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Abstract

Algorithmic fairness has emerged as a central issue in ML, and it has become stan-
dard practice to adjust ML algorithms so that they will satisfy fairness requirements
such as Equal Opportunity. In this paper we consider the effects of adopting such
fair classifiers on the overall level of ecosystem fairness. Specifically, we introduce
the study of fairness with competing firms, and demonstrate the failure of fair
classifiers in yielding fair ecosystems. Our results quantify the loss of fairness in
systems, under a variety of conditions, based on classifiers’ correlation and the level
of their data overlap. We show that even if competing classifiers are individually
fair, the ecosystem’s outcome may be unfair; and that adjusting biased algorithms
to improve their individual fairness may lead to an overall decline in ecosystem
fairness. In addition to these theoretical results, we also provide supporting experi-
mental evidence. Together, our model and results provide a novel and essential call
for action.

1 Introduction

Algorithmic decision-making systems are not immune to human prejudices. This has been demon-
strated by ample empirical evidence: For example, the use of algorithmic decision-making in
determining loan approval and interest rates has led to minority applicants facing higher loan rejection
rates and higher interest rates than non-minority applicants (Bartlett et al., 2022; Fuster et al., 2022),
and credit card issuers offering lower credit limits for women than men (Gupta, 2019; Telford,
2019). Additional contexts in which such algorithmic bias has been documented are as diverse as
job recruitment (Doleac and Hansen, 2016), insurance premiums and payouts (Angwin et al., 2017),
college admissions (Baker and Hawn, 2022; Gandara et al., 2024), and more (O’Neil, 2016).

To contextualize, consider a bank or other financial institution that issues loans and is subject to
regulatory oversight. The bank employs historical data to train a classifier—a decision rule—to
determine loan eligibility, with the aim of maximizing profit through successful loan repayments.
However, such classifiers frequently exhibit biases against protected groups, such as ethnic minorities.
In response, regulators can mandate fairness restrictions to mitigate these disparities. Bias is not only
normatively problematic, but also has tangible adverse effects on the utility of affected individuals
and, more broadly, on the welfare of the disadvantaged group.

The regulator’s goal in imposing fairness adjustments to classifiers is thus to enhance the welfare
of historically disadvantaged populations. One principled approach to fairness adjustment involves
specifying a utility function, and requiring the classifier to ensure equal welfare across groups.
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Prominent fairness criteria such as Demographic Parity (DP) (Agarwal et al., 2018; Dwork et al.,
2012), as well as Equal Opportunity (EO) and Equalized Odds (ED) (Hardt et al., 2016) can be
interpreted as special cases within this welfare-based framework. For instance, DP corresponds to
a utility specification where each approved applicant gains a utility of one and zero otherwise. EO
and ED, correcting for some criticisms about DP, does the same but only for the restricted set of
deserving applicants.

Fairness interventions are intended to promote equity. While even widely adopted constraints like DP
and EO may lead to suboptimal long-term outcomes (Liu et al., 2018), common wisdom holds that
proper fairness adjustments of ML algorithms is an essential requirement.

But is the adoption of fair algorithms by firms sufficient to guarantee a fair Al ecosystem, in which
multiple firms interact? Recent work in Al has recognized that Al systems should be evaluated in the
context of multi-agent system, in which several stakeholders are active (Kurland and Tennenholtz,
2022; Boutilier et al., 2024). In lending, multiple financial institutions underwrite loans and issue
credit cards; in employment, many firms vie for the same pool of job applicants; in insurance,
numerous insurance companies offer policies; and in education, a large number of colleges compete
over the same cohorts of students. In such multi-firm environments, equity is not about whether a
single firm’s decisions are fair, but whether there is overall discrimination in the number and quality
of offers issued and opportunities afforded to loan, job, insurance, and college applicants.

In the world of algorithmic fairness, this translates into a novel question. Suppose there are several
competing firms, each of which adopts a fair classifier. Does the adoption of fair classifiers induce a
fair ecosystem, in which there is no overall discrimination?

In this paper, we introduce the study of fairness with competing firms. We provide fundamental
definitions, and demonstrate the failure of fair classifiers in obtaining fair ecosystems. In particular,
we show that even if competing classifiers are individually fair, the ecosystem’s outcome may be
unfair; and that adjusting biased algorithms to improve their individual fairness may lead to an overall
decline in ecosystem fairness.

Contributions We begin in Section 2 by developing a model of ecosystem fairness. We suppose
there are multiple lenders who make loan offers to borrowers; however, the model applies analogously
to job candidates and employers, insurance buyers and insurers, or student applicants and colleges.
For this model we define our main notion of fairness under competition, a competition analogue of
EO that we call Equal Opportunity under Competition (EOC). The level of EOC here is a measure of
how far the ecosystem is from satisfying EOC, where a lower level implies higher ecosystem fairness.
We also define a second, welfare-based version of EOC. An ecosystem satisfies this second notion
if the welfare of different groups of borrowers is equalized when the lenders use their classifiers to
make loan offers.

In Section 3 we turn to study EOC. Our main results are that, even when the individual classifiers
satisfy EQ, the ecosystem may be far from EOC. We quantify how far, based on model primitives, and
provide worst-case bounds. In particular, we identify two distinct forces under which EO classifiers
do not satisfy EOC. The first force, analyzed in Section 3.1, arises from differences in the correlations
between the classifiers on the protected groups. The second force, analyzed in Section 3.2, arises
when the lenders’ pools of potential borrowers are overlapping but not identical. We quantify the
extent to which each force decreases ecosystem fairness.

To illustrate the first force, consider the following example:

Example 1 There are two lenders and two groups of borrowers. Each lender has vast, distinct data
on group 1, and trains a classifier to predict loan repayment. Neither lender has sufficient data on
group 2, so both outsource to a third-party, who provides each lender with an (identical) classifier.
Each lender uses her own and the third-party classifiers to offer loans to individuals predicted to repay
the loan.

In this example, if the lenders’ and third-party’s classifiers have the same accuracies, then each
lender’s decisions satisfy EO. Note, however, that the lenders’ predictions on group 2 are identical,
as they are using the same classifier, and so the Pearson correlation between them is high. On the
other hand, since the lenders use different classifiers with different training data on group 1, their
respective predictions on this group have lower correlation. In Proposition 1 and Corollary 1 we show
that this difference in correlations leads to a positive level of EOC, of the same order-of-magnitude as



the classifiers’ false-negative rates. Hence, competition between EO classifiers leads to a non-EOC
outcome.

To illustrate the second force, consider the following example:

Example 2 There are two lenders and two groups of borrowers. Each lender serves all applicants of
group 1 but only a subset of applicants of group 2, perhaps because the lenders have lower market
penetration in the latter population. For served applicants, lenders use an EO classifier to predict loan
repayment and offer loans to individuals predicted to repay.

In this example, the overlap between applicants served by the two classifiers in group 1 is higher than
in group 2. In Proposition 4 and Corollary 3 we show that such a difference in overlaps leads to a
positive level of EOC, again of the same order-of-magnitude as the classifiers’ false-negative rates,
and again despite the fact that individual classifiers do satisfy EO.

Section 3 focuses on EOC when there are two lenders. However, in Sections 3.1.1 and 3.1.2 we
extend some results to the welfare-based notion of fairness and to an arbitrary number of lenders.

In Section 4 we compare competition between classifiers that are not EO with competition between
the same classifiers after undergoing a fairness adjustment (making them EO). We describe two
examples in which the ecosystem is EOC before the fairness adjustment, but not EOC afterwards.
These examples show that imposing fairness adjustment on individual classifiers can lead to a decline
in ecosystem fairness.

Next, in order to explore the empirical prevalence of our theoretical results, in Section 5 we describe
several experiments we ran on Lending Club loan data. In these experiments we compared the
level of EOC before and after fairness adjustments under several variations. Our results indicate
that, surprisingly, imposing fairness adjustments often leads to a higher level of EOC, and so lower
ecosystem fairness.

Finally, in Appendix B we extend our results to other notions of fairness, namely, ED and DP.

Related literature Our paper is part of a large and growing literature on fairness in machine
learning (see, e.g., Chouldechova and Roth, 2018; Mehrabi et al., 2021; Pessach and Shmueli, 2022;
Barocas et al., 2023, among others). The literature includes a plethora of demonstrations of bias in
machine learning, a large number of fairness metrics, and many algorithms for bias mitigation (the
last of which is surveyed extensively by Hort et al., 2024).

Within this large literature, our paper fits within a subset of papers that question whether fair machine
learning algorithms actually achieve fairness (see Ruggieri et al., 2023, for a survey). One paper
related to ours in this vein is that of Liu et al. (2018), who show that imposing fairness criteria may
have adverse long-term effects. This can be seen as illustrating the failure of imposed fairness criteria
due to temporal or sequential effects. Our paper, in contrast, can be seen as illustrating the failure due
to competition or parallel effects.

Our research is more closely related to papers that examine fairness in settings with multiple classifiers.
Two such papers, Bower et al. (2017) and Dwork and Ilvento (2019), also discuss the insight that
fairness of individual classifiers does not imply fairness of a system composed of multiple classifiers.
Our paper differs along multiple dimensions. First, in terms of motivation, these papers ask when
a central platform (e.g., an ad platform) will be fair when handling a task that consists of several
subtasks (advertisers on the platform), where each subtask is required to be fair. Our motivation
is more about competing firms in a decentralized market, where the joint activity determines the
user’s utility. More specifically, Dwork and Ilvento (2019) largely focus on individual fairness. They
do have some extensions to group fairness, and their main results here are to show that there exist
distributions for which individual fairness does not imply joint fairness. However, in their model the
classifiers are assumed to always be independent, and they cannot capture the correlations between
classifiers that lead to ecosystem unfairness. In addition, their notion of group fairness does not
include EO. Bower et al. (2017) do focus on EO, but here the main difference is that classifiers are
composed sequentially: one classifier makes a prediction or decision, the outcome is then passed
on to the next classifier, and so on. In our setting, in contrast, the classifiers run in parallel. Finally,
although both papers contain the insight that individual fairness does not suffice for joint fairness, in
our paper we also identify the forces that lead to the joint unfairness, and quantify the extent of this
unfairness as a function of correlations and overlaps.



Another somewhat related paper is that of Ustun et al. (2019), who compare the benefits to protected
groups when there is one classifier with imposed fairness criteria, as opposed to many group-tailored
individual classifiers. Although the latter case involves multiple classifiers, individuals are not
classified by more than one, and so there is no competition between the classifiers.

Our paper is also part of a smaller literature on competition between machine learning algorithms
(see,e.g., Ben-Porat and Tennenholtz, 2017; Feng et al., 2022; Jagadeesan et al., 2023). While that
literature demonstrates that competition has some counter-intuitive effects, it has not examined issues
surrounding fairness.

Finally, Example 1 above is related to the insight of Kleinberg and Raghavan (2021), who show that
algorithmic monoculture—the use of the same algorithms by different firms—can lead to a decrease
in utilities. In Example 1 the use of the third-party classifier by the two firms leads to a difference in
correlations, which can then lead to ecosystem bias.

2 Model

There are two types of players, borrowers and lenders. Each borrower is characterized by a triplet
(z,a,y) € X x A x Y, where z is a vector of observable features, a is an observable protected
attribute (group membership), and y is an unobservable outcome variable. For simplicity, assume
A=Y = {0, 1}. There is an underlying distribution D over X x A x Y. We slightly abuse notation
by using X, A, and Y as the sets of features, protected attributes, and outcome variables, and also as
random variables with joint distribution D over the respective sets. Throughout, we think of each
(z,a,y) € X x A xY as an individual borrower.

There is a set L of lenders. Each lender ¢ € L decides whether or not to offer a loan to each
borrower based on observables (x, a). To do so the lender uses a potentially randomized classifier
ce : X x A {0,1}, where ¢¢(z, a) = 1 if the lender offers borrower (z, a) aloan, and ¢y(z,a) =0
otherwise. The unobservable outcome variable Y signifies whether or not the borrower repays the
loan, and we call borrowers with y = 1 deserving borrowers. Naturally, lenders prefer to offer
loans only to deserving borrowers. Hence, perfect classifiers are ones where ¢y (z, a) = y for each
borrower (z,a,y). In general, however, firms’ classifiers are not perfect. For a given classifier
¢¢, denote its false-negative rate by 8; = Pr[c,(X, A) = 0]Y = 1] and its false-positive rate by
ay = Prlcy(X, A) = 1Y = 0]. Conversely, 1 — 3¢ and 1 — oy are the classifier’s true-negative and
true-positive rates, respectively.

Borrowers’ utilities are described by a function v : X x A x Y x N — R, where N is the set of
non-negative integers. v(x, a,y, r) is the utility of a borrower (z, a, ) when she receives r offers.!

Fairness with a single lender We begin by stating two notions of fairness for the setting of a single
classifier.2 The first is the popular notion of EO (Hardt et al., 2016), which requires the classifier’s
false-negative rates to be equal across groups. The second is based on the welfare-equalizing notion
of Ben-Porat et al. (2021) that we call v-EO, and which requires the expected utilities of deserving
borrowers to be equal across groups.

EO: The EO level of ¢; is |E[ce(X, A)|Y =1,A=0] — E[ce(X, A)|Y =1, A = 1]|, the dif-
ference in the fraction of offers made to each of the groups’ deserving borrowers. A classifier
is EO if its EO level is 0.

v-EO: For a given utility function v of the borrowers and classifier ¢, of a lender, denote by
Wye,(a) = E[u(X,A,Y,ce(X,A))|Y =1, A = a] the welfare of deserving borrowers
from group a. The v-EO level of a classifier ¢ is |W,, ., (0) — W, ¢, (1)|, the difference in
welfare between the deserving borrowers of the two groups under classifier ¢;.

Fairness with multiple lenders We now generalize the definitions of fairness to a setting with mul-
tiple competing lenders, EO under competition (EOC) and v-EO under competition (v-EOC) . Fix a
utility function v and classifiers ¢ = (c1, ..., ¢|z|), and denote by R(x,a) =, c/(z, a) the num-

"More generally, borrowers’ utilities could also depend on which lenders extended offers. Our definitions
and results apply to this more general setting as well.
These notions are the foci of the paper, but in Appendix B we extend our results to other notions.



ber offers made to a borrower with observables (x, a). Also, denote by d(z,a) = Pr[R(z,a) > 1],
the probability that at least one lender offers a borrower with observables (z, a) a loan.

EOC: The EOC level of classifiers cis |[E [d(X,A)]Y =1,A=0-E[d(X,A)|Y =1, A =1]|,
the difference between the two groups in the fraction of deserving borrowers who obtained
at least one offer. Classifiers are EOC if their EOC level is 0.

v-EOC: For a given utility function v of the borrowers and classifiers c of the lenders, denote by
Wyela) = Ew(X,AY,R(X,A))|Y =1,A = a]. The v-EOC level of classifiers c is
then |W,, (0) — W, .(1)|.

In some of our analyses we will impose several assumptions. First, we sometimes focus on the
case of two lenders. Second, we sometimes focus on the case in which borrowers do not care how
many offers they obtain, as long as they obtain at least one. In this case, their preferences satisfy the
following:

Assumption 1 (0-1 preferences) v(z,a,y,7) =1ifr > 1 and v(z,a,y,0) =0, Vz,a,y.

Observe that under Assumption 1, EO is equivalent to v-EO and EOC is equivalent to v-EOC. For
more general utility functions EO and EOC may differ from v-EO and v-EOC.

3 Equal Opportunity under Competition

In this section we ask the following question: Given two EO classifiers, are they guaranteed to be
EOC? We show that the answer is negative, and identify two distinct forces that drive this result. We
also quantify the level of EOC, and bound the worst case. The first force, analyzed in Section 3.1,
arises from differences in the correlation between the classifiers on the two protected groups. The
second force, analyzed in Section 3.2, arises when each classifier serves only a subset of the borrowers.

3.1 Correlations between classifiers

Fix two EO classifiers ¢ and ¢, with false-negative rates 37 and 32. We define two Bernoulli random
variables that capture the true positives of the classifiers on the two groups @ € A: Foreacha € A
and each £ € {1, 2}, let the Bernoulli random variable

Bg = (X7 A) |(Y:1,A:a)-

Each Bj is the output of classifier ¢, on random instances with A = a and ¥ = 1, and so

E [Bf] = 1 — B¢ is the true-positive rate of classifier ¢,. Denote by oy = 1/5¢(1 — ;) the standard
deviation of B?, and note that, because ¢, is EO, oy is also the standard deviation of B}. Finally, for
each a let p* denote the Pearson correlation coefficient between B{ and B5. The Pearson correlation
captures the extent to which the true positives of the classifiers correlate with one another.

We now quantify the EOC level of two classifiers using these correlation coefficients, and determine
the worst case.

Proposition 1 For two EO classifiers c1 and co with false-negative rates 31 and 3, the level of EOC
isoy - 09 - ’po — p1|. In the worst case, the level of EOC is min{f1, 82} — max{0, 81 + B2 — 1}.

The intuition is the following. Under high (resp., low) correlation, if a borrower is misclassified by
one classifier, she is likely also (resp., not) misclassified by the other. In the low correlation case,
each deserving borrower intuitively has “two chances” to get an offer, whereas in the high correlation
case she only has “one chance”. If in one group deserving borrowers get two chances and in the other
they only get one, then in the former there is a lower chance of being misclassified.

The proofs of this and all other propositions are deferred to Appendix A due to space constraints.
Proposition 1 yields the following simple corollary.

Corollary 1 If 8 = 51 = (2 and < 1/2, then the worst-case level of EOC is (5.

An implication of Proposition 1 and Corollary 1 is that the more accurate the classifiers get, the lower
the worst-case level of EOC. Thus, one way to minimize the EOC is to train more accurate classifiers,
and so this desideratum is aligned with the general goal of machine learning.



We can also use Proposition 1 to analyze Example 1.

Example 1 continued Suppose all classifiers in the example—the third-party classifier, as well as
the two firms’ individual classifiers—have the same false-negative rate 5. Thus, a firm that uses its
own classifier on A = 1 and the third-party classifier on A = 0 is in practice using an EO classifier.
Suppose also that the firms’ individual classifiers ¢; and ¢y are uncorrelated on A = 1, namely, that
p1 = 0. Finally, note that, since both firms use the same classifier on A = 0 we also have pO =1.
Thus, even though each firm uses an EO classifier, the level of EOC is 0102 |0 — 1| = 5(1 — ).

3.1.1 Generalization: v-EOC

Recall that, under Assumption 1, EOC is equivalent to v-EOC, in which case all our results apply
to the latter notion as well. In this section we study v-EOC when utility functions do not satisfy
Assumption 1. In particular, we drop the assumption that v(z,a,y,1) = v(z,a,y,2) = 1, and
instead assume the following:

Assumption 2 (0-1-k preferences) v(z,a,y,7) = k > 1 forr > 1, v(x,a,y,1) = 1, and
v(z,a,y,0) =0, Va,a,y.

Assumption 1 imposes £ = 1, but now we consider all values of & > 1. Observe that under
Assumption 2, a classifier is still EO if and only if it is v-EO. However, for a pair of classifiers ¢; and
c2, the definitions of EOC and v-EOC are no longer equivalent.

We first generalize Proposition 1 to this setting, and then apply it to Example 1.

Proposition 2 Under Assumption 2, for two EO classifiers ¢1 and co with false-negative rates [3
and (3>, the level of v-EOC is o109 ‘(k —2)(p° — pl)’. In the worst case, the level of v-EOC is

|]C - 2| : (min{ﬁlaﬂ2} - maX{O7BI + 62 - 1})

There are a few interesting observations to note. First, in all cases except k = 2, the level of v-EOC
is positive, even though both classifiers are EO (and so, under Assumption 2, also v-EO). Hence, our
insight is, in a sense, robust. Interestingly, however, there is a qualitative difference between the case
k € [1,2) and k > 2, in that the group with lower utility under competition is different in the two
parameter intervals. This last point is further explained at the end of this sub-section, in the context
of the example.

Proposition 2 yields the following simple corollary.
Corollary 2 If 8 = 5, = B2 and B < 1/2, then the worst-case level of v-EOC is 3 - |k — 2|.

We can also use Proposition 2 to further analyze Example 1.

Example 1 continued Suppose again that all classifiers in the example—the third-party classifier,
as well as the two firms’ individual classifiers—have the same false-negative rate 5. Thus, a firm
that uses its own classifier on A = 1 and the third-party classifier on A = 0 is in practice using an
EO classifier. Suppose also that the firms’ individual classifiers ¢; and co are uncorrelated on A = 1,
namely, that p1 = (. Finally, note that, since both firms use the same classifier on A = 0 we also have
pY = 1. Thus, even though each firm uses an EO classifier, the level of v-EOC is 3(1 — 3) - k — 2.
Furthermore, the utility of borrowers in group A = 0 is k(1 — [3), since all borrowers who receive an
offer actually receive two offers. In group A = 1, on the other hand, the expected utility of borrowers
is k(1 — B)* +28(1 - B).
Now,

k(1= B)? +2B(1 - B) — k(1= B) = B(1 = B)(2 — k).
This implies that the level of v-EOC is 5(1 — ) |2 — k|. However, note that, if k € [1,2) then the
difference is positive, whereas if k& > 2 then the difference is negative. This implies that, in the
former case, the expected utility is higher in group A = 1, whereas in the latter case, the expected
utility is higher in group A = 0.

The main insights from this section are, first, that two v-EO classifiers can lead to a positive v-EOC
even for more general utility functions, and second, that whether or not the “disadvantaged” group is
the one that suffers under a positive v-EOC depends on the utility function (i.e., whether k € [1,2) or
k> 2).



3.1.2 Generalization: more than two classifiers

Suppose that instead of two classifiers, the set L contains n classifiers. We provide two results.
First, we characterize the worst-case EOC with n classifiers. Second, we generalize the analysis of
Example 1 and show that, when classifiers are uncorrelated on one group but fully correlated on the
other group, the level of EOC strictly increases (and so worsens) with n.

Proposition 3 For n EO classifiers c1, . . ., ¢, with false-negative rates 31, . .., Bn, the worst-case
level of EOC is min;cy, 3; — max {0, >jerBi— 1}. If B; = B < 1—1/n for all i, then the
worst-case level of EOC is 3.

We now analyze a further extension of Example 1, in which we show that the level of EOC is strictly
increasing in the number of lenders.

Example 1 continued Suppose there are n lenders. As in the original example, each lender has
vast, distinct data on group A = 1, and trains a classifier to predict loan repayment. No lender has
sufficient data on group A = 0, so both outsource to a third-party, who provides each lender with an
(identical) classifier. Suppose all classifiers have the same false-negative rate 5. Thus, a firm that
uses its own classifier on A = 1 and the third-party classifier on A = 0 is in practice using an EO
classifier. Suppose also that, on A = 1, the firms’ individual classifiers misclassify positive instances
independently of other classifiers’ predictions:

Prici(X,A)=...=¢,(X,A) =0A=1,Y =1] = p".
Additionally, since all lenders use the same classifier on A = 0, the probability that a positive
instance from A = 0 is misclassified, Pr[c1 (X, 4) = ... = ¢, (X, A) = 0|A =0,Y = 1], is equal

to 8. Thus, even though each firm uses an EO classifier, the level of EOC is § — ™. Observe that
this is increasing in n.

The main insight from this section is that rather than improving the situation, increasing the number
of (EO) classifiers can actually lead to a larger EOC.

3.2 Different sets of borrowers

Recall that each borrower is a triplet (z, a, y) € X x AX Y, and that there is an underlying distribution
Dover X x A x Y. In this section we modify the model and suppose that each classifier ¢ serves
only a subset Sy C supp(D) of borrowers. Let us assume that S; U Sz = supp(D). In Section 3.1
we assumed that S; = So = supp(D), but in this section we assume that S; and Sy are only partially
overlapping, and so that S7 # So. In the extreme case, the two subsets of borrowers are disjoint.

Formally, assume each classifier faces an underlying distribution D, of borrowers, where Dy is equal
to the distribution D conditional on Sy. Denote by 7§ = Prp, [A = a] the fraction of borrowers
belonging to group A = a that are served by classifier ¢, and by v* the fraction of borrowers of group
a served by both lenders. Note that v{ 4+ v§ —v* = 1.

In general, classifiers may serve different sets of borrowers and at the same time differ in other
ways—they may have different error rates on borrowers served by both lenders, and may also have
correlation between them (as in Section 3.1). In order to focus on the former, however, in this section
we make two simplifying assumptions. First, we assume that each classifier’s false-negative rate is the
same for borrowers that are served exclusively by that classifier and for those that are served by both
classifiers. Second, we assume that on instances (z, a,y) € S1 N Ss the classifiers are uncorrelated.
Formally,

Definition 1 Classifiers c1, co with false-positive rates [31, B2 are uncorrelated if (i) for each ¢,
Pr [Cg(X, A) = O|Y =1, (X,A,Y) esSin Sg]
=Pr [CZ(Xa A) = 0|Y =1, (XvAaY) € S \ SS*Z] )
and (ii) for every (x,1,a) € S1 N Sy it holds that Pr [c1(z,a) = ca(x,a) = 0] = B - Ba.
In particular, if S; = S = supp(D) as in Section 3.1 then uncorrelated classifiers satisfy p° = p! =

0, neutralizing the force identified by Proposition 1. This assumption thus isolates the effect of having
different sets of borrowers. We now quantify this effect, and determine the worst case.



Proposition 4 For two uncorrelated EO classifiers c¢1 and co with false-negative rates (31 and s,

the level of EOC is
|(08 = 12)B1 + (W —7)Ba+ (v =) B3]
In the worst case, the level of EOC is max{S1, B2} — f102.

The intuition for Proposition 4 is similar to that of Proposition 1, with high (resp., low) overlap in the
former playing the same role as high (resp., low) correlation in the latter. To more clearly see the
effect of different sets of served borrowers, consider the following corollary:

Corollary 3 For two uncorrelated EO classifiers c1 and co with false-negative rates 31 = P2 = f3,
the level of EOCis 3+ (1 — f3) - ‘,YO — ryl’,

Thus, a large EOC occurs when there is a large imbalance in the respective sizes of the overlaps in
served borrowers between the two groups, v" and +*.

4 Harmful fairness adjustment

In trading off fairness and welfare (accuracy), it is quite intuitive that increasing the fairness properties
of a classifier decreases its welfare properties. In this section, however, we show that increasing the
fairness properties of individual classifiers may lead to decreases in the fairness properties under
competition. In particular, we show that the level of EOC can worsen following fairness-improving
post-processing of the individual classifiers.

In the following, we provide two theoretical examples where this occurs. The first is based on an
imbalance in correlations, as in Section 3.1, and the second on an imbalance in the sets of served
borrowers, as in Section 3.2. While the examples are stylized, in Section 5 we show that not only is
this phenomenon empirically plausible, it is even likely.

For the following examples, we assume that the fairness adjustment is derived via post-processing
(Hardt et al., 2016): Given a learned classifier ¢, the EO classifier ¢ is derived from c, namely, it
depends only on A and the predictions ¢(X, A). We also assume that ¢ minimizes squared-loss
relative to all such derived EO classifiers. These simplifying assumptions imply the following lemma:

Lemma 1 Fix a classifier with false-negative rates ° on group A = 0 and B' on group A = 1.
Then for each 3 € {B3°, B'} there exists a distribution D and false positive-rates under which the
optimal derived EO classifier has false-negative rate 3 on both groups.

The proof of Lemma 1 follows from the fact that the optimal derived classifier can be found by a
linear program (Hardt et al., 2016), together with two observations: (i) when minimizing squared-loss
subject to EO, a solution can be found at a vertex of the polytope formed by the constraints, and (ii)
for some D and false-positive rates these vertices contain points where 3 € {3°, '}.

We now turn to our first example. In this example, the reason the fairness adjustment worsens EOC is
the difference in correlations between classifiers, as described in Section 3.1.

Example 3 Both classifiers ¢, have false-negative rates ﬁ? = 0.1 and 5,} = 0.2. The correlations are
p° = 1and p' = 0.375 (perhaps both lenders outsource to the same third-party for predictions about
group A = 0, as in Example 1). Furthermore, suppose that D and false-positive rates are such that
the fairness adjustments lead to classifiers ¢, with false-negative rates 32 = 3} = 0.1 (guaranteed to
exist by Lemma 1). Such fairness adjustments are accomplished by randomizing each c;’s predictions
only when A = 1 and ¢,(X, A) = 0, and this leads to new correlations 5° = 1 and p! < 1.

Observe that, before fairness adjustment, neither classifier is EO, but after fairness adjustment,
both classifiers are EO. However, observe also that, before fairness adjustment, the classifiers are
EOC: First, Prcy (X, A) = c2(X, A) =0]Y =1, A = 0] = 0.1, because the classifiers are fully
correlated on A = 0. Second, by (1),
Prici(X,A) =c(X,A)=0]Y =1,A=1]
= ploios + 5182 =0.375-0.2-0.84+0.2-0.2 = 0.1.

Finally, observe that after fairness adjustment, the classifiers are no longer EOC. This is because
the probability both classifiers misclassify a positive instance in A = 0 remains the same, namely,



Pr[c;(X,A) = (X, A) =0]Y =1, A = 0] = 0.1. The probability of misclassification in A = 1,
however, is now different:

Pr[éi(X,A) =& (X,A) =0y =1,A =1]
=5'0.1-09+0.1-0.1<0.1,

where the inequality holds since p! < 1.

We now turn to our second example, in which the reason the fairness adjustment worsens EOC is the
difference in sets of served borrowers, as described in Section 3.2.

Example 4 Let S; = supp(D) and S = supp(D|A = 1). Note that this implies that 4° = 0 and
4! = 1. Suppose c3 is a perfect classifier, with B2 = ap = 0. Classifier ¢; is a perfect classifier
on group A = 0 only, and has false-negative rate 3 = 0 on group A = 0 and false-negative rate
Bt = B > 0on group A = 1. Note that ¢ is not EO, and for ¢, the issue is moot since ¢ serves
only borrowers with A = 1. However, note that the classifiers are EOC: a deserving borrower from
A =1 will always get a loan offer from c,, and a deserving borrower from A = 0 will always get a
loan offer from c;.

Now suppose c; undergoes fairness adjustment to ¢; by post-processing, namely, it is derived from
c1. Suppose also that false-positive rates and D are such that, after adjustment, the false-negative
rates on both groups are 51 = [ (guaranteed to exist by Lemma 1). In this case, deserving borrowers
from A = 1 will still always get a loan offer from c3, but deserving borrowers from A = 0 will only
get an offer from ¢; with probability 1 — 8 (and never get an offer from co). Thus, the classifiers are
no longer EOC.

S Experiments

In order to explore the prevalence of our theoretical results we ran several experiments.> We describe
and report results from the first three here, and the remaining ones in Appendix C. For the first
three we used Lending Club loan data for the years 2007-2015, a dataset that includes roughly
890,000 peer-to-peer loans through Lending Club (2021). We used simple classifiers to predict the
loan_status outcome, and, in particular, whether or not the loan was fully paid, given a set of
features that included the loan amount, the interest rate, the number of installments, and the borrower’s
annual income. As there is no demographic information in the public data, the protected attributes
A we used in our experiments were whether or not individuals have a mortgage. We compared the
performance in terms of EO and EOC before and after the corresponding fairness adjustment. The
fairness adjustment was implemented using the open-source Fairlearn (2025) package.

In the experiments we simulated a situation in which two firms compete over the same pool of
borrowers, S; = S5, as in Proposition 1. The differences between the firms’ classifiers were captured
in three different ways in the respective experiments:

Exp. 1 c¢; was a logistic regression and ¢, a decision tree, but their training data was identical.

Exp. 2 Both classifiers were logistic regressions, but their training data was disjoint: one was trained
on random examples with a short loan term, and one with a long loan term.

Exp. 3 c; was a logistic regression and ¢, a decision tree, and their training data was disjoint (as in
Exp. 2).

In all three experiments, the training data consisted of a range of 300 — 100, 000 random examples.
We ran each experiment with each size of training set 500 times.* For each run we calculated the EO
of each classifier as well as the EOC level, both before and after the fairness adjustments. The most
relevant statistic was then the comparison between the EOC level before fairness adjustments and
the EOC level after fairness adjustments. We calculated the percentage of times the EOC level was
higher after adjustment than before, as well as standard errors of the mean.

To get a sense of the results, consider the following selected run from experiment 3: Before adjust-
ments, the values were £O; = 0.597192%, EOs = 3.430634%, and EOC = 0.020774%. Thus,

3Code is available at https://github.com/eilamshapira/FairnessUnderCompetition.
“Running all experiments took a few hours on a home computer.


https://github.com/eilamshapira/FairnessUnderCompetition

Table 1: 95%-CI for likelihood EOC level increased following fairness adjustment

300 1k 3k 10k 30k 100k

Exp.1 [75.0,82.2] [68.0,76.4] [55.6,64.2] [49.4,58.2] [42.0,50.6] [26.2,34.0]
Exp.2 [75.6,82.8] [65.2,73.8] [51.8,60.8] [354,644.2] [25.8,33.8] [12.6,19.0]
Exp.3 [74.2,81.2] [63.4,71.2] [50.8,59.6] [35.6,43.8] [27.6,36.2] [14.2,20.6]

even though both classifiers were somewhat biased, under competition the EOC was nearly 0. How-
ever, once the individual classifiers were adjusted for fairness, the values were E~Ol = 0.403418%,
E~OQ = 0.985511%, and EOC = 0.444052%. Thus, even though each individual classifier became
more fair after adjustment, the result under competition became worse.

To examine the prevalence of this phenomenon we counted the percentage of times the EOC became
worse after fairness adjustment. Table 1 reports the results: The rows indicate the experiment number,
the columns indicate the size of the training set, and the values in the table are the 95% confidence
intervals, in percentages, for the probability that the EOC level was worse after adjustment. We found
this to be surprisingly common even for large training sets. For instance, for training sets of size
100k (out of a dataset of size roughly 900k) it occurred 30.1%, 15.8%, and 17.4% of the time in
experiments 1, 2, and 3, respectively.

We note that the effect diminishes as the size of the training set increases. The diminishing of the
effect for large training sets holds a similar message as the results from Section 3, where we show that
the magnitude of the EOC level is roughly the same as that of the false-negative rates. For very large
training sets the false-negative rates diminish to 0, and so the levels of EO and EOC diminish in turn.

In addition to examining the prevalence of the effect, we also measured its magnitude. For each run, if
the EOC level was higher after fairness adjustment than before, we measured the factor by which the
EOC level increased. For each experiment we then calculated the average factor by which the EOC
level increased (conditional on increasing), as well as the standard error of the mean. The results are
reported in Appendix C due to space constraints. However, to get a sense of the orders-of-magnitude
consider the following. For training sets of size 100k (out of a dataset of size roughly 900k), the EOC
level increased by a mean factor of 19, 1.3, and 3.1 in experiments 1, 2, and 3, respectively.

In Appendix C we also report on additional experiments we ran. In particular, we ran an experiment
with S; # S5, as in Proposition 4, and simulated the situation described in Example 4. We also
ran experiments in which classifiers’ training sets were independently chosen, experiments using a
different dataset (specifically, Becker and Kohavi, 1996), and experiments with three rather than two
competing classifiers. For all experiments, the results were similar to the ones reported here.

6 Discussion and future work

Our main insight is that individual fairness is neither necessary nor sufficient for ecosystem fairness.
Thus, when making fairness adjustments, their effects on the ecosystem should be considered. An
interesting question relates to the kinds of regulations that could lead to ecosystem fairness while
also maintaining the benefits of having multiple competing classifiers.’

In our analysis we made several simplifying assumptions. First, we focused on EO and EOC. In
Appendix B, however, we extend the definitions and analyses to two other common notions of
fairness—namely, Equalized Odds and Demographic Parity. In particular, we define variants of these
notions for a setting with multiple classifiers, and then show that versions of Propositions 1 and 4
hold for them as well: If the correlations or overlaps in served borrowers between classifiers differ
across groups, then classifiers that are fair will not be fair under competition.

Second, for our welfare-based notions of v-EO and v-EOC, we focused on simple utility functions
that satisfy Assumptions 1 or 2. A natural direction that we leave for future work is to consider more
general preferences, including ones where deserving borrowers’ utilities may differ from others’, and
where the utility function may depend on any of (z, a, y).

SDividing responsibility, for example by allowing only one EO classifier to serve each borrower, would lead
to ecosystem fairness, but would not deliver the benefits of having multiple classifiers.
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Appendix

A Proofs

Proof of Proposition 1 For each a, the Pearson correlation between B and B is

_ Pr[By=Bg=1-Pr[By=1]-Pr[Bg=1] _Pr(Bf=B5=1-(1-)(1-f)

0102 0102

a

p

Thus,
Pr[Bf = By = 1] = p“o102 + (1 = B1)(1 — B2)

and
Pr(Bf =By =0 =1—(Pr[BY =1]+Pr[B;y = 1] — Pr[Bf = By =1])
=1—-(1~=p1)—(1=pB2)+poroe+ (1= B1)(1 - B2)
= pto102 + B152. (1)
The level of EOC is |[E [d(X, A)|Y =1, A =0] - E[d(X,A)|Y =1, A = 1]|, where
EdX,A))Y =1,A=a]=1-Priai(X,A) =c2(X,4)=0]Y =1,A=d]
=1-Pr[Bf =B§=0].
Putting the above together yields
E[d(X,A))Y =1, A=0—-E[d(X,A)]Y =1, A=1]|
= |Pr[BY = By =0] — Pr [B] = By =0]|
= |po102 + B1B2 — p'oros — P1fBa| = o102 |0 — P,
as claimed.
Now, the worst case scenario maximizes | po — p1|, and so, for example, maximizes pO while

. . . . . . . a__
minimizing p* (or vice versa). For any a, the correlation can be written as p® = %, where

max{0, 81 + B2 — 1} < r* < min{p, B2} by the Fréchet-Hoeffding bounds (see, e.g., Nelsen,
2006). Plugging in r* = min{3, B2} and r! = max{0, 81 + B2 — 1} yields the result.

To see that this worst case can be achieved, and to obtain an intuitive explanation for the Frechet-
Hoeffding bounds in our setting, recall that

r*=Pr[Bf =B =1]=Pr[ci(X,A) = c2(X,4) =0Y =1, A =dq],

the probability that both classifiers misclassify an instance with Y = 1. Given that false-negative
rates are 31 and [, the probability that both classifiers misclassify such an instance is at most
r® = min{p, B2}, and this occurs when the set of one classifier’s misclassified instances are
contained in the other’s.

The probability that both classifiers misclassify an instance with Y = 1 is minimal when the instances
on which the classifiers misclassify are maximally disjoint, and in this case the probability that both
misclassify an instance is 7! = max{0, 81 + 2 — 1}. In particular, if 81 + 52 < 1 then the classifiers
never misclassify the same positive instance. m

Proof of Proposition 2 Recall from the proof of Proposition 1 that
Pr [Btll = B; = 1] = p®or09 + (1 - 61)(1 — 52)
and
Pr[Bf = By = 0] = p“o102 + p152.
Thus, we have that
Pr[Bf =1NBS =0 =Pr[By =1] —Pr[Bf = By =1]

=1- 01— poro2 — (1 = B1)(1 - B2)
= f2(1 = B1) — po102
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and, analogously,
Pr [B‘ll =0N Bg = 1} = 51(1 - ﬂg) - pa0'10'2.

Thus, for each a,
Ew(X,AY,RX,A)Y =1,A=a]l =k -Prici(X,A) = c2(X,A) = 1Y =1, A = q]
+Prici(X,A) # (X, A)|Y =1, A =q]
= k-Pr[BS = BS = 1] + Pr[B® # BY]
=kp“o109 + k(1 — B1)(1 — B2) + B2(1 — B1) + B1(1 — B2) — 2p" 0102
= (k=2)p o109+ k — (k= 1)(B1 + B2 — B1S2).
The level of v-EOC is thus
[Ep(X,AY,R(X,AN|Y =1,A=0-EuX,AY,R(X,A)|Y =1,A=1]|
= ‘(k —2)p%o109 — (k — 2)p10102|
= o102 |(k=2)(p° = p")|.

As in the proof of Proposition 1, the worst case scenario maximizes | v

maximizes p” while minimizing p' (or vice versa). Again, as before, the worst-case difference is
L (min{By, B2} — max{0, 3; + B2 — 1}), which leads to the claimed worst case level of v-EOC.

0102

Proof of Proposition 3 The worst case occurs when the probability that all classifiers misclassify
positive instances is minimal in group A = 1 and maximal in group A = 0 (or vice versa). To
maximize Prc; (X, A4) =... =¢,(X,A) =0|A =0,Y = 1] the overlap in instances on which
each c¢; misclassifies has to be maximal, which occurs when the instances are contained in one anther.
Formally, if 5, < ... < f3,, then

en(z,0)=1=...= ci1(z,0) = 1.

In this case,

Prici(X,A)=...=¢,(X,4)=0[A=0,Y =1] =5, = ml}}@
1€
To minimize Prc; (X, A) = ... = ¢, (X, A) = 0]A = 1,Y = 1] the overlap in instances on which

each c; misclassifies has to be minimal, which occurs when the instances are maximally disjoint.
Equivalently, the overlap in positive instances in which the ¢;’s correctly classify is maximally disjoint.
If> (1 —p5;) > 1then

{(z,1,1):c1(z,1) = ... = cp(z,1) =0} = 0.

Otherwise, in the worst case each classifier ¢; correctly classifies a unique set of 1 — 3; positive
instances, and in this case

Pricy(X,4) =...=cu(X,A) =0[A=0,Y =1] =) 8L
jeL

Thus, the worst-case level of EOC is min;cy, §; — max {07 ZjeL B — 1}.

Finally, if 3; = § < 1 — 1/n for all i then min;cy, 8; = /Bandmax{O,ZjeLﬁj - 1} =0. m
Proof of Proposition 4 For any a € A,
E[d(X,AY =1,A=a]=1-Prc;(X,4) = c2(X,A) =0|Y =1, 4 = 4]
—1- (Pr [e1(X,4) = 0N (X, 4,Y) € S'\S? | Y = 1,4 =q]
+ Pre(X,A)=0N(X,A,Y) € 5*\S'|Y =1,A=d
+Pr[er(X, A) = 2(X, A) = 0N (X, 4,Y) € S' NS |V =1, A_a])

=1—((F =) B+ (15 =) B2 + 7B 2).
=1—((1=1%)B1+ (1 —=9%) B2 +7"B1B2).
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The level of EOC is thus
EdX,A))Y =1,A=0-E[d(X,A))Y =1,A=1]|

= |(’73 —72)B1 + (W —71)B2 + (4! —Vo)ﬂﬁz‘-

The worst case is constructed as follows. Classifier £ = arg max; [3; serves all borrowers from group
A = 0, and the other classifier (3 — ¢) does not serve any borrower from this group. Additionally,
both classifiers serve all borrowers with A = 1. Formally, 'yg = 'yl} =1land 79?_ ¢ = 0and 7%_ =L

This implies also that 7* = 0 and v* = 1, and so yields a level of EOC equal to max{31, B2} — 31 .

To see that this is maximal, observe that
B t+Nn—n=w+N-(—mn)=1+" -1+ =" —7"
Thus, (79 — v2)B1 + (W — ) B2 < (7 — 1) - max{31, B2}, and so the level of EOC is at most
(v° — ") (max{B1, Bo} — B1B2) < max{B, B} — B1 .

Proof of Lemma 1 For a classifier ¢ and a group a € A, let A*(¢) = (a®,1 — %), where a* =
PrieL(X,A,Y) =1]Y =0, A = a] is the false-positive rate of the classifier in group a, and 1—3% =
Pricn(X,A,Y) =1]Y =1, A = q] is the true-positive rate of the classifier in group a. Hardt et al.
(2016) show that any derived classifier ¢ satisfies \%(¢) € convhull {(0,0), A%(¢), A*(1 — ¢), (1,1)},
where (1 — ¢) is the classifier ¢ but with predictions flipped. They then show that the optimal derived
classifier can be found using the following linear program:

main E[4(¢,c))
s.t.  A%(é) € convhull {(0,0), A*(c), A\*(1 —¢),(1,1)}, VYa€ A
A3(8) = A3(€)

The second constraint above states that the true-positive rates of the classifier are equal on both a € A,
and so the classifier ¢ must be EO. The optimization problem is a squared-loss minimization.

Let us fix the distribution D to be uniform over all of X x Y x A. Thus, for each group a and
label y € {0, 1}, we have that Pr[A = a] = Pr[Y = y] = 1/2. We also assume, without loss of
generality, that 3 > 1.

The optimal derived classifier ¢ is then one of the following:

1. Let ¢ = c except that, on some fraction of instances with ¢(x, 0) = 0 fix ¢(x,0) = 1, so that
A(@) = (1-8)N%) +6°- (1,1) = (@°,1 - ")
for 6° = (3° — 3')/4° and some G°. In this case, 3° = . The cost of this in terms of
squared loss is the fraction of instances where ¢(z, 0) = 0 that were flipped to é(x,0) = 1,
namely, §°(1 — o + 89)/4.
2. Let ¢ = c except that, on some fraction of instances with ¢(x, 1) = 1 fix &(z, 1) = 0, so that
AE) =1 =8N () +6"-(0,0) = (a',1 -5

for 6 = (8° — 8')/(1 — ') and some a&'. In this case, 3 = $°. The cost of this in
terms of squared loss is the fraction of instances where c(x,1) = 1 that were flipped to
é(z,1) = 0, namely, 6*(a! +1 — 3°)/4.

To see that one of the above is an optimal derived classifier, note first that the optimal solution cannot
be in the strict interior of the polytope. Furthermore, if (1 —a® + 3°)/8° # (o' +1—8%)/(1 - B1)
then considering a mixture of (1) and (2)—on some fraction of instances with ¢(x, 0) = 0 setting
é(x,0) = 1 and on some fraction of instances with ¢(z, 1) = 1 setting é(x,1) = 0—is suboptimal.
Finally, note that setting some fraction of instances with ¢(x,0) = 1 to é(x,0) = 0 only increases
the EO, as does setting some fraction of instances with ¢(x, 1) = 0 to é(x, 1) = 1, and so cannot be
part of an optimal classifier.

Finally, an optimal derived EO classifier in which the false-negative rate is 8! (resp., 3°) on both
groups is one where false-positive rates satisfy (1 — a® + 8°)/8° < (o' + 1 — %) /(1 — B*) (resp.,
(1-a®+89/8° > (ot +1— 3% /(1 — BY)). Under equality, both classifiers are optimal. m
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B Additional fairness notions

In this section we discuss extensions of our results to two additional, common notions of fairness. We
state the two notions for the setting of a single classifier, extend the definitions to multiple competing
classifiers, and then show that versions of Proposition 1 and 4 hold for these notions as well: If the
correlations or overlaps in served borrowers between classifiers differ across groups, then classifiers
that are fair will not be fair under competition.

The first notion we consider is Equalized Odds (ED), a strengthening of EO, which requires both
the classifier’s false-negative and false-positive rates to be equal across groups (Hardt et al., 2016).
The second we consider is Demographic Parity (DP), which requires the total fraction of approved
borrowers to be equal across groups (Agarwal et al., 2018; Dwork et al., 2012).

ED: The ED level of ¢y is

yem{%%} {|Efce(X,A))Y =y, A=0]—E[ce(X,A)Y =y, A=1]|}.

A classifier is ED if its ED level is 0.
DP: The DP level of ¢ is |E [co(X, A)|A = 0] — E[ce(X, A)|A = 1] |. A classifier is DP if its
DP level is 0.

We now generalize the above definitions of fairness to a setting with multiple competing lenders, ED
under competition (EDC) and DP under competition (DPC). Fix classifiers ¢ = (c1, .. ., cr|), and
denote by R(x,a) = Y, c/(z, a) the number offers made to a borrower with observables (z, a).
Also, denote by d(z,a) = Pr [R(z,a) > 1], the probability that at least one lender offers a borrower
with observables (x, a) a loan.

EDC: The EDC level of classifiers ¢ is

max {|E[d(X,A))Y =y, A=0]-E[d(X,A)Y =y, A=1]|}.
y€e{0,1}

Classifiers are EDC if their EDC level is 0.

DPC: The DPC level of classifiers c is |E [d(X, A)|A = 0] — E[d(X, A)|A = 1] |. Classifiers are
DPC if their DPC level is 0.

B.1 Equalized Odds under Competition

In this section we show that classifiers that are ED need not be EDC. Consider the following simple
observation, which follows from the fact that the definition of ED is strictly stronger than that of EO:

Observation 1 Fix classifiers ¢ = (c1,...,cr).
o Ifcyis ED, then it is also EO.
o The EDC level of classifiers c is at least their EOC level.

Fix two ED classifiers c¢; and cs, and define 34, o4, and p® as in Section 3.1. Observation 1 implies
the following corollary of Proposition 1.

Corollary 4 For two ED classifiers c1 and co with false-negative rates 31 and Ba, the level of EDC is
at least o1 - 04 - ‘,00 —p! | In the worst case, the level of EDC is at least min{f1, 82} — max{0, 51 +

Ba — 1}

Similarly, fix S, ¢, and v* as in Section 3.2. Observation 1 implies the following corollary of
Proposition 4.

Corollary 5 For two uncorrelated ED classifiers c¢1 and co with false-negative rates [ and s, the
level of EDC is at least

|(08 = 12)B1 + (W —7)Ba + (v =) 1]
In the worst case, the level of EDC is at least max{ 1, f2} — 152
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B.2 Demographic Parity under Competition

In this section we show that classifiers that are DP need not be DPC.

B.2.1 Correlations between classifiers

Fix two DP classifiers ¢; and cs, and denote their approval probabilities by 7, = Pr [c¢(X, A) = 1].
We define two Bernoulli random variables that capture the probability of approval on the two groups
a € A: For each a € A and each ¢ € {1, 2}, let the Bernoulli random variable

O,? = Cy (X,A) ‘(A:a)-
Each C7 is the output of classifier ¢, on random instances with A = a, and so E [C}] = 7. Denote
by o¢ = v/1¢(1 — 1) the standard deviation of Cg, and note that, because ¢y is DP, oy is also the
standard deviation of C}. Finally, for each a let p* denote the Pearson correlation coefficient between

C{ and C¢. The Pearson correlation captures the extent to which the approvals of the classifiers
correlate with one another.

We now quantify the DPC level of two classifiers using these correlation coefficients, and determine
the worst case.

Proposition 5 For two DP classifiers c1 and co with approval probabilities 11 and ns, the level of
DPCisoy-09- |p0 —p! ’ In the worst case, the level of DPC is min{1 — 1,1 — 9} — max{0,1 —
m —na}

The proof of Proposition 5 is nearly identical to that of Proposition 1, with Cf replacing B, 1 — 7
replacing 3y, and without conditioning any of the probabilities and expectations on ¥ = 1.

Proposition 5 yields the following simple corollary.

Corollary 6 Suppose n = n1 = n2. If n > 1/2, then the worst-case level of DPC is 1 — 0. If
1 < 1/2, then the worst-case level of DPC is 1.

Recall that, under EOC, the more accurate EO classifiers get, the lower the worst-case level of EOC.
With DPC this also holds. To see this, observe that as DP classifiers get more accurate—specifically,
as their false-positive and false-negative rates approach O—the correlations p° and p' between the
classifiers also approach 0. By Proposition 5, this implies that the level of DPC approaches 0.

B.2.2 Different sets of borrowers

Fix two DP classifiers ¢; and c; with approval probabilities 7, and 72, and let Sy, ¢, and y* be
as in Section 3.2. Consider the following variant of Definition 1, which essentially removes the
conditioningon Y = 1:

Definition 2 DP classifiers c1 and co with approval probabilities n, and 12 are uncorrelated if (i)
for each ¥,
Pric(X,A)=1|(X,A4,Y) € S1 NS5
=Prlc(X, A) =1|(X, A, Y) € S¢ \ S5,
and (ii) for every (x,y,a) € S1 N Sy it holds that Pr [c1(z,a) = ca(x,a) = 1] = ny - na.
Proposition 6 For two uncorrelated DP classifiers ¢y and co with approval probabilities 1, and ns,
the level of DPC is
(72 =22) X =m) + (7 =) A =) + (v =)L =)L = m2)] -
In the worst case, the level of EOC is max{l —n1,1 —na} — (1 —n1)(1 — n2).

The proof of Proposition 6 is nearly identical to that of Proposition 4, with 1 — ), replacing 3, and
without conditioning any of the probabilities and expectations on Y = 1.

Proposition 6 yields the following simple corollary.

Corollary 7 For two uncorrelated DP classifiers c; and co with approval probabilities n1 = 1z = 1,
the level of DPCism - (1 — 7)) - |’YO — ’Y1|-
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C Additional experiments

In this section we describe and report the results of additional experiments that we ran.

C.1 Effect size

In addition to examining the prevalence of the effect of fairness adjustment on the EOC, we also
measured its magnitude. For each run in Experiments 1-3, if the EOC level was higher after fairness
adjustment than before, we measured the factor by which the EOC level increased. For each
experiment we then calculated the average factor by which the EOC level increased (conditional
on increasing), as well as the standard error of the mean. Table 2 reports the results: The values
in the table are the 95% confidence intervals for the factor by which the EOC level increased after
adjustment (conditional on increasing).

Table 2: 95%-CI for effect size (ratio > 1 only)

300 1k 3k 10k 30k 100k

Exp.1 [10.8,30.8] [7.8,163] [7.6,121.0] [6.0,19.9] [7.3,23.0] [7.5,31.0]
Exp.2 [21.1,111.8] [8.3,30.1] [2.9,9.4] [1.8,2.2] [1.6, 1.8] [1.3,1.4]
Exp.3 [14.3,27.2] [10.0,74.2] [8.2,16.7] [4.8,32.4] [2.5,3.6] [1.9,4.3]

C.2 Experiment with different subsets

In this experiment we simulated a situation in which S7 # S, as in Proposition 4. In particular, we
simulated the situation described in Example 4, where S; = supp(D) and Sy = supp(D|A = 1),
and where A = 1 is the set of individuals with a mortgage. Classifier ¢; was trained on a random
set of examples taken from the entire dataset, whereas classifier ¢y was trained on a random set of
examples consisting only of individuals with a mortgage. Both classifiers were logistic regressions,
but since only classifier ¢; served individuals with both values of A, only that classifier underwent
fairness adjustment. As in the previous experiments, we measured the level of EOC before and after
the fairness adjustment.

Our results for experiment are reported in Tables 3 and 4, and are the following: For training sets
of size up 10Kk, fairness adjustment leads to worse EOC in a significant fraction of runs. For larger
training sets, however, the effect disappears. This is in line with the previous experiments, except that
the effect diminishes for smaller training sets. Even when the effect is prevalent, however, its size is
rather small.

Table 3: 95%-CI for likelihood EOC level increased following fairness adjustment

300 1k 3k 10k 30k 100k
Exp.4 [52.2,60.4] [34.2,42.4] [17.8,252] [5.4,10.0] [0.8,3.2] [0.0,0.0]

Table 4: 95%-CI for effect size (ratio > 1 only)

300 1k 3k 10k 30k 100k
Exp.4 [1.5,1.8] [1.2,1.3] T[1.1,1.2] [I.1,1.1] [1.0,1.1] [N/A]

C.3 Independent samples

We ran two experiments that were similar to Experiments 1-3, except that the training data was chosen
independently for each classifier.

Exp. 5 Both classifiers were decision trees, and their training data was sampled independently.

Exp. 6 Classifier c; was a logistic regression and ¢, a decision tree, and their training data was
sampled independently.
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The results are reported in Tables 5 and 6.

Table 5: 95%-CI for harm likelihood following fairness adjustment

300 1k 3k 10k 30k 100k

Exp.5 [56.2,65.0] [57.0,65.6] [50.2,58.8] [51.0,59.6] [41.2,49.6] [24.0,31.4]
Exp. 6 [71.8,79.2] [67.0,74.4] [55.0,63.6] [49.6,58.4] [45.0,54.4] [28.0,36.0]

Table 6: 95%-CI for effect size (ratio > 1 only)

300 1k 3k 10k 30k 100k

Exp.5  [54,94] [69,14.0] [6.4,44.8] [73,14.1] [57,18.5] [3.2,18.7]
Exp.6 [10.7,858.3] [8.3,24.5] [5.8,10.3] [11.3,35.8] [5.6,11.4] [5.7,12.9]

C.4 Different dataset

We ran Experiments 1-3 on a different dataset from the Lending Club loan data—the Adult Census
Income dataset from the UC Irvine Machine Learning Repository (Becker and Kohavi, 1996). This
dataset contains data on roughly 40,000 individuals. We used simple classifiers to predict whether
an individual’s income is above $50,000, given a set of features that included age, education, work
hours per week, occupation, and relationship status. The protected attribute A was gender.

Exp. 1’ Classifier ¢; was a logistic regression and ¢y a decision tree, but their training data was
identical.

Exp. 2’ Both classifiers were logistic regressions, but their training data was disjoint: one was trained
on random examples of White individuals, and one on non-White individuals.

Exp. 3’ Classifier ¢; was a logistic regression and cs a decision tree, and their training data was
disjoint (as in Exp. 2).

The results are reported in Tables 7 and 8.

Table 7: 95%-ClI for harm likelihood following fairness adjustment

300 1k 3k 10k

Exp. 1’ [43.8,52.6] [29.6,37.4] [13.4,20.2] [2.0,5.2]
Exp.2 [52.8,63.1] [45.4,544] [13.6,20.2] [0.0, 1.2]
Exp. 3’ [43.2,52.8] [394,48.1] [34.4,43.0] [18.4,254]

Table 8: 95%-CI for effect size (ratio > 1 only)

300 1k 3k 10k

Exp. 1> [3.9,11.8] [44,88] [2.2,142] [I1.1,1.3]
Exp.2> [4.7,79] [4.7,12.1] [1.8,2.5] [1.0,2.0]
Exp.3> [3.1,262] [44,82] [6.1,51.7] [2.3,3.7]

C.5 More than two classifiers

We ran several experiments that included three, rather than two, classifiers. As before, we measured
the level of EOC before and after all three underwent a fairness adjustment. In particular, we ran the
following three experiments on the Lending Club data:

Exp. 7 Classifier ¢; was a logistic regression, cs a decision tree, and c3 a random forest, and their
training data was identical.

Exp. 8 All classifiers were logistic regressions, and their training data was independently sampled.

19



Exp. 9 Classifier c¢; was a logistic regression, ¢, a decision tree, and c3 a random forest, and their
training data was independently sampled.

Tables 9 and 10 report the results.

Table 9: 95%-CI for harm likelihood following fairness adjustment

300 1k 3k 10k 30k 100k

Exp.7 [74.2,81.2] [71.2,78.6] [60.0,68.2] [49.6,58.2] [44.6,53.4] [28.4,36.4]
Exp.8 [80.4,87.0] 1[79.0,85.8] [77.4,84.2] [654,73.0] [54.6,63.4] [30.8,39.0]
Exp.9 [74.2,81.4] [73.0,80.8] [65.0,73.2] [63.6,71.6] [52.0,60.8] [34.2,43.2]

Table 10: 95%-ClI for effect size (ratio > 1 only)

300 1k 3k 10k 30k 100k

Exp.7 [11.7,57.7] [8.8,19.11 [7.5,19.7] 1[6.2,22.8] [5.5,11.6] [54,22.7]
Exp.8 [25.2,133.7] [12.4,32.5] [6.0,109] [3.2,3.7] [2.2,2.5] [L.5, 1.7]
Exp.9 [17.1,106.7] [13.6,263] [9.6,289] [7.6,16.1] [7.2,15.2] [5.9,14.3]

In addition, we ran Experiments 7°, 8, and 9°, which were the same as 7, 8, and 9 except that they
used the Adult Census Income dataset. The results are reported in Tables 11 and 12.

Table 11: 95%-CI for harm likelihood following fairness adjustment

300 1k 3k 10k 30k

Exp. 77 [41.2,50.2] [31.2,39.0] [9.8,15.6] [0.4,2.2] [0.0,0.0]
Exp. 8 [49.2,57.8] [30.2,38.0] [7.8,12.8] [0.0,0.6] [0.0,0.0]
Exp. 9 [47.8,56.4] [34.6,43.2] [16.6,23.6] [5.2,10.0] [0.0,1.0]

Table 12: 95%-CI for effect size (ratio > 1 only)

300 1k 3k 10k 30k

Exp. 77 [2.7,3.8] [29,8.6] [1.3,2.0] [1.1,1.7] [N/A]
Exp.8 [5.7,53.2] [3.5,7.7] [1.5,2.5] [1.0,1.0] [N/A]
Exp.9” [3.8,152] [3.4,12.7] [19,34] [1.1,1.2] [1.0,1.1]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction describe the contributions and point to specific
results to justify claims.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

e The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

o The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

e The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

o The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Most complete proofs appear in the paper. The one exception is the proof of
Lemma 1, for which there is only a proof outline. The formal proof appears in the technical
appendix.

Guidelines:

e The answer NA means that the paper does not include theoretical results.

o All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

e All assumptions should be clearly stated or referenced in the statement of any theorems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

o Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code used in the experiments is part of the technical appendix, and the
data is publicly available.

Guidelines:

o The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

e While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code used in the experiments is part of the technical appendix, and the
data is publicly available.

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

e The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

o The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The “Experiments” section describes the experimental setting. The code used
in the experiments is part of the technical appendix, and the data is publicly available.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments include confidence intervals for all results, and factors of
variability are explained.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

o [t should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As noted in Section 5, running all experiments took a few hours on a home
computer.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

o The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not believe there were any harms during the research process, and do
not foresee harmful consequences of the research.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

o The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The main societal positive societal impact of the paper (and the main argument
in the paper) is that current fairness constraints are insufficient, and it advocates for greater
care. We do not foresee any negative societal impacts.
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Guidelines:

o The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

o The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

o The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o [f there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is largely theoretical and no models are released; the data used is
open-source and publicly available.

Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Data is open-source and publicly available, and database license is included.
Guidelines:

e The answer NA means that the paper does not use existing assets.

o The authors should cite the original paper that produced the code package or dataset.

e The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

e If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

e For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

o The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

o The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

o Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

o The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

e For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification: No LLMs were used in this research.
Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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