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ABSTRACT

Understanding the internal representations learned by neural networks is a corner-
stone challenge in the science of machine learning. While there have been sig-
nificant recent strides in some cases towards understanding how neural networks
implement specific target functions, this paper explores a complementary ques-
tion – why do networks arrive at particular computational strategies? Our inquiry
focuses on the algebraic learning tasks of modular addition, sparse parities, and
finite group operations. Our primary theoretical findings analytically characterize
the features learned by stylized neural networks for these algebraic tasks. Notably,
our main technique demonstrates how the principle of margin maximization alone
can be used to fully specify the features learned by the network. Specifically,
we prove that the trained networks utilize Fourier features to perform modular
addition and employ features corresponding to irreducible group-theoretic repre-
sentations to perform compositions in general groups, aligning closely with the
empirical observations of Nanda et al. (2023) and Chughtai et al. (2023). More
generally, we hope our techniques can help to foster a deeper understanding of
why neural networks adopt specific computational strategies.

1 INTRODUCTION

Opening the black box of neural networks has the potential to enable safer and more reliable de-
ployments, justifications for model outputs, and clarity on how model behavior will be affected by
changes in the input distribution. The research area of mechanistic interpretability (Olah et al., 2020;
Elhage et al., 2021; Olsson et al., 2022; Elhage et al., 2022) aims to dissect individual trained neural
networks in order to shed light on internal representations, identifying and interpreting sub-circuits
that contribute to the networks’ functional behavior. Mechanistic interpretability analyses typically
leave open the question of why the observed representations arise as a result of training.

Meanwhile, the theoretical literature on inductive biases in neural networks (Soudry et al., 2018;
Shalev-Shwartz & Ben-David, 2014; Vardi, 2023) aims to derive general principles governing which
solutions will be preferred by trained neural networks—in particular, in the presence of underspeci-
fication, where there are many distinct ways a network with a given architecture could perform well
on the training data. Most work on inductive bias in deep learning is motivated by the question of
understanding why networks generalize from their training data to unobserved test data. It can be
non-obvious how to apply the results from this literature instead to understand what solution will be
found when a particular architecture is trained on a particular type of dataset.

In this work, we show that the empirical findings of Nanda et al. (2023) and Chughtai et al. (2023),
about the representations found by networks trained to perform finite group operations, can be an-
alytically explained by the inductive bias of the regularized optimization trajectory towards margin
maximization. Perhaps surprisingly, the margin maximization property alone — typically used for
the study of generalization — is sufficient to comprehensively and precisely characterize the richly
structured features that are actually learned by neural networks in these settings. Let’s begin by
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(a) ReLU activation

0 20 40 60
Group element

0 10 20 30

Frequency

Em
be

dd
in

g 
W

ei
gh

ts

Po
we

r

(b) Quadratic activation
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(c) Normalized L2,3 Margin

Figure 1: (a) Final trained embeddings and their Fourier power spectrum for a 1-hidden layer ReLU
network trained on a mod-71 addition dataset with L2 regularization. Each row corresponds to an ar-
bitrary neuron from the trained network. The red dots represent the actual value of the weights, while
the light blue interpolation is obtained by finding the function over the reals with the same Fourier
spectrum as the weight vector. (b) Similar plot for 1-hidden layer quadratic activation, trained with
L2,3 regularization (Section 2) (c) For the quadratic activation, the network asymptotically reaches
the maximum L2,3 margin predicted by our analysis.

reviewing the case of learning modular addition with neural networks, first studied in Power et al.
(2022) in their study of “grokking”.

Nanda et al.’s striking observations. Nanda et al. (2023) investigated the problem of how neural
networks learn modular addition (using a 1-layer ReLU transformer); they consider the problem of
computing a + b mod p, where p is a prime number. The findings were unexpected and intriguing:
SGD not only reliably solves this problem (as also seen in Power et al. (2022)) but also consistently
learns to execute a particular algorithm, as illustrated by the learned embedding weights in Figure 1.
This geometric algorithm simplifies the task to composing integer rotations around a circle. The
algorithm fundamentally relies on the following identity: for any a, b ∈ Zp and k ∈ Zp \ {0},

(a+ b) mod p = argmax
c∈Zp

{
cos

(
2πk(a+ b− c)

p

)}
.

This identity leads to a few natural algorithms that are generally implemented by neural networks,
as shown in Nanda et al. (2023) and Zhong et al. (2023).
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These findings prompt the question: why does the network consistently prefer such Fourier-based
circuits, amidst other potential circuits capable of executing the same modular addition function?

Our Contributions.

• We formulate general techniques for analytically characterizing the maximum margin so-
lutions for tasks exhibiting symmetry.

• For sufficiently wide one-hidden layer MLPs with quadratic activations, we use these tech-
niques to characterize the structure of the weights of max-margin solutions for certain al-
gebraic tasks including modular addition, sparse parities and general group operations.

• We empirically validate that neural networks trained using gradient descent with small
regularization approach the maximum margin solution (Theorem 1), and the weights of
trained networks match those predicted by our theory (Figure 1).

Our theorem for modular addition shows how Fourier features are indeed the global maximum mar-
gin solution:
Informal Theorem (Modular addition). Consider a single hidden layer neural network of width
m with x2 activations trained on the modular addition task (modulo p). For m ≥ 4(p − 1), any
maximum margin solution satisfies the following:

• For every neuron, there exists a frequency such that the Fourier spectra of the input and
output weight vectors are supported only on that frequency.

• There exists at least one neuron of each frequency in the network.

Note that even with this activation function, there are solutions that fit all the data points, but where
the weights do not exhibit any sparsity in Fourier space—see Appendix D for an example construc-
tion. Such solutions, however, have lower margin and thus are not reached by training.

In the case of k-sparse parity learning with an xk-activation network, we show margin maximization
implies that the weights assigned to all relevant bits are of the same magnitude, and the sign pattern
of the weights satisfies a certain condition.

For learning on the symmetric group (or other groups with real representations), we use the ma-
chinery of representation theory (Kosmann-Schwarzbach et al., 2010) to show that learned features
correspond to the irreducible representations of the group, as observed by Chughtai et al. (2023).

2 PRELIMINARIES

In this work, we will consider one-hidden layer neural networks with homogeneous polynomial
activations, such as x2, and no biases. The network output for a given input x will be represented as
f(θ, x), where θ ∈ Θ represents the parameters of the neural network. The homogeneity constant of
the network is defined as a constant ν such that for any scaling factor λ > 0, f(λθ, x) = λνf(θ, x).

In the case of 1-hidden layer networks, f can be further decomposed as:
f(θ, x) =

∑m
i=1 ϕ(ωi, x), where θ = {ω1, . . . , ωm}, ϕ represents an individual neuron within the

network, and ωi ∈ Ω denotes the weights from the input to the ith neuron and from the neuron to the
output. θ = {ω1, . . . , ωm} is said to have directional support on Ω′ ⊆ Ω if for all i ∈ {1, . . . ,m},
either ωi = 0 or λiωi ∈ Ω′ for some λi > 0.

For Sections 4 and 6 corresponding to cyclic and general finite groups respectively, we consider
neural networks with x2 activation. A single neuron will be represented as ϕ({u, v, w}, x(1), x(2)) =
(u⊤x(1)+v⊤x(2))2w, where u, v, w ∈ Rd are the weights associated with a neuron and x(1), x(2) ∈
Rd are the inputs provided to the network (note that ϕ({u, v, w}, x(1), x(2)) ∈ Rd). For these
tasks, we set d = |G|, where G refers to either the cyclic group or a general group. We will
also consider the inputs x(1) and x(2) to be one-hot vectors, representing the group elements being
provided as inputs. Thus, for given input elements (a, b), a single neuron can be simplified as
ϕ({u, v, w}, a, b) = (ua + vb)

2w, where ua and vb represent the ath and bth component of u and
v respectively. Overall, the network will be given by f(θ, a, b) =

∑m
i=1 ϕ({ui, vi, wi}, a, b), with

θ = {ui, vi, wi}mi=1 (note that f(θ, a, b) ∈ Rd because there are d classes).
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For Section 5, we will consider the (n, k)-sparse parity problem, where the parity is computed on
k bits out of n. Here, we will consider a neural network with the activation function xk. A single
neuron within the neural network will be represented as ϕ({u,w}, x) = (u⊤x)kw, where u ∈ Rn,
w ∈ R2 are the weights associated with a neuron and x ∈ Rn is the input provided to the network.
The overall network will represented as f(θ, x) =

∑m
i=1 ϕ({ui, wi}, x), where θ = {ui, wi}mi=1.

For any vector v and k ≥ 1, ∥v∥k represents
(∑

|vi|k
)1/k

. For a given neural network with parame-

ters θ = {ωi}mi=1, the La,b norm of θ is given by ∥θ∥a,b =
(∑m

i=1 ∥ωi∥ba
)1/b

. Here {ωi} represents
the concatenated vector of parameters corresponding to a single neuron. For a discrete set Y , ∆(Y)
refers to the standard simplex over Y .

3 THEORETICAL APPROACH

Suppose we have a datasetD ⊆ X ×Y , a norm ∥·∥ and a class of parameterized functions {f(θ, ·) |
θ ∈ RU}, where f : RU ×X → RY and Θ = {∥θ∥ ≤ 1}. We define the margin function g : RU ×
X×Y → R as being, for a given datapoint (x, y) ∈ D, g(θ, x, y) = f(θ, x)[y]− max

y′∈Y\{y}
f(θ, x)[y′].

Then, the margin of the dataset D is given by h : RU → R defined as h(θ) = min(x,y)∈D g(θ, x, y).
Similarly, we define the normalized margin for a given θ as h(θ/∥θ∥).
We look into optimizing Lλ(θ) =

1
|D|
∑

(x,y)∈D l(f(θ, x), y) + λ∥θ∥r where l is the cross-entropy
loss. Let θλ ∈ argminθ∈RU Lλ(θ) and γλ = h(θλ/∥θλ∥) as well as γ∗ = maxθ∈Θ h(θ). The
following theorem by Wei et al. (2019a) argues that, when using vanishingly small regularization λ,
the normalized margin of global optimizers of Lλ converges to γ∗.
Theorem 1 (Wei et al. (2019a), Theorem 4.1). For any norm ∥ · ∥, a fixed r > 0 and any homoge-
neous function f with homogeneity constant ν > 0, if γ∗ > 0, then limλ→0 γλ = γ∗.

This provides the motivation behind studying maximum margin classifiers as a good proxy for
understanding the global minimizers of Lλ as λ → 0. Henceforth, we will focus on character-
izing the maximum margin solution: Θ∗ := argmaxθ∈Θ h(θ). Note that the maximum margin
γ∗ = maxθ∈Θ min(x,y)∈D g(θ, x, y) = maxθ∈Θ minq∈P(D) E(x,y)∼q [g(θ, x, y)], where P(D) rep-
resents the set of all distributions over data points in D. The primary approach in this work for
characterizing the maximum margin solution is to exhibit a pair (θ∗, q∗) such that

q∗ ∈ argmin
q∈P(D)

E
(x,y)∼q

[g(θ∗, x, y)] (1)

θ∗ ∈ argmax
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)] (2)

The lemma below uses the max-min inequality (Boyd & Vandenberghe, 2004) to show that exhibit-
ing such a pair is sufficient for establishing that θ∗ is indeed a maximum margin solution. The proof
for the lemma can be found in Appendix F.
Lemma 2. If (θ∗, q∗) satisfies Equations 1 and 2, then θ∗ ∈ argmaxθ∈Θ min(x,y)∈D g(θ, x, y).

We will describe our approach for finding such a pair for 1-hidden layer homogeneous neural net-
works for binary classification. Furthermore, we will show how exhibiting just a single pair can
enable us to characterize the set of all maximum margin solutions. In Appendix E, we extend our
techniques to multi-class classification, which is necessary for the group operation tasks.

In the context of binary classification where |Y| = 2, the margin function g for a given datapoint
(x, y) ∈ D is given by g(θ, x, y) = f(θ, x)[y] − f(θ, x)[y′], where y′ ̸= y. For 1-hidden layer
neural networks, by linearity of expectation, the expected margin is given by

E
(x,y)∼q

[g(θ, x, y)] =

m∑
i=1

E
(x,y)∼q

[ϕ(ωi, x)[y]− ϕ(ωi, x)[y
′]] ,

where y′ ̸= y and θ = {ωi}mi=1. Since the expected margin of the network decomposes into the sum
of expected margin of individual neurons, finding a maximum expected margin network simplifies
to finding maximum expected margin neurons. Denote ψ(ω, x, y) = ϕ(ω, x)[y]− ϕ(ω, x)[y′].
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Lemma 3. Let Θ = {θ : ∥θ∥a,b ≤ 1} and Θ∗
q = argmaxθ∈Θ E(x,y)∼q [g(θ, x, y)]. Similarly, let

Ω = {ω : ∥ω∥a ≤ 1} and Ω∗
q = argmaxω∈Ω E(x,y)∼q [ψ(ω, x, y)]. For binary classification:

• Single neuron optimization: Any θ ∈ Θ∗
q has directional support only on Ω∗

q .

• Combining neurons: If b = ν (the homogeneity constant of the network) and ω∗
1 , ..., ω

∗
m ∈

Ω∗
q , then for any neuron scaling factors

∑
λνi = 1, λi ≥ 0, we have that θ = {λiω∗

i }mi=1
belongs to Θ∗

q .

The proof for the above lemma can be found in Appendix F.1.

To find a (θ∗, q∗) pair, we will start with a guess for q∗ (which will be the uniform distribution in our
case as the datasets are symmetric). Then, using the first part of Lemma 3, we will find all neurons
which can be in the support of θ∗ satisfying Equation 2 for the given q∗. Finally, for specific norms
of the form ∥ · ∥a,ν , we will combine the obtained neurons using the second part of Lemma 3 to
obtain a θ∗ such that q∗ satisfies Equation 1.

We think of (θ∗, q∗) as a “certificate pair”. By just identifying this single solution, we can charac-
terize the set of all maximum margin solutions. Denote spt(q) = {(x, y) ∈ D | q(x, y) > 0}.
Lemma 4. Let Θ = {θ : ∥θ∥a,b ≤ 1} and Θ∗

q = argmaxθ∈Θ E(x,y)∼q [g(θ, x, y)]. Sim-
ilarly, let Ω = {ω : ∥ω∥a ≤ 1} and Ω∗

q = argmaxω∈Ω E(x,y)∼q [ψ(ω, x, y)]. For the
task of binary classification, if there exists {θ∗, q∗} satisfying Equation 1 and 2, then any θ̂ ∈
argmaxθ∈Θ min(x,y)∈D g(θ, x, y) satisfies the following:

• θ̂ has directional support only on Ω∗
q∗ .

• For any (x, y) ∈ spt(q∗), f(θ̂, x, y)− f(θ̂, x, y′) = γ∗, where y′ ̸= y; i.e., all points in the
support of q∗ are “on the margin” for any maximum margin solution.

The proof for the above lemma can be found in Appendix F.1.

Thus, we can say that the neurons found by Lemma 3 are indeed the exhaustive set of neurons for
any maximum margin network. Moreover, any maximum margin solution will have the support of
q∗ on the margin.

In order to extend these results to multi-class classification, we introduce the class-weighted margin.
Consider some τ : D → ∆(Y) that assigns to every datapoint a weighting over incorrect labels. For
any (x, y) ∈ D, let τ satisfy the properties that

∑
y′∈Y\{y} τ(x, y)[y

′] = 1 and τ(x, y)[y′] ≥ 0 for
all y′ ∈ Y . Using this, we define the class-weighted margin g′ for a given datapoint (x, y) ∈ D as

g′(θ, x, y) = f(θ, x)[y]−
∑

y′∈Y\{y}

τ(x, y)[y′]f(θ, x)[y′].

Similarly, the class-weighted margin for a neuron is given by ψ′(ω, x, y) = ϕ(ω, x)[y] −∑
y′∈Y\{y}

τ(x, y)[y′]ϕ(ω, x)[y′]. As the class-weighted margin is linear, we can extend our tech-

niques above to multi-class classification. For details, refer to Appendix E.

3.1 BLUEPRINT FOR THE CASE STUDIES

In each case study, we will want to find a network θ∗ and a distribution on the input data points q∗,
such that Equation 1 and 2 are satisfied. Informally, these are the main steps involved in the proof
approach:

1. As the datasets we considered are symmetric, we consider q∗ to be uniformly distributed
on the input data points.

2. Using Single neuron optimization part of Lemma 3, we find all neurons that maximize
the expected margin (expected class-weighted margin for multi-class classifcation); only
these neurons can be part of a network θ satisfying Equation 1.

3. Using Combining neurons part of Lemma 3, we construct a θ∗ such that all input points
are on the margin, i.e, θ∗ satisfies Equation 2 (and g′ = g for multi-class classification).
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(a) Initial distribution
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(b) ReLU activation
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(c) Quadratic activation

Figure 2: The maximum normalized power of the embedding vector of a neuron is given by
maxi |û[i]|2/(

∑
|û[j]|2), where û[i] represents the ith component of the Fourier transform of u.

(a) Initially, the maximum power is randomly distributed. (b) For 1-hidden layer ReLU network
trained with L2 regularization, the final distribution of maximum power seems to be concentrated
around 0.9, meaning neurons are nearly 1-sparse in frequency space but not quite. (c) For 1-hidden
layer quadratic network trained with L2,3 regularization, the final maximum power is almost exactly
1 for all the neurons, so the embeddings are 1-sparse in frequency space, as predicted by the maxi-
mum margin analysis.

Then, using Lemma 2, we can say that the network θ∗ maximizes the margin. Moreover, using
Lemma 4, any margin maximizing network consists entirely of neurons found by the Single neuron
optimization part of Lemma 3.

4 CYCLIC GROUPS (MODULAR ADDITION)

For a prime p > 2, let Zp denote the cyclic group on p elements. For a function f : Zp → C, the
discrete Fourier transform of f at a frequency j ∈ Zp is defined as

f̂(j) :=
∑
k∈Zp

f(k) exp(−2πi · jk/p).

Note that we can treat a vector v ∈ Cp as a function v : Zp → C, thereby endowing it with a Fourier
transform. Consider the input space X := Zp × Zp and output space Y := Zp. Let the dataset
Dp := {((a, b), a+ b) : a, b ∈ Zp}.
Theorem 5. Consider one-hidden layer networks f(θ, a, b) of the form given in section 2 with
m ≥ 4(p− 1) neurons. The maximum L2,3-margin of such a network on the dataset Dp is:

γ∗ =

√
2

27
· 1

p1/2(p− 1)
.

Any network achieving this margin satisfies the following conditions:

1. for each neuron ϕ({u, v, w}; a, b) in the network, there exists a scaling constant λ ∈ R and
a frequency ζ ∈ {1, . . . , p−1

2 } such that

u(a) = λ cos(θ∗u + 2πζa/p)

v(b) = λ cos(θ∗v + 2πζb/p)

w(c) = λ cos(θ∗w + 2πζc/p)

for some phase offsets θ∗u, θ
∗
v , θ

∗
w ∈ R satisfying θ∗u + θ∗v = θ∗w.

2. Each frequency ζ ∈ {1, . . . , p−1
2 }, is used by at least one neuron.

Proof outline. Following the blueprint described in the previous section, we first prove that neu-
rons of the form above (and only these neurons) maximize the expected class-weighted margin
Ea,b[ψ

′(u, v, w)] with respect to the uniform distribution q∗ = unif(X ). We will use the uniform
class weighting: τ(a, b)[c′] := 1/(p− 1) for all c′ ̸= a+ b. As a crucial intermediate step, we prove

Ea,b[ψ
′({u, v, w}, a, b)] = 2

(p− 1)p2

∑
j ̸=0

û(j)v̂(j)ŵ(−j),

6
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(b) Normalized margin

Figure 3: Final neurons with highest norm and the evolution of normalized L2,5 margin over train-
ing of a 1-hidden layer quartic network (activation x4) on (10, 4) sparse parity dataset with L2,5

regularization. The network approaches the theoretical maximum margin that we predict.

Maximizing the above expression subject to the max-margin norm constraint∑
j ̸=0

(
|û(j)|2 + |v̂(j)|2 + |ŵ(j)|2

)
≤ 1 leads to sparsity in Fourier space.

Then, we describe a network θ∗ (of width 4(p− 1)) composed of such neurons, that satisfies Equa-
tions 1 and 2. By Lemma 2, θ∗ will be an example of a max-margin network, and part (1) of
Theorem 5 will follow by Lemma 4. Finally, in order to show that all frequencies are used, we intro-
duce the multidimensional discrete Fourier transform. We prove that each neuron only contributes
a single frequency to the multi-dimensional DFT of the network; but that second part of Lemma 4
implies that all frequencies are present in the full network’s multidimensional DFT. The full proof
can be found in Appendix G.

As demonstrated in Figure 1 and 2, empirical networks trained with gradient descent with L2,3

regularization approach the theoretical maximum margin, and have single frequency neurons. Figure
5 in the Appendix verifies that all frequencies are present in the network.

5 SPARSE PARITY

In this section, we will establish the max margin features that emerge when training a neural network
on the sparse parity task. Consider the (n, k)-sparse parity problem, where the parity is computed
over k bits out of n. To be precise, consider inputs x1, ..., xn ∈ {±1}. For a given subset S ⊆ [n]
such that |S| = k, the parity function is given by Πj∈Sxj .

Theorem 6. Consider a single hidden layer neural network of width m with the activation func-
tion given by xk, i.e, f(x) =

∑m
i=1(u

⊤
i x)

kwi, where ui ∈ Rn and wi ∈ R2, trained on the
(n, k)−sparse parity task. Without loss of generality, assume that the first coordinate of wi corre-
sponds to the output for class y = +1. Denote the vector [1,−1] by b. Provided m ≥ 2k−1, the
L2,k+1 maximum margin is:

γ∗ = k!
√

2(k + 1)−(k+1).

Any network achieving this margin satisfies the following conditions:

1. For every i s.t. ∥ui∥ > 0, spt(ui) = S, wi lies in the span of b and ∀j ∈ S, |ui[j]| = ∥wi∥.

2. For every i, (Πj∈Sui[j]) (w
⊤
i b) ≥ 0.

As shown in Figure 3, a network trained with gradient descent and L2,k+1 regularization exhibits
these properties, and approaches the theoretically-predicted maximum margin. The proof for Theo-
rem 6 can be found in Appendix H.
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(c) Initial Maximum Power Distribution
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(d) Final Maximum Power Distribution

Figure 4: This figure demonstrates the training of a 1-hidden layer quadratic network on the sym-
metric group S5 with L2,3 regularization. (a) Evolution of the normalized L2,3 margin of the
network with training. It approaches the theoretical maximum margin that we predict. (b) Dis-
tribution of neurons spanned by a given representation. Higher dimensional representations have
more neurons as given by our construction. (c) and (d) Maximum normalized power is given by
maxi û[i]

2/(
∑

j û[j]
2) where û[i] refers to the component of weight vector u spanned by the basis

vectors corresponding to ith representation. This is random at initialization, but towards the end of
training, all neurons are concentrated in a single representation, as predicted by maximum margin.

6 FINITE GROUPS WITH REAL REPRESENTATIONS

We conclude our case study on algebraic tasks by studying group composition on finite groups G.
Namely, here we set X := G × G and output space Y := G. Given inputs a, b ∈ G we train the
network to predict c = ab. We wish to characterize the maximum margin features similarly to the
case of modular addition; here, our analysis relies on principles from group representation theory.

6.1 BRIEF BACKGROUND AND NOTATION

The following definitions and notation are essential for stating our main result, and further results
are presented with more rigor in Appendix I.

A real representation of a group G is a finite dimensional real vector space V = Rd and a group
homomorphism (i.e. a map preserving the group structure) R : G → GL(V ). We denote such
a representation by (R, V ) or just by R. The dimension of a representation R, denoted dR, is
the dimension of V . Our analysis focuses on unitary, irreducible, real representations of G. The
number of such representations is precisely equal to the number of conjugacy classes of G where
the conjugacy class of a ∈ G is defined as C(a) = {gag−1 : g ∈ G}.

A quantity important to our analysis is the character of a representation R, denoted χR : G → R
given by χR(g) = tr(R(g)). It was previously observed by Chughtai et al. (2023) that one-layer
ReLU MLPs and transformers learn the task by mapping inputs a, b to their respective matrices
R(a), R(b) for some irreducible representationR and performing matrix multiplication withR(c−1)
to output logits proportional to the character χR(abc

−1) = tr(R(a)R(b)R(c−1)), which is in par-
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ticular maximized when c = ab. They also find evidence of network weights being spanned by
representations, which we establish rigorously here.

For each representation R we will consider the |G|-dimensional vectors by fixing one index in the
matrices outputted by R, i.e. vectors (R(g)(i,j))g∈G for some i, j ∈ [dR]. For each R, this gives
dR

2 vectors. Letting K be the number of conjugacy classes and R1, . . . , RK be the corresponding
irreducible representations, since |G| =

∑K
n=1 d

2
Rn

, taking all such vectors for each representation
will form a set of |G| vectors which we will denote ρ1, ..., ρ|G| (ρ1 is always the vector corresponding
to the trivial representation). These vectors are in fact orthogonal, which follows from orthogonality
relations of the representation matrix elements R(g)(i,j) (see Appendix I for details). Thus, we
refer to this set of vectors as basis vectors for R|G|. One can ask whether the maximum margin
solution in this case has neurons which are spanned only by basis vectors corresponding to a single
representation R, and if all representations are present in the network— the analogous result we
obtained for modular addition in Theorem 5. We show that this is indeed the case.

6.2 THE MAIN RESULT

Our main result characterizing the max margin features for group composition is as follows.

Theorem 7. Consider a single hidden layer neural network of width m with quadratic activation
trained on learning group composition for G with real irreducible representations. Provided m ≥
2
∑K

n=2 dRn

3 and
∑K

n=2 dRn

1.5χRn(C) < 0 for every non-trivial conjugacy class C, the L2,3

maximum margin is:

γ∗ =
2

3
√

3|G|
1(∑K

n=2 d
2.5
Rn

) .
Any network achieving this margin satisfies the following conditions:

1. For every neuron, there exists a non-trivial representation such that the input and output
weight vectors are spanned only by that representation.

2. There exists at least one neuron spanned by each representation (except for the trivial
representation) in the network.

The complete proof for Theorem 7 can be found in Appendix J.

The condition that
∑K

n=2 dRn

1.5χRn(C) < 0 for every non-trivial conjugacy class C holds for the
symmetric group Sk up until k = 5. In this case, as shown in Figure 4, network weights trained
with gradient descent and L2,3 regularization exhibit similar properties. The maximum margin of
the network approaches what we have predicted in theory. Analogous results for training on S3 and
S4 in Figures 6 and 7 are in the Appendix.

Although Theorem 7 does not apply to all finite groups with real representations, it can be extended
to apply more generally. The theorem posits that every representation is present in the network,
and every conjugacy class is present on the margin. Instead, for general finite groups, each neuron
still satisfies the characteristics of max margin solutions in that it is only spanned by one non-trivial
representation, but only a subset of representations are present in the network; moreover, only a
subset of conjugacy classes are present on the margin. More details are given in Appendix J.2.

7 DISCUSSION

We have shown that the simple condition of margin maximization can, in certain algebraic learning
settings, imply very strong conditions on the representations learned by neural networks. The math-
ematical techniques we introduce are general, and may be able to be adapted to other settings than
the ones we consider. Our proof holds for the case of x2 activations (xk activations, in the k-sparse
parity case) and L2,ν norm, where ν is the homogeneity constant of the network. Empirical findings
suggest that the results may be transferable to other architectures and norms. In general, we think
explaining how neural networks adapt their representations to symmetries and other structure in data
is an important subject for future theoretical and experimental inquiry.
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A FURTHER RELATED WORK

Two closely related works to ours are Gromov (2023) and Bronstein et al. (2022). Gromov (2023)
provides an analytic construction of various two-layer quadratic networks that can solve the modular
addition task. The construction used in the proof of Theorem 5 is a special case of the given scheme.
Bronstein et al. (2022)shows that all max margin solutions of a one-hidden-layer ReLU network
(with fixed top weights) trained on read-once DNFs have neurons which align with clauses. How-
ever, the proof techniques are significantly different. For any given neural network not satisfying the
desired conditions ((neurons aligning with the clauses), Bronstein et al. (2022) construct a perturbed
network satisfying the conditions which exhibits a better margin. We rely on the max-min duality
for certifying a maximum margin solution, as shown in Section 3.1.

Margin maximization. One branch of results on margin maximization in neural networks involve
proving that the optimization of neural networks leads to an implicit bias towards margin maximiza-
tion. Soudry et al. (2018) show that logistic regression converges in direction to the max margin
classifier. Wei et al. (2019b) prove that the global optimum of weakly-regularized cross-entropy loss
on homogeneous networks reaches the max margin. Similarly, Lyu & Li (2019) and Ji & Telgar-
sky (2020) show that in homogeneous networks, even in the absence of explicit regularization, if
loss becomes low enough then the weights will tend in direction to a KKT point of the max mar-
gin optimization objective. This implies margin maximization in deep linear networks, although
it is not necessarily the global max margin (Vardi et al., 2022). Chizat & Bach (2020) prove that
infinite-width 2-homogeneous networks with mean field initialization will converge to the global
max margin solution. In a different setting, Lyu et al. (2021) and Frei et al. (2022b) show that the
margin is maximized when training leaky-ReLU one hidden layer networks with gradient flow on
linearly separable data, given certain assumptions on the input (eg. presence of symmetries, near-
orthogonality). For more on studying inductive biases in neural networks, refer to Vardi (2023).

Numerous other works do not focus on neural network dynamics and instead analyze properties of
solutions with good margins (Bartlett, 1996). For instance, Frei et al. (2023) show that the maximum
margin KKT points have “benign overfitting” properties. The works by Lyu et al. (2021), Morwani
et al. (2023) and Frei et al. (2023) show that max margin implies linear decision boundary for
solutions. Gunasekar et al. (2018) show that under certain assumptions, gradient descent on depth-
two linear convolutional networks (with weight-sharing in first layer) converges not to the standard
L2 max margin, but to the global max margin with respect to the L1 norm of the Fourier transform
of the predictor. Our work follows a similar vein, in which we characterize max margin features in
our setting and relate this to trained networks via results from Wei et al. (2019b).

Training on algebraic tasks and mechanistic interpretability. Studying neural networks trained
on algebraic tasks has offered insights into their training dynamics and inductive biases, with the
simpler setting lending a greater ease of understanding. One such example is the task of modular
addition, which was studied in Power et al. (2022) in their study of grokking, leading to multiple
follow-up works (Liu et al., 2022; 2023). Another example is the problem of learning parities for
neural networks, which has been investigated in numerous works (Daniely & Malach, 2020; Zhen-
mei et al., 2022; Frei et al., 2022a; Barak et al., 2022; Edelman et al., 2023). Other mathematical
tasks like learning addition have been used to investigate whether models possess algorithmic rea-
soning capabilities (Saxton et al., 2018; Hendrycks et al., 2021; Lewkowycz et al., 2022).

The area of mechanistic interpretability aims to understand the internal representations of individual
neural networks by analyzing its weights. This form of analysis has been applied to understand
the motifs and features of neurons in circuits— particular subsets of a neural network— in com-
puter vision models (Olah et al., 2020; Cammarata et al., 2020) and more recently in language
models (Elhage et al., 2021; Olsson et al., 2022). However, the ability to fully reverse engineer a
neural network is extremely difficult for most tasks and architectures. Some work in this area has
shifted towards finding small, toy models that are easier to interpret, and employing labor intensive
approaches to reverse-engineering specific features and circuits in detail(Elhage et al., 2022). In
Nanda et al. (2023), the authors manage to fully interpret how one-layer transformers implement
modular addition and use this knowledge to define progress measures that precede the grokking
phase transition which was previously observed to occur for this task (Power et al., 2022). Chughtai
et al. (2023) extends this analysis to learning composition for various finite groups, and identifies
analogous results and progress measures. In this work, we show that these empirical findings can be
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analytically explained via max margin analysis, due to the implicit bias of gradient descent towards
margin maximization.

B EXPERIMENTAL DETAILS

In this section, we will provide the hyperparameter settings for various experiments in the paper.

B.1 CYCLIC GROUP

We train a 1-hidden layer network with m = 500, using gradient descent on the task of learning
modular addition for p = 71 for 40000 steps. The initial learning rate of the network is 0.05, which
is doubled on the steps - [1e3, 2e3, 3e3, 4e3, 5e3, 6e3, 7e3, 8e3, 9e3, 10e3]. Thus, the final learning
rate of the network is 51.2. This is done to speed up the training of the network towards the end, as
the gradient of the loss goes down exponentially. For quadratic network, we use aL2,3 regularization
of 1e− 4. For ReLU network, we use a L2 regularization of 1e− 4.

B.2 SPARSE PARITY

We train a 1-hidden layer quadratic network withm = 40 on (10, 4)−sparse parity task. It is trained
by gradient descent for 30000 steps with a learning rate of 0.1 and L2,5 regularization of 1e− 3.

B.3 GENERAL GROUPS

The hyperparameters for various groups S3, S4, and S5 are provided in subsections below.

B.3.1 S3

We train a 1-hidden layer quadratic network with m = 30, using gradient descent for 50000 steps,
with a L2,3 regularization of 1e− 7. The initial learning rate is 0.05, which is doubled on the steps -
[200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 5000, 10000]. Thus, the
final learning rate is 1638.4. This is done to speed up the training of the network towards the end, as
the gradient of the loss goes down exponentially.

B.3.2 S4

We train a 1-hidden layer quadratic network with m = 200, using gradient descent for 50000 steps,
with a L2,3 regularization of 1e− 7. The initial learning rate is 0.05, which is doubled on the steps -
[200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 5000, 10000]. Thus, the
final learning rate is 1638.4. This is done to speed up the training of the network towards the end, as
the gradient of the loss goes down exponentially.

B.3.3 S5

We train a 1-hidden layer quadratic network with m = 2000, using stochastic gradient descent for
75000 steps, with a batch size of 1000 and L2,3 regularization of 1e− 5. The initial learning rate is
0.05, which is doubled on the steps - [3000, 6000, 9000, 12000, 15000, 18000, 21000, 24000]. Thus,
the final learning rate is 12.8. This is done to speed up the training of the network towards the end,
as the gradient of the loss goes down exponentially.

C ADDITIONAL EXPERIMENTS

The distribution of neurons of a particular frequency for the modular addition case is shown in Figure
5. As can be seen, for both ReLU and quadratic activation, the distribution is close to uniform.

Experimental results for other symmetric groups S3 and S4 in Figures 6 and 7 respectively. We
observe the same max margin features as stated in Theorem 7 and the L2,3 margin approaches the
theoretical max margin that we have predicted.
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Figure 5: Final distribution of the neurons corresponding to a particular frequency in (a) ReLU
network trained with L2 regularization and (b) Quadratic network trained with L2,3 regularization.
Similar to our construction, the final distribution across frequencies is close to uniform.
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(d) Final Maximum Power Distribution

Figure 6: This figure demonstrates the training of a 1-hidden layer quadratic network on the symmet-
ric group S3 with L2,3 regularization. (a) Evolution of the normalized L2,3 margin of the network
with training. It approaches the theoretical maximum margin that we predict. (b) Distribution of
neurons spanned by a given representation. Higher dimensional representations have more neurons
as given by our construction. (c) and (d) Maximum normalized power is given by max û[i]2∑

j û[j]2 where

û[i] refers to the component of weight u along ith representation. Initially, it’s random, but towards
the end of training, all neurons are concentrated in a single representation, as predicted by maximum
margin.

D ALTERNATIVE CONSTRUCTION

To argue why the problem of finding correctly classifying networks is overdetermined, we present
an alternative construction (which applies to general groups) that does not have an “interesting”
Fourier spectrum or any behavioral similarity to the solutions reached by standard training.

For any function r : [n]2 → [n], there exists a neural network parameterized by θ of the form
considered in Sections 4 and 6 with 2p2 neurons such that f(θ, (a, b))[c] = 1c=r(a,b) and that
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Figure 7: This figure demonstrates the training of a 1-hidden layer quadratic network on the symmet-
ric group S4 with L2,3 regularization. (a) Evolution of the normalized L2,3 margin of the network
with training. It approaches the theoretical maximum margin that we predict. (b) Distribution of
neurons spanned by a given representation. Higher dimensional representations have more neurons
as given by our construction. (c) and (d) Maximum normalized power is given by max û[i]2∑

j û[j]2 where

û[i] refers to the component of weight u along ith representation. Initially, it is random, but towards
the end of training, all neurons are concentrated on a single representation, as predicted by the max-
imum margin analysis.

is “dense” in the Fourier spectrum. For each pair (a, b) we use two neurons given by {u, v, w}
and {u′, v′, w′}, where ui = u′i = 1i=a, vi = 1i=b, v′i = −1i=b, wi = 1i=r(a,b)/4and w′

i =
−1i=r(a,b)/4. When adding together the outputs for these two neurons, for an input of (i, j) we get
kth logit equal to:

1

4

(
(1i=a + 1j=b)

21k=r(i,j) − (1i=a − 1j=b)
21k=r(i,j)

)
= 1i=a1j=b1k=r(a,b)

Hence, these two neurons help “memorize” the output for (a, b) while not influencing the output for
any other input, so when summing together all these neurons we get an f with the aforementioned
property. Note that all the vectors used are (up to sign) one-hot encodings and thus have an uniform
norm in the Fourier spectrum. This is to show that Fourier sparsity is not present in any correct
classifier.

E THEORETICAL APPROACH - MULTI-CLASS CLASSIFICATION

The modular addition and general finite group tasks are multi-class classification problems. For
multi-class classification, the margin function g for a given datapoint (x, y) ∈ D is given by

g(θ, x, y) = f(θ, x)[y]− max
y′∈Y\{y}

f(θ, x)[y′],

For 1-hidden layer networks, the expected margin is given by
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E
(x,y)∼q

[g(θ, x, y)] = E
(x,y)∼q

[
m∑
i=1

ϕ(ωi, x)[y]− max
y′∈Y\{y}

m∑
i=1

ϕ(ωi, x)[y
′]

]
,

Here, due to the max operation, we cannot swap the summation and expectation, and thus the ex-
pected margin of the network does not decompose into the expected margins of the neurons as it did
in the binary classification case.

To circumvent this issue, we will introduce the notion of class-weighted margin. Consider some
τ : D → ∆(Y) that assigns a weighting of incorrect labels to every datapoint. For any (x, y) ∈ D,
let τ satisfy the properties that

∑
y′∈Y\{y} τ(x, y)[y

′] = 1 and τ(x, y)[y′] ≥ 0 for all y′ ∈ Y . Using
this, we define the class-weighted margin g′ for a given datapoint (x, y) ∈ D as

g′(θ, x, y) = f(θ, x)[y]−
∑

y′∈Y\{y}

τ(x, y)[y′]f(θ, x)[y′].

Note that g′(θ, x, y) ≥ g(θ, x, y) as g′ replaces the max by a weighted sum. Moreover, by linearity
of expectation we can say that

E
(x,y)∼q

[g′(θ, x, y)] =

m∑
i=1

E
(x,y)∼q

ϕ(ωi, x)[y]−
∑

y′∈Y\{y}

τ(x, y)[y′]ϕ(ωi, x)[y
′]

 ,
Denoting ψ′(ω, x, y) = ϕ(ω, x)[y]−

∑
y′∈Y\{y}

τ(x, y)[y′]ϕ(ω, x)[y′], a result analogous to Lemma 3

holds for the class-weighted margin (proof can be found in Appendix F.2):

Lemma 8. Let Θ = {θ : ∥θ∥a,b ≤ 1} and Θ′∗
q = argmaxθ∈Θ E(x,y)∼q [g

′(θ, x, y)]. Similarly, let
Ω = {ω : ∥ω∥a ≤ 1} and Ω′∗

q = argmaxω∈Ω E(x,y)∼q [ψ
′(ω, x, y)]. Then:

• Single neuron optimization: Any θ ∈ Θ′∗
q has directional support only on Ω′∗

q .

• Combining neurons: If b = ν and ω∗
1 , ..., ω

∗
m ∈ Ω′∗

q , then for any neuron scaling factors∑
λνi = 1, λi ≥ 0, we have that θ = {λiω∗

i }mi=1 belongs to Θ′∗
q .

The above lemma helps us characterize Θ′∗
q for a given distribution q. Thus, applying it to a given

q∗, we can find

θ∗ ∈ argmax
θ∈Θ

E
(x,y)∼q∗

[g′(θ, x, y)] . (3)

To further ensure that θ∗ also satisfies the corresponding equation for g (i.e., Equation 2) we will
consider the following condition:

C.1 For any (x, y) ∈ spt(q∗), it holds that g′(θ∗, x, y) = g(θ∗, x, y). This translates to any
label with non-zero weight being one of the incorrect labels where f is maximized: {ℓ ∈
Y \ {y} : τ(x, y)[ℓ] > 0} ⊆ argmax

ℓ∈Y\{y}
f(θ∗, x)[ℓ].

The main lemma used for finding the maximum margin solutions for multi-class classification is
stated below:

Lemma 9. Let Θ = {θ : ∥θ∥a,b ≤ 1} and Θ′∗
q = argmaxθ∈Θ E(x,y)∼q [g

′(θ, x, y)]. Similarly,
let Ω = {ω : ∥ω∥a ≤ 1} and Ω′∗

q = argmaxω∈Ω E(x,y)∼q [ψ
′(ω, x, y)]. If ∃{θ∗, q∗} satisfying

Equations 1 and 3, and C.1 holds, then:

• θ∗ ∈ argmaxθ∈Θ g(θ, x, y)

• Any θ̂ ∈ argmaxθ∈Θ min(x,y)∈D g(θ, x, y) satisfies the following:
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Figure 8: A schematic illustration of the relation between class-weighted margin g′ and maximum
margin g.

– θ̂ has directional support only on Ω′∗
q∗ .

– For any (x, y) ∈ spt(q∗), f(θ̂, x, y)−maxy′∈Y\{y} f(θ̂, x, y
′) = γ∗, i.e, all points in

the support of q∗ are on the margin for any maximum margin solution.

The first part of the above lemma follows from the fact that g′(θ, x, y) ≥ g(θ, x, y). Thus, any
maximizer of g′ satisfying g′ = g is also a maximizer of g (See Figure 8). The second part states
that the neurons found using Lemma 8 are indeed the exhaustive set of neurons for any maximum
margin network. Moreover, any maximum margin solution has the support of q∗ on margin. The
proof for the lemma can be found in Appendix F.2.

Overall, to find a (θ∗, q∗) pair, we will start with a guess of q∗ (which will be uniform in our case as
the datasets are symmetric) and a guess of the weighing τ (which will be uniform for the modular
addition case). Then, using the first part of Lemma 8, we will find all neurons which can be in the
support of θ∗ satisfying Equation 3 for the given q∗. Finally, for specific norms of the form ∥ · ∥a,ν ,
we will combine the obtained neurons using the second part of Lemma 8 to obtain a θ∗ such that it
satisfies C.1 and q∗ satisfies Equation 1. Thus, we will primarily focus on maximum margin with
respect to L2,ν norm in this work.

E.1 BLUEPRINT FOR THE CASE STUDIES

In each case study, we want to find a certificate pair: a network θ∗ and a distribution on the input
data points q∗, such that Equation 1 and 2 are satisfied. Informally, these are the main steps involved
in the proof approach:

1. As the datasets we considered are symmetric, we consider q∗ to be uniformly distributed
on the input data points.

2. Using the Single neuron optimization part of Lemma 8, we find all neurons that maxi-
mize the expected class-weighted margin. Only these neurons can be part of a network θ∗
satisfying Equation 3.

3. Using the Combining neurons part of Lemma 8, we combine the above neurons into a
network θ∗ such that
(a) All input points are on the margin, i.e, q∗ satisfies Equation 1.
(b) The class-weighted margin is equal to the maximum margin, i.e, θ∗ satisfies C.1.

Then, using Lemma 9, we can say that the network θ∗ maximizes the margin.

F PROOFS FOR THE THEORETICAL APPROACH

For ease of the reader, we will first restate Equations 1 and 2.

q∗ ∈ argmin
q∈P(D)

E
(x,y)∼q

[g(θ∗, x, y)]
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θ∗ ∈ argmax
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)]

We will first provide the proof of Lemma 2.
Lemma. If a pair (θ∗, q∗) satisfies Equations 1 and 2, then

θ∗ ∈ argmax
θ∈Θ

min
(x,y)∈D

g(θ, x, y)

Proof. First, using max-min inequality, we have:

max
θ∈Θ

min
(x,y)∈D

g(θ, x, y) = max
θ∈Θ

min
q∈P(D)

E
(x,y)∼q

[g(θ, x, y)] ≤

min
q∈P(D)

max
θ∈Θ

E
(x,y)∼q

[g(θ, x, y)]

On the other hand, it also holds that:

min
q∈P(D)

max
θ∈Θ

E
(x,y)∼q

[g(θ, x, y)] ≤ max
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)] =

E
(x,y)∼q∗

[g(θ∗, x, y)] = min
q∈P(D)

E
(x,y)∼q

[g(θ∗, x, y)] ≤

max
θ∈Θ

min
q∈P(D)

E
(x,y)∼q

[g(θ, x, y)]

where the first equality follows from Equation 2 and the second follows from Equation 1. Putting
these inequalities together it follows that all of the above terms are equal (and, thus we get a minimax
theorem). In particular, θ∗ ∈ argmaxθ∈Θ min(x,y)∈D g(θ, x, y) as desired.

F.1 BINARY CLASSIFICATION

Now, we will provide the proof of Lemma 3.
Lemma. Let Θ = {θ : ∥θ∥a,b ≤ 1} and Θ∗

q = argmaxθ∈Θ E(x,y)∼q [g(θ, x, y)]. Similarly, let
Ω = {ω : ∥ω∥a ≤ 1} and Ω∗

q = argmaxω∈Ω E(x,y)∼q [ψ(ω, x, y)]. Then, for binary classification,
the following holds:

• Single neuron optimization: Any θ ∈ Θ∗
q has directional support only on Ω∗

q .

• Using multiple neurons: If b = ν and ω∗
1 , ..., ω

∗
m ∈ Ω∗

q , then θ = {λiω∗
i }mi=1 with

∑
λνi =

1, λi ≥ 0 belongs to Θ∗
q .

Proof. Let γ = max
ω∈Ω

E
(x,y)∼q∗

[ψ(ω, x, y)] and take any θ = {ωi}mi=1. Then:

E
(x,y)∼q∗

[g(θ, x, y)] = E
(x,y)∼q∗

[
m∑
i=1

ψ(ωi)

]
=

m∑
i=1

∥ωi∥νa E
(x,y)∼q∗

[
ψ

(
ωi

∥ωi∥a

)]
≤

γ

m∑
i=1

∥ωi∥νa ≤ γ max
w∈Rm

∥w∥b≤1

∥w∥νν

with equality when ωi

∥ωi∥a
∈ argmax

ω∈Ω
E

(x,y)∼q∗
[ψ(ω, x, y)] for all i with ωi ̸= 0 and the La norms

of ωs respect {∥ωi∥a}mi=1 ∈ argmax
∥w∥b≤1

∥w∥νν . Since there exists equality for this upper bound, these

two criteria define precisely argmax
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)]. Hence, we proved the first part of the

statement by first criterion. For the second, note that when b = ν, one can choose any vector of
norms for ω with Lb norm of 1 (since ∥w∥νν = ∥w∥bb ≤ 1), such as λ - this concludes the proof of
the second part.

Remark. Note that the analysis in above proof can be used to compute optimal norms for b ̸= ν as
well - however, for any such b we would not get the same flexibility to build a θ∗ satisfying Equation
1. This is the reason behind choosing b = ν.
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Now, we will provide the proof of Lemma 4.

Lemma. Let Θ = {θ : ∥θ∥a,b ≤ 1} and Θ∗
q = argmaxθ∈Θ E(x,y)∼q [g(θ, x, y)]. Similarly, let Ω =

{ω : ∥ω∥a ≤ 1} and Ω∗
q = argmaxω∈Ω E(x,y)∼q [ψ(ω, x, y)]. For the task of binary classification,

if there exists {θ∗, q∗} satisfying Equation 1 and 2, then any θ̂ ∈ argmaxθ∈Θ min(x,y)∈D g(θ, x, y)
satisfies the following:

• θ̂ has directional support only on Ω∗
q∗ .

• For any (x1, y1) ∈ spt(q∗), f(θ̂, x1, y1)− f(θ̂, x1, y
′
1) = γ∗, where y′1 ̸= y1, i.e, all points

in the support of q∗ are on the margin for any maximum margin solution.

Proof. Let γ∗ = maxθ∈Θ min(x,y)∈D g(θ, x, y). Then, by Lemma 2, γ∗ = E(x,y)∼q∗g(θ
∗, x, y).

Consider any θ̂ ∈ argmaxθ∈Θ min(x,y)∈D g(θ, x, y). This means, that min(x,y)∈D g(θ̂, x, y) = γ∗.
This implies that E(x,y)∼q∗g(θ̂, x, y) ≥ γ∗. However, by Equation 2, maxθ∈Θ E(x,y)∼q∗g(θ, x, y) =

γ∗. This implies that E(x,y)∼q∗g(θ̂, x, y) = γ∗. Thus, θ̂ is also a maximizer of E(x,y)∼q∗g(θ, x, y),
and thus by Lemma 3, it only has directional support on Ω∗

q∗ .

Moreover, as E(x,y)∼q∗g(θ̂, x, y) = γ∗, thus, for any (x1, y1) ∈ spt(q∗), f(θ̂, x1, y1) −
f(θ̂, x1, y

′
1) = γ∗, where y′1 ̸= y1.

F.2 MULTI-CLASS CLASSIFICATION

We will first provide the proof of Lemma 8.

Lemma. Let Θ = {θ : ∥θ∥a,b ≤ 1} and Θ′∗
q = argmaxθ∈Θ E(x,y)∼q [g

′(θ, x, y)]. Similarly, let
Ω = {ω : ∥ω∥a ≤ 1} and Ω′∗

q = argmaxω∈Ω E(x,y)∼q [ψ
′(ω, x, y)]. Then:

• Single neuron optimization: Any θ ∈ Θ′∗
q has directional support only on Ω′∗

q .

• Using multiple neurons: If b = ν and ω∗
1 , ..., ω

∗
m ∈ Ω′∗

q , then θ = {λiω∗
i }mi=1 with∑

λνi = 1, λi ≥ 0 belongs to Θ′∗
q .

Proof. The proof follows the same strategy as the proof of Lemma 3 (Section F.1), following the
linearity of g′.

Now, for ease of the reader, we will first restate Equation 3 and condition C.1.

θ∗ ∈ argmax
θ∈Θ

E
(x,y)∼q∗

[g′(θ, x, y)] .

C.1 For any (x, y) ∈ spt(q∗), it holds that g′(θ∗, x, y) = g(θ∗, x, y). This translates to any
label with non-zero weight being one of the incorrect labels where f is maximized: {ℓ ∈
Y \ {y} : τ(x, y)[ℓ] > 0} ⊆ argmax

ℓ∈Y\{y}
f(θ∗, x)[ℓ].

We will now the provide the proof of Lemma 9.

Lemma. Let Θ = {θ : ∥θ∥a,b ≤ 1} and Θ′∗
q = argmaxθ∈Θ E(x,y)∼q [g

′(θ, x, y)]. Similarly,
let Ω = {ω : ∥ω∥a ≤ 1} and Ω′∗

q = argmaxω∈Ω E(x,y)∼q [ψ
′(ω, x, y)]. If ∃{θ∗, q∗} satisfying

Equations 1 and 3, and C.1 holds, then:

• θ∗ ∈ argmaxθ∈Θ g(θ, x, y)

• Any θ̂ ∈ argmaxθ∈Θ min(x,y)∈D g(θ, x, y) satisfies the following:

– θ̂ has directional support only on Ω′∗
q∗ .
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– For any (x1, y1) ∈ spt(q∗), f(θ̂, x1, y1) − maxy′∈Y\{y1} f(θ̂, x1, y
′
1) = γ∗, i.e, all

points in the support of q∗ are on the margin for any maximum margin solution.

Proof. For the first part, we will show that {θ∗, q∗} satisfy Equations 1 and 2, and then it follows
from Lemma 2. As we have already assumed these satisfy Equation 1, we will show that they satisfy
Equation 2.

Note that g′(θ, x, y) ≥ g(θ, x, y). Thus,

E(x,y)∼q∗ [g(θ
∗, x, y)] ≤ max

θ∈Θ
E(x,y)∼q∗ [g(θ, x, y)]

≤ max
θ∈Θ

E(x,y)∼q∗ [g
′(θ, x, y)]

= E(x,y)∼q∗ [g
′(θ∗, x, y)]

where the second inequality follows as g′ ≥ g and the last equality follows as θ∗ sat-
isfies Equation 3. Now, as the pair also satisfies C.1, therefore E(x,y)∼q∗ [g(θ

∗, x, y)] =
E(x,y)∼q∗ [g

′(θ∗, x, y)]. This means, that all inequalities in the above chain must be equality. Thus,
θ∗ ∈ argmaxθ∈Θ E(x,y)∼q∗ [g(θ, x, y)]. Thus, the pair {θ∗, q∗} satisfies Equation 1 and 2, and thus
by Lemma 2, θ∗ ∈ argmaxθ∈Θ g(θ, x, y).

Let γ∗ = maxθ∈Θ min(x,y)∈D g(θ, x, y). Then, γ∗ = E(x,y)∼q∗g(θ
∗, x, y). Consider any θ̂ ∈

argmaxθ∈Θ min(x,y)∈D g(θ, x, y). This means, that min(x,y)∈D g(θ̂, x, y) = γ∗. This implies that
E(x,y)∼q∗g(θ̂, x, y) ≥ γ∗. Since g′ ≥ g, it then folllows that E(x,y)∼q∗g

′(θ̂, x, y) ≥ γ∗.

However, by Equation 3 and C.1, maxθ∈Θ E(x,y)∼q∗g
′(θ, x, y) = E(x,y)∼q∗g

′(θ∗, x, y) =

E(x,y)∼q∗g(θ
∗, x, y) = γ∗. This implies that E(x,y)∼q∗g

′(θ̂, x, y) = γ∗. Thus, θ̂ is also a maxi-
mizer of E(x,y)∼q∗g

′(θ, x, y), and thus by Lemma 8, it only has directional support on Ω′∗
q∗ .

Moreover, as min(x,y)∈D g(θ̂, x, y) = γ∗, therefore, E(x,y)∼q∗g(θ̂, x, y) ≥ γ∗. However, as
g′ ≥ g, therefore, E(x,y)∼q∗g(θ̂, x, y) ≤ E(x,y)∼q∗g

′(θ̂, x, y) = γ∗, as shown above. Thus,
E(x,y)∼q∗g(θ̂, x, y) = γ∗. Thus, we have f(θ̂, x1, y1)−maxy′∈Y\{y1} f(θ̂, x1, y

′
1) = g(θ̂, x1, y1) =

γ∗ for any (x1, y1) ∈ spt(q∗).

G PROOFS FOR CYCLIC GROUPS(THEOREM 5)

As outlined in the blueprint in Section E.1, we will consider q∗ to be uniform on the dataset. We
will use the uniform class weighting: τ(a, b)[c′] := 1/(p− 1) for all c′ ̸= a+ b.

G.1 PROOF THAT EQUATION 3 IS SATISFIED

Proof. Let
ηu,v,w(δ) := Ea,b

[
(u(a) + v(b))2w(a+ b− δ)

]
.

We wish to find the solution to the following mean margin maximization problem:

argmax
u,v,w:∥u∥2+∥v∥2+∥w∥2≤1

(ηu,v,w(0)− Eδ ̸=0 [ηu,v,w(δ)]) =
p

p− 1
(ηu,v,w(0)− Eδ [ηu,v,w(δ)]) .

(4)

First, note that Ec [w(c)] = 0, because shifting the mean of w does not affect the margin. It follows
that

Ea,b

[
(u(a)2w(a+ b− δ)

]
= Ea

[
u(a)2Eb[w(a+ b− δ)]

]
= Ea

[
u(a)2Eb[w(b)]

]
= 0,

and similarly for the v(b)2 component of η, so we can rewrite (4) as

argmax
u,v,w:∥u∥2+∥v∥2+∥w∥2≤1

2p

p− 1
(η̃u,v,w(0)− Eδ [η̃u,v,w(δ)]) ,
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where
η̃u,v,w(δ) := Ea,b [u(a)v(b)w(a+ b− δ)] .

Let ρ := e2πi/p, and let û, v̂, ŵ be the discrete Fourier transforms of u, v, and w respectively. Then
we have:

η̃u,v,w(δ) = Ea,b

1

p

p−1∑
j=0

û(j)ρja

(1

p

p−1∑
k=0

v̂(k)ρkb

)(
1

p

p−1∑
ℓ=0

ŵ(ℓ)ρℓ(a+b−δ)

)
=

1

p3

∑
j,k,ℓ

û(j)v̂(k)ŵ(ℓ)ρ−ℓδ
(
Eaρ

(j+ℓ)a
)(

Ebρ
(k+ℓ)b

)
=

1

p3

∑
j

û(j)v̂(j)ŵ(−j)ρjδ (only terms where j + ℓ = k + ℓ = 0 survive)

Hence, we need to maximize

2p

p− 1
(η̃u,v,w(0)− Eδ [η̃u,v,w(δ)]) (5)

=
2p

p− 1

 1

p3

∑
j

û(j)v̂(j)ŵ(−j)− 1

p3

∑
j

û(j)v̂(j)ŵ(−j)(Eδρ
jδ)


=

2

(p− 1)p2

∑
j ̸=0

û(j)v̂(j)ŵ(−j). (6)

We have arrived at the crux of why any max margin solution must be sparse in the Fourier domain:
in order to maximize expression 6, we must concentrate the mass of û, v̂, and ŵ on the same
frequencies, the fewer the better. We will now work this out carefully. Since u, v, w are real-valued,
we have

û(−j) = û(j), v̂(−j) = v̂(j), ŵ(−j) = ŵ(j)

for all j ∈ Zp. Let θu, θv, θw ∈ [0, 2π)p be the phase components of u, v, w respectively; so, e.g.,
for û:

û(j) = |û(j)| exp(iθu(j)).
Then, for odd p, expression 6 becomes:

2

(p− 1)p2

(p−1)/2∑
j=1

[
û(j)v̂(j)ŵ(j) + û(j)v̂(j)ŵ(j)

]

=
2

(p− 1)p2

(p−1)/2∑
j=1

|û(j)||v̂(j)||ŵ(j)| [exp(i(θu(j) + θv(j)− θw(j)) + exp(i(−θu(j)− θv(j) + θw(j))]

=
4

(p− 1)p2

(p−1)/2∑
j=1

|û(j)||v̂(j)||ŵ(j)| cos(θu(j) + θv(j)− θw(j)).

Thus, we need to optimize:

max
u,v,w:∥u∥2+∥v∥2+∥w∥2≤1

4

(p− 1)p2

(p−1)/2∑
j=1

|û(j)||v̂(j)||ŵ(j)| cos(θu(j) + θv(j)− θw(j)). (7)

By Plancherel’s theorem, the norm constraint is equivalent to

∥û∥2 + ∥v̂∥2 + ∥ŵ∥2 ≤ p,

so the choice of θu(j), θv(j), θw(j) is unconstrained. Therefore, we can (and must) choose them to
satisfy θu(j) + θv(j) = θw(j), so that cos(θu(j) + θv(j) − θw(j)) = 1 is maximized for each j
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(unless the amplitude part of the jth term is 0, in which case the phase doesn’t matter). The problem
is thus further reduced to:

max
|û|,|v̂|,|ŵ|:∥û∥2+∥v̂∥2+∥ŵ∥2≤p

4

(p− 1)p2

(p−1)/2∑
j=1

|û(j)||v̂(j)||ŵ(j)|. (8)

By the inequality of quadratic and geometric means,

|û(j)||v̂(j)||ŵ(j)| ≤
(
|û(j)|2 + |v̂(j)|2 + |ŵ(j)|2

3

)3/2

. (9)

Let z : {1, . . . , p−1
2 } → R be defined as z(j) := |û(j)|2 + |v̂(j)|2 + |ŵ(j)|2. Then, since we must

have û(0) = v̂(0) = ŵ(0) = 0 in the optimization above, we can upper-bound expression 8 by

4

(p− 1)p2
· max
∥z∥1≤ p

2

(p−1)/2∑
j=1

(
z(j)

3

)3/2

≤ 4

33/2(p− 1)p2
· max
∥z∥1≤ p

2

(p−1)/2∑
j=1

z(j)2

1/2

·

(p−1)/2∑
j=1

z(j)

1/2

(Cauchy-Schwartz)

=
23/2

33/2(p− 1)p3/2
· max
∥z∥1≤ p

2

∥z∥2

≤ 23/2

33/2(p− 1)p3/2
· p
2
=

√
2

27
· 1

p1/2(p− 1)
.

The only way to turn inequality 9 into an equality is to set |û(j)| = |v̂(j)| = |ŵ(j)|, and the only
way to achieve ∥z∥2 = p

2 is to place all the mass on a single frequency, so the only possible way to
achieve the upper bound is to set

|û(j)| = |v̂(j)| = |ŵ(j)| =
{√

p/6 if j = ±ζ
0 otherwise

.

for some frequency ζ ∈ {1, . . . , p−1
2 }. In this case, we indeed match the upper bound:

4

(p− 1)p2
·
(p
6

)3/2
=

√
2

27
· 1

p1/2(p− 1)
.

so this is the maximum margin.

Putting it all together, and abusing notation by letting θ∗u := θu(ζ), we obtain that all neurons
maximizing the expected class-weighted margin are of the form (up to scaling):

u(a) =
1

p

p−1∑
j=0

û(j)ρja

=
1

p

[
û(ζ)ρζa + û(−ζ)ρ−ζa

]
=

1

p

[√
p

6
exp(iθ∗u)ρ

ζa +

√
p

6
exp(−iθ∗u)ρ−ζa

]
=

√
2

3p
cos(θ∗u + 2πζa/p)

and

v(b) =

√
2

3p
cos(θ∗v + 2πζb/p)

w(c) =

√
2

3p
cos(θ∗w + 2πζc/p)

for some phase offsets θ∗u, θ
∗
v , θ

∗
w ∈ R satisfying θ∗u + θ∗v = θ∗w and some ζ ∈ Zp \ {0} (where ζ is

the same for u, v, and w).
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It remains to construct a network θ∗ which uses neurons of the above form and satisfies condition
C.1 and Equation 1 with respect to q = unif(Zp).

G.2 PROOF THAT CONDITION C.1 AND EQUATION 1 ARE SATISFIED

Proof. Our θ∗ will consist of 4(p − 1) neurons: 8 neurons for each of the frequencies 1, . . . , p−1
2 .

Consider a given frequency ζ. For brevity, let cosζ(x) denote cos(2πζx/p), and similarly for
sinζ(x). First, we observe:

cosζ(a+ b− c) = cosζ(a+ b) cosζ(c) + sinζ(a+ b) sinζ(c)

= cosζ(a) cosζ(b) cosζ(c)− sinζ(a) sinζ(b) cosζ(c)

+ sinζ(a) cosζ(b) sinζ(c) + cosζ(a) sinζ(b) sinζ(c)

Each of these four terms can be implemented by a pair of neurons ϕ1, ϕ2. Consider the first term,
cosζ(a) cosζ(b) cosζ(c). For the first neuron ϕ1, set u1(·), v1(·), w1(·) := cosζ(·), and for ϕ2, set
u2(·) := cosζ(·) and v2(·), w2(·) := − cosζ(·). These can be implemented in the form we derived
by setting (θ∗u, θ

∗
v , θ

∗
w) to (0, 0, 0) for the first neuron and (0, π, π) for the second.

Adding these two neurons, we obtain:

ϕ1(a, b) + ϕ2(a, b) = (cosζ(a) + cosζ(a))
2 cosζ(c) + (cosζ(a)− cosζ(a))

2(− cosζ(c))

= 4 cosζ(a) cosζ(b) cosζ(c)

Similarly, each of the other three terms can be implemented by pairs of neurons, by setting
(θ∗u, θ

∗
v , θ

∗
w) to

1. (π2 ,−
π
2 , 0) and (π2 ,

π
2 , π)

2. (−π
2 , 0,−

π
2 ) and (−π

2 , π,
π
2 )

3. (0,−π
2 ,−

π
2 ) and (0, π2 ,

π
2 )

If we include such a collection of 8 neurons for every frequency ζ ∈ {1, . . . , p−1
2 }, the resulting

network will compute the function

f(a, b) =

(p−1)/2∑
ζ=1

cosζ(a+ b− c)

=

p−1∑
ζ=1

1

2
· exp(2πiζ(a+ b− c)/p)

=

{p−1
2 if a+ b = c

0 otherwise

The scaling constant λ for each neuron can be chosen so that the network has L2,3-norm 1. For this
network, every datapoint is on the margin, so q = unif(Zp) is trivially supported on points on the
margin, satisfying Equation 1. And for each input (a, b), f takes the same value on all incorrect
labels c′, satisfying C.1.

G.3 PROOF THAT ALL FREQUENCIES ARE USED

Proof. For this proof, we need to introduce the multidimensional discrete Fourier transform. For a
function f : Z3

p → C, the multidimensional DFT of f is defined as:

f̂(j, k, ℓ) :=
∑
a∈Zp

e−2πi·ja/p

∑
b∈Zp

e−2πi·jb/p

∑
c∈Zp

e−2πi·jc/pf(a, b, c)


for allj, k, ℓ ∈ Z.
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To simplify the notation, let θu = θ∗u · p
2π , so

u(a) =

√
2

3p
cosp(θu + ζa).

Let

f(a, b, c) =

H∑
h=1

ϕh(a, b, c)

=

H∑
h=1

(uh(a) + vh(b))
2
wh(c)

=

(
2

3p

)3/2 H∑
h=1

(cosp(θuh
+ ζha) + cosp(θvh + ζhb))

2
cosp(θwh

+ ζhc)

be the function computed by an arbitrary margin-maximizing network of width H , where each
neuron is of the form derived earlier.

Each neuron ϕ can be split into three terms:

ϕ(a, b, c) = ϕ(1)(a, b, c)+ϕ(2)(a, b, c)+ϕ(3)(a, b, c) := u(a)2w(c)+ v(b)2w(c)+ 2u(a)v(b)w(c)

ϕ̂(1)(j, k, ℓ) is nonzero only for k = 0, and ϕ̂(2)(j, k, ℓ) is nonzero only for j = 0. For the third
term, we have

ϕ̂(3)(j, k, ℓ) = 2
∑

a,b,c∈Zp

u(a)v(b)w(c)ρ−(ja+kb+ℓc) = 2û(j)v̂(k)ŵ(ℓ).

In particular,

û(j) =
∑
a∈Zp

√
2

3p
cosp(θu + ζa)ρ−ja

= (6p)−1/2
∑
a∈Zp

(
ρθu+ζa + ρ−(θu+ζa)

)
ρ−ja

= (6p)−1/2

ρθu ∑
a∈Zp

ρ(ζ−j)a + ρ−θu
∑
a∈Zp

ρ−(ζ+j)a


=


√
p/6 · ρθu if j = ζ√
p/6 · ρ−θu if j = −ζ

0 otherwise

and similarly for v̂ and ŵ. ζ was defined to be nonzero, so the ζ = 0 case is ignored. Thus,
ˆϕ(3)(j, k, ℓ) is nonzero only when j, k, ℓ are all ±ζ. We can conclude that ϕ̂(j, k, ℓ) can only be

nonzero if one of the following conditions holds:

1. j = 0

2. k = 0

3. j, k, ℓ = ±ζ.

Independent of the above considerations, we know by Lemma 9 that the function f implemented by
the network has equal margin across different inputs and across different classes for the same input.
In other words, f can be decomposed as

f(a, b, c) = f1(a, b, c) + f2(a, b, c)

26



Published as a conference paper at ICLR 2024

where
f1(a, b, c) = F (a, b)

for some F : Zp × Zp → R, and

f2(a, b, c) = λ · 1a+b=c

where λ > 0 is the margin of f .

The Fourier transforms of f1 and f2 are

f̂1(j, k, l) =

{
F̂ (j, k) if ℓ = 0

0 otherwise

and

f̂2(j, k, l) =

{
λp2 if j = k = −ℓ
0 otherwise

.

Hence, when j = k = −ℓ ̸= 0, we must have f̂(j, k, ℓ) > 0. But then, from the conditions under
which each neuron’s DFT ϕ̂ is nonzero, it must follow that there is at least one neuron for each
frequency.

H PROOFS FOR SPARSE PARITY

Theorem. Consider a single hidden layer neural network of width m with the activation func-
tion given by xk, i.e, f(x) =

∑m
i=1(u

⊤
i x)

kwi, where ui ∈ Rn and wi ∈ R2, trained on the
(n, k)−sparse parity task. Without loss of generality, assume that the first coordinate of wi corre-
sponds to the output for class y = +1. Denote the vector [1,−1] by b. Provided m ≥ 2k−1, the
L2,k+1 maximum margin is:

k!
√
2(k + 1)−(k+1).

Any network achieving this margin satisfies the following conditions:

1. For every i having ∥ui∥ > 0, spt(ui) = S, wi lies in the span of b and ∀j ∈ S, |ui[j]| =
∥wi∥.

2. For every i, (Πj∈Sui[j]) (w
⊤
i b) ≥ 0.

Proof. We will consider q∗ to be equally distributed on the dataset and optimize the class-weighted
margin as defined in Equation 3. We will consider the weight τ(x, y)[y′] = 1 for y′ ̸= y. Also,
let a denote the vector [1, 1] and b denote the vector [1,−1]. Then, any wi ∈ R2 can be written as
wi =

1√
2
[αia+ βib] for some αi, βi ∈ R.

First, using lemma 8, we can say that one neuron maximizers of class-weighted margin are given by

argmax
∥[u,w]∥2≤1

E(x,y)∼D [ϕ({u,w}, x)[y]− ϕ({u,w}, x)[y′]]

where y′ = −y, ϕ({u,w}, x) = (u⊤x)kw and ∥[u,w]∥2 represents the 2-norm of the concatenation
of u and w.

Considering that y ∈ {±1} and w = 1√
2
[αa+ βb], we can say ϕ({u,w}, x)[y] = 1√

2
(u⊤x)k[α+

yβ]. Thus, we can say

E(x,y)∼D [ϕ({u,w}, x)[y]− ϕ({u,w}, x)[y′]] =
√
2E(x,y)∼D

[
(u⊤x)kβy

]
=

√
2E(x,y)∼D

[
(u⊤x)kβΠi∈Sxi

]
=

√
2k! (Πi∈Sui)β

where in the last step, all other terms are zero by symmetry of the dataset.
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Clearly, under the constraint ∥u∥2+α2+β2 ≤ 1 (where ∥w∥2 = α2+β2), this is maximized when
ui = 0 for i /∈ S, α = 0, ui = ± 1√

k+1
and β = ± 1√

k+1
, with (Πi∈Sui)β > 0.

Now, using Lemma 8, we will create a network using these optimal neurons such that it satisfies
C.1, and Equations 1 and 3, thus concluding by Lemma 9. C.1 holds trivially as this is a binary
classification task, so g′ = g.

Consider a maximal subsetA ⊂ {±1}k such that if σ ∈ A, then −σ /∈ A and for any σ ∈ A, σ1 = 1.
Now, consider a neural network having 2k−1 neurons given by

f(θ, x) =
1

2k−1

∑
σ∈A

(
k∑

i=1

σi√
k + 1

xSi

)k (
Πk

i=1σi
)

√
k + 1

1√
2
b =

1√
2
k!(k + 1)−(k+1)/2 (Πi∈Sxi) b

By Lemma 8, the above neural network also maximizes the class-weighted mean margin. Moreover,
it also satisfies Equation 1, as every term other than ΠxSi cancels out in the sum.

Consider any monomial T which depends only on S′ ⊂ S. Consider any one of the terms in f(x)
and let the coefficient of T in the term given by cT . Consider another term in f(x), where, for some
i ∈ S \ S′ and j = k + 1, σi and σj are flipped. For this term, the coefficient of T will be −cT , as
for all i ∈ S′, σi is the same, but σk+1 is different. Thus, for any such monomial, its coefficient in
expanded f(x) will be 0 as terms will always exist in these pairs.

Thus, f(θ, x) satisfies C.1, Equation 1 and 3, hence, by Lemma 9, any maximum margin solution
satisfies the properties stated in Theorem 6.

I ADDITIONAL GROUP REPRESENTATION THEORY PRELIMINARIES

In this section we properly define relevant results from group representation theory used in the proof
of Theorem 7. We also refer the reader to Kosmann-Schwarzbach et al. (2010), one of many good
references for representation theory.
Definition 1. A linear representation of a group G is a finite dimensional complex vector space V
and a group homomorphismR : G→ GL(V ). We denote such a representation by (R, V ) or simply
justR. The dimension of the representationR, denoted dR, equals the dimension of the vector space
V .

In our case we are only concerned with finite groups with real representations, i.e. V = Rd and each
representation R maps group elements to real invertible d × d matrices. Furthermore, we are only
concerned with unitary representations R, i.e. R(g) is unitary for every g. It is a known fact that
every representation of a finite group can be made unitary, in the following sense:
Theorem 10 (Kosmann-Schwarzbach et al. (2010), Theorem 1.5.). Every representation of a finite
group (R, V ) is unitarizable, i.e. there is a scalar product on V such that R is unitary.

Also of particular interest are irreducible representations.
Definition 2. A representation (R, V ) of G is irreducible if V ̸= {0} and the only vector subspaces
of V invariant under R are {0} or V itself.

A well-known result is Maschke’s Theorem, which states that every finite-dimensional represen-
tation of a finite group is completely reducible; thus it suffices to consider a fundamental set of
irreducible unitary representations in our analysis.
Theorem 11 (Maschke’s Theorem.). Every finite-dimensional representation of a finite group is a
direct sum of irreducible representations.
Theorem 12 (Kosmann-Schwarzbach et al. (2010), Theorem 3.4.). Let G be a finite group. If
R1, ..., RK denote the irreducible representations of G, then |G| =

∑K
n=1 d

2
Rn

, where dRn repre-
sents the dimensionality of Rn.

The theory about characters of representations and orthogonality relations are essential for our max
margin analysis. This is a rich area of results, and we only list those that are directly used in our
proofs.
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Definition 3. Let (R, V ) be a representation of G. the character of R is the function χR : G → R
defined as χR(g) = tr(R(g)) for each g ∈ G.

For each conjugacy class ofG, the character ofR is constant (this can easily be verified via properties
of the matrix trace). More generally, functions which are constant for each conjugacy class are called
class functions on G. Given the characters across inequivalent irreducible representations, one can
construct a “character table” for a group G in which the columns correspond to the conjugacy
classes of a group, and whose rows correspond to inequivalent irreducible representations of a group.
The entries of the character table correspond to the character for the representation at that given row,
evaluated on the conjugacy class at that given column.

Characters of inequivalent irreducible representations are in fact orthogonal, which follow from the
orthogonality relations of representation matrix elements. For a unitary irreducible representation
R, define the vectorR(i,j) = (R(g)(i,j))g∈G with entries being the (i, j)th entry of the matrix output
for each g ∈ G under R. We have the following result.

Proposition 1 (Kosmann-Schwarzbach et al. (2010), Corollary 2.10.). Let (R1, V1) and (R2, V2)
be unitary irreducible representations of G. Choosing two orthonormal bases in V1 and V2, the
following holds:

1. If R1 and R2 are inequivalent, then for every i, j, k, l, we have ⟨R1(i,j), R2(k,l)⟩ = 0.

2. If R1 = R2 = R and V1 = V2 = V , then for every i, j, k, l, we have ⟨R(i,j), R(k,l)⟩ =
1
dR
δikδjl, where δik = 1[i = k].

Theorem 13 (Kosmann-Schwarzbach et al. (2010), Theorem 2.11.). Let G be a finite group. If
R1 and R2 are inequivalent irreducible representations of G, then ⟨χR1

, χR2
⟩ = 0. If R is an

irreducible representation of G, then ⟨χR, χR⟩ = 1.

A fundamental result about characters is that the irreducible characters of G form an orthonormal
set in L2(G) (Kosmann-Schwarzbach et al. (2010), Theorem 2.12.). This implies the following
result, which states that the irreducible characters form an orthonormal basis in the vector space of
class functions on G taking values in R. Since this vector space has dimension equal to the number
of conjugacy classes of G, it also follows that the number of equivalence classes of irreducible
representations is the number of conjugacy classes. In other words, the character table is square for
every finite group.

Theorem 14 (Kosmann-Schwarzbach et al. (2010), Theorem 3.6.). The irreducible characters form
an orthonormal basis of the vector space of character functions.

In section J of the Appendix, we rigorously define the basis vectors for network weights based on
the representation matrix elements defined in Proposition 1, and establish the properties they satisfy,
which are key to our analysis.

I.1 A CONCRETE EXAMPLE: SYMMETRIC GROUP

The symmetric group Sn consists of the permutations over a set of cardinality n. The order of the
group is n!. It is a fact that every permutation can be written as a product of transpositions— a
permutation which swaps two elements. We can associate with each permutation the parity of the
number of transpositions needed, which is independent of the choice of decomposition.

We will provide a concrete description of the representation theory for S5, which is a
central group of study in this paper. It has 7 conjugacy classes, which we denote as
{e, (1 2), (1 2)(3 4), (1 2 3), (1 2 3 4), (1 2 3 4 5), (1 2)(3 4 5)} (selecting one representative from
each conjugacy class). It also has 7 irreducible representations. Apart from the trivial representation,
it has another 1-dimensional sign representation representing the parity of a permutation.

The symmetric group also has an n-dimensional representation which is the natural permutation
representation, mapping permutations to permutation matrices which shuffle the n coordinates. It
turns out that this is in fact reducible, since this has the trivial subrepresentation consisting of vectors
whose coordinates are all equal. Decomposing this representation into irreducible representations
results in the trivial representation and what is called the standard representation of dimension n−
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class e (1 2) (1 2)(3 4) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4 5)
size 1 10 15 20 30 24 20
R1 1 1 1 1 1 1 1

R2(sign) 1 −1 1 1 −1 1 −1
R3(standard) 4 −2 0 1 0 −1 1

R4(standard ⊗ sign) 4 2 0 1 0 −1 −1
R5(5d a) 5 1 1 −1 −1 0 1
R6(5d b) 5 −1 1 −1 1 0 −1
R7(6d) 6 0 −2 0 0 1 0

Table 1: Character table of S5.

1. It has another n − 1-dimensional representation, which is the product of sign and standard
representations.

The final three representations of S5 are higher-dimensional, with dimensions 5, 5, and 6. We denote
them as 5d a, 5d b, and 6d. We give the character table of S5 in Table 1, which will be useful for
calculating the value of the max margin which we theoretically derive.

J PROOFS FOR FINITE GROUPS WITH REAL REPRESENTATIONS

In this section we prove that for finite groups with real representations, all max margin solutions
have neurons which only use a single irreducible representation.

Theorem. Consider a single hidden layer neural network of width m with quadratic activation
trained on learning group composition for G with real irreducible representations. Provided m ≥
2
∑K

n=2 dRn

3 and
∑K

n=2 dRn

1.5χRn
(C) < 0 for every non-trivial conjugacy class C, the L2,3

maximum margin is:

γ∗ =
2

3
√

3|G|
1(∑K

n=2 d
2.5
Rn

) .
Any network achieving this margin satisfies the following conditions:

1. For every neuron, there exists a non-trivial representation such that the input and output
weight vectors are spanned only by that representation.

2. There exists at least one neuron spanned by each representation (except for the trivial
representation) in the network.

Let R1, . . . , RK be the unitary irreducible representations and let C1, . . . , CK be the conjugacy
classes of a finite group G with real representations. We fix R1 to be the trivial one-dimensional
representation mapping R1(g) = 1 for all g ∈ G and C1 to be the trivial conjugacy class C1 = {e}.
For each of these representations (V,R) of the group G, where R : G → V , we will consider
the |G|-dimensional vectors by fixing one position in the matrix R(g) for all g ∈ G, i.e. vectors
(R(g)i,j)g∈G for some i, j ∈ [dV ]. These form a set of |G| vectors which we will denote ρ1, ..., ρ|G|
(ρ1 is always the vector corresponding to the trivial representation). These vectors in fact form an
orthogonal basis, and satisfy additional properties established in the following lemma.

Lemma 15. The set of vectors ρ1, ..., ρ|G| satisfy the following properties:

1.
∑

a∈G ρi(a)ρj(a) = 0 for i ̸= j. (Orthogonality)

2.
∑

a∈G ρi(a)
2 = |G|/dV for all i, where dV is the dimensionality of the vector space V

corresponding to the representation that ρi belongs to.

3. For all the ρj which correspond to off-diagonal entries of a representation,
∑

a∈Ci
ρj [a] =

0, i.e, the sum of elements within the same conjugacy class is 0.
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4. If ρj and ρk correspond to different diagonal entries within the same representation, then∑
a∈Ci

ρj [a] =
∑

a∈Ci
ρk[a], i.e, for the diagonal entries, the sum for a given conjugacy

class is invariant with the position of the diagonal element.

Proof. The first two properties are the orthogonality relations of unitary representation matrix ele-
ments (Proposition 1), and the last two points follow additionally from Proposition 2.7 and Proposi-
tion 2.8 in Kosmann-Schwarzbach et al. (2010).

Since this set of |G|-dimensional vectors are orthogonal to each other, each set of weights for a
neuron in our architecture can be expressed as a linear combination of these basis vectors

u =
∑

i∈[|G|]

αiρi, v =
∑

i∈[|G|]

βiρi, w =
∑

i∈[|G|]

γiρi.

It will also be useful to define the matrices αRi
,βRi

,γRi
for each irreducible representation Ri of

G which consist of the coefficients for u, v, and w corresponding to each entry in the representation
matrix.

Let hu,v,w(c) := Ea,b

[
(u(a) + v(b))2w(a ◦ b ◦ c)

]
. Recall we seek solutions for the following

weighted margin maximization problem

hu,v,w(e)−
∑
c ̸=e

τchu,v,w(c), where
∑
c ̸=e

τc = 1. (10)

Note that if we substitute the weights u, v, w in terms of the basis vectors in the definition of hu,v,w

hu,v,w(c) = Ea,b

[(∑
αiρi(a) +

∑
βiρi(b)

)2 (∑
γiρi(a ◦ b ◦ c)

)]
and we expand this summation, all terms involving the trivial representation vector ρ1 will equal
zero since it is constant on all group elements. Furthermore, for terms of the form

Ea,b[ρi(a)
2ρk(a ◦ b ◦ c)] = Ea[ρi(a)

2Eb[ρk(a ◦ b ◦ c)]] = 0

due to Eb[ρk(a ◦ b ◦ c)] = 0 by orthogonality to the trivial representation vector.

Thus as was the case for the cyclic group, we study the term h̃u,v,w(c) :=
Ea,b [u(a)v(b)w(a ◦ b ◦ c)] and derive an expression for the weighted margin in the follow-
ing lemma.

Lemma 16. Suppose the weights τc in the expression for the weighted margin in 10 were constant
over conjugacy classes, i.e. we have τc = τCi for all c ∈ Ci and i ∈ [K]. Then the weighted margin
can be simplified as

K∑
m=2

(
1−

K∑
n=2

τCn
|Cn|χRm

(Cn)

dRm

)
tr(αRm

βRm
γRm

T )

dRm

2 .

Proof. Consider one term Ea,b[αiβjγkρi(a)ρj(b)ρk(a ◦ b ◦ c)] in the expansion of the product in
h̃u,v,w(c). Note that ρk(a ◦ b ◦ c) is one entry in the matrix of some irreducible representation
evaluated at a ◦ b ◦ c; this can be expanded in terms of the same irreducible representation matrix
evaluated at a, b, and c using matrix multiplication. This results in terms of the form

ρi(a)ρj(b)ρi′(a)ρj′(b)ρk′(c)

in the expectation, where ρi′ and ρj′ correspond to entries of matrices from the same representation
as ρk′ . Thus if either ρi or ρj correspond to vectors from a different representation than ρk, the
expectation of this term will be zero, by orthogonality of the basis vectors.
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Hence we can assume that ρi, ρj , ρk correspond to entries from the same representation (V,R).
Let d = dV . Let us write i = (i1, i2), j = (j1, j2), k = (k1, k2), the matrix indices for this
representation. We can expand the term ρk(a ◦ b ◦ c) as described above.

ρi(a)ρj(b)ρk(a ◦ b ◦ c) = ρi(a)ρj(b)

d∑
m=1

ρ(k1,m)(a ◦ b)ρ(m,k2)(c)

=

d∑
ℓ=1

d∑
m=1

ρ(i1,i2)(a)ρ(k1,ℓ)(a)ρ(j1,j2)(b)ρ(ℓ,m)(b)ρ(m,k2)(c).

From this it is clear that when taking the expectation over choosing a, b uniformly, the only non-zero
terms are when (i1, i2) = (k1, ℓ) and (j1, j2) = (ℓ,m), once again by orthogonality of the basis
vectors. Thus we have

αiβjγkρi(a)ρj(b)ρk(a ◦ b ◦ c) = α(i1,j1)β(j1,j2)γ(i1,k2)ρ
2
(i1,j1)

(a)ρ2(j1,j2)(b)ρ(j2,k2)(c).

Moreover, we know E[ρi(a)2] = 1/d, where d is the dimensionality of the representation. Now, for
a particular c, we will evaluate group all terms containing ρ(j2,k2)(c) and take the expectation over
a, b, which yields

1

d2

d∑
i1=1

d∑
j1=1

α(i1,j1)β(j1,j2)γ(i1,k2)ρ(j2,k2)(c). (11)

From the third property of Lemma 15, for every conjugacy class Cn for n ∈ [K], we have

∑
c∈Cn

1

d2

d∑
i1=1

d∑
j1=1

α(i1,j1)β(j1,j2)γ(i1,k2)ρ(j2,k2)(c) = 0

for j2 ̸= k2. Thus, we can focus on diagonal entries ρ(k,k)(c) (i.e. where j2 = k2 in the expression
11 above). In this case, following directly from 11 grouping all terms containing ρ(k,k)(c) we get

1

d2

d∑
i1=1

d∑
j1=1

α(i1,j1)β(j1,k)γ(i1,k)ρ(k,k)(c). (12)

Note that this coefficient in front of ρ(k,k)(c) is the sum of the entries of the kth column of the matrix
(αRβR)⊙ γR divided by d2 (with αRβR interpreted as matrix product and ⊙ being the Hadamard
product). Recall that i1, j1, and k are indices from the same representation R. By summing over all
diagonal entries (k, k) in R, we evaluate the expression

∑
i1,j1,k∈[d]

α(i1,j1)β(j1,k)γ(i1,k)

d2

ρk,k(e)−∑
c̸=e

τcρ(k,k)(c)


=

tr(αRβRγR
T )

d2

[
1−

K∑
n=2

τCn

∑
c∈Cn

ρ(k,k)(c)

]
where we have replaced τc with the same weight τCn

for each non-trivial conjugacy class
C2, . . . , CK and the term

∑
c∈Cn

ρ(k,k)(c) is independent of the choice of k (by property 4 of
Lemma 15). Thus after summing over all k ∈ [d] the coefficient in equation 12 is the sum of all
entries of the matrix (αRβR)⊙ γR (which equals tr(αRβRγR

T )). Furthermore,

|Cn|χR(Cn) =
∑
c∈Cn

∑
k∈[d]

ρ(k,k)(c) =
∑
k∈[d]

∑
c∈Cn

ρ(k,k)(c) = d
∑
c∈Cn

ρ(k,k)(c)

where the first equality follows from the definition of the character of the representation R which is
constant over elements in the same conjugacy class, and the last equality follows again from property
4 of Lemma 15). Thus

∑
c∈Cn

ρ(k,k)(c) = |Cn|χR(Cn)/d for all k.
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Now we can evaluate our result for the weighted margin. The expression in 13 is the contribu-
tion of one representation R to the total weighted margin. Thus by summing over all non-trivial
representations of G, we get the final result.

h̃u,v,w(e)−
∑
c̸=e

wch̃u,v,w(c) = h̃u,v,w(e)−
K∑

n=2

τCn

∑
c∈Cn

h̃u,v,w(c) (13)

=

K∑
m=2

∑
i1,j1,k∈[dRm ]

α(i1,j1)β(j1,k)γ(i1,k)

d2

ρk,k(e)−∑
c̸=e

τcρ(k,k)(c)

 (14)

=

K∑
m=2

tr(αRmβRmγRm
T )

d2

[
1−

K∑
n=2

τCn

∑
c∈Cn

ρ(k,k)(c)

]
(15)

=

K∑
m=2

[
1−

K∑
n=2

τCn |Cn|χRm(Cn)

dRm

]
tr(αRmβRmγRm

T )

dRm

2 . (16)

We have simplified the weighted margin expression for any set of weights on the conjugacy classes.
Recall that we wish to optimize this weighted margin across individual neurons and then scale them
appropriately to define the network θ∗ satisfying C.1 and Equation 1 to find the max margin solution.

The next lemma establishes the original L2 norm restraint over neurons on the weighted margin
problem in terms of the coefficients with respect to each representation.
Lemma 17. The L2 norm of u, v and w are related to the Frobenius norm of α, β and γ as follows:

∥u∥2 + ∥v∥2 + ∥w∥2 =

K∑
m=1

|G|
dRm

(
∥αRm

∥2F + ∥βRm
∥2F + ∥γRm

∥2F
)

Proof. The proof follows from 1st and 2nd point of Lemma 15.

By the above two lemmas, we want to maximize the weighted margin with respect to the norm
constraint

K∑
m=1

|G|
dRm

(
∥αRm∥2F + ∥βRm∥2F + ∥γRm∥2F

)
≤ 1. (17)

Under this constraint, the following lemma provides the maximum value for the weighted margin,
which occurs only when the weights u, v, w are spanned by a single representation R.
Lemma 18. Consider the set of representations R given by

R := argmax
m=2,..,K

1√
dRm

[
1−

K∑
n=2

τCn |Cn|χRm(Cn)

dRm

]
The weighted margin in Lemma 16 is maximized under the norm constraint in (17) only when the
weights u, v, w are spanned by a single representation belonging to the set R; that is, αR,βR,γR ̸≡
0 for only one non-trivial representation R ∈ R, and are 0 otherwise. In this case, the maximum
value attained is

1

3
√
3|G|3/2

max
m=2,..,K

1√
dRm

[
1−

K∑
n=2

τCn
|Cn|χRm

(Cn)

dRm

]
.

Proof. First we consider the case where u, v, w are spanned by only one representation. Then it
suffices to evaluate

max
αR,βR,γR

tr(αRβRγR
T )

d2
s.t.

(
∥αR∥2F + ∥βR∥2F + ∥γR∥2F

)
≤ d

|G|
.
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Here let’s denote the columns of αR (resp. βR) as α⃗j = (αj,1, . . . , αj,d) for 1 ≤ j ≤ d (resp.
β⃗j). Thus tr(αRβRγR

T ) =
∑

j,k(α⃗j · β⃗k)γ(j,k). This can be viewed as the dot product of the
linearizations of αRβR and γR, and thus by Cauchy-Schwarz it follows that

∑
j,k

(α⃗j · β⃗k)γ(j,k) ≤
√∑

j,k

(α⃗j · β⃗k)2
√

∥γR∥2F

with equality when γ(j,k) is proportional to α⃗j · β⃗k. We can apply Cauchy-Schwarz once again to
the first term on the right hand side above and obtain√∑

j,k

(α⃗j · β⃗k)2 ≤
√∑

j,k

∥α⃗j∥22∥β⃗k∥22 =
√
∥αR∥2F ∥βR∥2F

once again with equality when all α⃗j , β⃗k are proportional to each other. Combining these together,
we want to maximize

√
∥αR∥2F ∥βR∥2F ∥γR∥2F subject to

(
∥αR∥2F + ∥βR∥2F + ∥γR∥2F

)
≤ d

|G| . By
the AM-GM inequality, we have√

∥αR∥2F ∥βR∥2F ∥γR∥2F ≤
(
∥αR∥2F + ∥βR∥2F + ∥γR∥2F

3

)3/2

with equality when ∥αR∥2F = ∥βR∥2F = ∥γR∥2F = d
3|G| . Thus the maximum value attained is

1
(|G|3/23

√
3d)

[
1−

∑K
n=2

τCn |Cn|χR(Cn)
dR

]
.

Now consider the general case when u, v, w were spanned by the representations R2, ..., RK (as R1

does not appear in Equation 16). The norm constraint now becomes

K∑
m=2

|G|
dRm

(
∥αRm

∥2F + ∥βRm
∥2F + ∥γRm

∥2F
)
≤ 1.

This can be equivalently written as

∥αRm
∥2F + ∥βRm

∥2F + ∥γRm
∥2F ≤ dRmεm

|G|
∀m ∈ {2, ...,K}

ϵm ≥ 0 ∀m ∈ {2, ...,K}
K∑

m=2

ϵm ≤ 1

Repeating the calculation above, we get that for a given ϵ2, ..., ϵK , the maximum margin is given by

K∑
m=2

ϵ
3/2
m

3
√
3|G|3/2

1√
dRm

[
1−

K∑
n=2

τCn
|Cn|χRm

(Cn)

dRm

]

We want to maximize the expression above under the constraint that ϵm ≥ 0 ∀m ∈ {2, ...,K} and∑
ϵm ≤ 1.

Clearly, this is maximized only when one of the ϵi = 1 and everything else is 0, with i ∈
argmaxm=2,..,K

1√
dRm

[
1−

∑K
n=2

τCn |Cn|χRm (Cn)
dRm

]
.

Up until this point, we have kept our weighted margin problem generic without setting the τCn
. If

we naively chose τCn
to weigh the conjugacy classes uniformly, then the maximizers for this specific

weighted margin would be only neuron weights spanned by the sign representation (of dimension 1).
However, we cannot hope to correctly classify all pairs a, b ∈ G using only the sign representation
for our network θ∗ and thus the maximizers for this weighted margin cannot be the maximizers for
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the original max margin problem. The next lemma establishes an appropriate assignment for each
τCn

such that the expression in Lemma 18 is equal for all non-trivial representations R, provided
some conditions pertaining to the group are satisfied. Since the function g 7→ τC (where C is the
conjugacy class containing g) is a class function, each τCn

can be expressed as a linear combination
of characters χR(Cn).

Lemma 19. For the group G if we have
∑

R d
1.5
R χR(C) < 0 for every non-trivial conjugacy class

C, then the weights τCn can be set as

τCn =
∑
R

zRχR(Cn)

where zRtriv = 0 and zR =
d1.5
R∑K

m=2 d2.5
Rm

otherwise, such that the maximum value from Lemma 18 is

equal for all non-trivial representations R.

Proof. Define the vectors τ and char(R) as

char(R) = [χR(C1), χR(C2), . . . , χR(C2)︸ ︷︷ ︸
|C2| times

, ... χR(CK), . . . , χR(CK)︸ ︷︷ ︸
|CK | times

],

τ = [1,−τC2
, . . . ,−τC2︸ ︷︷ ︸

|C2| times

, ...−τCK
, . . . ,−τCK︸ ︷︷ ︸

|CK | times

].

Then we can rewrite the max value of the weighted margin in Lemma 18 as

1

|G|3/23
√
3dR

[
1

dR
char(R)T τ

]
(18)

for each non-trivial representation R. Since τ is a class function (viewed as a function on G),
we can express τ as a linear combination τ =

∑K
n=1 zRn

char(Rn) of character vectors for each
representation. By orthogonality, the inner product char(R)T τ = zR. Thus for the expression (18)
to be equal for every non-trivial representation R, we require

zR = d
3/2
R zRsign .

Furthermore, since 1−
∑K

n=2 τCn
= 0 and char(Rtriv) is a vector with strictly positive values that

is orthogonal to all other character vectors, we must have zRtriv
= 0. To solve for zRsign

, since the
first component of τ equals 1 and χR(C1) = dR for all R, we have

K∑
m=2

zRm
dRm

=

K∑
m=2

d2.5Rm
zRsign

= 1 =⇒ zRsign
=

K∑
m=2

d2.5Rm
.

To conclude the proof, note that we need the weights τCn
to be positive; this is guaranteed as long

as for each conjugacy class C, we have
∑K

n=2 χRn
(C)dRn

3/2 < 0 (recall the entries of τ being
−τCn ).

Up until now, we have established a weighted margin problem and proven that the neurons which
maximize this are spanned by only one representation out of any of the non-trivial representa-
tions. Now we give a precise construction of the neuron weights u, v, w such that they implement
tr(R(a)R(b)R(c)−1) for all inputs a, b ∈ G and outputs c ∈ G for a given representation R. These
neuron weights expressed in terms of the basis vectors will have coefficients that also maximize
tr(αRβRγR

T ).

Lemma 20. For every non-trivial representation R, there exists a construction of the network
weights such that given inputs a, b ∈ G, the output at c is tr(R(a)R(b)R(c)−1) using 2dR

3 neu-
rons and the corresponding coefficients αR,βR,γR for each neuron achieve the maximum value
tr(αRβRγR

T ) = (dR/3|G|)3/2.
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Proof. Since the representations are unitary, we have

tr(R(a)R(b)R(c)−1) = tr(R(a)R(b)R(c)T ) =
∑
i,j,k

R(a)(i,j)R(b)(j,k)R(c)(i,k)

and thus it suffices to show how to obtainR(a)(i,j)R(b)(j,k)R(c)(i,k) with a combination of neurons.
For this, set one neuron’s coefficients to equal α(i,j) = β(j,k) = γ(i,j) = 1/

√
3|G| and 0 otherwise.

Then the output given (a, b) at c is

(R(a)(i,j) +R(b)(j,k)
2R(c)(i,k)

(3|G|)3/2
.

Set another neuron’s coefficients to equal α(i,j) = 1/
√

3|G|, β(j,k) = γ(i,k) = −1/
√

3|G|. Then
the sum of the outputs of these two neurons at c is precisely

R(a)(i,j)R(b)(j,k)R(c)(i,k)

(3|G|)3/2
.

Thus we need 2d3R neurons to create the summand for each i, j, k to implement
tr(R(a)R(b)R(c)−1). This construction also satisfies tr(αRβRγR

T ) = (dR/3|G|)3/2 for every
neuron.

Once we have defined these neuron constructions, it only remains to scale these optimal neurons ap-
propriately as given in Lemma 8 such that we can construct our final network θ∗ satisfying condition
C.1 and Equation 1.

Lemma 21. Given the network given in Lemma 20, for every neuron spanned by non-trivial rep-
resentation R we scale the weights u, v, w by d1/3R /∆, where ∆ is a constant normalization term
such that the norm constraints of the max margin problem still hold. Then the expected output of
any element contained in any non-trivial conjugacy class C for inputs a, b is −1/∆3, i.e. the output
is equal for all conjugacy classes.

Proof. For a given neuron spanned by a non-trivial representationR, we know that its output for at c
for each input pair (a, b) is χR(abc

−1) = χR(C) where C is the conjugacy class containing abc−1.
After scaling each weight by d1/3R /∆, the corresponding output is scaled by dR/∆3. Due to column
orthogonality of the characters with the trivial conjugacy class (i.e.

∑K
n=1 χRn

(e)χRn
(C) = 0 for

for all non-trivial conjugacy classes C), this output simplifies to

K∑
n=2

dRn
χR(C)

∆3
= − 1

∆3

K∑
n=2

dRn
χR(C)

∆3
= − 1

∆3
, (19)

which is constant for all non-trivial conjugacy classes C.

With this lemma, we define the network θ∗ according to this scaling and guarantee that it satisfies
C.1 and Equation 1. Applying Lemma 8 gives us our final result that the solutions for the max
margin problem have the desired properties in Theorem 7.

J.1 PROOF THAT ALL REPRESENTATIONS ARE USED

This proof follows exactly the same argument as for the modular addition case (Section G.3).

For this proof, we will introduce the multidimensional Fourier transform for groups. For a function
f : G3 → R, this is defined as

f̂(j, k, l) =
∑
a∈|G|

ρj(a)
∑
b∈|G|

ρk(b)
∑
c∈|G|

ρl(c)f(a, b, c)
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Similar to the modular addition case, for a single margin maximizing neuron, we know it uses only
one of the representations for input and output neurons, let’s say Rm. Then, considering just the
basis vectors with respect to Rm, we can say, that the output of this neuron is given by

f(a, b, c) =

 ∑
i∈dRm

∑
j∈dRm

α(i,j)ρ(i,j)[a] + β(i,j)ρ(i,j)[b]

2 ∑
k∈dRm

∑
l∈dRm

γ(k,l)ρ(k,l)[c]


Now, for the squared terms, these are either dependent on a, c or b, c. These have non-zero fourier
coefficients only if j = 0 or k = 0.

For the cross terms, by orthogonality of the representatons, we can say, if either j, k or l does not
belong to Rm, then f̂(j, k, l) = 0.

Thus, for a single neuron, f̂(j, k, l) is only non-zero if j = 0, k = 0 or if j, k and l belong to the
same representation.

Independent of the above considerations, we know by Lemma 9 that the function f implemented by
the network has equal margin across different inputs and across different classes for the same input.
In other words, f can be decomposed as

f(a, b, c) = f1(a, b, c) + f2(a, b, c)

where
f1(a, b, c) = F (a, b)

for some F : G×G→ R, and
f2(a, b, c) = λ · 1a◦b=c

where λ > 0 is the margin of f .

The Fourier transform of f1 is

f̂1(j, k, l) =

{
F̂ (j, k) if ℓ = 0

0 otherwise

For f2, consider the expression of the fourier transform:

f̂2(j, k, l) = λ
∑
a∈|G|

ρj(a)
∑
b∈|G|

ρk(b)ρl(a ◦ b)

Now, ρl(a ◦ b) =
∑
ρl′(a)ρk′(b) for some j′, k′ given by the relation that R(a ◦ b) = R(a)R(b),

where R(a)R(b) denoted the matrix product of R(a) and R(b). Now, clearly if j, k and l belong
to different representations, then f̂2(j, k, l) is 0. For j, k, l belonging to the same representation,
f̂2(j, k, l) will be non-zero whenever j = j′ and k = k′ (or j = k′ and k = j′), and the value will
be given by λ|G|2/d2Rm

. Thus, f = f1 + f2 has support on all the representations.

But, this is only possible if there is atleast one neuron for each representation, as a single neuron
places non-zero fourier mass only on one of the representation.

J.2 A GENERAL THEOREM FOR FINITE GROUPS

As mentioned in section 6, Theorem 7 does not hold for all groups because of the required condi-
tion that

∑K
n=2 d

1.5
Rn
χRn

(C) < 0 for every non-trivial conjugacy class. Recall that in the previous
section, we had to define an appropriate weighting over all conjugacy classes such that the margin
of a neuron did not scale down with the dimension of the neuron’s spanning representation. We also
had to define an appropriate scaling over all representations so we could use the neuron maximizers
of the weighted margin to construct a network θ∗ to invoke Lemma 8. This is akin to selecting the
entire character table for our margin analysis; in this section, we show how our analysis is amenable
to selecting a subset of the character table for the margin analysis of a general finite group G, which
can lead to a max margin solution in the same way as above. This will occur upon solving a system
of two linear equations, as long as these solutions satisfy some conditions.
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Namely, let κR, κC ⊂ [K] \ {1} be subsets indicating which representations and which conjugacy
classes will be considered in the scaling and weighting respectively, with |κR| = |κC |. If we view
the character table as a matrix and consider the square submatrix pertaining to only the representa-
tions indexed by elements in κR and the conjugacy classes indexed by elements in κC , the rows are
χRm

for fixed m ∈ κR and the columns are [χRm
(Cn)]m∈κR

for fixed n ∈ κC .

Instead of requiring expression (18) to be equal for all representations in the proof of Lemma 19,
we can instead require that they are equal across representations in κR. To be precise, consider the
following set of equations over variables τCn

, n ∈ κC :(
1−

∑
n∈κC

τCn
|Cn|χRm

dRm

)
=

√
dRm

dRm′

(
1−

∑
n∈κC

τCn |Cn|χRm′

dRm′

)
∀ m,m′ ∈ κR,∑

n∈κC

τCn
= 1.

This gives a system of |κC | linear equations in |κC | variables. Let the solution be denoted as τ∗Cn

for each n ∈ κC .

Furthermore, just as we established in equation 19, we can identify a scaling dependent on each
representation such that the output remains constant for all conjugacy classes in κC and such that if
we had used this scaling for neurons maximizing the weighted margin, the L2,3 norm constraint is
maintained. This can be represented using the following set of equations with variables λRm :∑

m∈κR

λRm
χRm

(Cn) =
∑

m∈κR

λRm
χRm

(Cn′) ∀ n, n′ ∈ κC∑
m∈κR

λRm
= 1.

This again forms a system of |κR| linear equations in |κR| variables. Let the solution be denoted as
λ∗Rm

. Suppose the following conditions are satisfied:

1. The weighting and scaling are positive: λ∗Rm
, τ∗Cn

≥ 0 for all m ∈ κR, n ∈ κC .

2. For any m ∈ κR and m′ /∈ κR, we have(
1−

∑
n∈κC

τCn
|Cn|χRm

dRm

)
≥

√
dRm

dRm′

(
1−

∑
n∈κC

τCn
|Cn|χRm′

dRm′

)
.

3. For any n ∈ κC and n′ /∈ κC , we have∑
m∈κR

λRmχRm(Cn) ≥
∑

m∈κR

λRmχRm(Cn′).

The second condition ensures that the representations in κR indeed maximize the weighted margin,
and no other representations maximize it. The third condition above ensures that the conjugacy
classes in κC are on the margin, and no other conjugacy class can be on the margin. Then it follows
that neurons spanned by the representations in κR will maximize the weighted margin defined using
τ∗ with all conjugacy classes in κC on the margin, and thus scaling these neurons by λ∗, we have a
network θ∗ that is a max margin solution for the group G.
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