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ABSTRACT

Switching costs, which capture the costs for changing policies, are regarded as a
critical metric in reinforcement learning (RL), in addition to the standard metric
of losses (or rewards). However, existing studies on switching costs (with a coef-
ficient that is strictly positive and is independent of the time horizon) have mainly
focused on static RL, where the loss distribution is assumed to be fixed during
the learning process, and thus practical scenarios where the loss distribution could
be non-stationary or even adversarial are not considered. While adversarial RL
better models this type of practical scenarios, an open problem remains: how to
develop a provably efficient algorithm for adversarial RL with switching costs?
This paper makes the first effort towards solving this problem. First, we provide a
regret lower-bound that shows that the regret of any algorithm must be larger than
Ω̃((HSA)1/3T 2/3), where T , S, A and H are the number of episodes, states,
actions and layers in each episode, respectively. Our lower bound indicates that,
due to the fundamental challenge of switching costs in adversarial RL, the best
achieved regret (whose dependency on T is Õ(

√
T )) in static RL with switching

costs (as well as adversarial RL without switching costs) is no longer achievable.
Moreover, we propose two novel switching-reduced algorithms with regrets that
match our lower bound when the transition function is known, and match our
lower bound within a small factor of Õ(H1/3) when the transition function is un-
known. Our regret analysis demonstrates the near-optimal performance of them.

1 INTRODUCTION

Reinforcement learning (RL) recently arises as a compelling paradigm for modeling machine learn-
ing applications with sequential decision making. In such a problem, an online learner interacts with
the environment sequentially over Markov decision processes (MDPs), and aims to find a desirable
policy for achieving an accumulated loss (or reward). Various algorithms have been developed for
RL problems and have been shown theoretically to achieve polynomial sample efficiency in Zimin
& Neu (2013); Azar et al. (2017); Jin et al. (2018); Agarwal et al. (2019); Bai et al. (2019); Jin et al.
(2020a;b); Cai et al. (2020); Gao et al. (2021); Lykouris et al. (2021); Qiao et al. (2022), etc.

In addition to the metric of losses, switching costs, which capture the costs for changing policies
during the execution of RL algorithms, are also attracting increasing attention. This is motivated
by many practical scenarios where the online learners cannot change their policies for free. For
example, in recommendation systems, each change of the recommendation involves the processing
of a huge amount of data and additional computational costs (Theocharous et al., 2015). Similarly,
in healthcare, each change of the medical treatment requires substantial human efforts and time-
consuming tests and trials (Yu et al., 2021). Such switching costs are also required to be considered
in many other areas, e.g., robotics applications (Kober et al., 2013), education software (Bennane,
2013), computer networking (Xu et al., 2018), and database optimization (Krishnan et al., 2018).

Switching costs have been studied in various problems (please see Sec. 2 for some examples).
Among these studies, a relevant line of research is along bandit learning (Geulen et al., 2010; Dekel
et al., 2014; Arora et al., 2019; Shi et al., 2022). Recently, switching costs have received consider-
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able attention in more general RL settings (Bai et al., 2019; Gao et al., 2021; Wang et al., 2021; Qiao
et al., 2022). However, these studies have mainly focused on static RL, where the loss distribution is
assumed to be fixed during the learning process. Thus, practical scenarios where the loss distribution
could be non-stationary or even adversarial are not characterized or considered.

While adversarial RL better models the non-stationary or adversarial changes of the loss distribu-
tion, to the best of our knowledge, an open problem remains: how to develop a provably efficient
algorithm for adversarial RL with switching costs? Intuitively, in adversarial RL, since much more
often policy switches would be needed to adapt to the time-varying environment, it would be much
more difficult to achieve a low regret (including both the standard loss regret and the switching
costs, please see (6)). Indeed, without a special design to reduce switching, existing algorithms for
adversarial RL with T episodes, such as those in Zimin & Neu (2013); Jin et al. (2020a); Lee et al.
(2020) and Lykouris et al. (2021), could yield poor performance with linear-to-T number of policy
switches. Thus, the goal of this paper is to make the first effort along this open direction.

Our first aim is to develop provably efficient algorithms that enjoy low regrets in adversarial RL with
switching costs. This requires a careful reduction of switching under non-stationary or adversarial
loss distributions. It turns out that previous approaches to reduce switching in static RL (e.g., those
in Bai et al. (2019) and Qiao et al. (2022)) are not applicable here. Specifically, the high-level idea in
static RL is to switch faster at the beginning, while switch slower and slower for later episodes. Such
a method performs well in static RL, mainly because after learning enough information about losses
at the beginning (by switching faster), the learner can estimate the assumed fixed loss-distribution
accurately enough with high probability in later episodes. Thus, even though the learner switches
slower and slower, a low regret is still achievable with high probability. In contrast, when the
loss distribution could change arbitrarily, this method does not work. This is mainly because what
the learner learned in the past may not be that useful for the future. For example, when the loss
distribution is adversarial, a state-action pair with small losses in the past may incur large losses in
the future. Thus, new ideas are required for addressing switching costs in adversarial RL.

Our second aim is to understand fundamentally whether the new challenge of switching costs in
adversarial RL significantly increases the regret. This requires a converse result, i.e., a lower bound
on the regret, that holds for any RL algorithm. Further, we aim to understand fundamentally whether
the adversarial nature of RL indeed requires much more policy switches to achieve a low loss regret.

Our contributions: In this paper, we achieve the aforementioned goals and make the following
three main contributions. (We use Ω̃, Θ̃ and Õ to hide constants and logarithmic terms.)

First, we provide a lower bound (in Theorem 1) that shows that, for adversarial RL with switching
costs, the regret of any algorithm must be larger than Ω̃((HSA)1/3T 2/3), where T , S, A and H
are the number of episodes, states, actions and layers in each episode, respectively. Our lower
bound indicates that, due to the fundamental challenge of switching costs in adversarial RL, the
best achieved regret (whose dependency on T is Õ(

√
T )) in static RL with switching costs is no

longer achievable. Further, we characterize precisely the new trade-off (in Theorem 2) between the
standard loss regret and the switching costs due to the adversarial nature of RL.

Second, we develop the first-known near-optimal algorithms for adversarial RL with switching
costs. As we discussed above, the idea for reducing switching in static RL does not work well
here. To handle the losses that can change arbitrarily, our design is inspired by the approach in Shi
et al. (2022) for bandit learning, but with two novel ideas. (a) We delay each switch by a fixed (but
tunable) number of episodes, which ensures that switch occurs only every Õ(T 1/3) episodes. (b)
The idea in (a) results in consistently long intervals of not switching. Since the bias in estimating
losses from such a long interval tends to increase the regret, it is important to construct an unbiased
estimate of losses for each interval. To achieve this, the idea in bandit learning is to consider all
time-slots in each interval as one time-slot, which necessarily requires a single chosen action in each
interval. Such an approach is not applicable to our more general MDP setting, since there is no
guarantee to visit a single state-action pair due to state transitions. To resolve this issue, our novel
idea is to decompose each interval, and then combine the losses of each state-action pair only from
the episodes in which such a state-action pair is visited. Interestingly, although this combination is
random and the loss is adversarial, the expectation of the estimated losses is (almost) unbiased.
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Third, we establish the regret bounds for our new algorithms. For the case with a known transition
function, we show that our algorithm achieves an Õ((HSA)1/3T 2/3) regret, which matches our
lower bound. For the case with an unknown transition function, we show that, with probability 1−
δ, our algorithm achieves an Õ

(
H2/3(SA)1/3T 2/3(ln TSA

δ )1/2
)

regret, which matches our lower
bound on the dependency of T , S and A, except with a small factor of Õ(H1/3). Therefore, the
regrets of our new algorithms are near-optimal. Moreover, because of our novel ideas for estimating
losses and delaying switching discussed above in a state-transition case, our proofs for the regrets
involve several new analytical ideas. For example, in Lemma 1 and Lemma 2, we show that our new
way of estimating losses is (almost) unbiased so that its effect on the regret is controllable. Moreover,
to capture the effects of the delayed switching, our new analytical idea is to first bound the regret
across intervals between adjacent switching events, and then relate the regret inside episodes of each
interval to this bound (please see Step-2 of the proofs in Appendix D and Appendix G).

2 RELATED WORK

Switching costs: Switching costs have already received considerable attention in various online
problems. For example, online convex optimization with switching costs has been studied in Lin
et al. (2012); Chen et al. (2016); Goel et al. (2019); Shi et al. (2021a;b), etc. Convex body chasing
with switching costs has been studied in Friedman & Linial (1993); Sellke (2020); Bubeck et al.
(2021), etc. Switching costs have also been studied in metrical task systems (Borodin & El-Yaniv,
2005), online set covering (Buchbinder et al., 2014), k-server problem (Lin et al., 2020), online con-
trol (Goel & Wierman, 2019; Li et al., 2020; Lin et al., 2021), etc. Moreover, switching costs have
been studied in adversarial bandit learning, e.g., in Geulen et al. (2010); Dekel et al. (2014); Arora
et al. (2019); Shi et al. (2022). Our work in this paper can be viewed as a non-trivial generalization
of these studies on bandit learning to adversarial MDP, where state transitions and multiple layers in
each episode require new developments in both the algorithm design and regret analysis.

Static MDP: There have been recent studies on static RL with switching costs. Specifically, for
tabular MDP, Bai et al. (2019) and Zhang et al. (2020) proposed RL algorithms that attain an
Õ
(√

HαSAT · ln TSA
δ

)
regret with probability 1 − δ, by incurring O (HαSA lnT ) switching

costs, where α = 3 and 2, respectively. Recently, Qiao et al. (2022) obtained a similar Õ(
√
T )

regret with probability 1 − δ, by incurring O (HSA ln lnT ) switching costs. Moreover, for lin-
ear MDP (with d-dimensional feature space), Gao et al. (2021) and Wang et al. (2021) obtained an
Õ
(√

d3H3T · (ln dT
δ )1/2

)
regret with probability 1− δ, by incurring O (dH lnT ) switching costs.

Adversarial MDPs: Adversarial RL better models scenarios where the loss distributions and/or the
transition functions of MDPs could change over time. Specifically, in tabular MDP with a known
transition function, Zimin & Neu (2013) proposed an RL algorithm that attains an Õ(

√
HSAT )

regret. In the case with an unknown transition function, Jin et al. (2020a) and Lee et al. (2020) ob-

tained an Õ
(
HS

√
AT ln TSA

δ

)
regret with probability 1 − δ. These studies assume that the state

spaces of layers in an episode are non-overlapping. Moreover, Rosenberg & Mansour (2019a) stud-
ied the case with full-information feedback. Adversarial linear MDP has also been studied recently,
e.g., in Cai et al. (2020); Luo et al. (2021). In addition, Yu & Mannor (2009); Cheung et al. (2019)
and Lykouris et al. (2021) studied the case when both the loss distribution and transition function
change arbitrarily. More studies on various adversarial RL settings have been done by Rosenberg &
Mansour (2019b); Lee et al. (2021); Zhao et al. (2021); Jin et al. (2021); He et al. (2022), etc.

To the best of our knowledge, no study in the literature has addressed the challenge due to switching
costs in adversarial RL, which is the focus of this paper.

3 PROBLEM FORMULATION

We consider adversarial reinforcement learning (RL) with switching costs in episodic Markov de-
cision processes (MDPs). Suppose there are T episodes, each of which consists of H layers. We
use Sh to denote the state space of layer h. For ease of elaboration, as in previous work (e.g., Zimin
& Neu (2013); Jin et al. (2020a) and Lee et al. (2020)), we assume that the H layers are non-
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intersecting, i.e., Sh′ ∩ Sh′′ = ϕ for any h′ ̸= h′′; S0 = {s0} is a singleton; and each episode
ends at state SH = {sH}. Thus, the entire state space is S = ∪H

h=0Sh with size S =
∑H

h=0 Sh,
where Sh denotes the size of Sh. Moreover, we use A to denote the action space with size A.
Then, the MDP is defined by a tuple

(
S,A, P, {lt}Tt=1 , H

)
, where P is the transition function

with Ph : Sh+1 × Sh × A → [0, 1] denoting the transition probability measure at layer h, and
lt : S ×A → [0, 1] represents the loss function for episode t.

The online learner interacts with the Markov environment episode-by-episode as follows. At the
beginning of each episode t = 1, ..., T , the online learner starts from state s0 and follows an
algorithm that (possibly randomly) chooses a deterministic policy πt : S → A. Next, at each layer
h = 0, ..., H−1, after observing the current sate st,h, the learner chooses an action at,h = πt(st,h).
Then, the learner incurs a loss lt(st,h, at,h). Finally, the next state st,h+1 ∈ Sh+1 is drawn according
to the transition probability P (·|st,h, at,h). (For simplicity, we drop the index h of Ph in this paper
when it is clear from the context.) These steps repeat until the learner arrives at the last state sH .
At the end of episode t, only the losses of visited state-action pairs in the episode are observed by
the learner, whereas the losses of non-visited state-action pairs are unknown. As in (Zimin & Neu,
2013; Jin et al., 2020a; Lee et al., 2020; Cai et al., 2020), this is called “bandit feedback”, which
is more practical than full-information feedback (Rosenberg & Mansour, 2019a) that assumes the
losses of all state-action pairs (no matter visited or not) are known for free.

Adversarial losses: Different from static RL that assumes the loss distribution is fixed for all
episodes, in the adversarial setting we consider here, we do not need any assumption on the un-
derlying loss distribution. That is, the loss function lt could change arbitrarily across episodes.

Switching costs: As we mentioned in the introduction, in adversarial RL, addressing switching costs
remains an open problem. The switching cost refers to the cost needed for changing the policy πt.
It is equal to β · 1{πt+1 ̸=πt}, where β > 0 is the switching-cost coefficient and is independent of T ,
and 1E is an indicator function (i.e., 1E = 1 if the event E occurs, and 1E = 0 otherwise).

Therefore, the total cost of executing an RL algorithm π over T episodes is given by

Costπ(1 : T ) ≜ E
[

T∑
t=1

H−1∑
h=0

lt(s
π
t,h, a

π
t,h) +

T−1∑
t=1

β · 1{πt+1 ̸=πt}

∣∣∣π, P] , (1)

where the expectation is taken with respect to the randomness of the state-action pairs (sπt,h, a
π
t,h)

visited by π, and the possible randomness of changing the policy πt.

Next, we introduce a concept called “occupancy measure” (Zimin & Neu, 2013; Jin et al., 2020a).
Specifically, the occupancy measure qπ,Pt (s, a) = Pr[sπt,h = s, aπt,h = a|π, P ] ≥ 0 is the prob-
ability of visiting the state-action pair (s, a) by the algorithm π at layer h of episode t under
the transition function P . In addition (with slight abuse of notation), the occupancy measure
qπ,Pt (s′, s, a) = Pr[sπt,h+1 = s′, sπt,h = s, aπt,h = a|π, P ] ≥ 0 is the probability of visiting the
state-action triple (s′, s, a) by the algorithm π at layers h and h+1 of episode t under the transition
function P . In order to be feasible, the occupancy measures need to satisfy some conditions at layer
h of episode t. First, according to probability theory, they need to satisfy the conditions that,

qπ,Pt (s, a) =
∑

s′∈Sh+1

qπ,Pt (s′, s, a), for all (s, a) ∈ Sh ×A, and
∑

s∈Sh

∑
a∈A

qπ,Pt (s, a) = 1. (2)

Second, since the probability of transferring to a state s from the previous layer h− 1 must be equal
to the probability of transferring from this state s to the next layer h+ 1, we have∑

s′∈Sh−1

∑
a∈A qπ,Pt (s, s′, a) =

∑
s′∈Sh+1

∑
a∈A qπ,Pt (s′, s, a), for all s ∈ Sh. (3)

Third, the occupancy measure should generate the true transition function P , i.e.,
qπ,P
t (s′,s,a)∑

b∈A qπ,P
t (s′,s,b)

= Ph(s
′|s, a), for all (s′, s, a) ∈ Sh+1 × Sh ×A. (4)

We use C(P ) to denote the set of all occupancy measures that satisfy conditions (2)-(4). Moreover,
at the beginning of episode t, the algorithm π associated with the occupancy measure qπ,Pt chooses a
deterministic policy πt by assigning an action a ∈ A to each state s ∈ S according to the probability

Pr[a|s] = qπ,Pt (s, a)∑
b∈A qπ,Pt (s, b)

. (5)
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Then, it is not hard to show that the expected total loss, i.e., the first term in (1), can be expressed as
lossπ(1 : T ) ≜ E

[∑T
t=1⟨q

π,P
t , lt⟩

∣∣∣π, P]. Finally, the regret of an RL algorithm π is defined to be
the sum of the loss regret Rπ

loss(T ) and the switching costs of as follows:

Rπ(T ) ≜ max
q∈C(P )

E
[∑T

t=1⟨q
π,P
t − q, lt⟩

∣∣∣π, P]︸ ︷︷ ︸
loss regret: Rπ

loss(T )

+E
[∑T−1

t=1 β · 1{πt+1 ̸=πt}

∣∣∣π, P]︸ ︷︷ ︸
switching costs

. (6)

Therefore, our goal in this paper is to design RL algorithms that achieve as low regret as possible
against any possible sequence of loss functions {lt}Tt=1 and state transition function P .

4 A LOWER BOUND

In this section, we will develop a lower bound on the regret for adversarial RL with switching costs.
Such a lower bound will quantify how difficult it is to control the regret with switching costs under
adversarial RL. In Theorem 1 below, we provide this lower bound, the proof of which is given in
Appendix A. (In Sec. 5 and Sec. 6, we will provide two near-optimal RL algorithms to achieve this
lower bound.)

Theorem 1. For adversarial RL with switching costs and T ≥ max {6H2SA, β}, the regret of any
RL algorithm π can be lower-bounded as follows,

Rπ(T ) ≥ Ω̃
(
β1/3 (HSA)

1/3
T 2/3

)
. (7)

Theorem 1 shows that in adversarial RL with switching costs, the dependency on T of the best
achievable regret is at least Ω̃(T 2/3). Thus, the best achieved regret (whose dependency on T is
Õ(

√
T )) in static RL with switching costs (in Bai et al. (2019); Qiao et al. (2022), etc) as well as

adversarial RL without switching costs (in Zimin & Neu (2013); Jin et al. (2018), etc) is no longer
achievable. This demonstrates the fundamental challenge of switching costs in adversarial RL, and
it is expected that new challenges will arise when developing provably efficient algorithms.

Further, in Theorem 2 below, we characterize precisely the new trade-off between the loss regret and
switching costs defined in (6). The proof is provided in Appendix B. Intuitively, by switching more,
the online RL algorithm can adapt more flexibly to the new information learned, and thus achieves
a lower loss regret. On the other hand, if fewer switches are allowed, the online RL algorithm is less
flexible to adapt to the new information learned, which will incur a larger loss regret.

Theorem 2. For adversarial RL with switching costs, with the switching costs equal to O
(
β · N swi

)
,

the loss regret can be lower-bounded by Ω̃
(√

HSA
N swi · T

)
. Alternatively, to achieve a loss regret

equal to Õ
(√

HSA
N swi · T

)
, the switching costs incurred must be larger than Ω

(
β · N swi

)
.

Theorem 2 provides an interesting and necessary trade-off between the loss regret and switching
costs. We further elaborate this result in three cases. First, in order to achieve a loss regret
Õ(H

√
SAT ), Theorem 2 shows that the number of switches N swi (and thus the switching costs

incurred) must be linear in T , i.e., essentially switching at almost all episodes. This is consistent
with the regret achieved in adversarial RL without switching costs, i.e., allowing switching linear-
to-T number of times for free. But our result further implies that, without linear-to-T switches of
the policy, it is impossible to achieve an Õ(

√
T ) loss regret. Second, Theorem 2 shows that, if only

a constant or O(ln lnT ) number of switches are allowed, the loss regret must be linear in T . In
contrast, in static RL, an Õ(

√
T ) loss regret is achieved with only O(ln lnT ) switches (Qiao et al.,

2022). This indicates that the adversarial nature of RL necessarily requires significantly more policy
switches to achieve a low loss regret. Third, Theorem 2 suggests that the loss regret and switching
costs can be balanced at the order of Õ

(
T 2/3

)
. That is, to achieve the Õ

(
T 2/3

)
loss regret, the

switching costs incurred have to be Ω̃
(
T 2/3

)
. This is consistent with Theorem 1, where the regret

(including both the loss regret and switching costs) is lowered-bound by Ω̃
(
T 2/3

)
.
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Algorithm 1 Switching rEduced EpisoDic relative entropy policy Search (SEEDS)

Parameters: η = Θ̃
(
β−1/3H2/3(SA)−1/3T−2/3

)
and τ = Θ̃

(
β2/3(HSA)−1/3T 1/3

)
.

Initialization: Pr[a|s] = 1
A for all (s, a) ∈ S ×A. Choose πSEEDS

[1] according to (5).
for u = 1 :

⌈
T
τ

⌉
do

for t = (u− 1)τ + 1 : min{uτ, T} do
Step 1: Execute the updated policy πSEEDS

[u] = π
q̂SEEDS,P
[u] .

end for
At the end of super-episode u,
Step 2: Estimate the losses l̂SEEDS

[u] (s, a) for all (s, a) according to (8).

Step 3: Update the occupancy measure q̂SEEDS,P
[u+1] (s, a) according to (10). Update the determin-

istic policy π
q̂SEEDS,P
[u+1] according to (5).

end for

5 THE CASE WHEN THE TRANSITION FUNCTION IS KNOWN

In this section, we study the case when the transition function is known, and we will further explore
the more challenging case when the transition function is unknown in Sec. 6. We propose a novel
algorithm (please see Algorithm 1) with a regret that matches the lower bound in (7). Our algorithm
is called Switching rEduced EpisoDic relative entropy policy Search (SEEDS).

SEEDS is inspired by the episodic method in bandit learning (Shi et al., 2022). In bandit learning,
the idea is to divide the time horizon into Θ(T 2/3) episodes, and pull one single Exp3-arm in an
episode. By doing so, the total switching cost is trivially O(T 2/3). Meanwhile, the loss regret in an
episode is Θ(η ·(T 1/3)2), which is proportional to the loss variance in an episode. The final O(T 2/3)
regret is then achieved by taking the sum of all these costs and tuning the parameter η = Θ(T−2/3).
However, in the adversarial MDP setting that we consider, there is a key difference due to random
state-action visitations that cause several new challenges as we discuss in the rest of this section.

Super-episode-based policy search: SEEDS divides the episodes into U =
⌈
T
τ

⌉
super-episodes,

where τ ∈ Z++ is a tunable parameter and a strictly positive integer. Each super-episode includes
τ consecutive episodes. For all episodes in each super-episode u = 1, ..., U , SEEDS uses the
same policy π

q̂SEEDS,P
[u] (Step-1 in Algorithm 1) that was updated at the end of the last super-episode

u−1, where q̂SEEDS,P
[u] is the updated occupancy measure (that we will introduce soon) of SEEDS for

super-episode u. Thus, SEEDS switches the policy at most once in each super-episode.

A novel idea for estimating the losses: At the end of super-episode u, SEEDS estimates the
losses l[u](s, a) of all state-action pairs in super-episode u. Here, it is instructive to see why
the episodic importance-estimating method in adversarial bandit learning (i.e., without state tran-
sitions) does not apply to our problem. Note that due to state transitions in our more gen-
eral MDP setting, we are not guaranteed to visit a single state-action pair for the whole super-
episode. A naive but intuitive solution may be pretending that each state-action pair visited in
super-episode u was the single one visited. Then, we can let the estimated loss of each state-action
pair (s, a) to be l̂[u](s, a) =

l̄[u](s,a)

1−(1−q̂SEEDS,P
[u]

(s,a))τ
1{(s,a) was visited in super-episode u}, where the numerator

l̄[u](s, a) =
∑uτ

t=(u−1)τ+1 lt(s, a)/τ is the average loss of (s, a). If we assume that the loss lt for
all episodes t in super-episode u were the same, according to the analysis in bandit learning and the
inequality 1− (1− x)τ ≥ x for all 0 ≤ x ≤ 1, this idea would have worked. However, the problem
is that, inside super-episode u, the loss function lt for each episode t could change arbitrarily. Thus,
the estimated loss l̂[u](s, a) above is actually unknown and an ill-defined value.

To resolve the aforementioned difficulty due to randomly-visited state-action pairs and arbitrarily-
changing loss functions, SEEDS estimates the loss as follows (Step-2 in Algorithm 1),

l̂SEEDS
[u] (s, a) =

J[u]∑
j=1

ltj(s,a)(s,a)

q̂SEEDS,P
[u]

(s,a)
1{(s,a) was visited in episodes t1(s,a),...,tJ[u]

(s,a) of super-episode u}, (8)
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where J[u] is the maximum number of episodes that the state-action pair (s, a) was visited in super-
episode u. In other words, in super-episode u, this state-action pair (s, a) was not visited in any other
episode t, such that t ∈ {(u − 1)τ + 1, ..., uτ}/{t1(s, a), ..., tJ[u]

(s, a)}. Thus, SEEDS estimates
the losses based on the observable true losses in super-episode u. In this way, SEEDS elegantly
resolves the aforementioned difficulty due to the random state transitions and adversarial losses.
Our novel idea in (8) may be of independent interest for other problems with state transitions and
non-stationary or adversarial losses. Indeed, in Sec. 6, we will apply this idea to the case when the
transition function is unknown.

In Lemma 1 below, we show that the estimated loss in (8) is an unbiased estimation of the true loss
in super-episode u. This is an important property that we will exploit in our regret analysis. The
proof of Lemma 1 is provided in Appendix C. We use F[u] to denote the σ-algebra generated by the
observation of SEEDS before super-episode u.
Lemma 1. The conditional expectation of the estimated loss designed in (8) is equal to

E
[
l̂SEEDS
[u] (s, a)

∣∣∣F[u]

]
= l[u](s, a), for all (s, a), (9)

where the expectation is taken with respect to the randomness of the episodes t1(s, a), ..., tJ[u]
(s, a),

in which the state-action pair (s, a) was visited, and l[u](s, a) =
∑min{uτ,T}

t=(u−1)τ+1 lt(s, a) is the true
loss of (s, a) in super-episode u.

Updating the occupancy measure: Finally, according to online mirror descent (Rakhlin et al.,
2009; Zimin & Neu, 2013), SEEDS updates the occupancy measure q̂SEEDS,P

[u+1] (s, a) for all state-
action pairs (s, a) ∈ S ×A as follows (Step-3 in Algorithm 1),

q̂SEEDS,P
[u+1] = argminq∈C(P )

{
η ·
〈
q, l̂SEEDS

[u]

〉
+DKL

(
q
∥∥∥q̂SEEDS,P

[u]

)}
, (10)

where DKL(q∥q′) ≜
∑

s∈S,a∈A
q(s, a) ln q(s,a)

q′(s,a) −
∑

s∈S,a∈A
[q(s, a)− q′(s, a)] is the unnormalized

relative entropy between two occupancy measures q and q′ on the space S × A. Recall that C(P )

is formulated by (2)-(4). Note that the term ⟨q, l̂SEEDS
[u] ⟩ represents the expected loss in super-episode

u, with respect to the newly-estimated loss function l̂SEEDS
[u] . Thus, it captures how SEEDS adapts to

and explores the newly-estimated loss function. In addition, the term DKL(q∥q̂SEEDS,P
[u] ) serves as a

regularizer to ensure that the updated occupancy measure in (10) stays close to q̂SEEDS,P
[u] . Thus, it

captures how SEEDS exploits the previously-estimated loss functions before super-episode u. As a
result, by tuning the parameter η in (10), the updated occupancy measure strikes a balance between
exploration and exploitation.

We characterize the regret of SEEDS in Theorem 3 below.
Theorem 3. Consider adversarial RL with switching costs introduced in Sec. 3. When the transition
function P is known, the regret of SEEDS is upper-bounded as follows,

RSEEDS(T ) ≤ Õ
(
β1/3 (HSA)

1/3
T 2/3

)
. (11)

Theorem 3 shows that the regret of SEEDS matches the lower bound in (7) in terms of the depen-
dency on all the parameters T , S, A, H and β. Thus, the regret of SEEDS is order-wise optimal. To
the best of our knowledge, this is the first regret result for adversarial RL with switching costs. To
prove Theorem 3, the main difficulty lies in capturing the effects of the arbitrarily-changing losses
and multiple random visitations of each state-action pair in a super-episode. To overcome this dif-
ficulty, our new idea is to first upper-bound the loss regret based on the correlated loss feedback
in a super-episode, and then relate these upper bounds across all super-episodes to the final regret.
The first step relies on the proof of Lemma 1, and the second step relies on another lemma in Ap-
pendix D.1 that transfers the original regret formulation to a form based on the losses from the entire
super-episode. Please see Appendix D for details and the proof of Theorem 3.

Further, in Theorem 4 below, we show that SEEDS attains a trade-off between the loss regret and
switching costs that matches the trade-off in Theorem 2. The proof of Theorem 4 follows the loss-
regret bound of SEEDS proved in Appendix D and the trivial switching-cost bound β ·

⌈
T
τ

⌉
. Please

see the end of Appendix D for details.
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Algorithm 2 SEEDS-Unknown Transition (SEEDS-UT)

Parameters: η = Θ̃
(
β−1/3H1/3(SA)−1/3T−2/3

)
, τ = Θ̃

(
β2/3H−2/3(SA)−1/3T 1/3

)
, γ =

Θ̃
(
β1/3H2/3(SA)−2/3T−1/2

)
, and 0 < δ < 1.

Initialization: q̂SEEDS-UT,P
[1] (s′, s, a) = 1

Sh+1ShA
and M[1](s

′, s, a) = N[1](s, a) = 0, for all
(s′, s, a) ∈ Sh+1 × Sh × A and all h. P[1] contains all possible transition functions. Choose

πSEEDS-UT
[1] = π

q̂SEEDS-UT,P
[1] according to (2) and (5).

for u = 1 :
⌈
T
τ

⌉
do

for t = (u− 1)τ + 1 : min{uτ, T} do
Step 1: Execute the updated policy πSEEDS-UT

[u] = π
q̂SEEDS-UT,P
[u] .

end for
At the end of super-episode u,
Step 2: Estimate the losses l̂SEEDS-UT

[u] (s, a) for all (s, a) according to (12).
Step 3: Estimate the transition-function set P[u+1] according to (14).
Step 4: Update the occupancy measure q̂SEEDS-UT,P

[u+1] (s′, s, a) according to (10), but subject to a

different constraint q ∈ C
(
P[u+1]

)
. Update the deterministic policy π

q̂SEEDS-UT,P
[u+1] according to

(2) and (5).
end for

Theorem 4. Let N SEEDS ≜
⌈
T
τ

⌉
. Then, with the switching costs equal to O

(
β · N SEEDS

)
,

SEEDS can achieve a loss regret upper-bounded by Õ
(√

HSA
N SEEDS · T

)
.

6 THE CASE WHEN THE TRANSITION FUNCTION IS UNKNOWN

In this section, we study a more challenging case when the transition function is unknown. We
propose a novel algorithm (please see Algorithm 2) with a regret that matches the lower bound in (7)
in terms of the dependency on all parameters, except with a small factor of Õ(H1/3). Specifically,
to address the new difficulty due to the unknown transition function P in this case, we advance
SEEDS into SEEDS-UT (where UT stands for “unknown transition”) with three new components
as we explain below.

1. Since the transition function P is unknown, updating the occupancy measure q̂(s, a) (as in
SEEDS) is not good enough. Instead, SEEDS-UT updates the occupancy measure q̂(s′, s, a) to
take state transitions into consideration.

2. Since the transition function P is unknown, the updated occupancy measure could be different
from the true one. To resolve this issue, we generalize the method in Neu (2015), with a difference
to handle the random sequence of the state-action pairs visited in each super-episode. Specifically,
SEEDS-UT estimates the loss for each super-episode u as follows (Step-2 in Algorithm 2),

l̂SEEDS-UT
[u] (s, a) =

J[u]∑
j=1

ltj(s,a)(s,a)

Qγ
[u]

(s,a)
1{(s,a) was visited in episodes t1(s,a),...,tJ[u]

(s,a) of super-episode u}, (12)

where Qγ
[u](s, a) ≜ maxq∈C(P[u]) q(s, a) + γ is the sum of the largest probability of visiting (s, a)

among all occupancy measures in C(P[u]) and a tunable parameter γ > 0, and P[u] is a transition-
function set that we will introduce soon. Note that (12) is another application of our idea in (8) for
estimating losses in a problem with state transitions and adversarial losses.

In Lemma 2 below, we show that the gap between the expectation of the estimated loss and the true
loss is controlled by the parameter γ. The proof of Lemma 2 is provided in Appendix F. We use
F[u] to denote the σ-algebra generated by the observation of SEEDS-UT before super-episode u.
Lemma 2. The conditional expectation of the estimated loss designed in (12) is equal to

E
[
l̂SEEDS-UT
[u] (s, a)

∣∣∣F[u]

]
=

qSEEDS-UT,P
[u]

(s,a)

maxq∈C(P[u])
q(s,a)+γ · l[u](s, a), for all (s, a), (13)

8
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where the expectation is taken with respect to the randomness of the episodes t1(s, a), ..., tJ[u]
(s, a),

in which (s, a) was visited, qSEEDS-UT,P
[u] (s, a) is the true occupancy measure of SEEDS-UT condi-

tioned on F[u], and l[u](s, a) =
∑min{uτ,T}

t=(u−1)τ+1 lt(s, a) is the true loss of (s, a) in super-episode u.

Lemma 2 shows that, as long as P[u] is sufficiently good for estimating the true transition function
P (we will show how to construct such a P[u] below), by carefully tuning γ, the bias caused by
maxq∈C(P[u]) q(s, a) + γ (i.e., Qγ

[u](s, a)) should be sufficiently small, so that the estimated loss is
still sufficiently accurate.

3. Since the transition function P is unknown, the constraint in (10) is no longer known. To resolve
this issue, we generalize the method in Jin et al. (2020a), with a difference to handle the samples
from the whole super-episode. Specifically, at the end of each super-episode, SEEDS-UT col-
lects the samples from the whole super-episode to update the empirical transition probability
P̄[u+1](s

′|s, a) =
M[u+1](s

′,s,a)

max{N[u+1](s,a),1} , where M[u+1](s
′, s, a) and N[u+1](s, a) denote the number

of times visiting (s′, s, a) and (s, a) before super-episode u + 1, respectively. Then, based on the
empirical Bernstein bound (Maurer & Pontil, 2009), SEEDS-UT constructs a transition-function set
P as follows (Step-3 in Algorithm 2),

P[u+1] =
{
P̂[u+1] :

∣∣∣P̂[u+1](s
′|s, a)− P̄[u+1](s

′|s, a)
∣∣∣ ≤ ϵ[u+1](s

′, s, a), for all (s′, s, a)
}
, (14)

where ϵ[u+1](s
′, s, a) = 2

√
P̄[u+1](s′,s,a) ln

TSA
δ

max{N[u+1](s,a)−1,1} +
14 ln TSA

δ

3max{N[u+1](s,a)−1,1} , and δ ∈ (0, 1) is the

confidence parameter. Finally, the occupancy measure q̂SEEDS-UT,P
[u+1] (s′, s, a) is updated according to

(10), but subject to a different constraint q ∈ C
(
P[u+1]

)
(Step-4 in Algorithm 2).

We characterize the regret of SEEDS-UT in Theorem 5 below.
Theorem 5. Consider adversarial RL with switching costs introduced in Sec. 3. When the transition
function P is unknown, with probability 1−δ, the regret of SEEDS-UT is upper-bounded as follows,

RSEEDS-UT(T ) ≤ Õ
(
β1/3H2/3 (SA)

1/3
T 2/3

(
ln TSA

δ

)1/2)
. (15)

Theorem 5 shows that the regret of SEEDS-UT matches the lower bound in (7) in terms of the depen-
dency on T , S, A, and β, except with a small factor of Õ(H1/3). That is, the regret of SEEDS-UT is
near-optimal. To the best of our knowledge, this is the first regret result for adversarial RL with
switching cost when the transition function is unknown. To prove Theorem 5, the main difficulty
is that, due to the delayed switching and unknown transition function, the losses of SEEDS-UT in
the episodes of any super-episode are correlated and the true occupancy measure is unknown. As a
result, the existing analytical ideas in adversarial RL without switching costs and adversarial bandit
learning with switching costs do not work here. To overcome these new difficulties, our analysis
involves several new ideas, e.g., we construct a series in (35) to handle multiple random visitations
of each state-action pairs, and we establish a super-episodic version of concentration in Step-2-iii of
Appendix G by relating the second-order moment of the estimated loss that we design to the true
loss and the length τ of a super-episode. Please see Appendix G for the detailed proof of Theorem 5.

7 CONCLUSION AND FUTURE WORK

In this paper, we make the first effort towards addressing the challenge of switching costs in ad-
versarial RL. First, we provide a lower bound that shows that the best achieved regret in static RL
with switching costs (as well as adversarial RL without switching costs) is no longer achievable. In
addition, we characterize precisely the new trade-off between the loss regret and switching costs,
which shows that the adversarial nature of RL necessarily requires more switches to achieve a low
loss regret. Moreover, we propose two novel switching-reduced algorithms with regrets that match
our lower bound when the transition function is known, and match our lower bound within a small
factor of Õ(H1/3) when the transition function is unknown.

Several future directions are worth pursuing. First, it is important to study adversarial RL with
switching costs in linear and more general MDP settings. Another interesting future work is to
extend our study to the dynamic regret, which allows the optimal policy to change over time.
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Sascha Geulen, Berthold Vöcking, and Melanie Winkler. Regret minimization for online buffering
problems using the weighted majority algorithm. In COLT, pp. 132–143. Citeseer, 2010.

Gautam Goel and Adam Wierman. An online algorithm for smoothed regression and lqr control.
In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2504–2513.
PMLR, 2019.

10



Published as a conference paper at ICLR 2023

Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent: An
optimal algorithm for smoothed online optimization. Advances in Neural Information Processing
Systems, 32, 2019.

Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Nearly optimal algorithms for linear
contextual bandits with adversarial corruptions. arXiv preprint arXiv:2205.06811, 2022.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? Advances in neural information processing systems, 31, 2018.

Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adversarial markov
decision processes with bandit feedback and unknown transition. In International Conference on
Machine Learning, pp. 4860–4869. PMLR, 2020a.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020b.

Tiancheng Jin, Longbo Huang, and Haipeng Luo. The best of both worlds: stochastic and adversarial
episodic mdps with unknown transition. Advances in Neural Information Processing Systems, 34:
20491–20502, 2021.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Stoica. Learning to
optimize join queries with deep reinforcement learning. arXiv preprint arXiv:1808.03196, 2018.

Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. Bias no more: high-probability
data-dependent regret bounds for adversarial bandits and mdps. Advances in neural information
processing systems, 33:15522–15533, 2020.

Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang, and Xiaojin Zhang. Achieving near
instance-optimality and minimax-optimality in stochastic and adversarial linear bandits simulta-
neously. In International Conference on Machine Learning, pp. 6142–6151. PMLR, 2021.

Yingying Li, Guannan Qu, and Na Li. Online optimization with predictions and switching costs:
Fast algorithms and the fundamental limit. IEEE Transactions on Automatic Control, 66(10):
4761–4768, 2020.

Minghong Lin, Adam Wierman, Alan Roytman, Adam Meyerson, and Lachlan LH Andrew. Online
optimization with switching cost. ACM SIGMETRICS Performance Evaluation Review, 40(3):
98–100, 2012.

Yiheng Lin, Gautam Goel, and Adam Wierman. Online optimization with predictions and non-
convex losses. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4
(1):1–32, 2020.

Yiheng Lin, Yang Hu, Guanya Shi, Haoyuan Sun, Guannan Qu, and Adam Wierman. Perturbation-
based regret analysis of predictive control in linear time varying systems. Advances in Neural
Information Processing Systems, 34:5174–5185, 2021.

Haipeng Luo, Chen-Yu Wei, and Chung-Wei Lee. Policy optimization in adversarial mdps: Im-
proved exploration via dilated bonuses. Advances in Neural Information Processing Systems, 34:
22931–22942, 2021.

Thodoris Lykouris, Max Simchowitz, Alex Slivkins, and Wen Sun. Corruption-robust exploration
in episodic reinforcement learning. In Conference on Learning Theory, pp. 3242–3245. PMLR,
2021.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penal-
ization. In Proceedings of the 22nd Annual Conference on Learning Theory, 2009.

11



Published as a conference paper at ICLR 2023

Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic bandits.
Advances in Neural Information Processing Systems, 28, 2015.

Dan Qiao, Ming Yin, Ming Min, and Yu-Xiang Wang. Sample-efficient reinforcement learning with
log log(t) switching cost. arXiv preprint arXiv:2202.06385, 2022.

Alexander Rakhlin, J Abernethy, A Agarwal, P Bartlett, E Hazan, and A Tewari. Lecture notes on
online learning draft, 2009.

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov decision
processes. In International Conference on Machine Learning, pp. 5478–5486. PMLR, 2019a.

Aviv Rosenberg and Yishay Mansour. Online stochastic shortest path with bandit feedback and
unknown transition function. Advances in Neural Information Processing Systems, 32, 2019b.

Mark Sellke. Chasing convex bodies optimally. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1509–1518. SIAM, 2020.

Ming Shi, Xiaojun Lin, and Sonia Fahmy. Competitive online convex optimization with switching
costs and ramp constraints. IEEE/ACM Transactions on Networking, 29(2):876–889, 2021a.

Ming Shi, Xiaojun Lin, and Lei Jiao. Combining regularization with look-ahead for competitive
online convex optimization. In IEEE INFOCOM 2021-IEEE Conference on Computer Commu-
nications, pp. 1–10. IEEE, 2021b.

Ming Shi, Xiaojun Lin, and Lei Jiao. Power-of-2-arms for bandit learning with switching costs. In
Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing, pp. 131–140, 2022.

Georgios Theocharous, Philip S Thomas, and Mohammad Ghavamzadeh. Personalized ad recom-
mendation systems for life-time value optimization with guarantees. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, 2015.

Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Provably efficient reinforcement learning with
linear function approximation under adaptivity constraints. Advances in Neural Information Pro-
cessing Systems, 34:13524–13536, 2021.

Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold Liu, and Dejun
Yang. Experience-driven networking: A deep reinforcement learning based approach. In IEEE
INFOCOM 2018-IEEE conference on computer communications, pp. 1871–1879. IEEE, 2018.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

Jia Yuan Yu and Shie Mannor. Arbitrarily modulated markov decision processes. In Proceedings
of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, pp. 2946–2953. IEEE, 2009.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning
via reference-advantage decomposition. Advances in Neural Information Processing Systems, 33:
15198–15207, 2020.

Heyang Zhao, Dongruo Zhou, and Quanquan Gu. Linear contextual bandits with adversarial cor-
ruptions. arXiv preprint arXiv:2110.12615, 2021.

Alexander Zimin and Gergely Neu. Online learning in episodic markovian decision processes by
relative entropy policy search. Advances in neural information processing systems, 26, 2013.

12



Published as a conference paper at ICLR 2023

A PROOF OF THEOREM 1

Note that the bandit setting is a special case (when S = H = 1) of our MDP setting. Thus,
the lower bound for the adversarial bandit setting in Shi et al. (2022) serves as a lower bound in
our MDP setting. However, the direct use of such a lower bound from bandits will not be good
enough for the MDP case that we study in this paper. To get the lower bound in Theorem 1, the
most challenging and interesting part is to design the lower-bound instance. Notice that a lower-
bound transition is constructed for stochastic MDP in Qiao et al. (2022), which shows that the
MDP setting is at least as difficult as multi-armed bandits with Ω(HSA) arms, and then a similar
lower bound can be obtained based on the lower bound from bandits. In this section, we construct
a new lower-bound instance. Specifically, we divide the state space S and construct special state
transitions, such that the episodic reinforcement learning is reduced to Θ(S/H) chains of bandit
learning. Notice that the lower-bound analysis in Shi et al. (2022) implies that, with the loss function
lt upper-bounded by H , A arms and T time-slots, the regret of any bandit-learning algorithm with
switching costs is at least Ω̃

(
β1/3A1/3(HT )2/3

)
when T ≥ max{6H2A, β}. Hence, the total

regret from all Θ(S/H) chains of bandit learning is at least Ω̃
(
β1/3A1/3(H T

S/H )2/3
)
·Θ(S/H) =

Ω̃
(
β1/3(HSA)1/3T 2/3

)
. Please see our detailed proof below.

Proof. Lower-bound instance: We consider a special instance where S − 2 is divisible by H − 1.
First, we assign the states in the state space S to each layer as follows. The first layer contains a
single sate, i.e., S0 = {s0}. All episodes end with state SH = {sH}. Moreover, the rest of the S−2
states are assigned to each layer h ∈ [1, H − 1] evenly. That it, each layer h ∈ [1, H − 1] contains
S−2
H−1 states. Following the sequence of the states at each layer, we call the index i of the i-th state
the “order” of it. In addition, the order i of the states at layer h of any episode is the same, e.g., the
first state at layer h is always the first state at layer h for all episodes, and the second state at layer
h is always the second state at layer h for all episodes. Moreover, all actions are available at each
state s ∈ S. Finally, based on this construction of the states and actions, we run independently the
lower-bound algorithm for adversarial bandit learning with switching costs in (Shi et al., 2022) as a
subroutine through all i-th states, for all i = 1, ..., S−2

H−1 . That is, for each layer h = 1, ...,H − 1,
Ph(si|si, a) = 1 for all a, and Ph(sj |si, a) = 0 for all j ̸= i and all a.

Lower-bound analysis: The lower-bound analysis in Shi et al. (2022) implies that, with the
loss function lt upper-bounded by H , A arms and T time-slots, the regret (including both the
loss regret and switching costs) of any bandit-learning algorithm with switching costs is at least
Ω̃
(
β1/3A1/3(HT )2/3

)
. Notice that based on our lower-bound instance constructed above, there are

S−2
H−1 chains of bandit learning. Hence, the total regret of any RL algorithm π from all these S−2

H−1
chains of bandit learning can be lower-bounded as follows,

Rπ(T ) ≥ Ω̃

β1/3A1/3

(
H

T
S−2
H−1

)2/3
 · S − 2

H − 1
= Ω̃

(
β1/3(HSA)1/3T 2/3

)
(16)

B PROOF OF THEOREM 2

The proof of Theorem 2 follows the lower bound proved in Appendix A, but by considering the loss
regret and switching costs separately.

Proof. To prove Theorem 2, we use the lower-bound instance that we constructed above for proving
Theorem 1 in Appendix A. First, the lower-bound analysis in Shi et al. (2022) implies that, for
adversarial bandit learning with the loss function lt upper-bounded by H , A arms and T time-slots,
when the total switching cost is equal to O(β · N swi), the loss regret can be lower-bounded by

Ω̃
(√

A
N swi ·HT

)
. Notice that there are S−2

H−1 chains of bandit learning in the lower-bound instance

that we constructed in Appendix A. Thus, with a total switching cost equal to O(β · N swi) ≜
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O(β ·
∑ S−2

H−1

i=1 N swi
i ), the loss regret of any RL algorithm π against the lower-bound instance that we

constructed above can be lower-bounded as follows,

Rπ
loss(T ) ≥

S−2
H−1∑
i=1

Ω̃

(√
A

N swi
i

·H T
S−2
H−1

)
= Ω̃

(√
HSA

N swi · T

)
,

where the equality is because
∑ S−2

H−1

i=1

√
1

N swi
i

≥
√

1
N swi

(
S−2
H−1

)3/2
. Finally, the second half part of

Theorem 2 is trivially true, since it is the converse-negative proposition of the first half part that we
have proved above.

C PROOF OF LEMMA 1

Proof. First, since the expectation is taken with respect to the randomness of the episodes t1(s, a),
..., tJ[u]

(s, a), in which the state-action pair (s, a) was visited, the left-hand-side of (9) is equal to

E
[
l̂SEEDS
[u] (s, a)

∣∣∣F[u]

]
=

∑
{t1(s,a),...,tJ[u]

(s,a)}
⊆[(u−1)τ+1,uτ ]

l̂SEEDS
[u] (s, a) · Pr

[
{t1(s, a), ..., tJ[u]

(s, a)}
∣∣F[u]

]
.

Next, according to the definition of the estimated loss that we design in (8), we have

E
[
l̂SEEDS
[u] (s, a)

∣∣∣F[u]

]
=

∑
{t1(s,a),...,tJ[u]

(s,a)}
⊆[(u−1)τ+1,uτ ]

J[u]∑
j=1

ltj(s,a)(s, a)

q̂SEEDS,P
[u] (s, a)

· 1{(s,a) was visited in episodes t1(s,a),...,tJ[u]
(s,a) of super-episode u} · Pr

[
{t1(s, a), ..., tJ[u]

(s, a)}
∣∣F[u]

]
.

In the following, we prove that

∑
{t1(s,a),...,tJ[u]

(s,a)}
⊆[(u−1)τ+1,uτ ]

J[u]∑
j=1

ltj(s,a)(s, a)

q̂SEEDS,P
[u] (s, a)

· 1{(s,a) was visited in episodes t1(s,a),...,tJ[u]
(s,a) of super-episode u}

· Pr
[
{t1(s, a), ..., tJ[u]

(s, a)}
∣∣F[u]

]
=

uτ∑
t=(u−1)τ+1

q̂SEEDS,P
[u] (s, a) · lt(s, a)

q̂SEEDS,P
[u] (s, a)

.

That is, under our new design of the estimated loss in (8), summing over all possible sets of the
random episodes where the state-action pair was visited (i.e., the outer sum on the left-hand-side)
is equivalent to summing over all deterministic episodes from the beginning to the end of a super-
episode (i.e., the sum on the right-hand-side).

This is because first, relying on the above indicator function on the left-hand-side, the sum of the
total observed loss in a super-episode over all possible sets {t1(s, a), ..., tJ[u]

(s, a)} is equivalent to
the sum of the total true loss in each episode of a super-episode based on whether the episode is
observed. Therefore, we have

E
[
l̂SEEDS
[u] (s, a)

∣∣∣F[u]

]
=

uτ∑
t=(u−1)τ+1

∑
{t1(s,a),...,tJ[u]

(s,a)}:
t∈{t1(s,a),...,tJ[u]

(s,a)}

lt(s, a)

q̂SEEDS,P
[u] (s, a)

· Pr
[
{t1(s, a), ..., tJ[u]

(s, a)}
∣∣F[u]

]
. (17)

In addition, since the transition function P is known, conditioned on F[u], the probability of visiting
each state-action pair (s, a) in an episode t of super-episode u is equal to the occupancy measure

14
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q̂SEEDS,P
[u] (s, a), i.e., ∑

{t1(s,a),...,tJ[u]
(s,a)}:

t∈{t1(s,a),...,tJ[u]
(s,a)}

Pr
[
{t1(s, a), ..., tJ[u]

(s, a)}
∣∣F[u]

]
= q̂SEEDS,P

[u] (s, a). (18)

Finally, by combining (17) and (18), we have

E
[
l̂SEEDS
[u] (s, a)

∣∣∣F[u]

]
=

uτ∑
t=(u−1)τ+1

q̂SEEDS,P
[u] (s, a) · lt(s, a)

q̂SEEDS,P
[u] (s, a)

=

uτ∑
t=(u−1)τ+1

lt(s, a) = l[u](s, a).

D PROOF OF THEOREM 3 AND THEOREM 4

Since the total switching cost of SEEDS is trivially upper-bounded by β ·
⌈
T
τ

⌉
, to prove Theorem 3,

we focus on upper-bounding the loss regret of SEEDS, i.e.,

RSEEDS
loss (T ) = max

q∈C(P )
E

[
T∑

t=1

〈
qSEEDS,P
t − q, lt

〉∣∣∣∣∣SEEDS, P

]

≜ E

[
T∑

t=1

〈
qSEEDS,P
t − qπ

∗
, lt

〉∣∣∣∣∣SEEDS, P

]
.

To upper-bound the loss regret, the main difficulty lies in capturing the effects of the arbitrarily-
changing losses and multiple random visitations of each state-action pair in a super-episode. To
overcome this difficulty, our proof of Theorem 3 first upper-bounds the loss regret based on the
correlated loss feedback in a super-episode (which relies on our new design of the estimated loss in
(8) and Lemma 1), and then relates these upper bounds across all super-episodes to the final regret
(which relies on another lemma, Lemma 3 below, which transfers the original regret formulation to
a form based on the losses from the entire super-episode).

Specifically, for each super-episode, we first relate the true occupancy measure qSEEDS,P
t to the un-

constrained solution q̃SEEDS,P
[u+1] to (10). Then, we relate q̃SEEDS,P

[u+1] to the optimal offline occupancy

measure qπ
∗
. The gaps between them are upper-bound mainly by using Lemma 1. Finally, by com-

bining all the loss gaps (according to Lemma 3 and super-episodic version of online mirror descent)
and the switching-cost upper-bound β

⌈
T
τ

⌉
, and tuning the parameters η and τ as in Algorithm 1, we

can get the regret of SEEDS in Theorem 3 and the trade-off in Theorem 4. Please see the detailed
proofs of Theorem 3 and Theorem 4 in the next two subsections.

D.1 PROOF OF THEOREM 3

Proof. Step-1 (Bounding the switching costs): Since SEEDS switches at most once in each super-
episode, the total switching cost of SEEDS is upper-bounded by β ·

⌈
T
τ

⌉
. In the following, we focus

on upper-bounding the loss regret RSEEDS
loss (T ).

Step-2 (Bounding the loss regret): First, since SEEDS applies the same occupancy measure for all
episodes t of the same super-episode u and the transition function P is known, conditioned on the
history before super-episode u, the true occupancy measures of these episodes are the same. Then,
according to Lemma 3 below, we can transfer the original regret formulation to a form based on the
losses from the entire super-episode.

Lemma 3. The loss regret RSEEDS
loss (T ) of SEEDS is equal to

E

[
T∑

t=1

〈
qSEEDS,P
t − qπ

∗
, lt

〉∣∣∣∣∣ SEEDS, P

]
= E

[ U∑
u=1

〈
qSEEDS,P
[u] − qπ

∗
, l[u]

〉∣∣∣∣∣ SEEDS, P

]
. (19)
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Note that the occupancy measure and loss on the left-hand-side of (19) are for each episode t, while
those on the right-hand-side of (19) are for each super-episode u. Please see Appendix E for the
proof of Lemma 3.

Next, we use q̃SEEDS,P
[u+1] to denote the unconstrained solution to (10), i.e.,

q̃SEEDS,P
[u+1] ≜ argmin

q

{
η ·
〈
q, l̂SEEDS

[u]

〉
+DKL

(
q
∥∥∥q̂SEEDS,P

[u]

)}
.

Notice that q̂SEEDS,P
[u+1] is the constrained solution to (10), where the constraint is q ∈ C(P ). It is not

hard to get that

q̃SEEDS,P
[u+1] (s, a) = q̂SEEDS,P

[u] (s, a) · e−ηl̂SEEDS
[u] (s,a). (20)

To get (20), let us consider the function f(q) = η ·
〈
q, l̂SEEDS

[u]

〉
+DKL

(
q
∥∥∥q̂SEEDS,P

[u]

)
. According

to the definition of DKL(q∥q′) right after (10), the derivative of function f(q) is

∂f(q)

∂q(s, a)
= η · l̂SEEDS

[u] (s, a) + ln
q(s, a)

q̂SEEDS,P
[u] (s, a)

.

By letting the derivative to be 0 and rearranging the terms, we have (20).

Remark 1. Notice that, similar to the above steps that use standard convex optimization method to
get (20), we can get the the final solution to (10) as follows,

q̂SEEDS,P
[u+1] (s, a) =

q̂SEEDS,P
[u] (s, a)eδ(s,a|v̂[u],l̂[u])

z[u](v̂[u], h(s))
,

where z[u](v, h) =
∑

s∈Sh,a∈A
q[u](s, a)e

δ(s,a|v,l̂[u]), δ(s, a|v, l) = −ηl(s, a)−
∑
s′∈S

v(s′)P (s′|s, a)+

v(s), and v̂[u] = argmin
v

H∑
h=0

ln z[u](v, h). This is consistent with the expression provided in Propo-

sition 1 in Zimin & Neu (2013).

Then, because of Lemma 3 and the fact that the calculated occupancy measure q̂SEEDS,P
[u] is equal to

the true occupancy measure qSEEDS,P
[u] , we have

E

[
T∑

t=1

〈
qSEEDS,P
t − qπ

∗
, lt

〉∣∣∣∣∣SEEDS, P

]
= E

[ U∑
u=1

〈
q̂SEEDS,P
[u] − qπ

∗
, l[u]

〉∣∣∣∣∣SEEDS, P

]
.

According to the linearity of expectation, we can decompose the loss regret into two terms that are
easier to be bounded as follows,

E

[
T∑

t=1

〈
qSEEDS,P
t − qπ

∗
, lt

〉∣∣∣∣∣SEEDS, P

]
=

U∑
u=1

E
[〈

q̂SEEDS,P
[u] − qπ

∗
, l[u]

〉∣∣∣SEEDS, P
]

=

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS,P
[u] − qπ

∗
, l[u]

〉∣∣∣F[u], P
]]

=

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS,P
[u] − q̃SEEDS,P

[u+1] , l[u]

〉∣∣∣F[u], P
]]

+

U∑
u=1

EF[u]

[
E
[〈

q̃SEEDS,P
[u+1] − qπ

∗
, l[u]

〉∣∣∣F[u], P
]]

, (21)

where the second equality is because E[X] = E[E[X|Y ]], the last equality is because of the linearity
of the expectation, and we drop the condition on SEEDS since it is clear from the context.

Below, we focus on upper-bounding the two terms on the right-hand-side of (21) one-by-one.
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Step-2-i (Bounding the first term): Since ex ≥ 1 + x, from (20) we have

q̂SEEDS,P
[u] (s, a)− q̃SEEDS,P

[u+1] (s, a) ≤ ηq̂SEEDS,P
[u] (s, a) · l̂SEEDS

[u] (s, a).

Thus, the first term on the right-hand-side of (21) can be upper-bounded as follows,

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS,P
[u] − q̃SEEDS,P

[u+1] , l[u]

〉∣∣∣F[u], P
]]

≤
U∑

u=1

EF[u]

E
 ∑

s∈S,a∈A
ηq̂SEEDS,P

[u] (s, a) · l̂SEEDS
[u] (s, a) · l[u](s, a)

∣∣∣∣∣∣F[u], P

 .

Then, according to the definition of the estimated loss that we design in (8), we have

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS,P
[u] − q̃SEEDS,P

[u+1] , l[u]

〉∣∣∣F[u], P
]]

≤
U∑

u=1

EF[u]

[
E

[ ∑
s∈S,a∈A

ηq̂SEEDS,P
[u] (s, a)

J[u]∑
j=1

ltj(s,a)(s, a)

q̂SEEDS,P
[u] (s, a)

· 1{(s,a) was visited in episodes t1(s,a),...,tJ[u]
(s,a) of super-episode u} · l[u](s, a)

∣∣∣∣∣F[u], P

]]

≤
U∑

u=1

EF[u]

E
 ∑

s∈S,a∈A
η
(
l[u](s, a)

)2∣∣∣∣∣∣F[u], P


≤ ηSA

⌈
T

τ

⌉
τ2, (22)

where the second inequality is because
J[u]∑
j=1

ltj(s,a)(s, a) ≤
min{uτ,T}∑
t=(u−1)τ+1

lt(s, a) = l[u](s, a), and the

last inequality is because l[u](s, a) ≤ τ and U =
⌈
T
τ

⌉
.

Step-2-ii (Bounding the second term): According to online mirror descent (Rakhlin et al., 2009;
Zimin & Neu, 2013), we have the following inequality for the unconstrained solution q̃SEEDS,P

[u+1] to
(10),

〈
q − q̃SEEDS,P

[u+1] , η · l̂SEEDS
[u] +

∂DKL(q∥q̂SEEDS,P
[u] )

∂q

∣∣∣∣∣
q=q̃SEEDS,P

[u+1]

〉
≥ 0, for all q.

Since
∂DKL(q∥q̂SEEDS,P

[u]
)

∂q

∣∣∣∣∣
q=q̃SEEDS,P

[u+1]

= ln

(
q̃SEEDS,P
[u+1]

q̂SEEDS,P
[u]

)
, by rearranging the terms, we have

〈
q̃SEEDS,P
[u+1] − q, η · l̂SEEDS

[u]

〉
≤

〈
q − q̃SEEDS,P

[u+1] , ln

(
q̃SEEDS,P
[u+1]

q̂SEEDS,P
[u]

)〉
, for all q.
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By adding and subtracting terms on the right-hand-side, we have〈
q̃SEEDS,P
[u+1] − q, η · l̂SEEDS

[u]

〉
≤

 ∑
s∈S,a∈A

q(s, a) ln
q(s, a)

q̂SEEDS,P
[u] (s, a)

−
∑

s∈S,a∈A

[
q(s, a)− q̂SEEDS,P

[u] (s, a)
]

−

 ∑
s∈S,a∈A

q̃SEEDS,P
[u+1] (s, a) ln

q̃SEEDS,P
[u+1] (s, a)

q̂SEEDS,P
[u] (s, a)

−
∑

s∈S,a∈A

[
q̃SEEDS,P
[u+1] (s, a)− q̂SEEDS,P

[u] (s, a)
]

+

[ ∑
s∈S,a∈A

(
q(s, a)− q̂SEEDS,P

[u] (s, a)
)
+

∑
s∈S,a∈A

q(s, a) ln
q̃SEEDS,P
[u+1] (s, a)

q(s, a)

−
∑

s∈S,a∈A

(
q̃SEEDS,P
[u+1] (s, a)− q̂SEEDS,P

[u] (s, a)
)]

= DKL

(
q
∥∥q̂SEEDS,P

[u]

)
−DKL

(
q̃SEEDS,P
[u+1]

∥∥q̂SEEDS,P
[u]

)
−DKL

(
q
∥∥q̃SEEDS,P

[u+1]

)
, for all q.

Then, together with Lemma 1, we have
U∑

u=1

EF[u]

[
E
[〈

q̃SEEDS,P
[u+1] − qπ

∗
, l[u]

〉 ∣∣∣F[u], P
]]

=

U∑
u=1

EF[u]

[
E
[〈

q̃SEEDS,P
[u+1] − qπ

∗
, l̂SEEDS

[u]

〉 ∣∣∣F[u], P
]]

≤ 1

η
·

U∑
u=1

EF[u]

[
E
[
DKL

(
q
∥∥∥q̂SEEDS,P

[u]

)
−DKL

(
q̃SEEDS,P
[u+1]

∥∥∥q̂SEEDS,P
[u]

)
−DKL

(
q
∥∥∥q̃SEEDS,P

[u+1]

) ∣∣∣F[u], P
]]

.

Since the intermediate terms get cancelled and the relative entropy is always non-negative, the sec-
ond term on the right-hand-side of (21) can be upper-bounded as follows,

U∑
u=1

EF[u]

[
E
[〈

q̃SEEDS,P
[u+1] − qπ

∗
, l[u]

〉 ∣∣∣F[u], P
]]

≤
DKL(q∥q̂SEEDS,P

[1] )

η
≤ H

η
ln

SA

H
. (23)

Step-3 (Final step): Finally, by combining (22), (23) and the switching-cost upper-bound β ·
⌈
T
τ

⌉
,

and tuning the parameters η and τ as in Algorithm 1, we have that the regret of SEEDS is upper-
bounded by O

(
β1/3 (HSA)

1/3
T 2/3

)
.

D.2 PROOF OF THEOREM 4

By considering the loss-regret bound that we prove above and the switching-cost bound separately,
we can prove Theorem 4.

Proof. According to (22) and (23) above, with the total switching cost equal to O
(
β ·
⌈
T
τ

⌉)
=

O(β · N SEEDS), the loss regret of SEEDS is upper-bounded as follows,

RSEEDS
loss (T ) ≤ Õ

(
ηSATτ +

H

η

)
= Õ

(√
HSATτ

)
= Õ

(√
HSA

N SEEDS · T

)
, (24)

where the first equality is by tuning η =
√

H
SATτ , and the last equality is because N SEEDS ≜

⌈
T
τ

⌉
.
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E PROOF OF LEMMA 3

For the convenience of the reader, we re-state Lemma 3 below.

Lemma 3. The loss regret RSEEDS
loss (T ) of SEEDS is equal to

E

[
T∑

t=1

〈
qSEEDS,P
t − qπ

∗
, lt

〉∣∣∣∣∣ SEEDS, P

]
= E

[ U∑
u=1

〈
qSEEDS,P
[u] − qπ

∗
, l[u]

〉∣∣∣∣∣ SEEDS, P

]
. (25)

Proof. We drop the condition on SEEDS since it is clear from the context. First, according to the
linearity of expectation, we have that the left-hand-side of (25) is equal to

E

[
T∑

t=1

〈
qSEEDS,P
t − qπ

∗
, lt

〉 ∣∣∣P] =

U∑
u=1

E

 min{uτ,T}∑
t=(u−1)τ+1

〈
qSEEDS,P
t − qπ

∗
, lt

〉 ∣∣∣P
 .

Then, since conditioned on the history before super-episode u, the true occupancy measures for all
episodes t of the same super-episode u are the same, we have

E

[
T∑

t=1

〈
qSEEDS,P
t − qπ

∗
, lt

〉 ∣∣∣P] =

U∑
u=1

EF[u]

E
 min{uτ,T}∑
t=(u−1)τ+1

〈
qSEEDS,P
t − qπ

∗
, lt

〉 ∣∣∣F[u], P


=

U∑
u=1

EF[u]

E
 min{uτ,T}∑
t=(u−1)τ+1

〈
qSEEDS,P
[u] − qπ

∗
, lt

〉 ∣∣∣F[u], P

 .

Finally, since the true loss is l[u](s, a) =
∑min{uτ,T}

t=(u−1)τ+1 lt, we have

E

[
T∑

t=1

〈
qSEEDS,P
t − qπ

∗
, lt

〉 ∣∣∣P] =

U∑
u=1

EF[u]

[
E
[〈

qSEEDS,P
[u] − qπ

∗
, l[u]

〉 ∣∣∣F[u], P
]]

= E

[ U∑
u=1

〈
qSEEDS,P
[u] − qπ

∗
, l[u]

〉 ∣∣∣P] .

F PROOF OF LEMMA 2

The proof is similar to the proof of Lemma 1 in Appendix C.

Proof. First, since the expectation is taken with respect to the randomness of the episodes t1(s, a),
..., tJ[u]

(s, a), in which the state-action pair (s, a) was visited, the left-hand-side of (13) is equal to

E
[
l̂SEEDS-UT
[u] (s, a)

∣∣∣F[u]

]
=

∑
{t1(s,a),...,tJ[u]

(s,a)}
⊆[(u−1)τ+1,uτ ]

l̂SEEDS-UT
[u] (s, a) · Pr

[
{t1(s, a), ..., tJ[u]

(s, a)}
∣∣F[u]

]
.

Next, according to the definition of the estimated loss that we design in (12), we have

E
[
l̂SEEDS-UT
[u] (s, a)

∣∣∣F[u]

]
=

∑
{t1(s,a),...,tJ[u]

(s,a)}
⊆[(u−1)τ+1,uτ ]

J[u]∑
j=1

ltj(s,a)(s, a)

Qγ
[u](s, a)

· 1{(s,a) was visited in episodes t1(s,a),...,tJ[u]
(s,a) of super-episode u} · Pr

[
{t1(s, a), ..., tJ[u]

(s, a)}
∣∣F[u]

]
.
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Then, relying on the above indicator function, the sum of the total observed loss in a super-episode
over all possible sets {t1(s, a), ..., tJ[u]

(s, a)} is equivalent to the sum of the total true loss in each
episode of a super-episode based on whether the episode is observed. Therefore, we have

E
[
l̂SEEDS-UT
[u] (s, a)

∣∣∣F[u]

]
=

uτ∑
t=(u−1)τ+1

∑
{t1(s,a),...,tJ[u]

(s,a)}:
t∈{t1(s,a),...,tJ[u]

(s,a)}

lt(s, a)

Qγ
[u](s, a)

· Pr
[
{t1(s, a), ..., tJ[u]

(s, a)}
∣∣F[u]

]
.

Finally, since conditioned on Fu, the probability of visiting each state-action pair (s, a) in an
episode t of super-episode u is equal to the occupancy measure qSEEDS-UT,P

[u] (s, a), we have

E
[
l̂SEEDS-UT
[u] (s, a)

∣∣∣F[u]

]
=

uτ∑
t=(u−1)τ+1

qSEEDS-UT,P
[u] (s, a) · lt(s, a)

Qγ
[u](s, a)

=
qSEEDS-UT,P
[u] (s, a)

Qγ
[u](s, a)

uτ∑
t=(u−1)τ+1

lt(s, a) =
qSEEDS-UT,P
[u] (s, a)

Qγ
[u](s, a)

l[u](s, a).

G PROOF OF THEOREM 5

Specifically, since the total switching cost of SEEDS-UT is trivially upper-bounded by β ·
⌈
T
τ

⌉
, to

prove Theorem 5, we focus on upper-bounding the loss regret RSEEDS
loss (T ) of SEEDS-UT, i.e.,

RSEEDS-UT
loss (T ) = max

q∈C(P )
E

[
T∑

t=1

〈
qSEEDS-UT,P
t − q, lt

〉∣∣∣∣∣SEEDS-UT, P

]

≜ E

[
T∑

t=1

〈
qSEEDS-UT,P
t − qπ

∗
, lt

〉∣∣∣∣∣SEEDS-UT, P

]
.

To upper-bound the loss regret, the main difficulties are that, due to the delayed switching and
unknown transition function, the losses of SEEDS-UT in the episodes of any super-episode are cor-
related and the true occupancy measure is unknown. As a result, the existing analytical ideas in
adversarial RL without switching costs (e.g., in Jin et al. (2020a)) and adversarial bandit learning
with switching costs (e.g., in Shi et al. (2022)) do not apply here. To overcome these new difficulties,
our proof of Theorem 5 involves several key new components. For example, since SEEDS-UT col-
lects samples from a whole super-episode to estimate the transition-function set P , each state-action
pair could be visited multiple times and such visitations are random. As a result, the proof in Jin
et al. (2020a), which requires each state-action pair to be visited at most once does not apply di-
rectly here. To resolve this difficulty, we construct a special series based on the collected samples
to achieve an analyzable intermediate step for our proof of the final regret. Moreover, due to our
new design of the estimated loss in (12), the concentration lemma for the loss based on the samples
from only one episode in Jin et al. (2020a) does not apply. To resolve this difficulty, we establish a
super-episodic version of concentration in our proof by bounding the second-order moment of the
estimated loss.

Specifically, for each super-episode, we decompose the loss regret
〈
qSEEDS-UT,P
[u] − qπ

∗
, l[u]

〉
into

four parts that are easier to be upper-bounded as follows,〈
qSEEDS-UT,P
[u] − qπ

∗
, l[u]

〉
=
〈
qSEEDS-UT,P
[u] − q̂SEEDS-UT,P

[u] , l[u]

〉
+
〈
q̂SEEDS-UT,P
[u] , l[u] − l̂SEEDS-UT

[u]

〉
+
〈
q̂SEEDS-UT,P
[u] − qπ

∗
, l̂SEEDS-UT

[u]

〉
+
〈
qπ

∗
, l̂SEEDS-UT

[u] − l[u]

〉
.

The first term on the right-hand-side is mainly the difference between the true occupancy measure
and the updated occupancy measure. Intuitively, according to Bernstein inequality (Maurer & Pontil,
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2009) and standard stochastic RL analysis, SEEDS-UT estimates the true transition function P very
well by using the transition-function setP in (14). Thus, based on the relation between the occupancy
measure and the transition function in (4), SEEDS-UT should estimate the true occupancy measure
very well. Hence, the first term should be upper-bounded and controllable. The second and fourth
terms on the right-hand-side depends on the difference between the estimated loss and the true loss.
According to Lemma 2, this gap should be controllable by tuning the parameter γ. The third term
is similar to the loss regret in the case when the transition function is known. Thus, it can be upper-
bounded similarly to our proof of Theorem 3 in Appendix D. Finally, by combining all these gaps
and the switching-cost upper-bound β ·

⌈
T
τ

⌉
, and tuning the parameters η, τ and γ as in Algorithm 2,

we get the regret of SEEDS-UT in Theorem 5. Please see the detailed proof below.

Proof. Step-1 (Bounding the switching costs): Since SEEDS-UT switches at most once in each
super-episode, the total switching cost of SEEDS-UT is upper-bounded by β ·

⌈
T
τ

⌉
. In the following,

we focus on upper-bounding the loss regret RSEEDS-UT
loss (T ).

Step-2 (Bounding the loss regret): We first show Lemma 4 below. Lemma 4 is critical for Lemma 3
to be true in this case with an unknown transition function.

Lemma 4. For any two episodes t1 and t2, if the updated occupancy measures are the same, i.e.,
q̂t1(s

′, s, a) = q̂t2(s
′, s, a) for any (s′, s, a), then the true occupancy measures are the same, i.e.,

qt1(s, a) = qt2(s, a) = q[u](s, a) for any (s, a), where q[u](s, a) is the true occupancy measure for
the super-episode u.

The proof of Lemma 4 follows the conditions in (2)-(5). Since SEEDS-UT applies the same occu-
pancy measure q̂SEEDS-UT,P

[u] for all episodes t of the same super-episode u, according to Lemma 4,

the true occupancy measure qSEEDS-UT,P
t of these episodes t are the same. Thus, similar to the case

with a known transition function, we can get an unknown-transition version of Lemma 3 here. Thus,

E

[
T∑

t=1

〈
qSEEDS-UT,P
t − qπ

∗
, lt

〉 ∣∣∣P] = E

[ U∑
u=1

〈
qSEEDS-UT,P
[u] − qπ

∗
, l[u]

〉 ∣∣∣P] .
We drop the condition on SEEDS-UT in the expectation here and in the following when it is clear
from the context.

According to the linearity of expectation, we can decompose the loss regret into four terms that are
easier to be bounded, i.e.,

E

[
T∑

t=1

〈
qSEEDS-UT,P
t − qπ

∗
, lt

〉 ∣∣∣P] =

U∑
u=1

E
[〈

qSEEDS-UT,P
[u] − qπ

∗
, l[u]

〉 ∣∣∣P]
=

U∑
u=1

{
EF[u]

[
E
[ 〈

qSEEDS-UT,P
[u] − q̂SEEDS-UT,P

[u] , l[u]

〉
+
〈
q̂SEEDS-UT,P
[u] , l[u] − l̂SEEDS-UT

[u]

〉
+
〈
q̂SEEDS-UT,P
[u] − qπ

∗
, l̂SEEDS-UT

[u]

〉
+
〈
qπ

∗
, l̂SEEDS-UT

[u] − l[u]

〉 ∣∣∣F[u], P
]]}

. (26)

Below, we focus on upper-bounding the four terms on the right-hand-side of (26) one-by-one.

Step-2-i (Bounding the first term): Since lt(s, a) ≤ 1 for all state-action pairs (s, a), we have
l[u](s, a) ≤ τ for all (s, a). Thus, we have〈

qSEEDS-UT,P
[u] − q̂SEEDS-UT,P

[u] , l[u]

〉
≤ τ ·

∑
s∈S,a∈A

∣∣∣qSEEDS-UT,P
[u] (s, a)− q̂SEEDS-UT,P

[u] (s, a)
∣∣∣ .

The difference between the true occupancy measure and the updated occupancy measure on the
right-hand-side depends on how good the transition-function set P in (14) is, and can be further
upper-bounded by using Bernstein inequality (Maurer & Pontil, 2009). Below, we focus on bound-
ing this difference. We use π̃(a|s) to denote the probability of choosing action a at state s. Specif-
ically, first, according to the relation between the occupancy measure and the transition function in
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(4), we have that for any state-action pair (sh, ah) ∈ Sh ×A visited at stage h,

qπ,P (sh, ah) = π̃(ah|sh)
∑

(si∈Si,ai∈A)h−1
i=0

h−1∏
j=0

[π̃(aj |sj)P (sj+1|sj , aj)] ,

where for simplicity, we drop the index t for the states s and actions a. Thus, the difference between
the updated occupancy measure and the true occupancy measure can be upper-bounded as follows,∣∣∣q̂SEEDS-UT,P

[u] (sh, ah)− qSEEDS-UT,P
[u] (sh, ah)

∣∣∣ = π̃SEEDS-UT
[u] (ah|sh)

·
∑

(si∈Si,ai∈A)h−1
i=0

h−1∏
j=0

π̃SEEDS-UT
[u] (aj |sj)

h−1∏
j=0

P̂[u](sj+1|sj , aj)−
h−1∏
j=0

P (sj+1|sj , aj)

 , (27)

For the terms in the bracket [·], we have
h−1∏
j=0

P̂[u](sj+1|sj , aj)−
h−1∏
j=0

P (sj+1|sj , aj)

=

h−1∏
j=0

P̂[u](sj+1|sj , aj)−
h−1∏
j=0

P (sj+1|sj , aj)±
h−1∑
k=1

k−1∏
j=0

P (sj+1|sj , aj)
h−1∏
j=k

P̂[u](sj+1|sj , aj)

=

h−1∑
k=0

[
P̂[u](sk+1|sk, ak)− P (sk+1|sk, ak)

] k−1∏
j=0

P (sj+1|sj , aj)
h−1∏
j=k

P̂[u](sj+1|sj , aj)

≤
h−1∑
k=0

ϵ̃[u](sk+1|sk, ak)
k−1∏
j=0

P (sj+1|sj , aj)
h−1∏
j=k

P̂[u](sj+1|sj , aj), (28)

where

ϵ̃[u](sk+1|sk, ak) = O

(√
P (sk+1|sk, ak) ln TSA

δ

max
{
N[u](sk, ak)}, 1

} +
ln TSA

δ

max
{
N[u](sk, ak)}, 1

}) (29)

shows how good SEEDS-UT estimates the true transition function, and the inequality is because
of the empirical Bernstein inequality (Maurer & Pontil, 2009) and Lemma 8 in Jin et al. (2020a).
Applying (27) and (28) to SEEDS-UT, we have∣∣∣q̂SEEDS-UT,P

[u] (sh, ah)− qSEEDS-UT,P
[u] (sh, ah)

∣∣∣ ≤ h−1∑
k=0

∑
(si∈Si,ai∈A)h−1

i=0

ϵ̃[u](sk+1|sk, ak)

·

π̃SEEDS-UT
[u] (ak|sk)

k−1∏
j=0

π̃SEEDS-UT
[u] (aj |sj)P (sj+1|sj , aj)


·

π̃SEEDS-UT
[u] (ah|sh)

h−1∏
j=k+1

π̃SEEDS-UT
[u] (aj |sj)P̂ (sj+1|sj , aj)


=

h−1∑
k=0

∑
sk+1∈Sk+1,sk∈Sk,ak∈A

ϵ̃[u](sk+1|sk, ak)qSEEDS-UT,P
[u] (sk, ak)q̂

SEEDS-UT,P
[u] (sh, ah|sk+1).

(30)
Similarly, we can show that∣∣∣q̂SEEDS-UT,P

[u] (sh, ah|sk+1)− qSEEDS-UT,P
[u] (sh, ah|sk+1)

∣∣∣
=

h−1∑
j=k+1

∑
sj+1∈Sj+1,sj∈Sj ,aj∈A

ϵ̃[u](sj+1|sj , aj)qSEEDS-UT,P
[u] (sj , aj |sk+1)q̂

SEEDS-UT,P
[u] (sh, ah|sj+1)

≤ π̃SEEDS-UT
[u] (ah|sh)

h−1∑
j=k+1

∑
sj+1∈Sj+1,sj∈Sj ,aj∈A

ϵ̃[u](sj+1|sj , aj)qSEEDS-UT,P
[u] (sj , aj |sk+1). (31)
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Combining (30) and (31), we have

U∑
u=1

H−1∑
h=0

∑
(sh,ah)∈Sh×A

∣∣∣q̂SEEDS-UT,P
[u] (sh, ah)− qSEEDS-UT,P

[u] (sh, ah)
∣∣∣

≤
U∑

u=1

H−1∑
h=0

∑
(sh,ah)∈Sh×A

h−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

ϵ̃[u](sk+1|sk, ak)qSEEDS-UT,P
[u] (sk, ak)

· qSEEDS-UT,P
[u] (sh, ah|sk+1)

+

U∑
u=1

H−1∑
h=0

∑
(sh,ah)∈Sh×A

h−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

ϵ̃[u](sk+1|sk, ak)qSEEDS-UT,P
[u] (sk, ak)

·

π̃SEEDS-UT
[u] (ah|sh)

h−1∑
j=k+1

∑
(sj+1,sj ,aj)∈Sj+1×Sj×A

ϵ̃[u](sj+1|sj , aj)qSEEDS-UT,P
[u] (sj , aj |sk+1)

 .

(32)

Since
H−1∑
h=0

∑
(sh,ah)∈Sh×A

qSEEDS-UT,P
[u] (sh, ah|sk+1) = 1 and

H−1∑
h=0

∑
(sh,ah)∈Sh×A

π̃SEEDS-UT
[u] (ah|sh) ≤

S, from (32), we have
U∑

u=1

H−1∑
h=0

∑
(sh,ah)∈Sh×A

∣∣∣q̂SEEDS-UT,P
[u] (sh, ah)− qSEEDS-UT,P

[u] (sh, ah)
∣∣∣

≤
U∑

u=1

H−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

ϵ̃[u](sk+1|sk, ak)qSEEDS-UT,P
[u] (sk, ak)

+ S ·
U∑

u=1

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak)∈Sk+1×Sk×A
(sj+1,sj ,aj)∈Sj+1×Sj×A

ϵ̃[u](sk+1|sk, ak)qSEEDS-UT,P
[u] (sk, ak)

· ϵ̃[u](sj+1|sj , aj)qSEEDS-UT,P
[u] (sj , aj |sk+1). (33)

Let us focus on bounding the terms on the right-hand-side of (33) one-by-one. For the first term, we
have

U∑
u=1

H−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

ϵ̃[u](sk+1|sk, ak)qSEEDS-UT,P
[u] (sk, ak)

= O

 U∑
u=1

H−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

qSEEDS-UT,P
[u] (sk, ak)

√
P (sk+1|sk, ak) ln TSA

δ

max
{
N[u](sk, ak)}, 1

}
+

qSEEDS-UT,P
[u] (sk, ak) ln

TSA
δ

max
{
N[u](sk, ak)}, 1

} )

≤ O

 U∑
u=1

H−1∑
k=0

∑
(sk,ak)∈Sk×A

qSEEDS-UT,P
[u] (sk, ak)

√
Sk+1 ln

TSA
δ

max
{
N[u](sk, ak)}, 1

}
+

qSEEDS-UT,P
[u] (sk, ak) ln

TSA
δ

max
{
N[u](sk, ak)}, 1

} )
,

where the equality is according to the definition of ϵ̃[u](sk+1|sk, ak) in (29), and the inequality is
according to Cauchy-Schwarz inequality. Note that the difficulty to further bound the above terms
is that each state-action pair could be visited multiple times in a super-episode u. To this end,
we construct a series to achieve an analyzable intermediate step. Let us first imagine there is a
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sequence of numbers based on the samples that are collected from each single episode. Then, we
use Nt(sk, ak) to denote the number of times visiting the state-action pair (sk, ak) before episode t.
Since Nt(sk, ak) is non-decreasing as t increases, i.e.,

N(u−1)τ+1(sk, ak) ≤ N(u−1)τ+2(sk, ak) ≤ ... ≤ Nuτ (sk, ak) = N[u](sk, ak), (34)

we have

qSEEDS-UT,P
[u] (sk, ak)√

max
{
N[u](sk, ak)}, 1

} =
qSEEDS-UT,P
[u] (sk, ak)√

max {Nuτ (sk, ak)}, 1}
≤ ... ≤

qSEEDS-UT,P
[u] (sk, ak)√

max
{
N(u−1)τ+1(sk, ak)}, 1

} .

Now, let us compare our regret bound before to a intermediate step that is based on this series, i.e.,

U∑
u=1

H−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

ϵ̃[u](sk+1|sk, ak)qSEEDS-UT,P
[u] (sk, ak)

≤ O

1

τ

U∑
u=1

H−1∑
k=0

∑
(sk,ak)∈Sk×A

uτ∑
t=(u−1)τ+1

qSEEDS-UT,P
[u] (sk, ak)

√
Sk+1 ln

TSA
δ

max {Nt(sk, ak)}, 1}

+
qSEEDS-UT,P
[u] (sk, ak) ln

TSA
δ

max {Nt(sk, ak)}, 1}

)

≤ O

(
1

τ

H−1∑
k=0

√
SkSk+1AT ln

TSA

δ

)

≤ O

(
1

τ
HS

√
AT ln

TSA

δ

)
, (35)

Let us now consider the second term on the right-hand-side of (33), which can be upper-
bounded similarly to the steps above to bound the first term. First, according to the definition of
ϵ̃[u](sk+1|sk, ak) in (29), we have this second term is upper-bounded by

S ·O

 U∑
u=1

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak)∈Sk+1×Sk×A
(sj+1,sj ,aj)∈Sj+1×Sj×A

√
P (sk+1|sk, ak) ln TSA

δ

max
{
N[u](sk, ak)}, 1

}qSEEDS-UT,P
[u] (sk, ak)

·

√
P (sj+1|sj , aj) ln TSA

δ

max
{
N[u](sj , aj)}, 1

}qSEEDS-UT,P
[u] (sj , aj |sk+1) + ln

TSA

δ

·
U∑

u=1

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak)∈Sk+1×Sk×A
(sj+1,sj ,aj)∈Sj+1×Sj×A

qSEEDS-UT,P
[u] (sk, ak)

max
{
N[u](sk, ak)}, 1

} +
qSEEDS-UT,P
[u] (sj , aj)

max
{
N[u](sj , aj)}, 1

}
 .
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Next, according to Cauchy-Schwarz inequality, we have the terms inside the big-O notation can be
upper-bounded by

ln
TSA

δ

·


H−1∑
k=0

H−1∑
j=k+1

√√√√√√
U∑

u=1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj)

qSEEDS-UT,P
[u] (sk, ak)P (sk+1|sk, ak)qSEEDS-UT,P

[u] (sj , aj |sk+1)

max
{
N[u](sk, ak)}, 1

}

·

√√√√√√
U∑

u=1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj)

qSEEDS-UT,P
[u] (sk, ak)P (sj+1|sj , aj)qSEEDS-UT,P

[u] (sj , aj |sk+1)

max
{
N[u](sj , aj)}, 1

}

+

U∑
u=1

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj)

(
qSEEDS-UT,P
[u] (sk, ak)

max
{
N[u](sk, ak)}, 1

} +
qSEEDS-UT,P
[u] (sj , aj)

max
{
N[u](sj , aj)}, 1

})
 .

Then, according to (34), we have that the terms under the
√
· operator can be upper-bounded by

1

τ

U∑
u=1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj)

uτ∑
t=(u−1)τ+1

qSEEDS-UT,P
[u] (sk, ak)P (sk+1|sk, ak)qSEEDS-UT,P

[u] (sj , aj |sk+1)

max {Nt(sk, ak)}, 1}

· 1
τ

U∑
u=1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj)

uτ∑
t=(u−1)τ+1

qSEEDS-UT,P
[u] (sk, ak)P (sj+1|sj , aj)qSEEDS-UT,P

[u] (sj , aj |sk+1)

max {Nt(sj , aj)}, 1}
,

and the second term in the bracket [·] can be upper-bounded by

U∑
u=1

1

τ

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj)

uτ∑
t=(u−1)τ+1

(
qSEEDS-UT,P
[u] (sk, ak)

max {Nt(sk, ak)}, 1}
+

qSEEDS-UT,P
[u] (sj , aj)

max {Nt(sj , aj)}, 1}

)
.

Combining the above steps and according to Lemma 10 in Jin et al. (2020a), we have that the second
term on the right-hand-side of (33) can be upper-bounded by O

(
1
τH

2S2A ln TSA
δ

)
.

Therefore, with probability 1− δ, the first term on the right-hand-side of (26) can be upper-bounded
by

O

(
HS

√
AT ln

TSA

δ
+H2S2 ln

TSA

δ

)
. (36)

Step-2-ii (Bounding the second term): The second term on the right-hand-side of (26) can be further
decomposed into two terms as follows,

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS-UT,P
[u] , l[u] − l̂SEEDS-UT

[u]

〉∣∣∣F[u], P
]]

=

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS-UT,P
[u] , l[u] − E

[
l̂SEEDS-UT
[u]

]〉∣∣∣F[u], P
]]

+

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS-UT,P
[u] ,E

[
l̂SEEDS-UT
[u]

]
− l̂SEEDS-UT

[u]

〉∣∣∣F[u], P
]]

. (37)
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Let us consider the two terms on the right-hand-side. First, according to Lemma 2, we have

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS-UT,P
[u] , l[u] − E

[
l̂SEEDS-UT
[u]

]〉∣∣∣F[u], P
]]

=

U∑
u=1

EF[u]

E
 ∑

s∈S,a∈A
q̂SEEDS-UT,P
[u] (s, a)l[u](s, a)

(
1−

qSEEDS-UT,P
[u] (s, a)

Qγ
[u](s, a)

)∣∣∣∣∣∣F[u], P

 .

Since l[u](s, a) ≤ τ and Qγ
[u](s, a) ≥ q̂SEEDS-UT,P

[u] (s, a), we have

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS-UT,P
[u] , l[u] − E

[
l̂SEEDS-UT
[u]

]〉∣∣∣F[u], P
]]

≤ τ

U∑
u=1

EF[u]

E
 ∑

s∈S,a∈A

∣∣∣Qγ
[u](s, a)− qSEEDS-UT,P

[u] (s, a)
∣∣∣
∣∣∣∣∣∣F[u], P


≤ τ

U∑
u=1

EF[u]

E
 ∑

s∈S,a∈A

∣∣∣∣∣ max
P̂∈P[u]

qP̂[u](s, a) + γ − qSEEDS-UT,P
[u] (s, a)

∣∣∣∣∣
∣∣∣∣∣∣F[u], P

 ,

where the term max
P̂∈P[u]

qP̂[u](s, a) − qSEEDS-UT,P
[u] (s, a) on the right-hand-side represents how well

SEEDS-UT estimates the true occupancy measure using the transition-function set, and the term
γ on the right-hand-side verifies that this part of the gap is controlled by the parameter γ. Then,
according to the bound for the first term on the right-hand-side of (26), we have

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS-UT,P
[u] , l[u] − E

[
l̂SEEDS-UT
[u]

]〉∣∣∣F[u], P
]]

≤ O

(
HS

√
AT ln

TSA

δ

)
+ γTSA.

Second, according to Azuma’s inequality, we have with probability 1− δ,

U∑
u=1

EF[u]

[
E
[〈

q̂SEEDS-UT,P
[u] ,E

[
l̂SEEDS-UT
[u]

]
− l̂SEEDS-UT

[u]

〉∣∣∣F[u], P
]]

≤ O

(
τH

√
T

τ
ln

1

δ

)
≤ O

(
H

√
Tτ ln

1

δ

)
. (38)

Therefore, with probability 1 − δ, the second term on the right-hand-side of (26) can be upper-
bounded by

O

(
HS

√
AT ln

TSA

δ
+ γTSA+H

√
Tτ ln

1

δ

)
. (39)

Step-2-iii (Bounding the third term): Follow our proof for the case when the transition function is
known, it is not hard to show that

U∑
u=1

〈
q̂SEEDS-UT,P
[u] − qπ

∗
, l̂SEEDS-UT

[u]

〉
≤ η

U∑
u=1

∑
s∈S,a∈A

q̂SEEDS-UT,P
[u] (s, a)

(
l̂SEEDS-UT
[u] (s, a)

)2
+

H ln(SA)

η
.

Let us focus on the first term on the right-hand-side. Note that different from that in Jin et al. (2020a),
the loss l̂SEEDS-UT

[u] (s, a) above is calculated based on the samples from a whole super-episode. Thus,
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each state-action pair could be visited multiple times. To this end, we provide a super-episodic
version of loss concentration as follows,

U∑
u=1

∑
s∈S,a∈A

q̂SEEDS-UT,P
[u] (s, a)

(
l̂SEEDS-UT
[u] (s, a)

)2
≤τH

2γ
ln

H

δ

+

U∑
u=1

∑
s∈S,a∈A

τqSEEDS-UT
[u]

max
P̂∈P[u]

qP̂[u](s, a)
l[u](s, a).

In the following, we show how to get this. First, since

l̂SEEDS-UT
[u] (s, a) =

J[u]∑
j=1

ltj(s,a)(s, a)

Qγ
[u](s, a)

1{(s,a) was visited in episodes t1(s,a),...,tJ[u]
(s,a) of super-episode u}

≤ τ

Qγ
[u](s, a)

,

we have

q̂SEEDS-UT,P
[u] (s, a)

(
l̂SEEDS-UT
[u] (s, a)

)2
≤

τ q̂SEEDS-UT,P
[u] (s, a)

Qγ
[u](s, a)

l̂SEEDS-UT
[u] (s, a)

≤ τ l̂SEEDS-UT
[u] (s, a)

= τ

J[u]∑
j=1

ltj(s,a)(s, a)

Qγ
[u](s, a)

1{(s,a) was visited in episodes t1(s,a),...,tJ[u]
(s,a) of super-episode u}

= τ

uτ∑
t=(u−1)τ+1

lt(s, a)

Qγ
[u](s, a)

1{(s,a) was visited in episode t of super-episode u}.

Let us define

l̃t(s, a) ≜
lt(s, a)1{(s,a) was visited in episode t of super-episode u}

Qγ
[u](s, a)

.

Then, we have

T∑
t=1

∑
s∈S,a∈A

2γ

l̃t(s, a)−
qSEEDS-UT
[u]

max
P̂∈P[u]

qP̂[u](s, a)
lt(s, a)

 ≤ H ln
H

δ
.

By combining all episodes in the same super-episode u together, we have

U∑
u=1

∑
s∈S,a∈A

2γ

 uτ∑
t=(u−1)τ+1

l̃t(s, a)−
qSEEDS-UT
[u]

max
P̂∈P[u]

qP̂[u](s, a)
l[u](s, a)

 ≤ H ln
H

δ
.

By rearranging the terms, we have
U∑

u=1

∑
s∈S,a∈A

l̃[u](s, a) ≤
H

2γ
ln

H

δ
+

U∑
u=1

∑
s∈S,a∈A

qSEEDS-UT
[u]

max
P̂∈P[u]

qP̂[u](s, a)
l[u](s, a)

≤ H

2γ
ln

H

δ
+

U∑
u=1

∑
s∈S,a∈A

l[u](s, a) ≤
H

2γ
ln

H

δ
+

T

τ
SAτ =

H

2γ
ln

H

δ
+ TSA.

Thus, we have
U∑

u=1

∑
s∈S,a∈A

q̂SEEDS-UT,P
[u] (s, a)

(
l̂SEEDS-UT
[u] (s, a)

)2
≤ τ · H

2γ
ln

H

δ
+ τTSA.
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Therefore, with probability 1−δ, the third term on the right-hand-side of (26) can be upper-bounded
by

O

(
ητH

γ
ln

H

δ
+ ητTSA+

H ln(SA)

η

)
. (40)

Step-2-iv (Bounding the fourth term): First, it is not hard to get that with probability 1− δ,

U∑
u=1

l̂SEEDS-UT
[u] (s, a) ≤ 1

2γ
ln

H

δ
+

U∑
u=1

qSEEDS-UT,P
[u] (s, a)

max
P̂∈P[u]

qP̂[u](s, a)
l[u](s, a). (41)

Thus, we have

U∑
u=1

〈
qπ

∗
, l̂[u] − l[u]

〉
=

U∑
u=1

∑
s∈S,a∈A

qπ
∗
(s, a)l̂[u](s, a)−

U∑
u=1

∑
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qπ
∗
(s, a)l[u](s, a)

≤
∑

s∈S,a∈A
qπ

∗
(s, a)

1

2γ
ln

H

δ
+

∑
s∈S,a∈A

qπ
∗
(s, a) ·

U∑
u=1

qSEEDS-UT,P
[u] (s, a)

max
P̂∈P[u]

qP̂[u](s, a)
l[u](s, a)

−
U∑

u=1

∑
s∈S,a∈A

qπ
∗
(s, a)l[u](s, a).

≤ H

2γ
ln

H

δ
+

U∑
u=1

∑
s∈S,a∈A

qπ
∗
(s, a)l[u](s, a)

qSEEDS-UT,P
[u] (s, a)

max
P̂∈P[u]

qP̂[u](s, a)
− 1


≤ H

2γ
ln

H

δ
. (42)

Step-3 (Final step): Finally, by combining (36), (39), (40), (42) and the switching-cost upper-
bound β ·

⌈
T
τ

⌉
, and tuning the parameters η, τ and γ as in Algorithm 2, we have that the regret of

SEEDS-UT is upper-bounded by O
(
β1/3H2/3 (SA)

1/3
T 2/3

(
ln TSA

δ

)1/2)
with probability 1− δ.
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