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Abstract
Foundation models are premised on the idea
that sequence prediction can uncover deeper
domain understanding, much like how Kepler’s
predictions of planetary motion later led to the
discovery of Newtonian mechanics. However,
evaluating whether these models truly capture
deeper structure remains a challenge. We develop
a technique for evaluating foundation models that
examines how they adapt to synthetic datasets
generated from some postulated world model.
Our technique measures whether the foundation
model’s inductive bias aligns with the world
model, and so we refer to it as an inductive bias
probe. Across multiple domains, we find that
foundation models can excel at their training
tasks yet fail to develop inductive biases towards
the underlying world model when adapted to
new tasks. We particularly find that foundation
models trained on orbital trajectories consistently
fail to apply Newtonian mechanics when adapted
to new physics tasks. Further analysis reveals
that these models behave as if they develop
task-specific heuristics that fail to generalize.

1. Introduction
The promise of foundation models relies on a central pre-
sumption: learning to predict sequences can uncover deeper
truths, or even optimistically, a world model. While this
idea seems new, it is actually quite old. Astronomers like
Kepler noticed geometric patterns that could be used to pin-
point the future locations of planets in the night sky. Newton
would later expand on these results to develop Newtonian
mechanics, fundamental laws that could not only predict
the movement of planets but also explain physical proper-
ties across the universe (Koestler, 1959; Gingerich, 2004).
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This path — from predicting sequences to understanding
the deeper mechanisms that underlie them — is not unique
to physics. In biology, animal breeders noticed patterns in
the traits of offspring long before their predictive insight
inspired Mendel to develop a theory of genetics.

How would we know if foundation models have also made
the leap from making accurate predictions to developing
reliable world models? This paper develops a framework for
answering this question. Specifically, we create a procedure
that, when given a foundation model and world model, tests
whether the foundation model has learned that world model.
We call this technique an inductive bias probe, and it is
built on a simple insight: the implicit world model of a
foundation model is revealed by how it extrapolates from
a small amount of information. This is inspired by how
scientists use world models — to make inferences from
small amounts of data. Similarly, the inductive bias of a
foundation model reveals its world model.

We first demonstrate this procedure using an example from
physics. Specifically, we aim to replicate Kepler’s and New-
ton’s experiments, albeit replacing the physicist with a foun-
dation model of orbital mechanics. Much like Kepler, the
model is able to predict orbital trajectories, even for solar
systems it has not seen.

What would it mean for this foundation model’s inductive
bias to be toward Newtonian mechanics? We demonstrate
one tangible way to test this: we fine-tune the foundation
model on a small dataset where the output is exactly the
force vector (a cornerstone of Newtonian mechanics) at
each point in the trajectory. If the foundation model’s world
model is toward Newtonian mechanics, it should have an
inductive bias towards these force vectors. In contrast, Fig-
ure 1 shows that the model produces poor force vectors.
More extremely, when we perform this exercise at a larger
scale across many solar systems, the law of gravity it uses to
generalize bears no resemblance to Newton’s law (Table 1).

We further apply inductive bias probes in other domains
with a known world model: lattice problems and Othello
games (Liu et al., 2022; Hazineh et al., 2023; Nanda et al.,
2023b; Vafa et al., 2024). Across these domains, we find
that neural sequence models have weak inductive biases
toward the given world models. We also highlight a practical
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Figure 1: Each pair of panels illustrates the trajectory of a planet in the solar system and its gravitational force vectors,
comparing the true Newtonian forces (left) to the predicted forces from a transformer foundation model pretrained on
orbital sequences and fine-tuned to predict forces. While the model excels at generating accurate predictions of planetary
trajectories (see Table 8), it does not have an inductive bias toward true Newtonian mechanics; moreover, its force predictions
recover a nonsensical force law, as revealed by symbolic regression.

implication of the inductive bias probe: models with better
inductive bias metrics have better performance when they’re
fine-tuned to perform new tasks that rely on the underlying
world model.

Taken together, our results provide a direction for under-
standing the deficiencies of foundation models: if a model’s
inductive bias isn’t toward a known model of reality, what is
it toward? We explore this question by examining whether
these foundation models have alternative inductive biases.
Our analysis reveals that these models instead behave as if
they develop task-specific heuristics that fail to generalize.
For physics, rather than learning one universal physical
law, the foundation model applies different, seemingly
nonsensical laws depending on the task it’s being applied
to. In lattice and Othello, models have an inductive bias
toward the set of legal next-tokens (e.g. a board’s legal next
moves) rather than the world model itself.

2. Framework
In this section, we lay out our framework for evaluating
whether a foundation model has learned a postulated world
model. We develop an inductive bias probe, which is a
procedure that evaluates the foundation model’s behavior as
it adapts to new tasks.

Data and tasks. Let x ∈ X denote an input and y ∈ Y de-
note some output. A dataset D = {(x1, y1), . . . , (xn, yn)}
is a collection of n input-output pairs. A task f : X → Y is
a mapping between inputs and outputs.

Foundation models: A foundation model is a learning al-
gorithm which, when given a dataset D, returns a prediction
function m̂D : X → Y that relates the input to the outputs.
Foundation models can take many forms; for example, m̂D

could be some pre-trained model that is fine-tuned on the
dataset D, or it can be an LLM that is supplied D in-context.

World model: A postulated world model is summarized by
a state space Φ and a mapping ϕ : X → Φ that associates
each input with some state ϕ(x) ∈ Φ. A dataset D is
consistent with the world model if for each (x, y) ∈ D, the
output is a deterministic function of the state, y = g(ϕ(x))
for some g : Φ → Y .

2.1. Comparing foundation models to world models

There is a challenge in defining what it means for a foun-
dation model to recover a world model: these two objects
sit in seemingly different spaces. A foundation model uses
datasets to output predictions given inputs, whereas a world
model describes state structure implicit in that data.
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One approach would be to mechanistically probe the foun-
dation model, e.g. by comparing its weight-level representa-
tions to the postulated states in the world model. However,
understanding the internal mechanisms of large models is
challenging (Olah, 2022) and even then may not reflect how
a model actually behaves on new data (Casper et al., 2023).
Another approach is to study the model’s behavior statically,
on a single task (Vafa et al., 2024), but this doesn’t capture
how foundation models are used in the real world: as tools
for new tasks.

We take a different approach, motivated by the no-free-lunch
theorem (Wolpert, 1996). Loosely speaking, the no-free-
lunch theorem states that if any function could have gener-
ated data between inputs and outputs, then no learning algo-
rithm can perform better than another on average. Given lim-
ited data, learning algorithms must extrapolate to unseen in-
puts, and since any underlying function is possible, any such
extrapolation must be equally good or bad. This means that
every learning algorithm is better for some collection of pos-
sible functions — those functions that it tends to select when
extrapolating from limited data. The functions that a learn-
ing algorithm tends to select represent its inductive bias.

The idea of inductive bias offers a connection between foun-
dation models and world models. A world model is a re-
striction on the possible functions from inputs to outputs:
only those that obey its state structure are possible. Conse-
quently, a foundation model that has learned a postulated
world model should have an inductive bias towards functions
that obeys the world model’s state structure. For example,
physicists may train a foundation model on sequences of
planetary orbits. Since planetary orbits obey Newtonian
mechanics, they might hope the model has an inductive bias
toward functions of Newtonian mechanics (e.g. predicting
the force vector between two planets).

We develop an inductive bias probe for testing whether a
foundation model’s inductive bias matches the postulated
world model’s state structure. The inductive bias probe re-
peatedly applies the foundation model to synthetic datasets
consistent with the world model and studies the extrapolated
functions together. In each such simulation, we do not cal-
culate the “accuracy” of the resulting extrapolations since
there is no one accurate function; multiple ways to extrapo-
late may be allowed by the true world model. Instead, we
evaluate whether the extrapolations resemble those that are
allowed by the true world model.

2.2. Special case: finite state space and binary outputs.

To further describe key intuition underlying the inductive
bias probe, we first consider the special case of a binary
output Y = {0, 1} and a postulated world model with a
finite state space Φ. The two metrics we introduce in this
setting are special cases of the general inductive bias probe

defined in the next section.

The inductive bias probe evaluates whether a foundation
model’s inductive bias is towards a postulated world model.
At a high level, the probe repeatedly applies the foundation
model to synthetic datasets consistent with the postulated
world model and each time evaluates its predictions on
held-out inputs. If the foundation model’s inductive bias
is towards the postulated world model, its extrapolations
should have two properties. First, the foundation model’s
predictions should respect state: if two inputs x, x′ map to
the same state (ϕ(x) = ϕ(x′)), the foundation model should
have the same predicted outputs (m̂D(x) = m̂D(x′)) when
applied across synthetic datasets. If not, it means that the
foundation model fits functions that do not belong to the
world model. Second, the foundation model’s predictions
should distinguish state: if two inputs x, x′ map to different
states (ϕ(x) ̸= ϕ(x′)), the foundational model should typi-
cally have different predicted outputs (m̂D(x) ̸= m̂D(x′))
across synthetic datasets. If not, then the foundation model
does not fit functions that fully cover the world model’s
allowable functions.

These properties can be measured using two metrics. Let
1(y, y′) denote the indicator for whether y = y′. We specify
a sampling distribution over consistent datasets D ∼ PD

and a sampling distribution over inputs (Xi, Xj) ∼ PX ×
PX . The foundation model’s inductive bias towards respect-
ing state (R-IB) is

EXi,Xj ,D[1(m̂D(Xi), m̂D(Xj)) | ϕ(Xi) = ϕ(Xj)]. (1)

R-IB measures the similarity between the foundation
model’s extrapolations on inputs in the same state under
the postulated world model: the higher R-IB, the more sim-
ilar are its predictions in the same states. The foundation
model’s inductive bias towards distinguishing state (D-IB)
is

1− EXi,Xj ,D[1(m̂D(Xi), m̂D(Xj)) | ϕ(Xi) ̸= ϕ(Xj)].
(2)

D-IB measures whether inputs that belong to different states
under the postulated world model nonetheless receive simi-
lar predictions by the foundation model: the higher D-IB,
the more dissimilar are its predictions on different states.

Together, R-IB and D-IB provide contrasting perspectives
on the foundation model’s implicit world model, analogous
to precision and recall in binary classification. For example,
while it is trivial for a foundation model to achieve high
R-IB by making the same prediction on every input, its
D-IB will suffer. Both metrics are needed to contrast the
foundation model’s inductive bias with the postulated world
model.

In this sense, the inductive bias probe captures behavior of
a foundation model that is not captured by standard probe
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Figure 2: Inductive bias probe performance (Equation 6)
for the transformer pretrained on orbital trajectories. A 45-
degree line would indicate perfect inductive bias toward an
oracle that extrapolates based on the Newtonian state vector.

tests (Li et al., 2024; Nanda et al., 2023b), which measures
how well a simple predictive model (e.g., a linear model)
can predict state from a foundation model’s intermediate
representation. By contrast, the inductive bias probe directly
analyzes how the foundation model behaves when adapted
to synthetic tasks from the postulated world model. When
there are many distinct state mappings that are predictable
from a foundation model’s internal representation, standard
probes cannot distinguish which is actually being used by
the model. Moreover, the standard probe is sensitive to how
state is mechanistically represented by the chosen world
model. For example, Nanda et al. (2023b) find that different
representations of the Othello game board (one based on
the standard board and another that inverts the board based
on whose turn it is) lead to different results by standard
probes. By contrast, because inductive bias probes only
depend on state equality, they are insensitive to equivalent
representations.

To implement the inductive bias probe, a practitioner must
supply a sampling distribution over consistent datasets PD

and a sampling distribution over inputs PX . In our ex-
periments with a finite state space and binary outputs (see
Section 4), we sample consistent datasets by assigning each
unique state the output 0 or 1 uniformly at random. We rec-
ommend examining the inductive bias probe for alternative
choices of sampling distributions PX .

2.3. Inductive bias probe

We now describe the inductive bias probe allowing for gen-
eral outputs, state spaces, and tasks. For example, for se-
quences of two planets orbiting one another, the states could
correspond to their relative positions, relative velocities,
and the masses of each planet under Newtonian mechan-
ics. We further introduce a collection of admissible func-
tions on state G that govern the relationship between the
state space and the output under the world model with each
g ∈ G : Φ → Y . For example, in some settings, we may
expect the output to vary smoothly with the state, in which

case G could be the collection of K-Lipshitz functions. A
dataset is now consistent with the world model if for each
(x, y) ∈ D, y = g(ϕ(x)) for some g ∈ G.

Given a sampling distribution over consistent datasets PD

and a sampling distribution over inputs PX , the inductive
bias probe repeatedly applies the foundation model to sam-
pled datasets, and then evaluates its predictions on held-
out inputs. It measures how predictable the foundation
model’s predicted outputs for one input are from those of
another input across many synthetic datasets. The intuition
is unchanged: inputs in “similar” states should be more
predictable from one another than inputs from “different”
states. We next formalize this property.

Extrapolative predictability. We further specify a family
of predictors H with h ∈ H such that h : Y → Y and a
loss function over outputs ℓ : Y × Y → R+. We define the
extrapolative predictability between two inputs as

Î(xi, xj) = −min
h∈H

ED∼P [ℓ(h(m̂D(xi)), m̂D(xj))], (3)

which measures how predictable the foundation model’s
predicted outputs for one input are from the other. Higher
values of extrapolative predictability indicate higher lev-
els of predictability. If a foundation model behaves as if
it extrapolates based on the postulated world model, the
extrapolative predictability should be larger for inputs with
more similar states.

Oracle foundation model. As a calibration, we calculate
the extrapolative predictability for an “oracle” foundation
model that is given access to the true state space Φ and
admissible functions G. When applied to consistent dataset
D, the oracle foundation model returns

m∗
D = argmin

g∈G
1

|D|
∑

(xi,yi)∈D ℓ(g(ϕ(xi)), yi). (4)

(The loss function used here need not be the same as the
loss function used to calculate extrapolative predictability.)
The oracle extrapolative predictability is

I∗(xi, xj) = −min
h∈H

ED∼P [ℓ(h(m
∗
D(xi)),m

∗
D(xj))]. (5)

Inductive bias towards the world model. The inductive
bias probe compares the foundation model’s extrapolative
predictability to that of the oracle. Specifically, the foun-
dation model’s inductive bias towards the world model is
defined as, for any 0 ≤ s ≤ s,

IB(s, s) = EXi,Xj
[Î(Xi, Xj) | s ≤ I∗(Xi, Xj) ≤ s].

(6)
We calculate this quantity over a grid of values 0 = s0 <
s1 < · · · < sm, visualizing how IB(s, s) varies over the
grid. The foundation model’s inductive bias towards the
world model can be interpreted like a calibration curve: if
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the foundation model behaves like the oracle when applied
to many small datasets, then IB(s, s) should lie on the 45-
degree line in this visualization (as illustrated in Figure 2).

R-IB and D-IB are special cases of the foundation model’s
inductive bias towards the world model (Equation 6). Con-
sider the case in which the output is binary, Φ is finite, and
G is the collection of all mappings. Provided PD places pos-
itive probability on all possible consistent datasets and H is
limited to the identity function, there are only two possible
values for the oracle’s extrapolative predictability, which
occur when ϕ(xi) = ϕ(xj) and when ϕ(xi) ̸= ϕ(xj). Con-
sequently, the foundation model’s inductive bias towards the
world model reduces to R-IB in in the former case (Equa-
tion 1) and D-IB (up to a sign change) in the latter case
(Equation 2).

3. Orbital Mechanics
We illustrate these ideas by testing whether a transformer
trained to predict the locations of planets in motion has
recovered Newtonian mechanics. Despite the model’s abil-
ity to accurately predict the future trajectories of planets,
the inductive bias probe reveals that it has a low inductive
bias toward Newtonian mechanics. This is corroborated
by the fact that when the model is fine-tuned to predict a
planet’s force vector — a cornerstone of Newtonian mechan-
ics — its predictions imply a nonsensical law of gravitation.
We demonstrate that the model has recovered piecemeal
heuristics rather than a compact world model; it recovers a
different law of gravitation depending on the slice of data it
is applied to.

Background. Astronomers and physicists spent centuries
trying to predict the orbits of planets in the sun. A ground-
breaking model was offered by the astronomer Johannes
Kepler in the 17th century. His model was based on geo-
metric patterns: for example, that the orbit of each planet
followed an ellipse with the sun at one of its foci. While
the model could predict orbits with a near-perfect level of
precision, it couldn’t explain why the planets obeyed these
geometric orbits or be applied to new problems beyond
predicting trajectories.

Later, Isaac Newton expanded on this model using new laws
of motion, now known as Newtonian mechanics. These laws
involved computing key properties of the set of planets in
motion, such as their relative velocities and masses. Using
these properties, he could derive Kepler’s earlier laws for
orbital trajectories, but also go beyond, understanding and
formalizing other concepts like force and gravity.

From Kepler to Newton, scientists were able to move beyond
good predictive models of sequences to a deeper understand-
ing of them. In this section, we test whether a transformer
that can predict sequences of orbital trajectories is merely

a good sequence model, or whether it has also made the
transition to something more foundational.

Data and pre-training. We first simulate a dataset of se-
quences, where each sequence describes planets in motion
around a sun. To do this, we randomly sample initial condi-
tions (e.g. the masses and positions of the planets and their
initial relative velocities) to target the shape of orbits ob-
served in known exoplanets (Kipping, 2013). We simulate
each planet’s trajectory around the sun using Newton’s laws
of motion; because planet masses are much smaller than the
sun’s, interactions between planets are minimal, so we omit
them. To convert orbits into sequences, we record (x, y)
coordinates of each planet and the sun across 6-month inter-
vals, and interleave all the locations into a single sequence
with 1,000 observations. For example, in a solar system
with K planets, the first K observations are the (x, y) co-
ordinates for each planet at the first point in time, while
the next K are the coordinates for each planet 6 months
later, etc. We consider sequences taken from a training set
containing 1B tokens, along with 300K hold-out tokens.

We train a 109M parameter transformer (Vaswani et al.,
2017) to predict the next token of each sequence in the
training set. We experimented with performing next-token
prediction using a) the continuous coordinates (and MSE
loss) and b) discretized coordinates (with cross-entropy
loss), finding the latter worked better. We discretize each po-
sition vector of each body in the solar system by creating 7K
bins per coordinate (x, y), where the coordinates spans from
-50 to 50 AU. See Appendix A for complete training details.

We evaluate the model’s predictions on hold-out data. The
model makes good predictions: its R2 is above 0.9999, and
it significantly outperforms baseline models that always
predict the most recent position or the per-orbit mean
(Table 8). It can also generate long orbits with a high degree
of accuracy.

Has the model recovered Newtonian mechanics? The
transformer’s predictions reflect a very good sequence
model. But has it recovered Newtonian mechanics? To
test this, we note that Newtonian mechanics dictate that
each observation in a sequence of orbits is governed by a
state vector consisting of the masses, relative velocities, and
relative positions of each planet. Given the current state of a
trajectory, the next position of an orbit is deterministic. This
is our world model; if a foundation model’s inductive bias
depends on Newtonian mechanics, it must be extrapolating
based on this state vector.

We use the inductive bias probe described in Section 2 to
assess the model’s inductive biases. We create 100 synthetic
datasets where the outputs are linear functions of the state of
the sequence. We then fine-tune the transformer by training
it to predict these functions. We measure the model’s extrap-
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Table 1: Force equations recovered via symbolic regression
of the transformer pretrained on orbital mechanics and fine-
tuned to different galaxy samples. The model recovers
different equations for each sample, never recovering the
true law.

olative predictability across inputs (Equation 3) by consider-
ing H to consist of the identity and the loss function ℓ to be
MSE. We evaluate Equation 6 by comparing the model to
an oracle that extrapolates based on state directly (we con-
sider both linear models and 2-layer neural networks for the
oracle, finding similar results). The inductive bias toward
simple functions of Newtonian state is poor; see Figure 2 for
a visualization. In other words, the model’s inductive bias
is not toward Newtonian state; when it has to extrapolate,
it makes similar predictions for orbits with very different
states and different predictions for orbits with very similar
states. For implementation details, see Appendix B.1.

To understand the degree to which the model fails to apply
Newtonian mechanics, we test its ability to predict spe-
cific quantities derived from Newtonian mechanics. Specifi-
cally, we consider each planet’s force vector, a simple trans-
formation of state given by Newton’s law of gravitation:
F = Gm1m2

||r||2 er, which relates the force F between a planet
and the sun to their masses m1,m2 and their squared dis-
tance ||r||2 (in the direction er of its relative position). The
force vector can be computed for each observation in a se-
quence; force is a simple transformation of state, so the
predictions of a model that has recovered Newtonian me-
chanics should obey this law.

We test this by creating a sequence-to-sequence dataset
where each input is a trajectory and each output is the force
vector F on the planet implied by the state of the orbit. We
first fine-tune the pretrained transformer to predict the force
vector on orbits from our solar system, providing 1% of
the true forces as training data. Figure 1 shows these force
predictions are poor. To assess how close the model is to
recovering Newton’s law of gravitation, we further fine-tune
it to predict the force magnitude on a large dataset of 10,000
solar systems. We then perform a symbolic regression (us-
ing the PySR software (Cranmer, 2023)) of the predicted
force magnitudes on the true values of m1,m2, and r. A
symbolic regression is a method to search for a symbolic
expression that optimizes a regression-like objective (Cran-

mer et al., 2020). When the magnitudes are predicted using
a 2-layer neural network fine-tuned on the same data using
the true state matrix, it returns the true law of gravitation.
However, when the symbolic regression is applied to the
transformer’s predictions, the physical law is nonsensical
(Figure 1). See Appendix C for implementation details.

How can a model perform so well at predicting orbit loca-
tions without having inductive biases towards the laws of
physics that govern them? We study this question by apply-
ing the fine-tuned model’s force predictions to four different
sets of randomly sampled galaxies (each consisting of many
solar systems). We then perform a symbolic regression on
the force magnitude for each sample. The symbolic regres-
sion finds a different implied law of gravitation for each
sample (Table 1). In contrast, the neural network trained
on true state recovers the same law for each galaxy. These
results show that rather than building a single universal law,
the transformer extrapolates as if it constructs different laws
for each sample.

4. Other Applications
We now apply the inductive bias probe to evaluate the extent
to which foundation models obey known world models in
other domains. Evaluating world models requires studying
domains where there’s a state structure and ground-truth
state is known. We study two such types of datasets: lattice
problems and the board game Othello. In Appendix D, we
also apply these metrics to study the inductive biases of
large language models in a synthetic preference task.

Lattice. One common type of structure to assess models
against is spatial structure, or lattices (Vafa et al., 2024; Liu
et al., 2022). We study a lattice setting that simulates an
agent moving along a line segment with a finite number of
positions. There is a true state space consisting of S states:
Φ = {1, 2, . . . , S}. The language x consists of sequences
with three tokens: Σ = {L,⊥, R}. The initial state of the
sequence is 1. For a token σ = R, the state increases by 1,
while the state decreases by 1 for σ = L and stays the same
for σ =⊥. When the state is 1, the state is at the boundary,
so σ = L is not a valid token; similarly, when the state is
S, σ = R is not a valid token. All tokens are valid for all
other states. We randomly generate sequences of length
100 over the language by sampling a move uniformly at
random over the set of valid moves for each timestep. We
consider different versions of the lattice problem, varying
the number of states from 2 - 5. We consider sequences
taken from a training set containing 10M tokens, along with
100k hold-out tokens.

Othello. We also study the board game Othello, a common
testbed for evaluating the world models of sequence models
(Li et al., 2023; Nanda et al., 2023b; Hazineh et al., 2023;
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Lattice (5 States) Othello
Pre-training R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑)

RNN Untrained 0.346 (0.026) 0.749 (0.027) 0.240 (0.019) 0.987 (0.002)
(Elman, 1990) NTP trained 0.574 (0.026) 0.803 (0.032) 0.558 (0.021) 0.845 (0.019)

LSTM Untrained 0.456 (0.028) 0.718 (0.031) 0.506 (0.028) 0.672 (0.032)
(Hochreiter, 1997) NTP trained 0.782 (0.021) 0.921 (0.030) 0.649 (0.030) 0.448 (0.035)

Transformer Untrained 0.268 (0.027) 0.742 (0.028) 0.714 (0.022) 0.840 (0.021)
(Vaswani et al., 2017) NTP trained 0.483 (0.031) 0.677 (0.034) 0.668 (0.023) 0.593 (0.034)

Mamba Untrained 0.260 (0.026) 0.771 (0.027) 0.342 (0.019) 0.933 (0.013)
(Gu & Dao, 2023) NTP trained 0.571 (0.023) 0.866 (0.029) 0.597 (0.024) 0.734 (0.028)

Mamba-2 Untrained 0.244 (0.026) 0.785 (0.026) 0.490 (0.020) 0.936 (0.008)
(Dao & Gu, 2024) NTP trained 0.617 (0.021) 0.864 (0.029) 0.590 (0.022) 0.732 (0.027)

Table 2: The inductive bias towards respecting state (R-IB) and inductive bias towards distinguishing state (D-IB) metrics
(1 is perfect performance, 0 is equivalent to noninformative model). “NTP-trained” represents a model pre-trained on
next-token prediction, while “untrained” refers to a model trained on the same synthetic tasks, initialized from scratch.
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Figure 3: Inductive bias probe results (R-IB and D-IB) for
the lattice problem as a function of the underlying number
of states. A different model is pre-trained on data consistent
with each number of states and its inductive bias for that
state structure is recorded using the metrics in Section 2.

Vafa et al., 2024). The game consists of two players taking
turns placing tiles on an 8x8 board. Each game of Othello is
tokenized into a sequence of at most 60 moves, where each
token indicates which of the 60 squares the most recent tile
was placed on (the middle four tiles are always occupied).
The true state space Φ corresponds to all 8x8 boards and the
mapping ϕ converts game sequences into states. We con-
sider game sequences taken from a training set containing
7.7M tokens, along with 300K hold-out tokens.

Models. We study the properties for five classes of pre-
trained sequence models: RNNs (Elman, 1990), LSTMs
(Hochreiter, 1997), transformers (Vaswani et al., 2017),
Mamba (Gu & Dao, 2023), and Mamba-2 (Dao & Gu,
2024). We train each model using next-token prediction
for each domain. By way of comparison, we also compare
these pretrained models to untrained models that fine-tune
from a random initialization. See Appendix A for more
information.

All pre-trained models perform well at next-token predic-
tion, generating outputs that appear to obey state. Following
Toshniwal et al. (2022), we measure the fraction of a
model’s top predictions that are legal in the underlying
state. Table 7 in Appendix G shows the results. All models
do very well across all datasets, e.g. every model’s top
prediction is legal ≈ 90% of the time for Othello and legal
100% of the time for a lattice problem with five states.

Inductive bias probe results. We measure each model’s
inductive bias using the procedure from Section 2 to assess
the inductive bias of these models. The procedure involves
fine-tuning each model to small datasets of randomly gen-
erated outputs and assessing whether the model’s inductive
bias — as measured by its extrapolations — obeys state
structure. We use the discrete version of the procedure for
both models.

The results for the lattice problem are depicted in Figure 3.
While models have high inductive biases when the number
of states is small, as the number of states increases, the in-
ductive biases drop off. Notably, the transformer model con-
sistently does worse than the other models, all of which have
architectures based on recurrent or state-space models. The
results for Othello are depicted in Table 2. Here, all models
perform worse than on the lattice problems, indicating poor
inductive bias. Despite generating legal moves nearly 100%
of the time when pretrained to play Othello, these models
don’t use the board as an inductive bias on new tasks.

To understand the implications of these results, we study
how different models transfer to new functions of state (the
board). Specifically, we take the Othello dataset and con-
struct new sequence-to-sequence datasets. The input se-
quence for each dataset is the original game transcript, and
we consider three different output transformations that are
functions of state. In “Majority Tiles”, each element of
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Legal next move Incorrect tile prediction

True board Predicted board

Figure 4: On the left, a true Othello board implied by a sequence, and on the right, the predicted board from a model
fine-tuned to predict boards. Although the prediction has errors, the set of predicted next tokens exactly matches the true
board. On the right, metrics about board reconstruction during fine-tuning. Consistently, even as Mamba models struggle to
recover full boards, they recovers them well enough such that the sets of valid next moves match the true boards.

the output is 1 or 0 indicating where there are more black
or white tiles in the board implied by the sequence so far.
In “Board Balance”, each element of the output sequence
indicates whether black has more pieces in the top half of
the board or in the bottom half of the board. Finally, in
“Edge Balance”, the output measures whether black has
more pieces along the edge squares of the board. Each
of these functions is a deterministic function of state (the
board), so foundation models that have inductive bias to-
ward state should be better at transfer. We transfer models
for 5,000 iterations; see Appendix F for other amounts. The
results are depicted in Table 6. The last row shows the (un-
signed) correlation for each metric and the ratio, R-IB

D-IB that
summarizes the inductive bias measures in Table 2. There is
strong correlation across all metrics; models that do better
on inductive bias metrics transfer better to these functions
of state. See Appendix F for further analysis.

What are the inductive biases? These results show that
models can perform well at predicting token sequences with-
out appearing to learn the underlying world model. This
raises the question: If a foundation model’s inductive bias
isn’t toward a given world model, what is it toward?

Here, we consider one hypothesis motivated by the next-
token pretraining objective: that when foundation models
are applied to new tasks, they group together sequences
with distinct states for which the set of legal next tokens are
nevertheless equivalent. For example, in the board game
Othello, two distinct boards can have the same set of al-
lowable next moves. Therefore, a model’s inductive bias
might be toward boards with the same sets of allowable next
moves rather than the true board itself.

To first demonstrate this concept with Othello, we fine-tune
a foundation model pretrained on next-token prediction to
predict the true board of each sequence. We record two
metrics when we fine-tune: 1) whether the predicted board

exactly matches the true board, and 2) whether the set of
valid moves in the predicted board matches the set of valid
moves in the true board. The results are depicted in Figure 4:
surprisingly, even when the predicted board is incorrect, the
set of legal moves frequently matches the set of legal moves
from the true board. Rather than recovering the full board,
the foundation model is often recovering “enough of” the
board to calculate legal next moves.

To quantify this hypothesis generally, we modify the in-
ductive bias probe to test whether a model’s inductive bias
is toward next-token partitions of state. Recall that D-IB
measures how similar extrapolations for two points with
different states are one from another. If a model is extrap-
olating based on which next-tokens are legal, sequences
in different states that happen to have the same legal next
tokens will have more similar predictions than sequences in
different states that have different legal next tokens.

Specifically, let q denote the next-token coarsening
of the state space such that q(x) = q(x′) if and
only if NextTokens(ϕ(x)) = NextTokens(ϕ(x′)), where
NextTokens(s) is the set of valid next tokens for state
s. We decompose D-IB into two quantities. First, de-
fine Same(Xi, Xj) as the event that ϕ(Xi) ̸= ϕ(Xj) but
q(Xi) = q(Xj). We then define,

D-IBq= = 1−E [1(m̂D(Xi), m̂D(Xj)) | Same(Xi, Xj)] ,

which measures how predictable the extrapolations for in-
puts associated with different states that have the same legal
next tokens are. Similarly, define Diff(Xi, Xj) as the event
that ϕ(Xi) ̸= ϕ(Xj) and q(Xi) ̸= q(Xj). Analogously,

D-IBq ̸= = 1− E [1(m̂D(Xi), m̂D(Xj)) | Diff(Xi, Xj)] ,

which measures how predictable the extrapolations for in-
puts associated with different states that have different legal
next tokens are. If distinct-state inputs with the same legal
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next tokens are more predictable than distinct-state inputs
with different legal next tokens (i.e., D-IBq= < D-IBq ̸=),
then it suggests the model extrapolates based on the next-
token partition rather than the true board state.

We compute these refined metrics for lattice and Othello.
Each has a natural definition of legal next moves (cor-
responding to boundaries and game rules). The results
are depicted in Table 9. For all models, the gap between
D-IBq= and D-IBq ̸= is statistically significant, suggesting
that models are grouping together distinct states with the
same sets of legal next tokens.

5. Related Work
One strand of world model research studies whether the
outputs of a fixed model accord with a known world model
by studying the fixed model’s outputs (Vafa et al., 2024).
For example, one way that Toshniwal et al. (2022) and Li
et al. (2023) study world models is by assessing whether
a model trained on sequential game data always predicts
legal moves in the underlying game. The question we study
is a different yet related question: rather than studying the
world model properties of a fixed model, we study what it
means to test if a learning algorithm — a foundation model
— has a world model embodied in it.

Another strand of the literature assesses whether a model’s
parametric representations encode world models without
directly studying learning properties. For example, a
common method uses probes or sparse autoencoders (SAEs)
(Trenton Bricken et al.) to assess whether an intermediate
representation used by a neural network is predictive of
state (Hewitt & Liang, 2019; Li et al., 2021; Abdou et al.,
2021; Jin & Rinard, 2023; Li et al., 2023; Spies et al.,
2025; Karvonen, 2024). However, there are open questions
about the reliability of probes (Belinkov, 2022), such as
appropriate function complexity (Alain & Bengio, 2018;
Cao et al., 2021; Li et al., 2023). Our method sidesteps
these issues by asking how a model learns, rather than
what’s encoded in its fixed representations.

The methods in this paper are also related to the study of
mechanistic interpretability of ML models (Nanda et al.,
2023a; Cunningham et al., 2023; Bereska & Gavves, 2024).
Closely related to us, jylin04 & Rager (2024) and Nikankin
et al. (2025) find that a GPT model trained on Othello and
math tasks, respectively, performs internal computations
corresponding to “bags of heuristics” rather than a coherent
world model. While our procedures differ in aim, these
findings support our analysis of the Othello model relying
on heuristics, rather than state, as its inductive bias (McCoy
et al., 2019).

Recent work developing foundation models in scientific
domains such as like protein folding, gene regulation, and

molecular chemistry (Chowdhury et al., 2022; Benegas et al.,
2023; Boiko et al., 2023; Jablonka et al., 2024) use predic-
tive models as steppingstones toward uncovering deeper
principles. Our orbital mechanics example relates specif-
ically to the large body of work studying AI and physics
(Hao et al., 2022; Wu & Tegmark, 2019). It is most closely
related to works studying whether AI models can uncover
physical laws (Chen et al., 2022; Belyshev et al., 2024;
Kansky et al., 2017; Gurnee & Tegmark, 2024). We adapt
tools from this literature — such as using symbolic regres-
sions for interpretability — to study the inductive biases of
algorithms (Liu & Tegmark, 2021; Wu & Tegmark, 2019).

6. Conclusion
The promise of foundation models is that sequence predic-
tion can uncover deeper understanding of underlying mech-
anisms. We develop a framework for evaluating whether
a foundation model has learned a postulated world model
by measuring its inductive biases when transferring to new
tasks. Our empirical results reveal that while many sequence
models excel at next-token prediction tasks, they often have
limited inductive bias toward genuine world models. Rather
than learning coherent world models, we find that these
models may be relying on coarsened state representations
or non-parsimonious representations.

As described in Section 2, our metrics require specifying
a world model to test a foundation model against. That a
world model must be specified aligns with other examples
in this literature (Li et al., 2023; Vafa et al., 2024), but it is a
limitation for analysts searching for the exact representation
the model is using. While we propose strategies for testing
candidates (e.g. next-token partitions), future work should
prioritize methods for automatically constructing the world
model implicit in the foundation model’s behavior.
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A. Model and Training Details
We use the following specifications for each model:

• RNN (Elman, 1990): For Othello, We use 6 uni-directional RNN layers with 768 embedding dimensions. For the
lattice experiments, the architecture is the same except we use only 2 layers because it optimizes to better in-sample
and out-of-sample loss.

• LSTM (Hochreiter, 1997): We use the same specification as for the RNN, except we use LSTM layers.

• Transformer (Vaswani et al., 2017): We use a transformer decoder architecture, with 12 layers, 12 attention heads, and
768 embedding dimensions.

• Mamba (Gu & Dao, 2023): We first encode inputs with a 768-dimension embedding layer. We then pass inputs
through 24 Mamba layers (analogous to 12 layers in a transformer due to how Mamba layers are defined). We use
768 embedding dimensions, 16 for the SSM state expansion factor, 2 for the block expansion factor, and 4 for the
convolutional width.

• Mamba-2 (Dao & Gu, 2024): We use the same architecture as for Mamba except the mixer in each block is a Mamba-2
module. We use the same specifications as well: 768 embedding dimensions, an SSM state expansion factor of 16, a
block expansion factor of 2, and a convolutional width of 4.

We use Adam (Kingma & Ba, 2014) to optimize each model. We use a learning rate of 6e-4 and decay the learning rate
with with 2000 warmup iterations. We use weight decay of 0.1 and gradient clipping at 1 for each model. When we
pre-train models on next-token prediction, we include a head to predict next tokens (tying its parameter weights to the initial
embedding layer parameters).

For physics dataset generation, we use the following sampling strategy. For each solar system, we sample the number
of planets from Unif([1, 2, . . . , 10]), the eccentricity from a Beta(α = 0.867, β = 3.03) following (Kipping, 2013), the
semi-major axis from Unif(0.3, 42), in astronomical units (AU), the mass of each planet from LogUniform(10−7, 10−3),
the mass of the star from Unif(0.5, 5). These distributions ensure that our solar system is within the training distribution of
the model. In order to generate sequences, we randomly generate initial conditions and solve Kepler’s equation to obtain
each trajectory. We simulate 1000 timesteps with 6-month intervals for each sequence.

B. Metric Implementation Details
B.1. Physics

To compute the empirical approximations of Equation 6, we follow the following procedure. First, we create 100 datasets of
100 examples, D1, . . . , D100. For each dataset Di, we sample 100 sequences uniformly at random among the set of data
points and consider their corresponding sequences of state-vectors. First, we randomly sample 50 matrices of dimension
(6× 1) from standard Gaussian. We consider the linear projection of each state-vector using each of the 50 matrices, and
choose the one that maximizes the Spearman correlation between pairwise Euclidian distances in the 6D state space and the
projected 1D space. We randomly sample a projected point from each sequence, leading to Di of size 100. We then fine-tune
a model separately for each dataset, resulting in 100 fine-tuned models m̂(·;D1), . . . , m̂(·;D100). We then calculate the
associated prediction functions across all inputs xi from the same hold-out dataset, resulting in new datasets of the form
{(xi, m̂(xi;D1)}, . . . , {(xi, m̂(xi;D100)}.

To compute the metrics, we first randomly sample 2,000 examples from all inputs, xk1 , . . . xk100 , compute the pairwise
Euclidean distance among the Oracle (a linear map or a 2 layer MLP with 5 nodes in each hidden layer) predictions on the
inputs, and divide the range of predictions into 20 equally-spaced bins. For all the points that lie in each bin, we compute the
mean pairwise Euclidiean distance among the model predictions. The resulting figure is shown in Figure 2.

B.2. Lattice and Othello

To compute the empirical approximations of Equation 1 and Equation 2, we follow the following procedure. First, we create
100 datasets of 100 examples, D1, . . . , D100. For each dataset, we sample sequences uniformly at random among the set of
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data points and sample outputs from a Bernoulli(0.5) distribution. In our construction we make sure that any two sequences
with the same state are mapped to the same output variable. We then fine-tune a model separately for each dataset, resulting
in 100 fine-tuned models m̂(·;D1), . . . , m̂(·;D100). We then calculate the associated prediction functions across all inputs
xi from the same hold-out dataset, resulting in new datasets of the form {(xi, m̂(xi;D1)}, . . . , {(xi, m̂(xi;D100)}.

To compute the metrics, we first randomly sample 2,000 examples from all inputs, xk1 , . . . xk100 , then measure the average
predictive loss for all pairs (xki , xkj ) with the same state, ϕ(xki) = ϕ(xkj ) (R-IB):

R-IB ≈ ED∼Dtest

[
Ei,j:ϕ(xki

)=ϕ(xkj
) [m(xi;D) = m(xj ;D)]

]
(7)

and the average predictive loss for all pairs (xki , xkj ) with different states, ϕ(xki) ̸= ϕ(xkj ) (D-IB):

D-IB ≈ 1− ED∼Dtest

[
Ei,j:ϕ(xki

)̸=ϕ(xkj
) [m(xi;D) = m(xj ;D)]

]
(8)

We rescale them so that the value of 0 corresponds to perfect accuracy and 1 corresponds to random guessing (large values
for both indicate the model exhibits stronger inductive bias towards the state).

For the lattice example, we use a state space consisting of k states: Φ = {1, 2, . . . , k}. The inputs xi for extrapolation are
taken from 1,000 random sequences of valid moves, each of length 100, for a total of 100,000 sub-sequences of moves. Our
procedure for Othello follows the same steps as for the lattice example, except the state is a 64-dimensional board instead of
a single categorical variable.

Note that for Othello, if we randomly sample sequences from game transcripts, it is exceedingly likely that we end up with a
dataset in which two sequences lead to the same state if and only if they are permutations of one another. This implies that a
non-sophisticated model that detects unique permutations of sequences would appear to have high inductive bias towards the
state. To prevent this, we first construct all valid Othello game openings of depth 10, randomly choose a board that appears
many times in this dataset, then use all possible valid permutations of any sequence of moves that leads to that board as
our input dataset. Note that since all sequences will be permutations of one another, the non-sophisticated model would no
longer be able to distinguish different states. We end up with an input dataset of 210 Othello openings, each of length 10, for
a total of 2,100 subsequence of moves.

C. Force Prediction Implementation Details
Force Vector Prediction. To predict force vectors (Figure 1), we fine-tune the transformer to predict force vectors in
two-body gravitational systems. We keep force vectors as continuous, and normalize each sequence so the maximum force
vector has the same length. We specifically fine-tune the model on the 8 sequences consisting of the trajectories in our solar
system, randomly using 1% of the observations in each 1000-length sequence as labeled force vector data for the model.
We fine-tune the model to minimize MSE. The model is then extrapolated to make predictions across the remainder of the
points in each sequence. For comparison, we perform the same procedure for a two-layer neural network trained to predict
force from ground-truth Newtonian state using the same data, and find that its force predictions are near-perfect.

Force Magnitude Prediction. The symbolic regression experiments depend on the force magnitude rather than the force
vector. We find that models perform better when the force magnitude is discretized. Specifically, we discretize force
magnitudes into 5k bins, where the magnitudes span 2e-7 to 5e-3. We fine-tune the transformer on 10K two-body training
dataset (or four 10K two-body training datasets for Table 1) and evaluate the predictions on 1000 randomly sampled points
across sequences. We use the same procedure for the oracle, training a two-layer neural network on the ground truth state on
a dataset of 10K two-body sequences. We then run symbolic regression on the predictions, and report results.

D. LLM Experiments
Our experiments so far have been for fine-tuning foundation models on non-text datasets. Here, we apply our framework in
a setting involving large language models. Fine-tuning isn’t the only way that foundation models can be applied to new data;
it’s also common to apply foundation models, especially large language models, with few-shot learning. We explore such an
experiment here.

Our metrics require a mapping between input space and state space. Because it is difficult to construct such mappings over
all sequences of natural language, we use consider a constrained language setting. Specifically, we prompt a large language
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Model Results

R-IB (↑) D-IB (↑)
Mixtral-8x7B (Instruct-v0.1) 1.000 (0.000) 0.720 (0.096)
Qwen2.5-72B (Instruct-Turbo) 1.000 (0.000) 0.680 (0.095)
Llama-3.1-8B (Instruct-Turbo) 1.000 (0.000) 0.666 (0.385)
Llama-3.3-70B (Instruct-Turbo) 1.000 (0.000) 0.640 (0.093)
Llama-3.1-405B (Instruct-Turbo) 1.000 (0.000) 0.040 (0.028)
Claude-3.5-Sonnet (20241022) 1.000 (0.000) 0.960 (0.100)

Table 3: Inductive bias metrics for LLM experiments.

I’m a marketer, and there are some customers I’m trying to reach out to and some I’m not interested in. I’m basing whether I reach
out to them entirely on their preference ordering of items, not how that preference ordering is described. I’ll list the statements and
then whether I reach out to them:

“I like apples more than bananas more than coconuts.” Reach out: Yes
“I like apples more than bananas more than coconuts.” Reach out: Yes
“I like apples more than coconuts more than bananas.” Reach out: No
“I like bananas more than apples more than coconuts.” Reach out: No
“I like coconuts more than apples more than bananas.” Reach out: Yes

I’m going to give you four statements from new customers. Tell me whether or not I should reach out to them (which recall is based
entirely on their preference ordering of items). For orderings you haven’t seen, randomly assign them an outcome. Each statement
will be labeled A, B, C, or D. You can reason all you want, but I want your answer to end with one line, where each letter is followed
by a colon, a space, the outcome for that letter (“YES” or “NO”), then a comma and another space (except for the prediction for the
last letter, which is followed by nothing). For example, “A: YES/NO, B: YES/NO, C: YES/NO, D: YES/NO”

A: “I like bananas more than coconuts more than apples.”
B: “I like coconuts more than apples more than bananas.”
C: “I like coconuts more than apples more than bananas.”
D: “I like coconuts more than bananas more than apples.”

Figure 5: Example prompt used in LLM experiments.

model from the perspective of a marketer who’d like to reach out to users depending on their rank ordering of items. We
provide the LLM with a list of example descriptions of rank orderings and decisions (randomly drawn) about whether we’d
like to reach out to them. We then provide the LLM with a new list of rank orderings and prompt the LLM to determine
which customers to reach out to. Because the same rank orderings can be expressed in different ways (e.g. “I like apples
more than coconuts more than bananas” versus “Bananas are my least favorite, followed by coconuts, followed by apples”),
we instruct the large language model to extrapolate based only on the ordering and not on the style. We further instruct the
model to extrapolate randomly to rank orderings it has not seen. See Figure 5 for an example prompt.

Using a fixed list of in-sample rank orderings, we construct datasets by randomly sampling binary “reach out” decisions,
ensuring that individuals with the same rank ordering in our in-context sample have the same “reach out” decisions. We
sample lists of “reach out” decisions 100 times. For each sampled context, we provide the model with the context and
prompt it to extrapolate to a fixed set of new descriptions. From these, we measure R-IB and D-IB as before.

The results are depicted in Table 3. All LLMs have perfect inductive bias toward respecting state, meaning they do always
extrapolate to same-state pairs in fully predictable ways. However, the inductive bias toward distinguishing state is much
more varied; some models score as low as 0.040, while only a single model (Claude-3.5 Sonnet) scores above 0.75. These
results show that while LLMs respect state in this setting, they are extrapolating based on more than just state, resulting in
predictability across extrapolations for unrelated states.

E. Inductive Bias Ablations
On the Othello dataset, we perform ablation of the IB metrics on the number of fine-tuning iterations (Table 4), keeping the
number of fine-tuning examples fixed to 100, and the number of fine-tuning examples (Table 5), keeping the number of
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Figure 6: Hold-out loss progress for transfer learners for the “board balance” transfer task.

fine-tuning iterations fixed to 100.

# iterations 10 50 100 500

R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑)

RNN 0.623 (0.023) 0.738 (0.030) 0.560 (0.022) 0.837 (0.020) 0.558 (0.021) 0.845 (0.019) 0.561 (0.022) 0.854 (0.018)

LSTM 0.680 (0.027) 0.491 (0.037) 0.652 (0.030) 0.445 (0.035) 0.649 (0.030) 0.448 (0.035) 0.653 (0.030) 0.451 (0.035)

Transformer 0.735 (0.020) 0.605 (0.035) 0.665 (0.024) 0.583 (0.035) 0.668 (0.023) 0.593 (0.034) 0.680 (0.021) 0.620 (0.030)

Mamba 0.626 (0.024) 0.704 (0.030) 0.595 (0.024) 0.731 (0.028) 0.597 (0.024) 0.734 (0.028) 0.600 (0.024) 0.732 (0.029)

Mamba-2 0.586 (0.023) 0.720 (0.028) 0.592 (0.022) 0.728 (0.027) 0.590 (0.022) 0.732 (0.027) 0.583 (0.023) 0.746 (0.027)

Table 4: Results for ablating the number of iterations of fine-tuning.

# examples 10 50 100 500

R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑) R-IB (↑) D-IB (↑)

RNN 0.725 (0.023) 0.491 (0.037) 0.622 (0.024) 0.698 (0.029) 0.558 (0.021) 0.845 (0.019) 0.466 (0.020) 0.934 (0.010)

LSTM 0.838 (0.023) 0.302 (0.038) 0.693 (0.032) 0.409 (0.037) 0.649 (0.030) 0.448 (0.035) 0.710 (0.026) 0.457 (0.034)

Transformer 0.843 (0.023) 0.284 (0.035) 0.707 (0.024) 0.541 (0.034) 0.668 (0.023) 0.593 (0.034) 0.549 (0.021) 0.796 (0.021)

Mamba 0.705 (0.024) 0.547 (0.035) 0.622 (0.025) 0.653 (0.032) 0.597 (0.024) 0.734 (0.028) 0.482 (0.021) 0.843 (0.022)

Mamba-2 0.665 (0.026) 0.609 (0.037) 0.636 (0.022) 0.660 (0.030) 0.590 (0.022) 0.732 (0.027) 0.534 (0.021) 0.829 (0.019)

Table 5: Results for ablating the number of examples used for fine-tuning.

F. Additional Transfer Results
Figure 6 and Figure 7 show examples of training progress for the transfer learning experiments considered in Section 4.
These graphs show that the Mamba oracle model has an advantage over the transformer across all stages of fine-tuning on
new functions of the Othello state. However, models pre-trained on next-token prediction don’t achieve this bound. Instead,
the transformer trained on next-token prediction transfers better than Mamba trained on next-token prediction despite the
superior oracle properties of the Mamba model.
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Figure 7: Hold-out loss progress for transfer learners for the “majority” transfer task.

Majority Tiles Board Balance Edge Balance
Pretraining NLL (↓) ACC (↑) NLL (↓) ACC (↑) NLL (↓) ACC (↑)

RNN Untrained 0.362 (0.002) 0.825 (0.001) 0.290 (0.002) 0.865 (0.001) 0.087 (0.001) 0.963 (0.001)
NTP trained 0.308 (0.003) 0.857 (0.002) 0.210 (0.004) 0.907 (0.002) 0.077 (0.002) 0.967 (0.001)

LSTM Untrained 0.349 (0.002) 0.831 (0.001) 0.234 (0.002) 0.892 (0.001) 0.079 (0.001) 0.965 (0.001)
NTP trained 0.275 (0.003) 0.880 (0.002) 0.173 (0.003) 0.923 (0.001) 0.043 (0.002) 0.981 (0.001)

Transformer Untrained 0.413 (0.002) 0.798 (0.001) 0.259 (0.002) 0.880 (0.001) 0.073 (0.001) 0.968 (0.000)
NTP trained 0.249 (0.003) 0.889 (0.002) 0.170 (0.003) 0.924 (0.002) 0.048 (0.003) 0.983 (0.001)

Mamba Untrained 0.297 (0.002) 0.866 (0.001) 0.215 (0.002) 0.904 (0.001) 0.058 (0.001) 0.976 (0.000)
NTP trained 0.260 (0.003) 0.882 (0.002) 0.169 (0.003) 0.928 (0.001) 0.039 (0.003) 0.986 (0.001)

Mamba-2 Untrained 0.297 (0.002) 0.864 (0.001) 0.218 (0.002) 0.903 (0.001) 0.065 (0.001) 0.972 (0.000)
NTP trained 0.241 (0.004) 0.901 (0.002) 0.165 (0.003) 0.925 (0.001) 0.028 (0.003) 0.990 (0.001)

IB Correlation — 0.441 0.442 0.759 0.752 0.577 0.543

Table 6: Results showing transfer performance across new functions of state. “NLL” represents negative log-likelihood
(lower is better), and “ACC” represents accuracy (higher is better). “IB Correlation” measures the (unsigned) correlation
between each column of results to the ratios of the inductive bias metrics in Table 2, R-IB

D-IB . Transfer learning results are
correlated to the inductive bias metrics; models with low inductive bias perform worse at transfer.

G. Next Token Performance
Table 7 shows results for the next-token test (Toshniwal et al., 2022; Li et al., 2023) for the pre-trained models on the lattice
and Othello models. It measures the share of top model predictions that are true for the underlying state. All models learn
good next token predictions that appear to obey state.

Table 8 shows results for physics. Across 200 held-out trajectories, we autoregressively generate the model’s predicted
trajectory given the first 50 steps. Then, we compute the MSE of the predicted trajectory, 1, 5, 10 steps from the 50th step.
We include the MSE of a baseline that always predicts the most recent timestep.

H. What are models using to extrapolate?
Here we describe how we compute the decomposition of D-IB into D-IBq= and D-IBq ̸=. For lattice, we coarsen the
state-space by defining a mapping from the ground-truth state-space (of size N = 5) to pseudo-state-space of size 3. The
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Lattice Othello

RNN 1.00 0.905
LSTM 1.00 0.907
Transformer 1.00 0.915
Mamba 1.00 0.890
Mamba-2 1.00 0.901

Table 7: Results for the next token test (Toshniwal et al., 2022; Li et al., 2023) for models pre-trained on next-token
prediction.

# steps out 1 5 100

Per-orbit mean (1.64± 0.09) · 10−1 (1.49± 0.09) · 10−1 (6.72± 0.73) · 10−2

Previous position (3.70± 0.30) · 10−4 (7.88± 0.80) · 10−4 (7.74± 0.89) · 10−3

Transformer (1.04± 0.14) · 10−7 (1.07± 0.11) · 10−7 (3.75± 0.56) · 10−7

Table 8: Orbit trajectory prediction performance (MSE) for models pre-trained on next-token prediction. Each column
shows prediction accuracy when forecasting planetary positions 1, 5, or 100 time steps ahead from position 500 in the
sequence. We compare the transformer model to two simple baselines. All results are evaluated on held-out test trajectories.

Lattice Othello
D-IBq= D-IBq ̸= D-IBq= D-IBq ̸=

RNN 0.740 (0.042) 0.844 (0.034) 0.580 (0.029) 0.845 (0.019)
LSTM 0.873 (0.051) 0.952 (0.034) 0.447 (0.035) 0.448 (0.035)
Transformer 0.626 (0.037) 0.710 (0.037) 0.445 (0.032) 0.594 (0.034)
Mamba 0.764 (0.040) 0.933 (0.035) 0.552 (0.032) 0.734 (0.028)
Mamba-2 0.778 (0.042) 0.920 (0.033) 0.548 (0.031) 0.732 (0.027)

Table 9: Metrics for assessing whether a model’s inductive bias is toward it’s legal next-token partition. Low values of
D-IBq= and high values of D-IBq ̸= suggest that failures to differentiate state are driven by the models having an inductive
bias toward the legal next-token partition.
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mapping is defined as {1} → 1′, {2, . . . , N − 1} → 2′, {N} → 3′.

For Othello, we coarsen the state-space by defining a mapping from board state to the set of legal next moves possible from
the state. Notice that this mapping is many-to-one: as the pair of boards in Figure 4 demonstrate, there can be many boards
that share the same set of legal next moves.

Then, we measure the expected extrapolative predictability of a random pair of sequences that have different states but the
same pseudo-state (D-IBq=) and a random pair of sequences that have both different states and also different pseudo-states
(D-IBq ̸=), as defined in Section 4.

The results are shown in Table 9. Note that across all models, 1−D-IBq= is smaller than 1−D-IBq ̸=. In other words, among
sequences with different states, extrapolations on sequences that share the same legal next tokens are more predictable from
each other than those on sequences that do not.
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