
Published as a conference paper at ICLR 2025

OPERATING ROBOTIC LABORATORIES WITH LARGE
LANGUAGE MODELS AND TEACHABLE AGENTS

Aikaterini Vriza*
Argonne National Laboratory
avriza@anl.gov

Michael H Prince
Argonne National Laboratory
mprince@anl.gov

Henry Chan*
Argonne National Laboratory
hchan@anl.gov

Tao Zhou
Argonne National Laboratory
tzhou@anl.gov

Matthew J Cherukara*
Argonne National Laboratory
mcherukara@anl.gov

ABSTRACT

Advanced scientific user facilities, including self-driving laboratories, are revo-
lutionizing scientific discovery by automating repetitive tasks and enabling rapid
experimentation. However, these facilities must continuously evolve to support
new experimental workflows, adapt to diverse user projects, and meet growing de-
mands for evermore sophisticated instrumentation. This continuous development
introduces significant operational complexity, necessitating a focus on usability,
reproducibility, and intuitive human-instrument interaction. In this work, we ex-
plore the integration of agentic AI, powered by Large Language Models (LLMs),
as a transformative tool to achieve this goal. We present our approach to devel-
oping a pipeline for operating a robotic station dedicated to the design of novel
materials. Specifically, we evaluate the potential of various LLMs as trainable
scientific assistants for orchestrating complex, multi-task workflows, optimizing
their performance through human input and iterative learning. We demonstrate
the ability of AI agents to bridge the gap between advanced automation and user-
friendly operation, paving the way for more adaptable and intelligent scientific
facilities.

1 INTRODUCTION

The design, synthesis, characterization, and testing of materials often involve a multi-step sequence
of complex actions. Although self-driving laboratories have made significant progress in automating
experimental procedures, achieving true autonomy in scientific discovery involving tasks such as ex-
perimental workflow design, data analysis, execution planning, and decision making remains an ac-
tive challenge that will likely continue to require human feedback and expert knowledge (Hung et al.
(2024)). The emergence of Large Language Models (LLMs) (OpenAI (2024), Editorial (2023),Luo
et al. (2024)), has created new opportunities for human-AI collaboration in scientific facilities, en-
abling safer and more efficient laboratory operations. While significant progress has been made in
adapting LLMs for various scientific applications (Prince et al. (2024), Van Herck et al. (2025)),
substantial challenges remain in deploying them as effective agents for real-world laboratory exper-
imentation in operating within science laboratories and user facilities (Mathur et al. (2024)).

Tasks that human scientists perform intuitively, such as manipulating laboratory equipment, present
significant challenges to autonomous systems. For example, picking up and moving a vial requires
precise coordination of multiple components like grippers and vial holders, along with accurate
spatial awareness. Traditional robotic systems rely on predefined functions for these operations,
limiting their flexibility and ability to adapt to different experimental environments. Moreover,
while existing LLM agents can utilize predefined functions as tools, they often lack the capability to
incorporate user feedback and autonomously design experimental processes.

In this work, we develop and evaluate an agentic system for managing sequential laboratory opera-
tions, where task order is crucial for experimental success. The system handles increasingly complex
tasks initiated by human researchers. An important aspect of this study is the ability of the system

1

Published as a conference paper at ICLR 2025

to learn from laboratory users through in-context learning during conversations. This teachability
component stores human-AI interactions in a vector database as long-term memory, retrieving rele-
vant information as needed rather than loading all memories into the context window. This approach
enables the agent to retain and apply user-taught skills across multiple sessions. We evaluated the
agent’s ability to learn from human scientists and their potential for self-improvement.

2 RELATED WORK

Significant progress has been made in the deployment of LLMs in scientific research, from decision-
making and literature screening to the execution of experimental protocols (Ruan et al. (2024),
Birhane et al. (2023), White et al. (2023)). Research teams have successfully expanded LLM capa-
bilities by integrating them with diverse sets of tools (Boiko et al. (2023), Bran et al. (2024)).

The field is now advancing toward collaborative multi-agent systems that enhance the capabili-
ties of LLMs through iterative feedback, role specialization, and coordinated teamwork (Ansari
et al. (2024), Ma (2025)). These systems draw inspiration from human scientific discovery pro-
cesses and are designed to complement human creativity and expertise with AI’s ability to analyze
vast datasets, navigate hypothesis spaces and execute repetitive tasks. The adoption of pre-built
frameworks such as LangGraph (langchain ai), Autogen (Wu et al. (2024))and Swarm (OpenAI)has
significantly streamlined the integration of LLMs with scientific workflows, enabling efficient co-
ordination between LLM agents and external tools (Yin et al. (2024)). AI agents can impact areas
across various scientific disciplines. In biology, for instance, biomedical AI agents are being ap-
plied to areas such as virtual cell simulation, programmable control of phenotypes, cellular circuit
design, and the development of novel therapies Gao et al. (2024). In materials science, platforms
like AtomAgents, are being developed as agentic systems for knowledge retrieval, multi-modal data
integration, physics-based simulations, and comprehensive results analysis (Ghafarollahi & Buehler
(2024)).

3 METHODS

The core of our agentic pipeline is the Autogen (AG2) framework (Wu et al. (2024)), which serves
as the backbone for orchestrating an autonomous experiment to create a polymer thin film (See Ap-
pendix A.1). The robotic environment consists of an N9 robot from North Robotics equipped with
finger and vacuum grippers to transfer material samples across the modules. The pipeline leverages
autogen’s built-in capabilities, such as linter tool for code checking and the executor platform for
running the generated code. The specialized agents are presented in detail in Table 1. AI agents have
access to the N9 robot’s operation commands, station layout, and task descriptions (See Appendix
A.2). Given a task, the agents can write, review, and execute the code as Python scripts and request
human input and approval before execution to the robotic station. To further enhance functional-
ity and reliability, we integrated a teachability component (See Appendix A.3). In this approach,
agent capabilities are updated by appending new instruction to the system message, integrating stor-
age and retrieval functionalities, and interacting with a background agent that decides whether the
human provided information is important and should be stored. In that way, any new interaction
with the human researcher that provides significant guidelines for the execution of the experimental
protocol is stored as an input-output pair in a local vector database (See Figure 5). This process en-
ables the agents to recall and apply previously learnt information when facing similar tasks, thereby
supporting long-term learning and adaptability.

We evaluated the ability of our agentic system to plan polymer thin film design experiments by using
robotic operation functions and writing the code for the N9 robot (Figure 1). They are then provided
with tasks of increasing complexity, ranging from simple operations such as moving a vial to more
advanced tasks such as activating a vacuum system or extracting optimal experimental parameters
from the literature to guide robotic operations. Given these tasks, the pipeline decided on which
agents should participate, generates, and validates operational code (See Appendix A.4). Before
execution, it requires human approval to ensure safety.

2

Published as a conference paper at ICLR 2025

Figure 1: Configuration of the robotic environment of a self-driving laboratory, including the main
equipment components used and the system files that are provided as context to the agentic pipeline.
The agentic pipeline is integrated external tools and memory.The table summarizes the evaluation
tasks including their complexity and number of required steps.

Table 1: Available agents and their operating capabilities
Agent Agentic Tasks
Code writer Write the code provided the relevant system files
Code critic Check the code written from the code writer and provides feedback.
Administrator Interacts with the other agents. Executes the code in the robotic working

environment and interacts with the human for feedback.
Paper scraper Scrapes research articles for relevant information extraction.
Manager Distributed the tasks among the agents and organises the feedback .
Teachability Memory retrieval of previously saved interactions between human and

agents.

4 RESULTS

We evaluated the performance of representative LLM assistants, including GPT-3.5, GPT-4o and
Claude 3.5 Sonnet, on three autonomous sequential tasks of increased complexity (See Figure 1
and Appendix A.5). The evaluation metrics are categorized as follows: i) Code quality check:
verifying that the agent performs code quality analysis for potential errors, stylistic inconsistencies,
and best-practice violation. ii) Code correctness: evaluating the functionality of the generated code
and checking whether the sequential steps are performed in the correct order. iii) Code execution:
evaluating the functional correctness of the code, basically measuring in how many steps it will stop
working in the real robotic environment, iv) Code repeatability: evaluating whether the same code
is generating after running the same prompt for three times. v) Code reproducibility: evaluating
whether the generated code is the same after modifying the task prompts whilst keeping the main task
the same. The results are demonstrated in Table 2 for the cases where no human input is provided to
the models. A detailed example of how the evaluation is performed is provided in Appendix A.5 and
Table 4. Whereas all agents are struggling with the higher complexity task, such as Task 3, when
human feedback was provided and stored as memories, a significant improvement was observed in

3

Published as a conference paper at ICLR 2025

all tasks as shown in Table 3. The schematic of the agentic pipeline operating the highest complexity
task, defined as Task 3 is shown in Figure 2.

Table 2: Evaluation results across different models and tasks without receiving human feedback.
GPT-4o-mini GPT-4o Claude 3.5 Sonnet

Task1 Task2 Task3 Task1 Task2 Task3 Task1 Task2 Task3
Code quality check Yes Yes Yes Yes Yes Yes Yes Yes Yes
Code correctness (%) 87.5 70 44 100 90 48 75 60 64
Code execution (%) 75 50 24 100 70 39 50 60 32
Code repeatability 100 100 90 100 100 100 100 90 25
Reproducibility 100 100 60 100 90 75 90 80 25

Table 3: Evaluation results across different models and tasks after receiving human feedback as
memory

GPT-4o-mini GPT-4o Claude 3.5 Sonnet
Task1 Task2 Task3 Task1 Task2 Task3 Task1 Task2 Task3

Code quality check Yes Yes Yes Yes Yes Yes Yes Yes Yes
Code correctness (%) 100 100 84 100 100 100 100 100 100
Code execution (%) 100 100 84 100 100 100 100 100 100
Code repeatability 100 90 90 100 100 100 100 100 100
Reproducibility 100 90 80 100 100 100 100 100 100

Figure 2: Schematic of the agentic pipeline to operate a highly complex set of robotic action given
a user prompt. The system had to first read a scientific paper and identify the conditions that lead
to a good quality film. The initial code was corrected with human feedback so that the agents will
understand the correct sequence of steps to create the polymer film, which include: 1) Use the
vacuum gripper to pick up an available substrate from the substrate rack, 2) Place the substrate to
the blade coating station and release the vacuum gripper, 3) Pick up the polymer from the vials rack
and move it to the clamp, 4) Uncapping the clamp and aspirate the polymer with the pipette, 5)
dropcast the polymer to the substrate and blade coat it.

4

Published as a conference paper at ICLR 2025

5 DISCUSSION

In this work, we explored the capabilities and reliability of LLM-based scientific agents in operating
a robotic platform for materials design. By integrating multiple LLMs into an autonomous multi-
agent system, we evaluated their performance in a real-world robotic environment developed for
creating polymer thin films. In addition, we further investigated the impact of incorporating user
guidelines into the system to enhance its ability to handle complex design and operational tasks.

A key focus of this study was the advantage provided by trainable agents in the operation of com-
plex scientific workflows. Our results indicate that the agentic system is capable of learning from
user interactions with the platform, refining its understanding of processes over time, and generating
reliable code for robotic operations. This adaptability highlights the potential of trainable agents
to improve the autonomy of self-driving laboratories, where human-in-the-loop interactions play a
critical role in guiding and refining AI-driven workflows. While our teachable agent framework re-
duces the need for continual human intervention by storing and reusing past instructions, complete
automation in real-world laboratory and user facility settings requires further safeguards. In partic-
ular, instrument drift and other hardware variances require regular calibration to maintain reliability
over long experimental cycles. Likewise, reconfigurable workflows may introduce new instruments
or procedures that must first be taught before running autonomously. Despite these challenges, once
the core pipeline has been aligned with the lab environment and a sufficient body of memorized
instructions has been built up, the agent can execute the tasks with minimal oversight.

In our experiments, agents such as GPT-4o and Claude3.5-Sonnet were relatively easy to teach,
whereas GTP-4o-mini required more iterative feedback to achieve an equivalent level of under-
standing. Automation of protocols in an autonomous laboratory requires advanced models that can
manage the sequential nature of tasks, perform quality checks, and provide real-time feedback to
users. As multi-agent paradigms continue to evolve, they are expected to drive significant advance-
ments in autonomous research, adaptive experimentation, and AI-guided discovery. Our results
indicate that agentic systems can serve as a valuable resource for building self-driving laboratories
with enhanced autonomy, capable of learning from human expertise and improving over time.

6 ACKNOWLEDGMENTS

Work was performed at the Center for Nanoscale Materials and Advanced Photon Source, both U.S.
Department of Energy Office of Science User Facilities, supported by the U.S. DOE, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357.

7 DATA AND CODE AVAILABILITY

All data, code and agentic pipeline used to produce results in this study are publicly available in the
following GitHub repository: https://github.com/katerinavr/SDL-Agents.

REFERENCES

Mehrad Ansari, Jeffrey Watchorn, Carla E. Brown, and Joseph S. Brown. dziner: Rational inverse
design of materials with ai agents, 2024. URL https://arxiv.org/abs/2410.03963.
arXiv preprint.

Abeba Birhane, Atoosa Kasirzadeh, David Leslie, and Sandra Wachter. Science in the age
of large language models. Nature Reviews Physics, 5(5):277–280, May 2023. ISSN
2522-5820. doi: 10.1038/s42254-023-00581-4. URL https://doi.org/10.1038/
s42254-023-00581-4.

Daniil A. Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, December 2023.

M. Bran, A. Cox, S. Schilter, et al. Augmenting large language models with chemistry tools. Nature
Machine Intelligence, 6:525–535, 2024. doi: 10.1038/s42256-024-00832-8. URL https://
doi.org/10.1038/s42256-024-00832-8.

5

https://github.com/katerinavr/SDL-Agents
https://arxiv.org/abs/2410.03963
https://doi.org/10.1038/s42254-023-00581-4
https://doi.org/10.1038/s42254-023-00581-4
https://doi.org/10.1038/s42256-024-00832-8
https://doi.org/10.1038/s42256-024-00832-8

Published as a conference paper at ICLR 2025

Editorial. Prepare for truly useful large language models. Nature Biomedical Engineering, 7:
85–86, 2023. doi: 10.1038/s41551-023-01012-6. URL https://doi.org/10.1038/
s41551-023-01012-6.

Shanghua Gao, Ada Fang, Yepeng Huang, Valentina Giunchiglia, Ayush Noori, Jonathan Richard
Schwarz, Yasha Ektefaie, Jovana Kondic, and Marinka Zitnik. Empowering biomedical discovery
with ai agents. Cell, 187(22):6125–6151, 2024. doi: 10.1016/j.cell.2024.09.022. URL https:
//doi.org/10.1016/j.cell.2024.09.022.

Alireza Ghafarollahi and Markus J. Buehler. Atomagents: Alloy design and discovery through
physics-aware multi-modal multi-agent artificial intelligence. arXiv, 2024. URL https://
arxiv.org/abs/2407.10022.

Linda Hung, Joyce A. Yager, Danielle Monteverde, Dave Baiocchi, Ha-Kyung Kwon, Shijing
Sun, and Santosh Suram. Autonomous laboratories for accelerated materials discovery: a
community survey and practical insights. Digital Discovery, 3(7):1273–1279, 2024. doi:
10.1039/D4DD00059E. URL http://dx.doi.org/10.1039/D4DD00059E.

langchain ai. Langgraph. https://github.com/langchain-ai/langgraph. Accessed:
2025-02-03.

X. Luo, A. Rechardt, G. Sun, and et al. Large language models surpass human experts in predicting
neuroscience results. Nature Human Behaviour, 2024. doi: 10.1038/s41562-024-02046-9. URL
https://doi.org/10.1038/s41562-024-02046-9.

Kangyong Ma. Ai agents in chemical research: Gvim – an intelligent research assistant system.
Digital Discovery, pp. –, 2025. doi: 10.1039/D4DD00398E. URL http://dx.doi.org/
10.1039/D4DD00398E.

Shray Mathur, Noah van der Vleuten, Kevin Yager, and Esther Tsai. Vision: A modular ai
assistant for natural human-instrument interaction at scientific user facilities. arXiv preprint
arXiv:2412.18161, 2024. URL https://doi.org/10.48550/arXiv.2412.18161.

OpenAI. Swarm agents. https://github.com/openai/swarm.

OpenAI. Openai, 2024. URL https://openai.com. Accessed: 2025-01-16.

M. H. Prince, H. Chan, A. Vriza, et al. Opportunities for retrieval and tool augmented large
language models in scientific facilities. npj Computational Materials, 10:251, 2024. doi:
10.1038/s41524-024-01423-2.

Y. Ruan, C. Lu, N. Xu, et al. An automatic end-to-end chemical synthesis development platform
powered by large language models. Nature Communications, 15:10160, 2024. doi: 10.1038/
s41467-024-54457-x. URL https://doi.org/10.1038/s41467-024-54457-x.

Joren Van Herck, Marı́a Victoria Gil, Kevin Maik Jablonka, Alex Abrudan, Andy S. Anker,
Mehrdad Asgari, Ben Blaiszik, Antonio Buffo, Leander Choudhury, Clemence Corminboeuf,
Hilal Daglar, Amir Mohammad Elahi, Ian T. Foster, Susana Garcia, Matthew Garvin, Guil-
laume Godin, Lydia L. Good, Jianan Gu, Noémie Xiao Hu, Xin Jin, Tanja Junkers, Seda Ke-
skin, Tuomas P. J. Knowles, Ruben Laplaza, Michele Lessona, Sauradeep Majumdar, Hossein
Mashhadimoslem, Ruaraidh D. McIntosh, Seyed Mohamad Moosavi, Beatriz Mouriño, Francesca
Nerli, Covadonga Pevida, Neda Poudineh, Mahyar Rajabi-Kochi, Kadi L. Saar, Fahimeh Hoori-
abad Saboor, Morteza Sagharichiha, K. J. Schmidt, Jiale Shi, Elena Simone, Dennis Svatunek,
Marco Taddei, Igor Tetko, Domonkos Tolnai, Sahar Vahdatifar, Jonathan Whitmer, D. C. Florian
Wieland, Regine Willumeit-Römer, Andreas Züttel, and Berend Smit. Assessment of fine-tuned
large language models for real-world chemistry and material science applications. Chem. Sci.,
16:670–684, 2025. doi: 10.1039/D4SC04401K. URL http://dx.doi.org/10.1039/
D4SC04401K.

Andrew D. White, Glen M. Hocky, Heta A. Gandhi, Mehrad Ansari, Sam Cox, Geemi P. Wellawatte,
Subarna Sasmal, Ziyue Yang, Kangxin Liu, Yuvraj Singh, and Willmor J. Peña Ccoa. Assess-
ment of chemistry knowledge in large language models that generate code. Digital Discovery,
2:368–376, 2023. doi: 10.1039/D2DD00087C. URL http://dx.doi.org/10.1039/
D2DD00087C.

6

https://doi.org/10.1038/s41551-023-01012-6
https://doi.org/10.1038/s41551-023-01012-6
https://doi.org/10.1016/j.cell.2024.09.022
https://doi.org/10.1016/j.cell.2024.09.022
https://arxiv.org/abs/2407.10022
https://arxiv.org/abs/2407.10022
http://dx.doi.org/10.1039/D4DD00059E
https://github.com/langchain-ai/langgraph
https://doi.org/10.1038/s41562-024-02046-9
http://dx.doi.org/10.1039/D4DD00398E
http://dx.doi.org/10.1039/D4DD00398E
https://doi.org/10.48550/arXiv.2412.18161
https://github.com/openai/swarm
https://openai.com
https://doi.org/10.1038/s41467-024-54457-x
http://dx.doi.org/10.1039/D4SC04401K
http://dx.doi.org/10.1039/D4SC04401K
http://dx.doi.org/10.1039/D2DD00087C
http://dx.doi.org/10.1039/D2DD00087C

Published as a conference paper at ICLR 2025

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang (Eric) Zhu, Li Jiang, Xi-
aoyun Zhang, Shaokun Zhang, Ahmed Awadallah, Ryen W. White, Doug Burger, and Chi Wang.
Autogen: Enabling next-gen llm applications via multi-agent conversation. In COLM 2024, Au-
gust 2024. URL https://www.microsoft.com/en-us/research/publication/
autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/.

Xiangyu Yin, Chuqiao Shi, Yimo Han, and Yi Jiang. Pear: A robust and flexible automation frame-
work for ptychography enabled by multiple large language model agents. ArXiv, abs/2410.09034,
2024. URL https://api.semanticscholar.org/CorpusID:273323364.

7

https://www.microsoft.com/en-us/research/publication/autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/
https://www.microsoft.com/en-us/research/publication/autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/
https://api.semanticscholar.org/CorpusID:273323364

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 WORKFLOW DESCRIPTION

Figure 3: Detailed pipeline with the required sequential steps to create a polymer thin film using the
N9 robotic station.

Figure 4: Example of the operating functions for the N9 robot. The main instructions and commands
are provided to the LLM agents as context to create the operating environment, accompanied by a
brief description of each function as text.

A.2 AGENTS

A detailed description of the agents that comprise our current framework is described below. Each
of the agents can be configured with an LLM.

8

Published as a conference paper at ICLR 2025

Administrator agent: The administrator agent is designed to function as an administrative interface
between users and the other agents. Its primary responsibilities include task delegation to other
agents, receiving human input before a further action is taken and code execution in the specified
working directory.

Literature Scraping Agent: The literature scraping agent is responsible for extracting key infor-
mation from scientific literature and transferring this knowledge to other agents. It has access to an
external tool that converts PDFs into textual format, enabling efficient data extraction.

System Message:

• ”You are a PDF scraper and can extract information from any provided PDF using the
available tools.”

• ”After reading the text, you can provide specific answers based on the PDF’s context.”

• ”Return ’TERMINATE’ when the scraping process is complete.”

Code writer agent: This agent is responsible for providing the execution code as a python script.
We provide the operating functions with a short description about the utility of each function in the
system message. An example is shown in Figure 4.

Code reviewer agent: This agent is designed to evaluate the code created by the code writer and
provide feedback.

System Message:

• ”Your task is to review the code provided by the code writer agent and provide feedback on
necessary corrections.”

• ”Ensure that all required libraries are imported and that only the existing approved opera-
tion functions are used.”

Manager: This agent is creating a group with all the existing agents and is responsible for selecting
the next relevant agent in the workflow.

A.3 TEACHABILITY

Autogen provides a teachability feature that can add memory capabilities to any existing agent.
Once the teachability class is added to an agent, the agent’s system message is appended with a
note about the this new ability: ”You’ve been given the special ability to remember user teachings
from prior conversations.” and the agent is provided with extra functionalities and interaction with
a text analysis agent. The background TextAnalyzerAgent (configured with the same LLM)
is used to examine user comments and decide whether any important information should be stored.
Internally, it uses the following prompting:

• Step 1: Ask, “Does any part of the text ask the agent to perform a task or solve a problem?
Answer with just one word, yes or no.”

• If ‘yes’:
“Briefly copy any advice from the text that may be useful for a similar but different task in
the future. If no advice is present, respond with ‘none’.”*

• If the advice is not ‘none’:
“Briefly copy just the task from the text, then stop. Don’t solve it, and don’t include any
advice.”
“Summarize very briefly, in general terms, the type of task described in the text. Leave out
details that might not appear in a similar problem.”

By analyzing incoming user messages, this mechanism detects whether the text contains general
information that should be remembered or a task/problem accompanied by useful advice. If such
content is found, it is extracted and stored as input–output pairs in a ChromaDB vector database
(Figures 6 and 5). These pairs are stored as text embeddings using the default Chroma Sentence

9

Published as a conference paper at ICLR 2025

Transformers, all-MiniLM-L6-v2, to enable semantic similarity searches. When a new task is pro-
vided, the teachable agent performs a similarity search to find relevant past teachings, allowing it
to apply previous learnings automatically. To achieve that, the system converts the new request
into an embedding and searches the local ChromaDB for stored input-output pairs based on cosine
similarity

By default, a teachable agent stores all new entries, even if they are very similar to existing ones. To
avoid duplicates, we added a similarity check before storage: the system compares new memories
against existing ones and only stores a new entry if it exceeds a certain distance threshold in the
embedding space. Finally, because the teachability component does not require re-training the un-
derlying model, it can be used in concert with larger or more expensive LLMs for creating memories,
yet still function effectively with smaller or open-source models for day-to-day operations.

Figure 5: Example of memories created from GPT4o after providing human input for task2.

10

Published as a conference paper at ICLR 2025

Figure 6: Example of code related memories created from Claude 3.5 Sonnet after providing human
input for task2.

11

Published as a conference paper at ICLR 2025

A.4 GENERATED PROMPTS

1 Task:
2 """Write the execution code to create a polymer film using only PEDOT:PSS

defined as polymer A. Extract the best range of the film processing
conditions from the paper PEDOT_PSS_manuscript.pdf."""

3

4 Most relevant retrieved memory:
5 INPUT-OUTPUT PAIR RETRIEVED FROM VECTOR DATABASE:
6 INPUT1
7 What do I do first, move the substrate to the coating station or pick

up the vial?
8 OUTPUT
9 you always fist move the substate to the coating station and then

pick up the vial
10 DISTANCE
11 1.6069608286244856
12

13 Communication between the code writer agent an d the manager:
14 code_writer_agent (to chat_manager):
15 Based on the extracted information from the paper, the best range of film

processing conditions for creating a polymer film using PEDOT:PSS (
polymer A) includes:

16 1. **Additive Concentration**: Use ethylene glycol (EG) as an additive at
a concentration of 5 vol%.

17 2. **Coating Speed**: A relatively low coating speed of 1 mm/s.
18 3. **Coating Temperature**: A relatively high coating temperature of 90

C .
19 4. **Post-Processing**: The post-treatment step involves solvent rinsing,

repeated twice more, to remove PSS content and improve PEDOT packing
structure.

20 Now, let’s write the execution code to create a polymer film using these
conditions. The code will follow the steps mentioned in your memories
and the extracted information.

21 ‘‘‘python
22 # filename: create_polymer_film.py
23 import loca # location information
24 import pandas as pd
25 import robotics as ro
26 from robotics import procedure as proc
27 import rack_status
28 # Initialize hardware modules
29 c9 = ro.system.init(’controller’) # N9 robot controller
30 t8 = ro.system.init(’temperature’) # temperature controller
31 coater = ro.system.init(’coater’) # coating station
32 # Set the coating temperature
33 T = 90 # Coating temperature in Celsius
34 t8.set_temp(1, T)
35 # Move substrate to the coating station
36 c9.tool = ’substrate_tool’
37 c9.set_output(’substrate_tool’, True) # Activate vacuum to pick up

substrate
38 c9.position = loca.substrate_rack_seq[0, 0] # Pick up substrate from

rack
39 c9.position = loca.s_coater # Move substrate to the coating station
40 c9.set_output(’coater_stage_vacuum’, True) # Activate vacuum on coater

stage
41 c9.set_output(’substrate_tool’, False) # Release substrate
42 c9.tool = None # Drop off the tool
43 # Pick up the vial containing polymer A (PEDOT:PSS)
44 sol_label = ’polymer_A’
45 vial_index = proc.find_rack_index(’vial’, sol_label)
46 c9.position = loca.vial_rack[vial_index] # Move robot arm to the

solution
47 c9.set_output(’gripper’, True) # Close gripper to pick up the vial

12

Published as a conference paper at ICLR 2025

48 c9.position = loca.clamp # Move vial to the clamp
49 c9.set_output(’clamp’, True) # Close clamp to hold the vial
50 c9.set_output(’gripper’, False) # Open gripper to release the vial
51 # Uncap the vial
52 uncap_position = c9.uncap(pitch=1.75, revs=3.0, vel=5000, accel=5000) #

Uncap the vial
53 c9.position = uncap_position # Move gripper back to the recorded

position
54

55 # Pick up a pipette
56 proc.new_pipette(c9)
57 # Aspirate the solution in the clamp
58 c9.position = loca.clamp # move robot arm to the clamp
59 c9.aspirate_ml(0, 0.5) # Aspirate 0.5mL
60

61 # Move pipette to the coating station
62 c9.position = loca.p_coater # Move pipette to the coating station
63 c9.dispense_ml(0, 0.2) # Dispense 0.2mL
64

65 # Remove pipette
66 proc.remove_pipette(c9)
67

68 # Cap the vial
69 c9.position = uncap_position
70 c9.cap(pitch=1.75, revs=3.0, torque_thresh=1000, vel=5000, accel=5000)
71

72 # Return vial to rack
73 c9.set_output(’clamp’, False)
74 c9.set_output(’gripper’, True)
75 c9.position = loca.vial_rack[1, 2]
76 c9.set_output(’gripper’, False)
77

78 # Coating process
79 coater.position = 45 # Move coater blade to the starting position
80 coater.velocity = 1 # Set the coating velocity to 1 mm/s
81 coater.position = 75 # Move blade all the way to the right
82 print("Polymer film creation process completed.")
83 ‘‘‘
84 This code will execute the process of creating a polymer film using PEDOT

:PSS with the specified conditions. Please save the code in a file
named ‘create_polymer_film.py‘ and execute it. TERMINATE

Listing 1: Example of the communication between the teachable agents to create a polymer film.

A.5 PERFORMANCE EVALUATION METRICS

For the evaluation of the agents performance we Focused on five tasks:

1. Code quality check: Checking if the code reviewer was initiated to check the initial code written
by the code writer. That is basicallt focusing checking if the correct functions have been imported
and that the code is operational.

2. Correctness: Checking if the final code is correct and calls the correct functions sequentially.
Evaluating the functionality of the generated code and checking whether the sequential steps are
performed in the correct order. The score is counting how many steps of the required ones have
been identified from the agents. The best score is 8, 10, 25 for the first, second and third task
accordingly.

3. Code execution: How many of the steps can the code run without doing something wrong. This
differs from the code correctness, as all the steps might have been identified correct but placed in a
wrong sequence and as such the operation of the robot will break. The score is counting how many
steps of the required ones have been identified from the agents. The best score is 8, 10, 25 for the
first, second and third task accordingly.

13

Published as a conference paper at ICLR 2025

4. Code repeatability: Evaluating whether the same code is generating after running the same prompt
task for two times. The temperature of the models is set to 0 in all cases.

5. Reproducibility: Assess the consistency of the generated code when provided with altered
prompts for the same task. This is particularly crucial in user facilities, where different users may
describe identical tasks using various expressions. Below are the original prompts tested along with
their alternative versions:

- prompt1 = ”Write the execution code to move the vial with PEDOT:PSS defined as polymer A to
the clamp holder.”

- prompt1a = ”Write the code to move the vial with polymer A to the clamp.”

- prompt2 ”Write the execution code to pick up a substrate from the substrate rack and move it to
the coating station.”

- prompt2a = ”Write the code to pick up a substrate and move it to the coating stage.”

- prompt3 = ”Write the execution code to create a polymer film using only PEDOT:PSS de-
fined as polymer A. Extract the best range of the film processing conditions from the paper
PEDOT PSS manuscript.pdf”

- prompt3a = ” Write the code to create a polymer film with only PEDOT:PSS defined as polymer
A. Identify the best processing conditions from the paper PEDOT PSS manuscript.pdf”

An example of how the evaluation was performed is shown below:

The eight (8) sequential tasks are organized as follows:

1. Import the correct libraries
2. Initialize the required system components
3. Identify the location of the vial
4. Move gripper to the vial position
5. Close the gripper to pick up the vial
6. Move the gripper with the vial to the clamp holder
7. Close the clamp holder to hold the vial
8. Release the gripper
9. We give one point for each correct step

One point for each correct step.

1 # filename: move_vial_to_clamp.py
2 import loca
3 import pandas as pd
4 import robotics as ro
5 from robotics import procedure as proc
6 import time # Import time for delays
7

8 def move_vial_to_clamp(polymer_label=’polymer_A’):
9 # Initialize the robot controller

10 c9 = ro.system.init(’controller’)
11

12 # Step 1: Find the index of the vial containing polymer A
13 vial_index = proc.find_rack_index(’vial’, polymer_label)
14

15 # Check if the vial index is valid
16 if vial_index is None:
17 print(f"Error: Vial with label ’{polymer_label}’ not found.")
18 return
19

14

Published as a conference paper at ICLR 2025

20 # Step 2: Move to the vial position
21 c9.position = loca.vial_rack[vial_index]
22

23 # Step 3: Close the gripper to pick up the vial
24 c9.set_output(’gripper’, True)
25 time.sleep(1) # Wait for the gripper to close
26

27 # Step 4: Move to the clamp holder position
28 c9.position = loca.clamp
29

30 # Step 5: Open the gripper to release the vial into the clamp holder
31 c9.set_output(’gripper’, False)
32 time.sleep(1) # Wait for the gripper to open
33

34

35 # Execute the function
36 move_vial_to_clamp()

Listing 2: Example of the code produced from the GPT-4o-mini pipeline for executing Task 1.

Evaluation
metric

Score Task explanation Evaluators comments

Code quality
check

V Check if the code reviewer
agents was called to check
the code for code quality
analysis for potential errors,
stylistic inconsistencies and
best-practice violation.

Code reviewer was called and pro-
vided suggestions for error han-
dling

Code correct-
ness

87.5% Evaluating the functionality
of the generated code and
checking whether the se-
quential steps are performed
in the correct order.

7/8 of the steps were identified. It
didn’t close the clamp to hold the
gripper

Code execu-
tion (correct
order of func-
tions)

75% How many of the steps can
the code run without doing
something wrong

Will stop in step 6; the rest is not
correct and will break the process
(6/8)

Code repeata-
bility

100% Evaluating whether the same
code is generating after run-
ning the same prompt task
for 3 times.

The same prompt was run three
times and produced the same output

Reproducibility
(varying
prompts)

100% Evaluating whether the gen-
erated code is the same after
modifying the task prompt
whilst keeping the main task
the same

Used a similar prompt to the initial
one and performed the same.

Table 4: Example of human evaluation metrics for task1 using GPT-4o-mini

15

	Introduction
	Related work
	Methods
	Results
	Discussion
	Acknowledgments
	Data and Code Availability
	Appendix
	Workflow description
	Agents
	Teachability
	Generated prompts
	Performance evaluation metrics

