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ABSTRACT

Pruning-at-initialization (PAI) methods can prune the individual weights of a convo-
lutional neural network (CNN) before training, thus avoiding expensive fine-tuning
or retraining of the pruned model. While PAI shows promising results in reducing
model size, the pruned model still requires unstructured sparse matrix computation,
making it difficult to achieve a real speedup. In this work, we show both theoreti-
cally and empirically that the accuracy of CNN models pruned by a PAI method
depends on the layer-wise density (i.e., the fraction of the remaining parameters
in each layer), irrespective of the granularity of pruning. We formulate PAI as
a convex optimization problem based on an expectation-based proxy for model
accuracy, which can produce the optimal allocation of the layer-wise densities with
respect to the proxy model. Using our formulation, we further propose a structured
and hardware-friendly PAI method, named PreCrop, to prune or reconfigure CNNs
in the channel dimension. Our empirical results show that PreCrop achieves a
higher accuracy than existing PAI methods on several popular CNN architectures,
including ResNet, MobileNetV2, and EfficientNet, on both CIFAR-10 and Ima-
geNet. Notably, PreCrop achieves an accuracy improvement of up to 2.7% over a
state-of-the-art PAI algorithm when pruning MobileNetV2 on ImageNet. PreCrop
also improves the accuracy of EfficientNetB0 by 0.3% on ImageNet with only 80%
of the parameters and the same FLOPs.

1 INTRODUCTION

Convolutional neural networks (CNNs) have achieved state-of-the-art accuracy in a wide range of
machine learning (ML) applications. However, the massive computational and memory requirements
of CNNs remain a major barrier to more widespread deployment on resource-limited edge and mobile
devices. This challenge has motivated a large and active body of research on CNN compression,
which attempts to simplify the original model without significantly compromising the accuracy.

Weight pruning [15, 7, 17, 4, 8] has been extensively explored to reduce the computational and
memory demands of CNNs. Existing methods create a sparse CNN model by iteratively removing
ineffective weights/activations and training the resulting sparse model. Such an iterative pruning
approach usually enjoys the least accuracy degradation but at the cost of a more computationally
expensive training procedure. Moreover, training-based pruning methods introduce additional hyper-
parameters, such as the learning rate for fine-tuning and the number of epochs before rewinding [20],
which make the pruning process even more complicated and less reproducible.

To minimize the cost of pruning, a new line of research proposes pruning-at-initialization (PAI)
[16, 27, 24], which identifies and removes unimportant weights in a CNN before training. Similar
to training-based pruning, PAI assigns an importance score to each individual weight and retains
only a subset of them by maximizing the sum of the importance scores of all remaining weights. The
compressed model is then trained using the same hyperparameters (e.g., learning rate and the number
of epochs) as the baseline model. Thus, the pruning and training of CNNs are cleanly decoupled,
greatly reducing the complexity of obtaining a pruned model. Currently, SynFlow [24] is considered
the state-of-the-art PAI technique — it eliminates the need for data during pruning as required in
prior arts [16, 27] and achieves a higher accuracy with the same compression ratio.

However, existing PAI methods mostly focus on fine-grained weight pruning, which removes individ-
ual weights from the CNN model without preserving any structures. As a result, both inference and
training of the pruned model require sparse matrix computation, which is challenging to accelerate
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on commercially-available ML hardware that is optimized for dense computation (e.g., GPUs and
TPUs [14]). According to a recent study [6], even with the NVIDIA cuSPARSE library, one can
only achieve a meaningful speedup for sparse matrix multiplications on GPUs when the sparsity is
over 98%. In practice, it is difficult to compress modern CNNs by more than 50× without a drastic
degradation in accuracy [2]. Therefore, structural pruning patterns (e.g., pruning weights for the
entire output channel) are preferred to enable practical memory and computational saving by avoiding
irregular sparse storage and computation.

In this work, we propose novel structured PAI techniques and demonstrate that they can achieve
the same level of accuracy as the unstructured methods. We first introduce synaptic expectation
(SynExp), a new proxy metric for accuracy, which is defined to be the expected sum of the importance
scores of all the individual weights in the network. SynExp is invariant to weight shuffling and
reinitialization, thus addressing some of the deficiencies of the fine-grained PAI approaches found in
recent studies [22, 5]. We also show that SynExp does not vary as long the layer-wise density remains
the same, irrespective of the granularity of pruning. Based on this key observation, we formulate an
optimization problem that maximizes SynExp to determine the layer-wise pruning ratios, subject
to model size and/or FLOPs constraints. We then propose PreCrop, a structured PAI that prunes
CNN models at the channel level in a way to achieve the target layer-wise density determined by the
SynExp optimization. PreCrop can effectively reduce the model size and computational cost without
loss of accuracy compared to existing fine-grained PAI methods. Besides channel-level pruning, we
further propose PreConfig, which can reconfigure the width dimension of a CNN to achieve a better
accuracy-complexity trade-off with almost zero computational cost. Our empirical results show that
the model after PreConfig can achieve higher accuracy with fewer parameters and FLOPs than the
baseline for a variety of modern CNN architectures.

We summarize our contributions as follows:

• We propose to use the SynExp as a proxy for accuracy and formulate PAI as an optimization
problem that maximizes SynExp under model size and/or FLOPs constraints. We also show
that the accuracy of the CNN model pruned by solving the constrained optimization is
independent of the pruning granularity.

• We introduce PreCrop, a channel-level structured pruning technique that builds on the
proposed SynExp optimization. Our experiments show that CNN models pruned by PreCrop
achieve a similar or better accuracy compared to the state-of-the-art unstructured PAI
approaches. Compared to SynFlow, PreCrop achieves 2.7% and 0.9% higher accuracy on
MobileNetV2 and EfficientNet on ImageNet with fewer parameters and FLOPs.

• We show that PreConfig can be used to optimize the width of each layer in the network with
almost zero computational cost (e.g., within one second on CPU). Notably, PreConfig can
effectively optimize the structure of EfficientNet and MobileNetV2, increasing the accuracy
by 0.3% on ImageNet while using 20% fewer parameters and the same FLOPs.

2 RELATED WORK

Model Compression in General can reduce the computational cost of large networks to ease
their deployment in resource-constrained devices. Besides pruning, quantization [3, 30, 13], neural
architecture search (NAS) [31, 23], and distillation [12, 28] are also commonly used to improve the
efficiency of the model.

Training-Based Pruning uses various heuristic criteria to prune unimportant weights. They typically
employ an iterative training-prune-retrain process where the pruning stage is intertwined with the
training stage, which may increase the overall training cost by several folds.

Existing training-based pruning methods can be either unstructured [7, 15] or structured [11, 18],
depending on the granularity and regularity of the pruning scheme. Training-based unstructured
pruning usually achieves better accuracy given the same model size budget, while structured pruning
can achieve a more practical speedup and compression without special support from custom hardware.

(Unstructured) Pruning-at-Initialization (PAI) [16, 27, 24] methods provide a promising approach
to mitigating the high cost of training-based pruning. They can identify and prune unimportant
weights right after initialization and before the training starts. Related to these efforts, authors of [5]
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and [22] independently find that for the existing PAI methods, randomly shuffling the weights within
a layer or reinitializing the weights does not cause any accuracy degradation.

Neural Architecture Search (NAS) [31, 26] automatically explores a large space of candidate
models to achieve a better accuracy-efficiency trade-off. The typical bases of the NAS search space
include the width, depth, resolution, and choice of building blocks. However, existing approaches can
only search in a small subset of the possible configurations due to the cost. For example, the search
space of the channel width usually only contains a limited set of integer values. The cost for NAS is
also orders of magnitude higher than training a single model. Some NAS algorithms [1, 29] use a
cheap proxy instead of training the whole network, but an expensive reinforcement learning [1] or
evolutionary algorithm [19] is still used to predict a good network.

3 PRUNING-AT-INITIALIZATION VIA SYNEXP OPTIMIZATION

In this section, we first review the preliminaries and deficiencies of existing PAI methods. To
overcome the limitations, we introduce a new proxy for the accuracy of the PAI compressed model.
We then propose a new formulation of PAI that maximizes the proxy metric using convex optimization.

3.1 PAI BACKGROUND

Preliminaries. PAI aims to prune a neural network after initialization but before training to avoid
the time-consuming training-pruning-retraining process. Prior to training, PAI typically uses the
magnitude of gradients (with respect to weights) to estimate the importance of individual weights.
This requires both forward and backward propagation passes. PAI prunes the weights (W ) with
smaller importance scores by setting the corresponding entries in the binary weight mask (M ) to zero.
More concretely, to remove weights W , M is applied to W in an element-wise manner as W ⊙M ,
where ⊙ denotes the Hadamard product.

Popular PAI approaches, such as SNIP [16], GraSP [27], and SynFlow [24], employ different methods
to estimate the importance of individual weights. Single-shot PAI algorithms, such as SNIP and
GraSP, prune the model to the desired sparsity in a single pass. Alternatively, SynFlow, which
represents the state-of-the-art PAI algorithm, repeats the process of pruning a small fraction of
weights and re-evaluating the importance scores until the desired pruning rate is reached. Through
the iterative process, the importance of each weight can be estimated more accurately.

Specifically, the importance score for a fully connected network used in SynFlow is defined as:

S(W l
ij) =

[
1T

N∏
k=l+1

∣∣W k ⊙Mk
∣∣]

i

∣∣W l
ijM

l
ij

∣∣ [ l−1∏
k=1

∣∣W k ⊙Mk
∣∣1]

j

, (1)

where N is the number of layers, W l and M l are the weight and weight mask of the l-th layer,
S(W l

ij) is the SynFlow score for a single weight W l
ij , | · | is element-wise absolute operation, and 1

is an all-one vector. Here no training data or labels are required to compute the importance score,
thus making SynFlow a data-agnostic algorithm.

Deficiencies. Similar to training-based fine-grained pruning [7, 15], existing PAI methods also use
the sum of importance scores of the remaining weights as a proxy for model accuracy. Specifically,
PAI obtains a binary weight mask (i.e., the pruning decisions) by maximizing the following objective:

maximize
N∑
l=1

Sl ·M l over M l subject to
N∑
l=1

∥M l∥0 ≤ Bparams , (2)

where Sl is the importance score matrix for the l-th layer, ∥ · ∥0 is the number of nonzero entries in a
matrix, and Bparams is the target size of the compressed model.

Given the setup of this optimization, it is natural that a subset of the individual weights will be deemed
more important than others. Moreover, existing methods for computing the importance scores all
depend on the values of the weights, thus any updates to the weights (such as reinitialization) will
easily result in a change to the accuracy metric (i.e., the sum of the individual importance scores).
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However, recent studies in [22, 5] show that randomly shuffling the weight mask M l or reinitializing
the weights W l does not affect the final accuracy of models compressed by any of the existing PAI
methods. In addition, they show that the different pruned models have a similar accuracy as long as
they have the same layer-wise density. This finding suggests that the aforementioned metric is not a
good proxy for indicating the accuracy of the pruned model.

3.2 SYNEXP INVARIANCE THEOREM

In this section, we propose a new proxy metric called SynExp to address the deficiencies of the
existing PAI approaches. We argue that a good accuracy proxy should enable PAI to achieve the
following:

1. The pruning decision (i.e., weight mask M ) can be made before the model is initialized.

2. Maximization of the proxy should output layer-wise density pl as the result, as opposed to
pruning decisions for individual weights.

For the ease of later discussion, we formalize the weight matrix W and weight mask matrix M as
two random variables, given a fixed density pl for each layer, for random pruning before initialization.
If W l contains αl parameters, Al = {M,M l

i ∈ {0, 1} ∀1 ≤ i ≤ αl,
∑

i M
l
i = pl × αl} is the set of

all possible M l with the same shape as the W l that satisfies the layer-wise density (pl) constraint.
Then, the random weight mask M l for layer l is sampled uniformly from Al. Also, each individual
weight W l

i in layer l is independently sampled from a given distribution Dl.

The observations in Section 3.1 indicate that different values of these two random variables M and
W result in similar final accuracy of the pruned model. However, different values do change the
proxy value for the model accuracy in existing PAI methods. For example, the SynFlow score in
Equation 2 may change under different instantiations of M and W . Therefore, we propose a new
proxy that is invariant to the instantiation of M and W for the model accuracy in the context of PAI —
the expectation of the sum of the importance scores of all unpruned (i.e., remaining) weights. The
proposed proxy can be formulated as follows:

maximize E
M,W

[S] = E
M,W

[
N∑
l=1

Sl ·M l

]
over pl subject to

N∑
l=1

αl · pl ≤ Bparams , (3)

where EM,W [S] stands for the expectation of the importance score S over W and M . In this
new formulation, pl is optimized to maximize the proposed proxy for model accuracy. Since the
expectation is computed over the W and M , the instantiations of these two random variables do not
affect the expectation.

To evaluate the expectation before weight initialization, we adopt the importance metric proposed by
SynFlow, i.e., plugging S in Equation 1 into Equation 3 As a result, we can compute the expectation
analytically without forward or backward propagations. This new expectation-based proxy is referred
to as SynExp, i.e., synaptic expectation.

We show SynExp is invariant to the granularity of pruning PAI in the SynExp Invariance Theorem,
which is stated as follows.

Theorem 1. SynExp Invariance Theorem. Given a specific CNN architecture, the SynExp
(E[M,W ][SSF]) of any randomly compressed model with the same layer-wise density pl is a constant,
independent of the pruning granularity. The constant SynExp equals:

E
M,W

[SSF] = NCN+1

N∏
l=1

(plCl · Ex∼D[|x|]) , (4)

where N is the number of layers in the network, Ex∼D[|x|] is the expectation of magnitude of
distribution D, Cl is the input channel size of layer l and is also the output channel size of l − 1, and
pl =

1
αl
∥Ml∥0 is the layer-wise density.

In Equation 4, N and Cl are all hyperparameters of the CNN architecture and can be considered
constants. E|Dl| is also a constant under a particular distribution Dl. The layer-wise density pl is
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the only variable in the equation. Thus, SynExp satisfies both of the aforementioned properties: 1)
pruning is done prior to the weight initialization; 2) the layer-wise density can be directly optimized.
Furthermore, Theorem 1 shows that the granularity of pruning has no impact on the proposed SynExp
metric. In other words, the CNN model compressed using either unstructured or structured pruning
method is expected to have a similar accuracy.
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Figure 1: Comparison of the performance using
different pruning granularities on ResNet20 using
CIFAR-10.

The detailed proof of SynExp Invariance The-
orem can be found in Appendix A. We also
empirically verify it by randomly pruning each
layer of a CNN at three different granular levels
but with the same layer-wise density. Specifi-
cally, we perform random pruning at (1) weight-
, (2) filter-, and (3) channel-level to achieve
the desired layer-wise pruning ratios obtained
from solving Equation 3. For weight and filter
pruning, randomly pruning each layer to match
the layer-wise density pl occasionally detaches
some weights from the network, especially when
the density is low. The detached weights do not
contribute to the prediction but are counted as
remaining parameters. Thus, we remove the de-
tached weights for a fair comparison following
the same approach described in [25]. For channel pruning, it is not trivial to achieve the target
layer-wise density while satisfying the constraint that the number of output channels of the previous
layer must equal the number of input channels of the next layer. Therefore, we employ PreCrop
proposed in Section 4.2. As shown in Figure 1, random pruning with different granularity can
obtain a similar accuracy compared to SynFlow, as long as the layer-wise density remains the same.
The empirical results are consistent with SynExp Invariance Theorem and also demonstrate the
efficacy of the proposed SynExp metric. We include additional empirical results using different CNN
architectures and other importance scores (e.g, SNIP, GraSP) in Appendix C.

3.3 OPTIMIZING SYNEXP

As discussed in Section 3.2, the layer-wise density matters for our proposed SynExp approach. Here,
we show how to obtain the layer-wise density in Equation 3 that maximizes SynExp under model
size and/or FLOPs constraints.

3.3.1 OPTIMIZING SYNEXP WITH PARAMETER COUNT CONSTRAINT

Given that the goal of PAI is to reduce the size of the model, we need to add a constraint on the total
number of parameters Bparams (i.e., parameter count constraint), where Bparams is typically greater
than zero and less than the number of parameters in the original network. Since layer-wise density pl
is the only variable in Equation 3, we can simplify the equation by removing other constant terms, as
follows:

maximize
N∑
l=1

log pl over pl subject to
N∑
l=1

αl · pl ≤ Bparams ,

0 < pl ≤ 1,∀1 ≤ l ≤ N ,

(5)

where αl is the number of parameters in layer l.

Equation 5 is a convex optimization problem that can be solved analytically1. We compare the
layer-wise density derived from solving Equation 5 with the density obtained using SynFlow. As
shown in Figure 2, the layer-wise densities obtained by both approaches are nearly identical, where
our new formulation eliminates the need for the iterative re-evaluation of the SynFlow scores as well
as the pruning process in SynFlow. It is also worth noting that the proposed method can find the
optimal layer-wise density even before the network is initialized.
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Figure 2: Comparison of the layer-wise densities obtained by SynExp optimization with parameter
count constraint and SynFlow. Higher transparency means that the problem is constrained by a
smaller parameter count.

3.3.2 OPTIMIZING SYNEXP WITH PARAMETER COUNT AND FLOPS CONSTRAINTS

As discussed in Section 3.3.1, we can formulate PAI as a convex optimization problem with a
constraint on the model size. However, the number of parameters does not necessarily reflect the
performance (e.g., throughput) of the CNN model. In many cases, CNN models are compute-bound
on commodity hardware [14, 9]. Therefore, we also introduce a FLOPs constraint in our formulation.

With the existing PAI algorithms, it is not straightforward to directly constrain the optimization using
a bound on the FLOP count. The savings in FLOPs are instead the byproduct of the weight pruning
as specified in Equation 2. In contrast, it is much easier to account for FLOPs in our formulation,
which aims to determine the density of each layer as opposed to the inclusion of individual weights
from different layers. Thus for each layer, we can easily derive the required FLOP count based on the
density (pl). After incorporating the constraint on FLOPs (BFLOPs), the convex optimization problem
becomes:

maximize
N∑
l=1

log pl over pl subject to
N∑
l=1

αl · pl ≤ Bparams,

N∑
l=1

βl · pl ≤ BFLOPs ,

0 < pl ≤ 1,∀1 ≤ l ≤ N,

(6)

where βl is the number of FLOPs in the lth layer.
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Figure 3: Comparison of our method with
other PAI methods — we repeat the experiment
using ResNet-20 on CIFAR-10 five times and re-
port the mean and variance (error bar) of the accu-
racy. All the models in the figures have 1.5× 104

parameters.

Since the additional FLOPs constraint is linear, the
optimization problem in Equation 6 remains convex
and has an analytical solution1. By solving SynExp
optimization with a fixed Bparams but different BFLOPs,
we can obtain the layer-wise density for various mod-
els that have the same number of parameters but dif-
ferent FLOPs. Then, we perform random weight
pruning on the CNN model to achieve the desired
layer-wise density. We compare the proposed Syn-
Exp optimization (denoted as Ours) with other pop-
ular PAI methods. As depicted in Figure 3, given a
fixed model size (1.5×104 in the figure), our method
can be used to generate a Pareto Frontier that spans
the spectrum of FLOPs, while other methods can
only have a fixed FLOPs. Our method dominates all
other methods in terms of both accuracy and FLOPs
reduction.

1We include analytical solutions for Equation 5 and Equation 6 in Appendix B for completeness.
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Figure 4: Illustration of PreCrop for layers with residual connections — Cl and Cl+1 represent the
number of input channels of layer l and l + 1, respectively. pl represents the density of layer l.

4 STRUCTURED PRUNING-AT-INITIALIZATION

The SynExp Invariance Theorem shows that the pruning granularity of PAI methods should not
affect the accuracy of the pruned model. Channel pruning, which prunes the weights of the CNN
at the output channel granularity, is considered the most coarse-grained and hardware-friendly
pruning technique, Therefore, applying the proposed PAI method for channel pruning can avoid both
complicated retraining/re-tuning procedures and irregular computations. In this section, we propose a
structured PAI method for channel pruning, named PreCrop, to prune CNNs in the channel dimension.
In addition, we propose a variety of PreCrop with relaxed density constraints to reconfigure the width
of each layer in the CNN model, which is called PreConfig.

4.1 PRECROP

Applying the proposed PAI method to channel pruning requires a two-step procedure. First, the
layer-wise density pl is obtained by solving the optimization problem shown in Equation 5 or 6.
Second, we need to decide how many output channels of each layer should be pruned to satisfy
the layer-wise density. However, it is not straightforward to compress each layer to match a given
layer-wise density due to the additional constraint that the number of output channels of the current
layer must match the number of input channels of the next layer.

We introduce PreCrop, which compresses each layer to meet the desired layer-wise density. Let Cl

and Cl+1 be the number of input channels of layer l and l + 1, respectively. Cl+1 is also the number
of output channels of layer l. For layers with no residual connections, the number of output channels
of layer l is reduced to

⌊√
pl · Cl+1

⌋
. The number of input channels of layer l+ 1 needs to match the

number of output channels of layer l, which is also reduced to
⌊√

pl · Cl+1

⌋
. Therefore, the actual

density of layer l after PreCrop is
√
pl−1 · pl instead of pl. We empirically find that

√
pl−1 · pl is

close enough to pl because the neighboring layers have similar layer-wise densities. Alternatively,
one can obtain the exact layer-wise density p by only reducing the number of input or output channels
of a layer. However, this approach leads to a significant drop in accuracy, because the number of the
input and output channels can change dramatically (e.g., plCl ≪ Cl+1 or Cl ≫ plCl+1). This causes
the shape of the feature map to change dramatically in adjacent layers, resulting in information loss.

For layers with residual connections, Figure 4 depicts an approach to circumvent the constraint on
the number of channels of adjacent layers. We can reduce the number of input and output channels of
layer l from Cl and Cl+1 to

√
plCl and

√
plCl+1, respectively. In this way, the density of each layer

can match the given layer-wise density obtained from the proposed PAI method. Since the output of
layer l needs to be added element-wisely with the original input to layer l, the output of layer l is
padded with zero-valued channels to match the shape of the original input. In our implementation,
we simply add the output of layer l to the first

√
plCl+1 channels of the original input to layer l, thus

requiring no extra memory or computation for zero padding. PreCrop eliminates the requirement
for sparse computation in existing PAI methods and thus can be used to accelerate both training and
inference of the pruned models.

4.2 PRECONFIG: PRECROP WITH RELAXED DENSITY CONSTRAINT

PreCrop uses the layer-wise density obtained from solving the convex optimization problem, which is
always less than 1 following the common setting for pruning (i.e., pl ≤ 1). However, this constraint
on layer-wise density is not necessary for our method since we can increase the number of channels
(i.e., expand the width of the layer) before initialization. By solving the problem in Equation 6
without the constraint pl ≤ 1, we can expand the layers with a density greater than 1 (pl > 1) and
prune the layers with a density less than 1 (pl < 1). We call this variant of PreCrop as PreConfig
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(a) PreCrop-Params vs. SynFlow. (b) PreCrop-FLOPs vs. SynFlow.

Figure 5: Comparison of PreCrop-Params and PreCrop-FLOPs with SynFlow — we repeat the
experiment using ResNet20 (top), WideResNet20 (middle), and MobileNetV2 (bottom) on CIFAR-10 three
times and report the mean and variance (error bar) of the accuracy.

(PreCrop-Reconfigure). If we set Bparams and BFLOPs to be the same as the original network, we
can essentially reconfigure the width of each layer of a given network architecture under certain
constraints on model size and FLOPs.

The width of each layer in a CNN is usually designed manually, which often relies on extensive
experience and intuition. Using PreConfig, we can automatically determine the width of each layer
in the network to achieve a better cost-accuracy trade-off. PreConfig can also be used as (a part of)
an ultra-fast NAS. Compared to conventional NAS, which typically searches on the width, depth,
resolution, and choice of building blocks, PreConfig only changes the width. Nonetheless, PreConfig
only requires a minimum amount of time and computation compared to NAS methods; it only needs
to solve a relatively small convex optimization problem, which can finish within a second on a CPU.

5 EVALUATION

In this section, we empirically evaluate PreCrop and PreConfig. We first demonstrate the effectiveness
of PreCrop by comparing it with SynFlow. We then use PreConfig to tune the width of each layer and
compare the accuracy of the model after PreConfig with the original model. We perform experiments
using various modern CNN models, including ResNet [10], MobileNetV2 [21], and EfficientNet [23],
on both CIFAR-10 and ImageNet. We set all hyperparameters used to train the models pruned by
different PAI algorithms to be the same. See Appendix E for detailed experimental settings.

5.1 EVALUATION OF PRECROP

For CIFAR-10, we compare the accuracy of SynFlow (red line) and two variants of PreCrop: PreCrop-
Params (blue line) and PreCrop-FLOPs (green line). PreCrop-Params adds the parameter count
constraint whereas PreCrop-FLOPs imposes the FLOPs constraint into the convex optimization
problem. As shown in Figure 5a, PreCrop-Params achieves similar or even better accuracy as
SynFlow under a wide range of different model size constraints, thus validating that PreCrop-Params
can be as effective as the fine-grained PAI method. Considering the benefits of structured pruning,
PreCrop-Params should be favored over existing PAI methods. Figure 5b further shows that PreCrop-
FLOPs consistently outperforms SynFlow by a large margin, especially when the reduction in FLOPs
is large. The experimental results show that PreCrop-FLOPs should be adopted when the performance
of the model is limited by the computational cost.
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Table 1: Comparison of PreCrop with SynFlow on ImageNet — The dagger(†) implies that the
numbers are theoretical without considering the overhead of sparse matrices in storing and computing.

NETWORK METHODS FLOPS (G) PARAMS (M) ACCURACY (%)

RESNET34

BASELINE 3.64 21.80 73.5

SYNFLOW 2.78† 10.91† 72.1 (-1.4)
PRECROP 2.73 11.09 71.5 (-2.0)

MOBILENETV2

BASELINE 0.33 3.51 69.6

SYNFLOW 0.26† 2.44† 67.6 (-2.0)
PRECROP 0.26 2.33 68.8 (-1.8)

SYNFLOW 0.21† 1.91† 64.5 (-5.1)
PRECROP 0.21 1.85 67.2 (-2.4)

EFFICIENTNETB0

BASELINE 0.40 5.29 73.0

SYNFLOW 0.30† 3.72† 71.8 (-1.2)
PRECROP 0.30 3.67 72.7 (-0.3)

Table 1 summarizes the comparison between PreCrop and SynFlow on ImageNet. For ResNet-34,
PreCrop achieves 0.6% lower accuracy compared to SynFlow with a similar model size and FLOPs.
For both MobileNetV2 and EfficientNetB0, PreCrop achieves 1.2% and 0.9% accuracy improvements
compared to SynFlow with strictly fewer FLOPs and parameters, respectively. The experimental
results on ImageNet further support SynExp Invariance Theorem that coarse-grained structured
pruning (e.g., PreCrop) can perform as well as unstructured pruning. In conclusion, PreCrop achieves
a favorable accuracy and model size/FLOPs tradeoff compared to the state-of-the-art PAI algorithm.

5.2 EVALUATION OF PRECONFIG

As discussed in Section 4.2, PreConfig can be viewed as an ultra-fast NAS technique, which adjusts
the width of each layer in the model even before the weights are initialized.

Table 2: PreConfig on ImageNet.
NETWORK METHODS FLOPS (G) PARAMS (M) ACCURACY (%)

RESNET34 BASELINE 3.64 21.80 73.5
PRECONFIG 3.64 16.52 (75.8%) 73.3 (-0.2)

MOBILENETV2 BASELINE 0.33 3.51 69.6
PRECONFIG 0.32 (97.0%) 2.83 (80.6%) 69.9 (+0.3)

EFFICIENTNETB0 BASELINE 0.40 5.29 73.0
PRECONFIG 0.40 4.29 (81.1%) 73.3 (+0.3)

Table 2 compares the accuracy of the reconfigured model with the original model under similar model
size and FLOPs constraints. For ResNet34, with similar accuracy, we reduce the parameter count
by 25%. For MobileNetV2, we achieve 0.3% higher accuracy than the baseline with 20% fewer
parameters and 3% fewer FLOPs. For the EfficientNet, we can also achieve 0.3% higher accuracy
than the baseline with only 80% of the parameters and the same FLOPs. Note that EfficientNet is
identified by a NAS method. As PreConfig only changes the number of channels of the model before
initialization, we believe it also applies to other compression techniques.

6 CONCLUSION

In this work, we theoretically and empirically show that the accuracy of the CNN models pruned
using PAI methods depends on the layer-wise density. We formulate PAI as a simple convex SynExp
optimization. Based on SynExp optimization, we further propose PreCrop and PreConfig to prune
and reconfigure CNNs in the channel dimension. Our experimental results demonstrate that PreCrop
can outperform existing fine-grained PAI methods on various networks and datasets.
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REPRODUCIBILITY STATEMENT

The proof of SynExp Invariance Theorem is stated in the appendix with explanations. We provide the
source code for the key experiments in the paper. We thoroughly checked the implementation and
also verified empirically that the results in this paper are reproducible. The source code will be made
available through GitHub.
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A PROOF OF SYNEXP INVARIANCE THEOREM

Theorem 1. Given a specific CNN architecture, the SynExp (E[M,W ][SSF]) of any randomly com-
pressed model with the same layer-wise density pl is a constant, independent of the pruning granular-
ity. The constant SynExp equals:

E
M,W

[SSF] = NCN+1

N∏
l=1

(plCl · Ex∼D[|x|]) , (7)

where N is the number of layers in the network, Ex∼D[|x|] is the expectation of magnitude of
distribution D, Cl is the input channel size of layer l and is also the output channel size of l − 1, and
pl =

1
αl
∥Cl∥0 is the layer-wise density.

Proof. Assuming the network has N layers, weight matrix W l ∈ RCl×Cl+1 , mask matrix M l ∈
{0, 1}Cl×Cl+1 . Cl and Cl+1 are the input and output channel size of layer l. As the output channel size
of any layer l equals to the input channel size of the next layer l + 1, we have Cl+1 = Cl+1,∀l < N .

We first prove the Theorem 1 on fully-connected network, and we can extend it to CNNs easily. From
Equation 1, in a fully-connected network, the Synaptic Flow score for any parameter W l

ij with mask
M l

ij in layer l equals to:

SSF(W
l
(i,j)) =

[
1T

N∏
k=l+1

∣∣W k ⊙Mk
∣∣]

i

∣∣∣W l
(i,j)M

l
(i,j)

∣∣∣ [ l−1∏
k=1

∣∣W k ⊙Mk
∣∣1]

j

(8)

We compute the SynExp of the layer l (E[M,W ](SSF)
[l]), then the SynExp of the network is simply

the sum of SynExp of all layers:

E[M,W ](SSF) =

N∑
l=1

E[M,W ](SSF)
[l] (9)

We define the expectation value for input channel i, output channel j, and the whole layer in layer l
as El

(i,∗), E
l
(∗,j), and El

(∗,∗):

El
(i,∗) =

1

Cl+1

∑
x

|W l
(i,x)M

l
(i,x)| (10)

El
(∗,j) =

1

Cl

∑
x

|W l
(x,j)M

l
(x,j)| (11)

El
(i,j) = El

(∗,∗) =
1

ClCl+1

∑
i,j

|W l
(i,j)M

l
(i,j)| =

1

αl

∑
i,j

|W l
(i,j)M

l
(i,j)| = plE|Dl| (12)

Here we use E|Dl| to denote Ex∼D[|x|].
As the weight in layer l is sampled from distribution D, and the mask matrices are also randomly
sampled, we have

E[k]
(∗,∗) = Ek

(i,∗) = Ek
(∗,j) = plE|Dl| (13)

With Ek
(i,∗), E

k
(∗,j), and El

(∗,∗), we can rewrite Equation 8 to:

E[SSF(W
l
(i,j))] =

(
N∏

k=l+2

Ck+1Ek
(∗,∗)

)
· Cl+2El+1

(i,∗) · E
l
(i,j) · Cl−1El−1

(∗,j) ·

(
l−2∏
k=1

CkE
k
(∗,∗)

)
(14)
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Combining Equation 3 and 14, because the instantiation of the weight matrices and mask matrices
for each layer are independent:

E[M,W ](SSF)
[l] = E

 Cl∑
i=1

Cl+1∑
j=1

SSF(W
l
(i,j))

 =

Cl∑
i=1

Cl+1∑
j=1

E
[
SSF(W

l
(i,j))

]

=

(
N∏

k=l+2

pkCk+1E|Dk|

)
Cl∑
i=1

Cl+1∑
j=1

(
pl+1Cl+2El+1

(i,∗) · plE|Dl| · pl−1Cl−1El−1
(∗,j)

)( l−2∏
k=1

CkE|Dk|

)

=

(
N∏

k=l+2

pkCk+1E|Dk|

)
ClCl+1

(
pl+1Cl+2E|Dl+1| · plE|Dl| · pl−1Cl−1E|Dl−1|

)( l−2∏
k=1

pkCkE|Dk|

)

= CN+1

N∏
l=1

(plClE|Dl|)

(15)

According to Equation 9,

E[M,W ](SSF) =

N∑
l=1

CN+1

N∏
l=1

(ClE|Dl|)

= NCN+1

N∏
l=1

(plCl · Ex∼D[|x|]),

(16)

SynExp Invariance Theorem can also be extended to CNNs, as it is obvious that SynExp of CNNs is
proportional to that of fully connected networks. Thus the difference of SynExp between CNNs and
fully connected networks for each layer is only a factor equal to K2

Cl+1
, where K is the kernel size of

the convolutional layer.

B SOLUTION OF THE OPTIMIZATION PROBLEM

For the convex optimization problem in Equation 5, Equation 6, or PreConfig, we can simply use
Karush–Kuhn–Tucker (KKT) conditions to analytically solve it. We include the solutions as follows
for completeness. In practice, we use convex solver to solve the problem to avoid the piecewise
function.

B.1 SOLUTION FOR EQUATION 5

pl = min(
µ

α
, 1)

where µ satisfies:
N∑
l=1

min(αl, µ) = Bparams

(17)

B.2 SOLUTION FOR EQUATION 6

pl = min(
1

µ1αl + µ2βl
, 1)

where µ1, µ2 satisfy:
N∑
l=1

αl min(
1

µ1αl + µ2βl
, 1) = Bparams

N∑
l=1

βl min(
1

µ1αl + µ2βl
, 1) = Bflops

(18)
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Figure 6: Comparison of the performance using different pruning granularities on VGG16 using
CIFAR-10.
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Figure 7: Comparison of the performance using different pruning granularities on ResNet20 using
CIFAR-10. SNIP (left) and GraSP (right) importance scores are used.

B.3 SOLUTION FOR PRECONFIG

pl =
1

µ1αl + µ2βl

where µ1, µ2 satisfy:
N∑
l=1

αl
1

µ1αl + µ2βl
= Bparams

N∑
l=1

βl
1

µ1αl + µ2βl
= Bflops

(19)

In practice, to avoid solving the µ, we use a convex optimization solver, which can obtain the solution
with a CPU within a second for such a small scale convex optimization.

C MORE EMPIRICAL RESULTS ON SYNEXP INVARIANCE THEOREM

We show more empirical results that validates SynExp Invariance Theorem. We first show the
comparison of the performance using different pruning granulariteis on VGG16 using CIFAR-10. All
the settings in this experiment is the same as in Figure 1, except this experiment is done on VGG16.

Then we also verify that SynExp Invariance Theorem not only holds for SynFlow, but also holds for
other PAI algorithms. In this experiment, we first use other PAI (i.e., SNIP and GraSP) to obtain the
layerwise density pl. Then we use random pruning to match pl in the channel level. The results are
shown in Figure 7.

As shown in all the above experiments, as long as the layerwise density is the same, the pruning
granularties do not affect the model accuracy.
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Figure 8: Comparison of the channel width of EfficientNetB0 before and after PreConfig.

D CHANNEL WIDTH COMPARISON

We also include a comparison of the channel width between the baseline EfficientNetB0 and PreConfig
EfficientNetB0 in Figure 8.

E EXPERIMENT DETAILS

E.1 IMPLEMENTATION

We adapt model implementations of ResNet, ShuffleNet, and MobileNetv2 from imgclsmob2. The
implementations of SynFlow, SNIP, and GraSP are based on the codebase of SynFlow3.

E.2 HYPERPARAMETERS

Here we provide the hyperparameters used in training all models in Table 3. No AutoAugment, Label
Smoothing, or stochastic depth is used during training. All the CIFAR-10 models are trained with
same hyperparameter setting.

Table 3: Hyperparameters used in training.

CIFAR-10
ImageNet

MobileNet ResNet EfficientNet

Optimizer momentum momentum momentum momentum
Training Epochs 160 180 90 150

Batch Size 128 256 512 256
Initial Learning Rate 0.1 0.025 0.2 0.035

Learning Rate Schedule linear drop at each epoch drop at 30, 60 epoch drop at each epoch
Drop Rate N.A. 0.98 0.1 0.99

Weight Decay 10−4 4× 10−5 10−4 4× 10−5

2https://github.com/osmr/imgclsmob
3https://github.com/ganguli-lab/Synaptic-Flow

16


	Introduction
	Related Work
	Pruning-at-initialization via SynExp Optimization
	PAI Background
	SynExp Invariance Theorem
	Optimizing SynExp
	Optimizing SynExp with Parameter Count Constraint
	Optimizing SynExp with Parameter Count and FLOPs Constraints


	Structured Pruning-at-Initialization
	PreCrop
	PreConfig: PreCrop with Relaxed Density Constraint

	Evaluation
	Evaluation of PreCrop
	Evaluation of PreConfig

	Conclusion
	Proof of SynExp Invariance Theorem
	Solution of the Optimization problem
	Solution for Equation 5
	Solution for Equation 6
	Solution for PreConfig

	More Empirical Results on SynExp Invariance Theorem
	Channel Width Comparison
	Experiment Details
	Implementation
	Hyperparameters


