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Abstract
Discrete diffusion models have become highly
effective across various domains. However, real-
world applications often require the generative
process to adhere to certain constraints but with-
out task-specific fine-tuning. To this end, we pro-
pose a training-free method based on Sequential
Monte Carlo (SMC) to sample from the reward-
aligned target distribution at the test time. Our
approach leverages twisted SMC with an approx-
imate locally optimal proposal, obtained via a
first-order Taylor expansion of the reward func-
tion. To address the challenge of ill-defined gradi-
ents in discrete spaces, we incorporate a Gumbel-
Softmax relaxation, enabling efficient gradient-
based approximation within the discrete genera-
tive framework. Empirical results on both syn-
thetic datasets and image modelling validate the
effectiveness of our approach.

1. Introduction
We consider the task of the test-time alignment (Uehara
et al., 2025) of pre-trained discrete diffusion models (DDMs)
(Austin et al., 2021; Sahoo et al., 2024; Shi et al., 2024).
This task has a broad applications such as molecular genera-
tion (Hoogeboom et al., 2022), materials discovery (Yang
et al., 2023), and math reasoning (Zhao et al., 2025).

However, effective alignment of DDMs at test time remains
a significant challenge. Existing alignment strategies mainly
fall into two categories: i) fine-tuning and ii) guidance meth-
ods. Fine-tuning methods, including techniques such as
steering (Rector-Brooks et al., 2024), reinforcement learning
(Zekri & Boullé, 2025), and direct backpropagation (Wang
et al., 2024), have demonstrated promising results. Nev-
ertheless, they often suffer from reward over-optimisation,
which can compromise sample quality and diversity. On
the other hand, guidance methods (Li et al., 2024; Gruver
et al., 2023; Nisonoff et al., 2024; Guo et al., 2024) pro-
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vide training-free alternatives that are easier to deploy, but
they often suffer from reward under-optimisation. This lim-
its their ability to enforce correct alignment, resulting in
outputs that may not fully meet complex objectives.

Inspired by the success of Sequential Monte Carlo (SMC)
in continuous diffusion models (Wu et al., 2023; Kim et al.,
2025), we explore its extension to discrete diffusion models.
However, applying SMC in this context presents unique
challenges due to the combinatorial explosion of possible
states and the non-differentiable nature of discrete variables.
To address these issues, we propose a twisted SMC frame-
work that leverages an approximate locally optimal proposal
distribution, obtained via a first-order Taylor expansion of
the reward function. This design encourages more efficient
exploration of high-reward regions in the sample space. To
enable gradient-based updates in the discrete setting, we
incorporate Gumbel-Softmax relaxation, which provides a
continuous and differentiable approximation of the discrete
variables. Our method remains training-free and asymptoti-
cally unbiased, and empirical results on both synthetic and
image benchmarks show that it achieves effective reward
alignment while preserving sample quality and diversity.

2. Background
Notation. Let V denote the set of one-hot vectors of length
V , the number of categorical values. Discrete variables
are represented as zt,x ∈ V , with distributions Cat(x;p)
where p ∈ ∆V , the V -simplex. For L-dimensional data, we
write z1:Lt ,x1:L ∈ VL, and use zlt,x

l for the lth token.

2.1. Discrete Diffusion Models

Discrete diffusion models (Austin et al., 2021) define a
forward process that interpolates data with prior π ∈ ∆V

q(zt|x) = Cat(zt;αtx+ (1− αt)π), (1)

where αt is a monotonically decreasing noise schedule from
1 to 0, implying z0 = x and z1 ∼ Cat(π). Masked dif-
fusion models (Sahoo et al., 2024; Shi et al., 2024) are a
special case that use an additional mask token m as the
prior, with the induced posterior shown to be

q(zs|zt,x)=

{
Cat(zs; zt) zt ̸=m,

Cat(zs;
(1−αs)m+(αs−αt)x

1−αt
zt=m

(2)
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where s < t. Since, x is not available during inference, the
reverse unmasking process is parametrised as,

pθ(zs|zt) = q(zs|zt,xθ(zt, t)), (3)

where xθ(zt, t) is the denoising model to predict the clean
data x. In practice, xθ(zt, t) is parametrised with the con-
straints: i) Zero Masking Probabilities: ⟨xθ(zt, t),m⟩ = 0,
ensuring no mass on the mask token; and ii) Carry-Over
Unmasking: if zt ̸= m, then xθ(zt, t) = zt. To enable
efficient sampling in the multi-dimensional case, the reverse
unmasking process is further assumed to factorise indepen-
dently across dimensions given z1:Lt , i.e.,

pθ(z
1:L
s |z1:Lt )=

L∏
l=1

pθ(z
l
s|z1:Lt )≜

L∏
l=1

q(zls|zlt,xθ(z
1:L
t , t)l).

2.2. Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a general framework for
approximately sampling from a sequence of intermediate
distributions πt. It does so by employing a forward pro-
posal Fs(xs|xt), from which particles are drawn and subse-
quently resampled based on importance weights

ws(xs) = wt(xt)
πs(xs)

πt(xt)

Bs(xt|xs)

Fs(xs|xt)
, (4)

where Bs denotes the backward distribution. While SMC
is asymptotically consistent, its practical efficacy typically
suffers from weight degeneracy, an issue that arises when
only a few particles carry significant weight. This problem
is especially severe when the proposal distribution poorly
matches the target or when the intermediate distributions
differ significantly, necessitating careful design of both the
proposal and resampling strategies to ensure robust perfor-
mance (Del Moral et al., 2006).

3. Test-Time Alignment of DDMs with SMC
We consider the task of sampling from the target distribution

ptar(x
1:L) ∝ ppre(x

1:L)exp

(
r(x1:L)

α

)
, (5)

where ppre is a pre-trained discrete diffusion model and r
is a reward model. ptar is also known to be the optimum of
the following fine-tuning objective (Uehara et al., 2024)

ptar = argmax
p

Ex1:L∼p[r(x
1:L)]− αDKL(p∥ppre), (6)

where the coefficient α controls the trade-off between re-
ward maximisation and staying close to the pre-trained
model. Instead of optimising this objective directly, which
often leads to reward overoptimisation (Clark et al., 2023),
we propose to sample from ptar directly using SMC.

3.1. Twisted SMC with Locally Optimal Proposal

A key ingredient of SMC is the intermediate targets πt with
the terminal potential π0 = ptar as in Eq. (5). Inspired by
Wu et al. (2023); Kim et al. (2025), we define these target as

πt(z
1:L
t ) ∝ pt(z

1:L
t )exp

(
λt

α
r̂(z1:Lt )

)
, (7)

where pt(z
1:L
t ) denotes the marginal distribution in-

duced by the pre-trained diffusion model pθ, r̂(z1:Lt ) =
Ex1:L∼xθ(z1:L

t ,t)[r(x
1:L)] is the estimated reward, and λt is

a temperature parameter that increases monotonically from
0 to 1 as t goes from 1 to 0. To ensure the tractability of
importance weights, the backward kernel is defined as

Bt(z1:Lt |z1:Ls ) =
pθ(z

1:L
s |z1:Lt )pt(z

1:L
t )

ps(z1:Ls )
, (8)

which yields the following weight update:

ws(z
1:L
s )=

pθ(z
1:L
s |z1:Lt )

Fs(z1:Ls |z1:Lt )
·
exp

(
λs

α r̂(z1:Ls )
)

exp
(
λt

α r̂(z1:Lt )
) ·wt(z

1:L
t ) (9)

As previously discussed, the choice of proposal distribu-
tion Fs significantly impacts the performance of SMC. A
straightforward option is to use the reverse process of the
pre-trained diffusion model, leading to the proposal:

Fs(z
1:L
s |z1:Lt ) = pθ(z

1:L
s |z1:Lt ). (10)

Since pθ is factorised, it is easy to sample from and allows
efficient evaluation of the probability mass. However, in
practice, this naive choice often leads to high variance in the
particle weights. To mitigate this issue, one can instead use
the locally optimal proposal, which minimises the variance
of the importance weights:

F∗
s (z

1:L
s |z1:Lt ) ∝ pθ(z

1:L
s |z1:Lt )exp

(
λs

α
r̂(z1:Ls )

)
(11)

The factors exp
(
λs

α r̂(z1:Ls )
)

serve as the optimal twisting
functions, enabling SMC to produce exact samples from
the target distribution πt even with a single particle. How-
ever, computing them is generally intractable in practice,
as the reward function is typically non-factorizable. This
necessitates evaluating the reward O(V L) times, which is
only computationally feasible in low-dimensional scenarios
with small vocabularies. In high-dimensional tasks, approx-
imated alternatives are required to maintain tractability.

3.2. First order Approx. Locally Optimal Proposal

To make Eq. (11) tractable, we consider using a first-order
Taylor approximation to approximate the twisting factor:

r̂(z1:Ls ) ≈ r̂(z1:Lt ) + ⟨∇z1:L
t

r̂(z1:Lt ), z1:Ls − z1:Lt ⟩

= r̂(z1:Lt ) +

L∑
l=1

⟨∇zl
t
r̂(z1:Lt ), zls − zlt⟩. (12)
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Figure 1. From left to right: samples from the pre-trained distribution ppre; samples from the target distribution ptar, samples generated
using tempered SMC with the locally optimal proposal (Eq. (11)), the reverse process as proposal (Eq. (10)), and the first order Taylor
approximation of the locally optimal proposal (Eq. (17)); samples generated using approximate guidance (Eq. (39)). KL weight α = 1
for both distributions. Top row: reward r(X,Y ) = −X̂2/100 − Ŷ 2, bottom row: reward r(X,Y ) = −X̂2 − (Ŷ − 1)2/10, where
X̂ = 12(X/63− 1/2) and Ŷ = 12(Y/63− 1/2). Note that the rewards are actually computed as a differentiable function of one hot
inputs corresponding to X and Y , more details in Appendix F.2.1.

.

However, since z1:Lt is discrete, the gradient ∇z1:L
t

r̂(z1:Lt )
is not well-defined. To solve this problem, we break down
r̂(z1:Lt ) into three steps:

px = xθ(z
1:L
t , t) (13)

xl ∼ Cat(xl; plx) ∀l ∈ {1, . . . , L} (14)

r̂(z1:Lt ) = r(x1:L) (15)

We propose the following method to make sure that each
of these steps are differentiable. For Eq. (14), we use the
reparametrization trick using Gumbel-Softmax (Jang et al.,
2016) to make xl differentiable with respect to plx. For both
Equations (13) and (15), similar to Grathwohl et al. (2021);
Zhang et al. (2022), we can treat both r(·) and xθ(·, t) as
functions which can take continuous real-valued inputs, in
order to be able to take their gradients. Additionally, for
xθ, to avoid the discontinuity induced by the Carry-Over
Unmasking constraint, we propose the following equivalent
continuous formulation:

xθ(z
1:L
t , t)l = γx̃θ(z

1:L
t , t)l + (1−m)⊙ zlt (16)

where x̃θ(z
1:L
t , t) is the output of the denoising model after

applying the Zero Masking Probabilities constraint, and γ is
a scalar which can be defined as γ = 1−⟨1−m, zlt⟩. Notice
that γ = 1 when zlt = m and 0 otherwise. Now that all

three steps are differentiable with well-defined gradients, we
can compute ∇z1:L

t
r̂(z1:Lt ) using automatic differentiation.

Substituting r̂(z1:Ls ) from Eq. (12) in Eq. (11) leads to the
first order approximated locally optimal proposal:

Fs(z
1:L
s |z1:Lt ) ∝ pθ(z

1:L
s |z1:Lt )

× exp
(λs

α

L∑
l=1

〈
∇zl

t
r̂(z1:Lt ), zls

〉)
. (17)

This proposal can be further factorised as:

Fs(z
1:L
s |z1:Lt ) =

L∏
l=1

Fs(z
l
s|z1:Lt ),

Fs(z
l
s|z1:Lt )=pθ(z

l
s|z1:Lt )exp

(
λs

α
⟨∇zl

t
r̂(z1:Lt ), zls⟩

)
, (18)

which facilitates efficient sampling, as it requires evaluating
and differentiating the function r̂(·) only once at z1:Lt . The
final algorithm is summarised in Alg. 1.

4. Experiments
We evaluate the proposed method on both a synthetic dataset
and an image modelling task. Detailed experimental settings
and additional results are presented in Appendix F.
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Figure 2. Binarised MNIST samples generated for ytarget = 4, α =
1 using a masked diffusion model with tempered SMC (left and
middle), and approximate guidance (right).

4.1. Mixture of Gaussians

Settings. We created discretised versions of the mixture
of Gaussian dataset whose data points take integer values
between 0 and 63. For each dataset, we train a masked
discrete diffusion model using an MLP with 2 hidden layers
as the denoising model. For the twisted SMC, we use a
linear temperature schedule, λt = 1− t and 2000 particles.
We calculate the estimated reward r̂(z1:Lt ) by taking 100
samples from xθ(z

1:L
t , t) and calculating the mean reward.

Results. In Fig. 1, we provide a comparison of the resulting
samples when using twisted SMC with different proposals,
and when using approximate guidance only. We report the
mean reward achieved, EMD (earth mover’s distance) w.r.t.
the target distribution, and sample diversity (the number of
unique samples). SMC with the locally optimal proposal
gives the best results, achieving the required reward value
while having a low EMD and high sample diversity. SMC
with the first order approximation of the locally optimal
proposal also achieves comparable results. When using the
reverse process as the proposal, there is a significant dip in
sample diversity, which is caused due the higher variance
in weights, which in turn leads to more resampling steps.
Lastly, the approximate guidance performs the worst as the
gradient term overpowers the diffusion reverse process, lead-
ing to samples which disregard the pre-trained distribution.
A further analysis on the effect of using different proposals
is presented in Appendix F.2.2.

4.2. Binarised MNIST

Settings. We construct a binarised version of the MNIST
dataset, where each pixel is assigned a value of either 0 or
1. For the denoising model, we adopt a U-Net architecture
following Ho et al. (2020). To define the reward function,
we first train a classifier pϕ(y|x1:L) on the clean data.The re-
ward is then given by r(x1:L) = log pϕ(y = ytarget|x1:L),
where ytarget can be any target digit. For the SMC, we

use 20 particles and set the tempering schedule as λt =
min(1.05T (1−t) − 1, 1), where T = 100 is the number of
discrete time steps for inference. We calculate the estimated
reward r̂(z1:Lt ) by taking a single sample from xθ(z

1:L
t , t)

and passing it through the classifier. Additionally, we use
the partial resampling scheme (Martino et al., 2016), in
which only half of the particles are resampled when the
ESS threshold is breached. This approach mitigates mode
collapse, especially in high dimensions (Lee et al., 2025).

Results. In Fig. 2, we provide the resulting particles using
different sampling methods for ytarget = 4 and α = 1.
SMC with first order Taylor approximation of the locally
optimal proposal achieves the maximum possible reward
of 0, while generating diverse and high fidelity samples.
Using the reverse as the proposal, relies solely on the SMC
resampling to weed out incorrect digits from the particle set.
Some incorrect digits still show up in the final particle set
as resampling only takes place when the ESS drops below a
certain threshold. Lastly, when using approximate guidance,
most particles become corrupted. This is due to inexactness
of guidance in the early steps, paired with the fact that in
masked diffusion, pixels once unmasked at any time step
can no longer be masked or modified.

The above stated property of masked diffusion models also
makes it somewhat difficult to sample using the twisted
SMC method. We needed to carefully choose the tempering
schedule to get good results. Since, unmasked pixels can
not be modified further, we need to ensure that a sufficient
amount of guidance is injected into the proposal early on
before the particles evolve into an incorrect digit. At the
same time, we cannot increase the temperature too fast since
the guidance can be inaccurate in earlier time steps. This
means we need to find a balance. Our choice of tempering
schedule for this experiment is visualised in Fig. 6. This
problem is resolved if we use either ReMDM (Wang et al.,
2025) or UDLM (Schiff et al., 2024) in place of masked
diffusion, as they allow pixels to be modified and guided
throughout the entire sampling process. We provide the
details of our experiments with ReMDM and UDLM on the
binarised MNIST dataset in Appendix F.3.

5. Conclusions and Limitations
In this work, we present a method for test-time reward align-
ment of discrete diffusion models using twisted SMC. We
introduce a first-order Taylor approximation of the locally
optimal proposal, and provide methods to counter the dis-
continuities when computing the gradients of the estimated
reward for masked diffusion models. The effectiveness of
our method is validated through empirical results on both
synthetic and image datasets. We also discuss limitations
and potential future work in Appendix G.
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Appendix for “Test-Time Alignment of Discrete Diffusion Models
with Sequential Monte Carlo”
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A. Other Discrete Diffusion Models
A major challenge in alignment or guidance for masked diffusion models is that latent variables become immutable once
they are assigned a non-mask category at any point during the denoising process. As a result, any unmasking errors that
occur are irreversible and persist in the final samples. In this section, we briefly introduce few other types of discrete
diffusion models. Notably, these models allow latent variables to remain updatable throughout the entire denoising process.

A.1. Remasking Diffusion Model

Remasking Diffusion Model (ReMDM) (Wang et al., 2025) is a modification of masked diffusion model which allows
remasking unmasked tokens during the denoising process. The posteriors are constructed in such a way that the forward
marginals q(zt|x) remain the same as masked diffusion.

qσ(zs|zt,x) =

{
Cat(zs; (1− σt)x+ σtm) zt ̸= m

Cat(zs;
αs−(1−σt)αt

1−αt
x+ 1−αs−σtαt

1−αt
m) zt = m

(19)

Here, σt is the remasking schedule, and to ensure that the posterior is valid, it must follow the constraints:

0 ≤ σt ≤ min
{
1,

1− αs

αt

}
=: σmax

t

The reverse unmasking process is parametrized as,

pθ(zs|zt) = qσ(zs|zt,xθ(zt, t)). (20)

8
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Finally, the ReMDM loss objective becomes a re-weighted version of the loss objective for masked diffusion models.
Thus, we can take a pre-trained masked diffusion model, and use the ReMDM parametrized reverse process in Eq. (20) for
inference.

A.2. Uniform Noise Diffusion Models

Uniform Noise Diffusion Models (UDLM) (Schiff et al., 2024) is a discrete diffusion model where the fixed prior π = u :=
1/V , where V is the vocabulary size or the number of possible categorical values. The resulting posterior is,

q(zs|zt,x) = Cat

zs;
V αtzt ⊙ x+

(
αt

αs
− αt

)
zt + (αs − αt)x+ (αs−αt)(1−αs)

V αs
1

V αt⟨zt,x⟩+ 1− αt

 (21)

The reverse process is parametrized similar to masked diffusion models as:

pθ(zs|zt) = q(zs|zt,xθ(zt, t))

Unlike masked diffusion models, the denoising model xθ(zt, t) has no additional constraints except that it should output a
valid categorical distribution, i.e., xθ(zt, t) ∈ ∆V . Thus, the continuous formulation introduced in Sec. 3.2 is not relevant
for computing the gradients for the first order Taylor approximation in case of UDLM.

B. Extending Discrete-time SMC to Continuous-time SMC
In this section, we establish the connection between the discrete-time SMC formulation in Eq. (4) and its continuous-
time counterparts, as studied in (Ou et al., 2025; Holderrieth et al., 2025; Lee et al., 2025). We begin by recapitulating
continuous-time Markov chains (CTMC) (Norris, 1998) in Appendix B.1 and then discuss the connection in Appendix B.2.

B.1. Background of CTMC

A CTMC (Norris, 1998) is characterised by a time-dependent transition rate matrix Rt, defined as

Rt(x,y) = lim
∆t→0

pt+∆t|t(y|x)− δy=x

∆t
. (22)

By definition, the transition probability is given by

pt+∆t|t(y|x) = δy=x +Rt(x,y)∆t+O(∆t). (23)

To ensure the transition probability is valid, the rate matrix Rt should satisfy

Rt(x,y) ≥ 0,∀y ̸= x, Rt(x,x) = −
∑
y ̸=x

Rt(x,y). (24)

The CTMC transition probabilities satisfy the Kolmogorov forward and backward equations (Oksendal, 2013). For t > s

Kolmogorov forward equation: ∂tqt|s(x|x̃) =
∑
y

qt|s(y|x̃)Rt(y,x)

Kolmogorov backward equation: ∂sqt|s(x|x̃) = −
∑
y

Rt(x̃,y)qt|s(x|y)

The forward equation also induces a PDE for the marginals of CTMC

∂tqt(x) =
∑
y

qt(y)Rt(y,x). (25)

9
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Given a test function h of interest, define ut(x) = Eq1|t(z|x)[h(z)], the backward equation gives

∂tut(x) =
∑
z

h(z)∂tq1|t(z|x)

=
∑
z

h(z)−
∑
y

Rt(x,y)q1|t(z,y)

= −
∑
y

Rt(x,y)
∑
z

q1|t(z,y)h(z)

= −
∑
y

Rt(x,y)ut(y).

B.2. CTMC Formulation of SMC

Recall Eq. (4), where the importance weight is given by

ws(xs) = wt(xt)
πs(xs)

πt(xt)

Bs(xt|xs)

Fs(xs|xt)
. (26)

We now extend this formulation to the continuous-time setting. Let Rt and R̂t denote the rate matrices corresponding to the
forward proposal Ft and the backward transition Bt, respectively. Consider a discretization with N denoising steps, indexed
by time points s = tN < · · · < ti · · · < t0 = 1, where each interval satisfies ti−1 − ti =

1
N . The discrete-time importance

weight at step time s is then computed as

logws = log
πs(xs)

π1(x1)
+

N∑
i=1

log
Bti(xti−1

|xti)

Fti(xti |xti−1
)
. (27)

The second term in the RHS can be computed as

log
Bti(xti−1

|xti)

Fti(xti |xti−1)
= log

(
δxti−1

=xti
+ R̂ti(xti ,xti−1)

1

N

)
−log

(
δxti

=xti−1
+Rti(xti−1 ,xti)

1

N

)
=
∑

i,ti=ti−1

log

(
1+R̂ti(xti ,xti)

1

N

)
−log

(
1+Rti(xti ,xti)

1

N

)
+
∑

i,ti ̸=ti−1

R̂ti(xti ,xti−1
)−Rti(xti−1

,xti)

=
∑

i,ti=ti−1

R̂ti(xti ,xti−1
)
1

N
−Rti(xti−1

,xti)
1

N
+O( 1

N
)+
∑

i,ti ̸=ti−1

R̂ti(xti ,xti−1
)−Rti(xti−1

,xti)

Taking the limit as N → +∞, the importance weight becomes:

logws=log
πs(xs)

π1(x1)
+

∫ s

1

Rt(xt,xt)−R̂t(xt,xt) dt+
∑

s≤t,xt+ ̸=xt

log R̂t(xt,xt+)−logRt(xt+ ,xt). (28)

By the fundamental theorem of calculus for piecewise differentiable functions, we also have:

log
πs(xs)

π1(x1)
=

∫ s

1

−∂t log πt(xt) +
∑

s≤t,xt+ ̸=xt

log πt(xt)− log πt(xt+). (29)

If the backward process is chosen such that the rate matrix satisfies the detailed balance condition: R̂t(x,y)pt(x) =
Rt(y,x)pt(y), then the importance weight simplifies accordingly

logws =

∫ s

1

−∂t log πt(xt) +Rt(xt,xt)−R̂t(xt,xt) dt

=

∫ s

1

−∂t log πt(xt) +
∑
y

Rt(xt,y)
πt(y)

πt(xt)
.

10
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This coincides with the importance weights used in the SMC proposed in (Ou et al., 2025; Holderrieth et al., 2025). In these
works, the intermediate target distribution is defined as a geometric interpolation between the base and target distributions:
πt = ptbasep

1−t
target. The proposal rate matrix Rt is then trained to satisfy the Kolmogorov forward equation. Alternatively,

one may use an arbitrary proposal, such as a pretrained rate matrix, but this typically leads to suboptimal performance.

In Lee et al. (2025), the intermediate target is defined as

πt(xt) = pt(xt)pt(ζ|xt)
α, pt(ζ|xt) = Ept(x0|xt)[p(ζ|x0)], (30)

where p(ζ|x0) denotes the tilting reward function. To align with the notation used in Lee et al. (2025), we denote the
proposal rate matrix by Qt, the forward rate matrix generating pt by Rt, and its corresponding backward rate matrix by R̂t.
With this notation, the importance weight is given by:

logwt =

∫ s

1

−∂t log πt(xt) +Qt(xt,xt)− R̂t(xt,xt) dt︸ ︷︷ ︸
1⃝

+
∑

s≤t,xt+ ̸=xt

log πt(xt)− log πt(xt+) + log R̂t(xt,xt+)− logQt(xt+ ,xt)︸ ︷︷ ︸
2⃝

. (31)

To connect with the derivation in Lee et al. (2025), we use the following identities:

R̂t(xt,xt+) = Rt(xt+ ,xt)
pt(xt+)

pt(xt)
. (32)

R̂t(xt,xt) = −
∑
y ̸=xt

R̂t(xt,y) = −
∑
y ̸=xt

R(y,xt)
pt(y)

pt(x)
. (33)

∂tpt(xt) =
∑
y

Rt(y,xt)pt(y). (34)

∂t log pt(xt) =
1

pt(xt)

∑
y

Rt(y,xt)pt(y) =
∑
y ̸=x

Rt(y,xt)
pt(y)

pt(xt)
+Rt(xt,xt). (35)

∂t log pt(ζ|xt) =
∂tpt(ζ|xt)

pt(ζ|xt)
= − 1

pt(ζ|xt)

∑
y

Rt(xt,y)pt(ζ|y)

= −
∑
y ̸=xt

Rt(xt,y)
pt(ζ|y)
pt(ζ|xt)

−Rt(xt,xt)

≜ Rα=1
t (xt,xt)−Rt(xt,xt),

(36)

where we denote Rα=1
t (xt,xt) = Rt(xt,y)

pt(ζ|y)
pt(ζ|xt)

, which induces the identity:

log pt(ζ|y)− log pt(ζ|xt) = logRα=1
t (xt,xt)− logRt(xt,y).

Substituting into 1⃝, we obtain:

1⃝ =

∫ s

1

−

α∂t log pt(ζ|xt)+
∑
y ̸=x

Rt(y,xt)
pt(y)

pt(xt)
+Rt(xt,xt)

+Qt(xt,xt)+
∑
y ̸=xt

R(y,xt)
pt(y)

pt(x)
dt

=

∫ s

1

−α∂t log pt(ζ|xt)−Rt(xt,xt) +Qt(xt,xt) dt

=

∫ s

1

α
(
Rt(xt,xt)−Rα=1

t (xt,xt)
)
−Rt(xt,xt) +Qt(xt,xt) dt;

11
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Algorithm 1 Twisted SMC for Reward-aligned Discrete Diffusion Sampling
Input: Pre-trained discrete diffusion model pθ, Prior distribution π, Proposal F , Reward function r(·), KL weight α,
Number of particles N , Number of discrete time steps T , Temperature schedule 0 = λ1 ≤ · · · ≤ λ0 = 1, Minimum ESS
threshold ESSmin, Resampling scheme RESAMPLE
Output: Weighted particle set {X(i),1:L,W (i)}Ni=1 approximating ptar

1: for i = 1 . . . N do
2: Z

(i)l
1 ∼ Cat(z;π) for l = 1 . . . L {Initialize particles according to prior π at t = 1}

3: W
(i)
1 ← 1/N

4: end for
5: for τ = T . . . 1 do
6: t← τ/T
7: s← (τ − 1)/T
8: for i = 1 . . . N do
9: Z

(i),1:L
s ∼ Fs(z

1:L
s |Z

(i),1:L
t )

10: W
(i)
s ← ws(Z

(i),1:L
s ) {Using Eq. (9)}

11: end for
12: W

(i)
s ←W

(i)
s /

∑N
j=1 W

(j)
s for i = 1 . . . N {Normalize weights}

13: ESS←
(∑N

i=1(W
(i)
s )2

)−1

14: if ESS < ESSmin then
15: {Z(i),1:L

s ,W
(i)
s }Ni=1 ← RESAMPLE({Z(i),1:L

s ,W
(i)
s }Ni=1)

16: end if
17: end for
18: {X(i),1:L,W (i)}Ni=1 ← {Z

(i),1:L
0 ,W

(i)
0 }Ni=1

19: return {X(i),1:L,W (i)}Ni=1

For 2⃝, we similarly have:

2⃝ =
∑

s≤t,xt+ ̸=xt

α (log pt(ζ|xt)− log pt(ζ|xt+)) + logRt(xt+ ,xt)− logQt(xt+ ,xt)

=
∑

s≤t,xt+ ̸=xt

α
(
logRα=1

t (xt+ |xt)− logRt(xt+ |xt+)
)
+ logRt(xt+ ,xt)− logQt(xt+ ,xt).

Combining both terms, the full expression for the importance weight becomes:

logws = 1⃝+ 2⃝

=

∫ s

1

Qt(xt,xt)−Rt(xt,xt) dt+
∑

s≤t,xt+ ̸=xt

logRt(xt+ ,xt)− logQt(xt+ ,xt)

+

∫ s

1

α
(
Rt(xt,xt)−Rα=1

t (xt,xt)
)
dt+

∑
s≤t,xt+ ̸=xt

α
(
logRα=1

t (xt+ |xt)−logRt(xt+ |xt+)
)
,

which recovers the expression for the importance weight in (Lee et al., 2025, Theorem 2).

C. Sampling Algorithm
The final algorithm for reward aligned sampling for discrete diffusion models using twisted SMC is detailed in Alg. 1. For
the proposal Fs, we can choose any one of proposals from Sec. 3. For the resampling scheme, one can use stratified or
systematic multinomial sampling, and do either a full or a partial resample.

D. Gradient analysis of the Denoising model
In Sec. 3.2, we proposed a continuous formulation (Eq. (16)) of the denoising model xθ to address the discontinuity induced
by the Carry-Over Unmasking constraint in masked diffusion models. In this section, we analyse the resulting gradients,

12
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providing motivation for the proposed formulation.

To do so, we first provide a slightly modified version of Eq. (16):

xθ(z
1:L
t , t)l = γx̃θ(z̃

1:L
t , t)l + (1−m)⊙ zlt (37)

where z̃1:Lt :=
[
z1:l−1
t ,m, zl+1,L

t

]
. Notice that this is also a completely valid continuous formulation of the Carry-Over

Unmasking constraint. However, in this case, x̃θ(z̃
1:L
t , t)l is not dependent on zlt, as it is not part of the input.

Let m ∈ {1, . . . , V } denote the index of the mask category. We can write Eq. (37) in the index notation as,

xθ(z
1:L
t , t)li = γx̃θ(z̃

1:L
t , t)li + zlt,i · 1[i ̸= m]. (38)

Similarly, γ can be written as,

γ = 1−
∑
k ̸=m

zlt,k.

We want to compute,
∂xθ(z

1:L
t , t)li

∂zl
′
t,j

for l, l′ ∈ {1, . . . , L} and i, j ∈ {1, . . . , V }. First, note that both terms in Eq. (38) are always zero for i = m, since

x̃θ(z̃
1:L
t , t)lm = 0 by the Zero Masking Probabilities constraint. Therefore, ∂xθ(z

1:L
t ,t)li

∂zl′
t,j

= 0 when i = m, and we restrict

our analysis to i ̸= m from here on. Second, in masked diffusion models, we are only interested in gradients with respect
to masked tokens, i.e., zl

′

t = m, because for unmasked tokens the factorized proposal in Eq. (18) is deterministic and
independent of the gradient. Thus, we will only consider cases where zl

′

t = m in the following analysis.

Now, we can look at cases l′ = l and l′ ̸= l separately.

Case 1: l′ = l

We have, ∂γ

∂zl′
t,j

=

{
−1 j ̸= m

0 j = m
, and ∂x̃θ(z̃

1:L
t ,t)li

∂zl′
t,j

= 0 as x̃θ(z̃
1:L
t , t)l is not dependent on zl

′

t = zlt as noted earlier. The

final gradients are given as,

∂xθ(z
1:L
t , t)li

∂zl
′
t,j

=


{
−x̃θ(z̃

1:L
t , t)li + 1 j = i

−x̃θ(z̃
1:L
t , t)li j ̸= i

j ̸= m

0 j = m.

We can see that these gradients are exactly equal to the finite difference around zlt = m, i.e.,

∂xθ(z
1:L
t , t)li

∂zl
′
t,j

= xθ(
[
z1:l−1
t , ej , z

l+1,L
t

]
, t)li − xθ(

[
z1:l−1
t ,m, zl+1,L

t

]
, t)li

where ej is the one hot vector corresponding to a non-mask category j. Thus, they provide accurate values when using a
first order approximation.

Case 2: l′ ̸= l

The gradients in this case are given simply as,

∂xθ(z
1:L
t , t)li

∂zl
′
t,j

= γ
∂x̃θ(z̃

1:L
t , t)li

∂zl
′
t,j

.

13
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xθ(z
1:L
t , t)li has a gradient with respect to zl

′

t , however it is gated by γ. This makes sense because if zlt is unmasked, i.e.,
γ = 0, then xθ(z

1:L
t , t)l = zlt and it is not dependent on the value of any other token zl

′

t .

We note that throughout this paper, we have used the formulation provided in Eq. (16), not the modified version in Eq. (37).
The original formulation has similar but slightly different gradients - notably, the gradients for the original formulation
include an additional term for l′ = l. We used the gradients of the modified version for our analysis as they are simple and
provide intuition for choosing this specific type of continuous formulation.

E. Related Work
SMC. SMC has been proposed for guidance or alignment of diffusion models by Wu et al. (2023); Dou & Song (2024);
Cardoso et al. (2023); Phillips et al. (2024); Kim et al. (2025); Singhal et al. (2025); Skreta et al. (2025); He et al. (2025). In
the context of discrete diffusion models, Lee et al. (2025) use SMC to sample from the unnormalized tempered distribution
p0(x0)p0(ζ|x0)

α, where ζ is a conditioning variable and α is the guidance scale. They show that guided rate matrix Rα
t

normally used for guidance based sampling is equal to the true tempered rate matrix Rα,true
t only for α = 1. Thus, to sample

from p0(x0)p0(ζ|x0)
α where α ̸= 1, they propose to decouple the rate matrix used as Rβ

t from α. SMC is used to sample
from the target distribution p0(x0)p0(ζ|x0)

α, while the distributions induced by the rate matrix Rβ
t serve as the proposal.

Usually, β is set close to 1. In contrast to our method, their method necessitates additional learning or fine-tuning to first
obtain the rate guided rate matrix Rα=1

t which is needed for the proposal. Additionally, the proposal used is not necessarily
optimal to minimize weight variance. As α and β diverge, SMC resampling will be doing most of the heavy-lifting (instead
of the guidance) and this may lead to high resampling frequency and low sample diversity.

Classifier-free and Classifier-based Guidance. Classifier-based (Dhariwal & Nichol, 2021; Song et al., 2020) and
classifier-free (Ho & Salimans, 2022; Zhang et al., 2023; Yuan et al., 2023) guidance has been widely used for continuous
diffusion models. Li et al. (2022); Lovelace et al. (2023) perform classfier-based and classfier-free guidance using diffusion
models on the continuous latent representations of discrete data. Schiff et al. (2024) propose classifier-free (D-CFG) and
classifier-based guidance (D-CBG) for discrete diffusion models. For D-CBG, they propose to use the first order Taylor
approximation of the classifier output logits log pϕ to make sampling from the classifier guided backward process tractable
for datasets with large vocabularies or high number of dimensions. Nisonoff et al. (2024) derive classifier-based and
classifier-free guidance for CTMC-based discrete diffusion models. They use a similar Taylor approximation to estimate the
predictor-guided rate matrices. Vignac et al. (2022) propose DiGress - a discrete diffusion model for graphs, where they also
use a Taylor approximation for regressor guidance. Ninniri et al. (2024) propose classifier-free guidance for DiGress.

Reinforcement Learning. GLID2E (Cao et al., 2025) and SEPO (Zekri & Boullé, 2025) extend reinforcement learning
based fine tuning methods (Black et al., 2023; Uehara et al., 2024) to discrete diffusion models. Wang et al. (2024) aim to
optimize the same objective presented in Eq. (6). They fine-tune the parametrized generator Qθ of the pre-trained discrete
diffusion model by back-propagating through the rewards. To enable differentiability during sampling at each step of the
CTMC, they use the Gumbel-Softmax trick. DPO has been used to align continuous diffusion models (Wallace et al., 2024)
to human preferences. D3PO (Borso et al., 2025) extends DPO to discrete diffusion models.

F. Experimental Setting and Additional Results
F.1. Baselines

Oracle. For the mixture of Gaussian toy datasets, we use twisted SMC with the locally optimal proposal presented in
Sec. 3.1 as the oracle. The locally optimal proposal is calculated using a brute force approach for the entire 642-sized state
space at each time step.

Approximate guidance. We intend to compare the proposed tempered SMC method with approximate guidance. For
approximate guidance, we need to sample using

pguidanceθ (z1:Ls |z1:Lt ) ∝ pθ(z
1:L
s |z1:Lt )exp

(
r̂(z1:Ls )

α

)
where 1

α acts as the guidance strength. Since sampling from the above is intractable for large vocabulary sizes or high-
dimensional data, we can use the first order Taylor approximation from Eq. (12) again, to rewrite pguidanceθ (z1:Ls |z1:Lt ) as
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proportional to:

pθ(z
1:L
s |z1:Lt )exp

(
1

α

L∑
l=1

⟨∇zl
t
r̂(z1:Lt ), zls⟩

)
(39)

This process becomes very similar to using the first order Taylor approximation of the locally optimal proposal, except that
there is no tempering and no resampling.

F.2. Mixture of Gaussian datasets

For all experiments on these datasets, we use 2000 particles and 100 discretized time steps. The reward function computation
details are provided in the Appendix F.2.1. For resampling, we have used ESS threshold ESSmin = 1000, and we perform
a full resample using systematic multinomial sampling. The KL weight α is 1, and the temperature schedule is set as
λt = 1− t. For the diffusion model, we use a linear noise schedule αt = 1− t.

F.2.1. REWARD COMPUTATION

The rewards specified in Fig. 1 are computed in a differentiable manner for one hot inputs x,y corresponding to X,Y as
follows. For the top row:

r(x,y) =

V∑
i=1

(
−xi ·

î2

100
− yi · î2

)
and, similarly for the bottom row:

r(x,y) =

V∑
i=1

(
−xi · î2 − yi ·

(̂i− 1)2

10

)

where î = 12(i/63− 1/2).

F.2.2. REWARD AND ESS TRACES FOR DIFFERENT PROPOSALS

In Fig. 3, we visualize traces of the mean (estimated) reward and ESS of the particle set when using tempered SMC with
different proposals on the Gaussian mixture datasets from Sec. 4.1.

The first order approximation of the locally optimal proposal required fewer resampling steps compared to using the reverse
as proposal for the first dataset, but for the second dataset, the number of resampling steps needed is the same for both. In
both datasets, however, using the locally optimal proposal produces significantly fewer resamples.

It is also worth noting that the reverse process relies completely on the SMC resampling steps to increase the rewards for the
particles. This is expected as the reverse process proposal in Eq. (10) is completely independent of the reward function. In
contrast, using both the locally optimal proposal and its first order approximation results in a steady increase in rewards as
the particles are iteratively sampled using reward-guided proposals ( Eq. (11), Eq. (17)).

F.3. Binarized MNIST dataset

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

t

Used for MDM
Used for ReMDM and UDLM

Figure 6. Tempering schedules used for twisted
SMC on the binarised MNIST dataset.

Applying the twisted SMC-based guidance to masked diffusion models
trained on the binarised MNIST dataset was tricky because the reward-
guided proposals become ineffective once a pixel is unmasked. This neces-
sitated careful selections of tempering schedule, KL weight, ESS threshold,
etc. to get good results. To test this theory, we redid our experiments using
ReMDM and UDLM, both of which allow injecting guidance throughout
the entire sampling process.

For all experiments on this dataset, we use 20 particles and 100 discretized
time steps. The tempering schedules used are visualised in Fig. 6. For
resampling, we have used ESS threshold ESSmin = 15, and we perform
partial resampling to resample only half of the particles. For all the diffusion
models, we use a linear noise schedule αt = 1− t.
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Locally Optimal Proposal Reverse Process as Proposal First order Approx. Locally Optimal Proposal Resampling

Figure 3. Mean reward and normalized effective sample size (ESS) of the particle sets across timesteps using tempered SMC with different
proposals. The first and second rows correspond to the mixture of Gaussians datasets shown in the first and second rows of Fig. 1,
respectively.
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Figure 4. Binarised MNIST samples generated for ytarget = 4,
α = 1 using ReMDM with tempered SMC (left and middle),
and approximate guidance (right).
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Figure 5. Binarised MNIST samples generated for ytarget = 4,
α = 1 using UDLM with tempered SMC (left and middle), and
approximate guidance (right).

F.3.1. USING REMDM

Setup. We reuse the masked diffusion model trained in Sec. 4.2, only replacing the reverse process parametrisation to that of
ReMDM for inference. For the remasking schedule, we use the max-capped schedule (Wang et al., 2025), with ηcap = 0.1.
We use the same reward function. For the tempered SMC, we change the tempering schedule to a simple linear schedule,
λt = 1− t.

Result. Fig. 4 shows the resulting particles. The benefit of allowing remasking is clearly evident when comparing the
samples generated using approximate guidance in Fig. 4 with those in Fig. 2. The amount of corrupted samples have
decreased significantly. We observed that, SMC with ReMDM is much more flexible compared to masked diffusion in terms
of the choice of tempering schedule, and other parameters.

F.3.2. USING UDLM

Setup. We train a UDLM on the binarised MNIST dataset from Sec. 4.2. For the denoising model, we use a U-Net with
attention applied at lower resolutions, similar to (Ho et al., 2020). We use a linear tempering schedule λt = 1− t for SMC.

Result. The resulting samples are shown in Fig. 5.

G. Limitations and Future Work
While our method shows good results on small datasets, its effectiveness on more complex tasks, such as math reasoning,
protein design, remains to be evaluated. Additionally, we have yet to benchmark our approach against a broader set of
reinforcement learning and guidance methods, as outlined in Appendix E. The temperature schedule λt used for intermediate
target distributions is presently hand-crafted; future work will explore automating this component through adaptive tempering
techniques.
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