain visual reasoning
benchmarks. At the 8K data scale, the model trained with the A-MMK12 dataset achieves 58.0%
average accuracy compared to 57.0% for the baseline model trained only on the seed MMK12 dataset.
We observe significant improvements across individual benchmarks, with MathVerse accuracy
increasing from 51.6% to 53.5% and WeMath from 70.6% to 72.6%. These results demonstrate that
our synthetic data enhances generalization to unseen problem distributions.

Main Finding 2: Data scaling effect. The performance gap between A-MMK12 and MMK12 is
modest at the 2K scale (56.0% vs 55.8%), but widens considerably as more seed data becomes avail-
able, reaching +0.7% with 4K and +1.0% with 8K seed examples. This pattern suggests our synthesis
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Figure 6: Performance on evaluation benchmarks across training steps for models trained on seed
data (MMK12) versus synthesize-augmented data (A-MMK12) at different data scales (2K, 4K, and
8K). Peak performance for A-MMK12 and MMK12 are indicated by stars and markers, respectively.

Table 2: Average accuracy (%) by difficulty level across all five benchmarks.

Method 2K 4K 8K
Easy Med. Hard Easy Med. Hard Easy Med. Hard

MMK12 67.2 54.3 44.9 67.9 55.4 46.4 69.3 54.9 46.8
A-MMK12 67.0 54.6 45.5 67.8 56.0 48.1 68.8 56.6 48.4

∆ -0.2 -0.3 +0.6 -0.1 +0.6 +1.7 -0.5 +1.7 +1.6

approach becomes more effective with larger, more diverse seed pools. Additionally, Figure 6 reveals
that while both datasets lead to similar learning patterns initially, models trained on A-MMK12
achieve higher peak performance across all data scales. Together, these results demonstrate that the
benefits of our synthetic data augmentation become more pronounced with larger training datasets.

These findings demonstrate that our synthesis method complements traditional data scaling ap-
proaches, offering additional gains beyond what can be achieved through simply increasing the
volume of original data. SynthRL’s targeted generation of challenging variants creates a more
effective training distribution for developing robust visual reasoning capabilities.

5.3 DIFFICULTY-BASED PERFORMANCE ANALYSIS

To precisely measure where our method provides the most value, we establish objective difficulty
rankings for evaluation examples using the Bradley-Terry model and Elo rating system, similar to
the approach used in Chatbot Arena (Chiang et al., 2024) for ranking large language models. We
conduct pairwise comparisons of image-question pairs, with Gemini-2.0-Flash-001 providing
difficulty judgments across 128 battles per pair. This bootstrapped Elo-based methodology yields
statistically robust difficulty scores that enable us to partition each benchmark dataset into three
difficulty tiers: easy, medium, and hard.

Table 2 presents the average performance across all five benchmarks, grouped by difficulty level. Our
analysis reveals that A-MMK12 yields the largest improvements on the medium and hard subsets of
examples. For the full 8K dataset, whileA-MMK12 performs slightly lower on easy examples (-0.5%),
it shows clear gains on medium (+1.7%) and hard (+1.6%) examples. This pattern is consistent across
data scales, where A-MMK12 demonstrates its strongest advantage on the challenging problems.

These results demonstrate that our synthesis approach successfully targets complex reasoning chal-
lenges that are not adequately addressed by training on seed data alone. The performance shift from
easier to harder examples aligns with our goal of improving model capabilities on more challenging
reasoning tasks. Benchmark-specific performance breakdowns are provided in Appendix C. Our
complete Bradley-Terry rating methodology is described in Appendix E.

5.4 ABLATION STUDIES ON THE VERIFIER

Non-target Model Verification. We investigate the impact of verification strategy in our Syn-
thRL pipeline (Table 3). When using a non-target model (Gemini-2.0-Flash-001 instead of

8
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Table 3: Ablation study on different verifier configurations using 4K seed data.

Verifier Benchmark Accuracy (%)

MathVerse MathVision MathVista WeMath DynaMath Avg.

A-MMK12 52.5 29.0 74.0 70.5 60.0 57.2
w/ non-target verifier 51.2 28.2 71.2 70.2 57.9 55.7
w/ single-pass verifier 51.9 28.9 72.5 70.7 58.3 56.5
w/o verifier 49.6 28.9 71.1 70.5 58.1 55.8

Table 4: Ablation study on data strategies using 4K seed data.

Strategy #Data Benchmark Accuracy (%)

MathVerse MathVision MathVista WeMath DynaMath Avg.

MMK12 4K 50.3 29.8 73.7 70.2 58.2 56.5
R-MMK12 4K 51.2 29.4 71.7 69.7 58.0 56.1
A-MMK12 4K+1.6K 52.5 29.0 74.0 70.5 60.0 57.2

Qwen2.5-VL-7B-Instruct) as verifier, average accuracy drops from 57.2% to 55.7%. This
demonstrates that effective verification requires alignment with the target model’s capabilities to
properly calibrate difficulty.

Single-pass Verification and Unverified Synthesis. We also explore simplified verification ap-
proaches. Single-pass verification uses the target model but performs only one verification per
question rather than multiple Monte Carlo rollouts, achieving 56.5% average accuracy. Unverified
synthesis, which removes verification entirely, yields 55.8% average accuracy.

These results confirm that verification aligned with the target model and using Monte Carlo rollouts
contributes approximately 1.4% to overall performance gains, highlighting verification’s essential
role in SynthRL’s effectiveness.

5.5 ABLATION STUDIES ON DATA STRATEGY

We examine different strategies for integrating synthesized data into training. Table 4 compares
our augmentation approach A-MMK12 with a replacement strategyR-MMK12, where synthesized
samples replace their corresponding seed samples while maintaining the same dataset size. Results
show A-MMK12 achieves the highest average accuracy at 57.2% across the five benchmarks,
while R-MMK12 underperforms even the original baseline (56.1% vs. 56.5%). This suggests
synthesized questions provide maximum benefit when complementing rather than replacing the
original distribution. The performance gap confirms SynthRL’s improvements stem from both data
scaling and the targeted difficulty enhancement of the training data.

6 CONCLUSION

We present SynthRL, an automated pipeline that improves VLM reasoning with RLVR by synthesizing
more challenging training data. SynthRL follows a three-stage process: selecting seed questions
based on difficulty, generating harder variants via a strong VLM while preserving answers, and
verifying correctness and increased difficulty under a highly guaranteed mechanism. Applied to
the MMK12 dataset, SynthRL produced over 3,380 verifiable, challenging questions from 8,072
seeds. Models trained on this data achieved significant accuracy gain across five out-of-domain
visual math reasoning benchmarks, with larger improvements on the hardest samples, suggesting
enhanced reasoning. SynthRL offers a scalable, data-centric method to boost VLM reasoning through
automated, verifiable data synthesis.

9
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ETHICS STATEMENT

This work builds on publicly available datasets and employs large vision-language models for
controlled data synthesis. All synthesized data undergoes rigorous verification to ensure correctness
and prevent the propagation of harmful or misleading content. No personally identifiable or sensitive
data was used in any stage of this research.

REPRODUCIBILITY STATEMENT

To support reproducibility, we provide the full training and evaluation code, along with detailed run
instructions, in the supplementary materials. These materials include all hyperparameter settings,
implementation details, and usage guidelines required to replicate our experiments under the same
conditions. The synthesized data generated through our pipeline will be released after publication to
ensure accessibility and foster further research. Together, these resources will allow other researchers
to faithfully reproduce and extend our results.
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A LIMITATIONS

The current study robustly demonstrates SynthRL’s efficacy using a specific large vision-language
model as the synthesizer and explores data scaling up to 8K seed samples. However, a comprehensive
investigation into the broader scalability continuum, potentially involving an even wider range of data
volumes or a comparative analysis across varied synthesizer model architectures, was beyond the
scope of available computational resources. Elucidating these aspects further could provide deeper
insights into optimizing the trade-offs between synthesis cost and performance upper bound, and
remains a compelling direction for subsequent work.

B REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS ALGORITHM

Group Relative Policy Optimization (GRPO) (Shao et al., 2024), originally designed for mathematical
reasoning in LLMs, can be effectively adapted to enhance visual reasoning capabilities in VLMs. We
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use reinforcement learning to update our VLM, rewarding it based on a task-specific reward function
rf , where the subscript f indicates the task.

For an input pair (I,q) consisting of an image and text query from the training distribution pD,
we employ a rule-based reward function rf,q that assigns rf,q = 1 when the generated response
o correctly answers the query (as determined by a verifiable parser) and rf,q = 0 otherwise. This
binary reward design helps prevent reward hacking during optimization.

The reference policy πθold generates n response rollouts for each input. The normalized advantage
for the i-th rollout is calculated as:

Anorm
i =

rf,q −mean({rf,q}n)
std({rf,q}n)

,

where mean and std are calculated across the n rollouts. Building upon PPO (Schulman et al., 2017),
the GRPO objective function is formulated as:

JGRPO(θ) = E(I,q)∼pD,o∼πθold (·|I,q)[
1

n

n∑
i=1

min

(
si(θ)A

norm
i , clip(si(θ), 1− ϵ, 1 + ϵ)Anorm

i

)]
, (4)

where si(θ) = πθ(oi|I,q)
πθold

(oi|I,q) is the probability ratio between the new and old policies, and ϵ > 0

defines the clipping range. Following recent practices in Meng et al. (2025) and Liu et al. (2025b),
we do not apply any KL penalty to the reward.

C DETAILED BENCHMARK PERFORMANCE BY DIFFICULTY LEVEL

To complement the averaged difficulty analysis in Section 5.2, we present detailed performance
results for each benchmark across easy, medium, and hard difficulty levels in Table 5. This breakdown
shows how SynthRL’s improvements vary across individual benchmarks at all three data scales.

Table 5: Performance comparison between MMK12 and A-MMK12 models across benchmark
difficulty levels. Accuracy (%) on easy, medium, and hard problem subsets for each benchmark.

Method
MathVerse MathVision MathVista WeMath DynaMath

Easy Med. Hard Easy Med. Hard Easy Med. Hard Easy Med. Hard Easy Med. Hard

2K
MMK12 64.2 43.0 46.2 33.3 25.2 26.9 84.5 72.9 49.4 85.9 69.1 62.9 68.0 61.0 39.2

A-MMK12 62.1 41.3 46.8 35.1 26.2 26.9 86.9 72.1 55.3 87.5 67.3 60.7 68.4 62.4 38.5
∆ -2.1 -1.7 +0.6 +1.8 +1.0 0.0 +2.4 -0.8 +5.9 +1.6 -1.8 -2.2 +0.4 +1.4 -0.7

4K
MMK12 61.4 43.7 46.0 34.8 28.2 26.4 86.9 75.3 54.4 86.4 68.4 66.3 70.1 61.4 39.1

A-MMK12 64.0 44.7 48.5 33.1 28.2 25.9 86.2 75.3 56.5 84.8 68.8 69.1 70.3 63.0 40.4
∆ +2.6 +1.0 +2.5 -1.7 0.0 -0.5 -0.7 0.0 +2.1 -1.6 +0.4 +2.8 +0.2 +1.6 +1.3

8K
MMK12 64.1 42.7 47.5 35.7 27.5 26.5 89.0 74.2 54.9 89.1 68.8 65.7 68.8 61.6 39.4

A-MMK12 66.0 46.7 48.3 35.6 26.5 26.2 86.6 75.3 57.0 86.4 71.0 70.8 69.6 63.4 39.6
∆ +1.9 +4.0 +0.8 -0.1 -1.0 -0.3 -2.4 +1.1 +2.1 -2.7 +2.2 +5.1 +0.8 +1.8 +0.2
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D ADDITIONAL DATA ANALYSIS

To complement the 8K dataset analysis presented in Section 4.2, we present the characteristics of our
2K and 4K dataset variants.
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Figure 7: Pass rate distributions for the 4K dataset (4096 seed, 1612 synthesized). Consistent with
the 8K dataset, synthesized questions show more balanced difficulty distributions compared to seed
examples.
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Figure 8: Pass rate distributions for the 2K dataset (2048 seed, 808 synthesized). Similar patterns
are observed as in the 4K and 8K datasets, with synthesized questions displaying a more balanced
distribution across difficulty levels.
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Figure 9: Distribution of reasoning steps between selected seed questions and synthesized questions
for 4K and 2K datasets. In both cases, synthesized questions require more reasoning steps.

The 2K and 4K dataset variants exhibit similar characteristics to the 8K dataset. Figures 7 and 8 show
that synthesized questions maintain a more balanced difficulty distribution compared to seed examples
across all data sizes. Figure 9 confirms that the reasoning step patterns also remain consistent, with
synthesized questions requiring more complex reasoning steps than their seed counterparts. These
findings demonstrate that our synthesis approach produces consistent data quality regardless of the
seed dataset size.
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E BRADLEY-TERRY DIFFICULTY RATING METHODOLOGY

To systematically quantify the difficulty of data samples within our benchmarks, we employed the
Bradley-Terry model (Bradley & Terry, 1952; Terry, 1952). This probabilistic model estimates latent
difficulty parameters for items based on the outcomes of pairwise comparisons. These difficulty
ratings enable the segmentation of each benchmark into easy, medium, and hard subsets.

The Bradley-Terry model posits that if pi is the positive real-valued difficulty parameter for sample i,
the probability that sample i is more difficult than sample j, denoted P (i ≻ j), is given by:

P (i ≻ j) =
pi

pi + pj
(5)

By reparameterizing the difficulty parameters as θi = log pi, the model can be expressed in a logistic
form:

P (i ≻ j) =
eθi

eθi + eθj
= σ(θi − θj) (6)

where σ(x) = 1/(1 + e−x) is the logistic sigmoid function. This formulation (Equation 6) con-
nects the Bradley-Terry model to logistic regression frameworks, which are used for estimating the
parameters θi.

E.1 PAIRWISE COMPARISON DATA COLLECTION

For each data sample, pairwise comparisons (“battles”) were conducted against other samples from
the same benchmark to establish relative difficulty. The specifics of this process were as follows:

• MathVision, MathVista, and WeMath: Each sample was compared against k = 128 randomly
selected distinct samples from its respective dataset. This generated 128×N battle records for
each dataset, where N is the total number of samples in that dataset.

• MathVerse: This benchmark includes five versions for each problem instance, varying in visual-
to-textual context ratio. Battles were performed exclusively on the “Text Lite” subset; each Text
Lite sample was compared against 128 other Text Lite samples. The difficulty rating derived for a
Text Lite sample was then assigned to its corresponding versions.

• DynaMath: This benchmark features 10 variants for each question. Battles were conducted using
only “variant 1” of each question, with each such sample compared against 128 other variant 1
samples. The resulting difficulty rating was applied to its other 9 variants.

For every comparison pair, the difficulty evaluation was conducted using the
gemini-2.0-flash-001 model with a temperature setting of 0.6. To eliminate poten-
tial ordering bias, we randomized the presentation sequence of the two samples within each prompt.
The specific prompt template used is:

Difficulty Evaluation Prompt
Compare math problems based on their difficulty. Consider reasoning steps, domain knowledge
needed, and computational complexity in your assessment.
< Image 1 >
FIRST PROBLEM: Problem 1
< Image 2 >
SECOND PROBLEM: Problem 2
Which of these two math problems is more difficult?
Provide a brief explanation comparing their difficulty levels, then end with exactly one of: “WIN-
NER: FIRST”, “WINNER: SECOND”, or “WINNER: TIE”

In this evaluation framework, the placeholders Image 1, Problem 1, Image 2, and Problem 2
were substituted with the visual content and textual descriptions of the mathematics problems being
compared. For each target sample, we selected k = 128 opponent samples through random sampling
without replacement from the pool of available unique opponents within the same dataset.
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E.2 JUSTIFICATION FOR THE NUMBER OF COMPARISONS

Each sample underwent k = 128 pairwise comparisons. This number was chosen to support robust
difficulty estimation, based on:

1. Graph Connectivity: The Bradley-Terry model requires a strongly connected comparison graph
for unique Maximum Likelihood Estimates (MLEs) of its parameters θi (Ford Jr, 1957). We
ensure that the comparison graph for each benchmark is connected, a necessary condition for the
estimation of these parameters.

2. Sufficient Data for Precise Parameter Estimation: Beyond connectivity, k = 128 comparisons
per sample provide substantial data for precise parameter estimation. Theoretical results for ranking
from pairwise comparisons indicate that the maximum error of the estimated parameters (e.g.,
∥θ̂ − θ∗∥∞) can be bounded by terms proportional to

√
(logN)/kmin, where N is the number of

items and kmin is the minimum number of comparisons per item, provided kmin ≳ logN (Hajek
et al., 2014). For our largest benchmark, MathVision (N = 3040), our number of comparisons
per sample k = 128 significantly exceeds log2 N ≈ 11.57. This condition k ≫ logN ensures the
factor

√
(logN)/k is small, contributing to higher precision. This high number of comparisons

per data sample provides a strong empirical basis for estimating the parameters, consistent with
requirements for reliable parameter recovery in such models (Negahban et al., 2012). Consequently,
this data volume supports stable and precise θ̂i estimates.

E.3 PARAMETER ESTIMATION AND ELO RATING SYSTEM

We estimated log-difficulty parameters θ̂i by fitting a logistic regression model to the pairwise
comparison data. For each comparison between samples a and b, we constructed a feature vector
where the position for sample a contains +1, sample b contains −1, and all others are 0. Ties were
handled by assigning 0.5 wins to each participant, and minimal L2 regularization was applied.

The estimated parameters were converted to an Elo-like rating scale:

Eloi =
S

ln(B)
θ̂i +R0 (7)

where S = 400 is the Elo scale factor, B = 10 is the base (a 400-point difference representing 10:1
odds), and R0 = 1000 is the baseline rating.

To assess stability and establish confidence intervals, we performed 100 rounds of bootstrapping with
replacement on the comparison records. The final Elo rating for each sample is the median of its
bootstrapped ratings, with 95% confidence intervals derived from the 2.5th and 97.5th percentiles.
NaN values from any bootstrap sample were conservatively imputed with the minimum observed
rating before calculating quantiles.

E.4 DIFFICULTY LEVEL CATEGORIZATION

Based on the final median Elo ratings, samples within each benchmark were categorized into three
difficulty levels:

• Hard: Samples with an Elo rating ≥ 1050.
• Medium: Samples with an Elo rating such that 950 < Elo < 1050.
• Easy: Samples with an Elo rating ≤ 950.

This categorization allows for a more granular analysis of model performance across varying degrees
of problem complexity.
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F TEMPLATES

Reasoning Template from EasyR1
SYSTEM: You are a helpful assistant.
USER: You FIRST think about the reasoning process as an internal monologue and then provide
the final answer.The reasoning process MUST BE enclosed within <think> </think> tags. The
final answer MUST BE put in \boxed{}. {question}

G SUPPLEMENTARY IMPLEMENTATION DETAILS

This section provides the detailed hyperparameter configuration used in our implementation. Table 6
summarizes the configuration followed for all runs. We adjust training episodes based on dataset size
to ensure convergence and obtain sufficient checkpoints for thorough evaluation.

Table 6: Summary of Hyperparameter Configurations

Parameter Configuration
General Settings
Model Base Qwen2.5-VL-7B-Instruct
Vision Encoder Unfrozen
Max Prompt Length 2048 tokens
Max Response Length 2048 tokens
Max Image Pixels 1,003,520 pixels
Min Image Pixels 262,144 pixels
Training Settings
Global Batch Size 128
Rollout Batch Size 512
Learning Rate 1e-6
Optimizer AdamW
Grad Clip 1.0
Policy Loss Aggregation token-mean

RL Settings
Algorithm GRPO (Appendix B)
KL Loss False
KL Reward False
Entropy Coefficient 0.001
N Rollouts 8
Rollout Temperature 1.0
Rollout Top-P 1.0
Training Episodes by Dataset Size
2K variants 100 steps
4K variants 144 episodes
8K variants 256 episodes
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H PSEUDOCODE FOR THE SYNTHRL PIPELINE

To better illustrate the SynthRL pipeline, Algorithm 1 presents the core verification procedure for
synthesizing harder questions, while Algorithm 2 details the helper functions that enable the main
procedure.

Algorithm 1 SynthRL of a Single Harder Question

0: Input: Image I , original question Qori, original answer A,
target policy πtarget, synthesis VLM ϕsynth, judge model Mjudge,
solvability threshold Tmin, min difficulty increase ∆hard,
quality threshold Tquality, num synthesis attempts Nattempts, num rollouts N

0: Output: A single Qvalid_cand (validated harder question), or null
0: cori ← CalculateRolloutPassCount(πtarget, I, Qori, A,N) {Establish baseline difficulty for Qori}
0: for i = 1 to Nattempts do
0: Qcand ← SynthesizeCandidateQuestion(ϕsynth, I, Qori) {Generate candidate, A is withheld

from ϕsynth}
0: quality_score ← AssessCandidateQuality(Mjudge, I, Qori, Qcand, A) {Evaluate linguistic

quality of Qcand}
0: if quality_score < Tquality then
0: continue {Skip if below quality threshold}
0: end if
0: ccand ← CalculateRolloutPassCount(πverifier, I, Qcand, A,N) {Evaluate difficulty of Qcand}

{Verify if Qcand is solvable and demonstrably harder}
0: if ccand ≥ Tmin and ccand ≤ cori −∆hard then
0: return Qcand {Return the first valid harder question found}
0: end if
0: end for
0: return null {No suitable harder question found}

=0

Algorithm 2 Helper Functions for SynthRL

0: function CALCULATEROLLOUTPASSCOUNT(πpolicy, I, Q,A,Nrollouts)
0: pass_count← 0
0: for j = 1 to Nrollouts do
0: Apred ∼ πpolicy(·|I,Q) {Get predicted answer via stochastic forward pass}
0: if Apred matches A then
0: pass_count← pass_count + 1
0: end if
0: end for
0: return pass_count {Return raw number of successful predictions}
0: end function

0: function SYNTHESIZECANDIDATEQUESTION(ϕsynth, I, Qori)
0: Prompt ϕsynth with (I,Qori) to generate Qcand
0: {Original answer A is not provided to ϕsynth}
0: return Qcand
0: end function

0: function ASSESSCANDIDATEQUALITY(Mjudge, I, Qori, Qcand, A)
0: Prompt Mjudge to rate quality of Qcand

(context: I,Qori, A)
0: return quality score
0: end function

=0
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I CASE STUDY

To better illustrate the capabilities of our SynthRL approach, we provide four representative examples
comparing the generated harder questions with their original counterparts.

SynthRL

Question: Consider a rhombus ABCD where the length of each side is 5 units. The area of the triangle
formed by vertices A, B, and D is 12 square units. The diagonals AC and BD intersect at point O. Let H be a
point located on the side AD such that the segment OH divides triangle AOD into two triangles of equal area.
Determine the length of the segment OH.
Answer: \frac{5}{2}

Target Model Monte Carlo Rollout Pass: 4 out of 16

Question: As shown in the figure, in rhombus $ABCD$, diagonals $AC$
and $BD$ intersect at point $O$, $AC=6$, $BD=8$, and $H$ is the
midpoint of side $AD$. Find the length of $OH$.
Answer: \frac{5}{2}

Target Model Monte Carlo Rollout Pass: 15 out of 16

ID: math_7715

Figure 10: Comparison of SynthRL generated harder question and original question, case 1.

SynthRL

Question: Let $\theta$ be the unique angle in the interval $(0, \pi/2)$ such that the area of the triangle
with vertices at the origin, the point representing $e^{i\theta}$, and the point representing $e^{i2\theta}$
in the complex plane is $\frac{\sqrt{3}}{4}$.
Let $\mathbf{p}$ be the vector from the origin to the point in the complex plane representing
$e^{i\theta}$.
Let $\mathbf{s}$ be the vector obtained by rotating $\mathbf{p}$ counterclockwise by an angle of
$\frac{\pi}{3}$ radians.
Line $l_2$ is parallel to the vector $\mathbf{s}$.
The line $l_1$ is oriented such that the directed angle from $l_2$ to $l_1$ is $\frac{\pi}{2}$ radians.
Determine the slope of line $l_1$.
Answer: /dfac{\sqrt{3}}{3}

Target Model Monte Carlo Rollout Pass: 5 out of 16

Question: As shown in the figure, the inclination angle of line $l_{2}$ is
$\alpha _{2}=120^{ \circ }$, and the inclination angle of line $l_{1}$ is
$\alpha _{1}$. Given that $l_{1} \perp l_{2}$, what is the slope of line
$l_{1}$?
Answer: /dfac{\sqrt{3}}{3}

Target Model Monte Carlo Rollout Pass: 15 out of 16
ID: math_5028

Figure 11: Comparison of SynthRL generated harder question and original question, case 2.
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SynthRL

Question: As shown in the figure, a line is drawn through $C$ parallel to $AB$, intersecting ray CE at D,
where E is a point on the extension of AC. If $\angle ABC$ and $\angle CAB$ are complementary, and the
difference between $\angle ABC$ and $\angle ECD$ is $4{}^\circ$, then what is the measure of $\angle
ABC$ in degrees?
Answer: 47

Target Model Monte Carlo Rollout Pass: 6 out of 16

Question: As shown in the figure, $BC \perp AE$, with the foot of the
perpendicular at $C$. A line through $C$ is drawn parallel to $AB$, and
if $\angle ECD = 43^\circ$, then $\angle B$ is ___ degrees?
Answer: 47

Target Model Monte Carlo Rollout Pass: 12 out of 16

ID: math_7140

Figure 12: Comparison of SynthRL generated harder question and original question, case 3.

SynthRL

Question: In a regular triangular prism $ABC-A_{1}B_{1}C_{1}$ where all edges are of equal length, let $M$
be the midpoint of the side edge $CC_{1}$. Let $L$ be the locus of points $P$ in space such that the vector
$\vec{AP}$ is orthogonal to the vector $\vec{BM}$, and the vector $\vec{BP}$ is orthogonal to the vector
$\vec{A B_{1}}$. Determine the measure of the angle between the line $AB_{1}$ and the line $L$ in
degrees.
Answer: 90

Target Model Monte Carlo Rollout Pass: 5 out of 16

Question: As shown in the figure, in the regular triangular prism $ABC-
A_{1}B_{1}C_{1}$, all edges are of equal length. Point $M$ is the
midpoint of the side edge $CC_{1}$. What is the angle formed by the
skew lines $AB_{1}$ and $BM$ in degrees?
Answer: 90

Target Model Monte Carlo Rollout Pass: 13 out of 16
ID: math_7715

Figure 13: Comparison of SynthRL generated harder question and original question, case 4.
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J BROADER IMPACT

SynthRL addresses a critical challenge in developing visual reasoning models by automating the
creation of verified, challenging training examples that would otherwise require extensive human
annotation. By generating high-quality, guaranteed-correct data for reinforcement learning, our
approach significantly reduces the time-consuming and costly human labeling process typically
required for RL training data. This automation enables researchers to scale up training datasets with
diverse, difficulty-controlled examples, potentially democratizing access to robust visual reasoning
capabilities across research communities with varying resource constraints.

K LICENSES

We use standard licenses from the community. We include the following licenses for the codes,
datasets and models we used in this paper.

Datasets & Benchmarks:

• MMK12 (Meng et al., 2025): Apache License 2.0
• MathVerse (Zhang et al., 2024a): MIT
• MathVision (Wang et al., 2024a): MIT
• MathVista (Lu et al., 2023): Creative Commons Attribution Share Alike 4.0 International
• WeMath (Qiao et al., 2024): CC BY-NC 4.0
• DynaMath (Zou et al., 2024): Creative Commons Attribution Share Alike 4.0 International

Codes:

• verl (Sheng et al., 2024): Apache License 2.0
• EasyR1 (Zheng et al., 2025): Apache License 2.0

Models:

• Qwen2.5-VL-7B-Instruct (Bai et al., 2025): Apache License 2.0
• Gemini API (Gemini Team, 2023): Gemini API Additional Terms of Service

L USE OF LLMS

Large language models (LLMs) were employed solely as auxiliary tools to support writing, debugging,
and data synthesis. Specifically, LLMs were used to improve sentence clarity, grammar, and overall
flow of the manuscript, as well as to provide occasional assistance in resolving minor implementation
issues (e.g., detecting syntax errors or suggesting refactoring options). In addition, LLMs were
utilized in controlled settings to aid in the synthesis of training data, particularly in generating
candidate questions later subjected to rigorous verification. Importantly, all core research ideas,
methodological designs, experimental frameworks, codebase implementations, and scientific analyses
were entirely conceived, developed, and conducted by the authors. No component of the intellectual
contribution, experimental reasoning, or scientific conclusions was produced by an LLM.
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https://github.com/ModalMinds/MM-EUREKA/blob/qwen/LICENSE
https://github.com/ZrrSkywalker/MathVerse/blob/main/LICENSE
https://github.com/mathllm/MATH-V/blob/main/LICENSE
https://github.com/lupantech/MathVista/blob/main/LICENSE
https://github.com/We-Math/We-Math/blob/main/README.md#-license
https://github.com/DynaMath/DynaMath
https://github.com/volcengine/verl/blob/main/LICENSE
https://github.com/hiyouga/EasyR1/blob/main/LICENSE
https://github.com/QwenLM/Qwen2.5-VL/blob/main/LICENSE
https://ai.google.dev/gemini-api/terms
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