Invariant Language Modeling

Anonymous ACL submission

Abstract

Modern pretrained language models are critical components of NLP pipelines. Yet, they suffer from spurious correlations, poor out-of-domain generalization, and biases. Inspired by recent progress in causal machine learning, in particular the invariant risk minimization (IRM) paradigm, we propose invariant language modeling, a framework for learning invariant representations that generalize better across multiple environments. In particular, we adapt a game-theoretic implementation of IRM (IRM-games) to language models, where the invariance emerges from a specific training schedule in which all the environments compete to optimize their own environment-specific loss by updating subsets of the model in a round-robin fashion. In a series of controlled experiments, we demonstrate the ability of our method to (i) remove structured noise, (ii) ignore specific spurious correlations without affecting global performance, and (iii) achieve better out-of-domain generalization. These benefits come with a negligible computational overhead compared to standard training, do not require changing the local loss, and can be applied to any language model architecture. We believe this framework is promising to help mitigate spurious correlations and biases in language models.

1 Introduction

Despite dramatic progress in NLP tasks obtained by modern pretrained transformer models, important limitations remain. In particular, pretrained language models suffer from poor generalization, even under small perturbations of the input distribution (Moradi and Samwald, 2021). Indeed, these models encode (Moradi and Samwald, 2021) and exploit (Tu et al., 2020; Niven and Kao, 2019) spurious correlations, i.e., correlations that do not generalize across data distributions. Since language models are trained on large unverified corpora, they also suffer from biases (Nadeem et al., 2021; Bordes and Bowman, 2019). Biases are correlations that may or may not be spurious according to the available textual data distributions but are nevertheless undesired. Existing techniques aiming to remove spuriousness or biases involve computationally expensive domain alignment (Akuzawa et al., 2019; Liu et al., 2020; Zhao et al., 2020), domain transfer (Balaji et al., 2018) or adding penalty terms in the loss targeted at specific undesired correlations (Qian et al., 2019; Zhao et al., 2018). Alternatively, data preprocessing (Zhao et al., 2017; Zhou et al., 2021) or manipulation such as counterfactual data-augmentation (Lu et al., 2018) can yield datasets where the undesired correlations are
less present. Pretraining with larger and more diverse datasets can also help (Tu et al., 2020; Brown et al., 2020).

However, recent works on the theory of causality (Pearl, 2018; Schölkopf, 2019) argue that removal of spurious correlations requires altogether different learning and training paradigms going beyond purely statistical learning. Indeed, generalization, spuriousness, and biases are all better understood in the language of causality (Pearl, 2018). Intuitively, causal relationships are the ones expected to be stable (Schölkopf et al., 2021; Peters et al., 2017) and generalizable (Peters et al., 2016). When the causal graph underlying the data generation mechanism is known, there exist causal identification algorithms to distinguish desired from undesired correlations (Shpitser and Pearl, 2008). However, for complex tasks of interest, the underlying causal model is not known. Language modeling is one of these tasks, where it is unclear what would even be the relevant random variables constituting the causal model.

Therefore, causal identification from the causal graph seems out-of-reach for language modeling. Similarly, removing undesired correlations one by one is impractical due to the sheer amount of possible correlations to consider. In this work, we propose to leverage recent progress in causal machine learning to offer a new and more flexible lever for dealing with spuriousness and biases. We take inspiration from the invariance principle, which states that only relationships invariant across training environments should be learned (Peters et al., 2016). Under specific assumptions, the invariant representation would then only encode causal relationships relevant to the task and should thus generalize. Environments correspond to different views of the learning task, i.e., different data distributions. The invariance principle is illustrated by Fig. 1 with a simplified causal model as an example. E represents environment indices, Y is the target variable, X_C are the causal features, such that $\mathbb{E}[Y|X_C]$ is stable across environments $(\mathbb{E}[Y|X_C, E] = \mathbb{E}[Y|X_C])$, and X_S are the spurious features, not generalizing across environments $(\mathbb{E}[Y|X_S, E = e] \neq \mathbb{E}[Y|X_S, E = e'], e \neq e')$. Language models trained with standard empirical risk minimization (ERM), denoted as eLM in this work, exploit all correlations available during training and aim to learn $\mathbb{E}[Y|X_C]$. Our proposed invariant language models, denoted as iLM, focus on invariant features and aim to learn $\mathbb{E}[Y|X_C]$. In practice, since the causal model is unknown, it is the choice of environments that defines what correlations are spurious. Invariant learning with appropriate choices of environments is the lever we propose to employ to more flexibly deal with spuriousness and biases.

A practical implementation of the invariance principle was proposed by Arjovsky et al. (2019). They introduced invariant risk minimization (IRM), an alternative to ERM as a training objective enforcing the learning of invariant representations. Ahuja et al. (2020) later improved the training procedure to solve the IRM objective with a method called IRM-games. Unlike previous methods for removing biases and spurious correlations, IRM-games does not modify the loss with a regularization term and does not compute domain alignment (or matching) statistics. The invariance benefits come from the specific training schedule where environments compete to optimize their own environment-specific loss by updating subsets of the model in a round-robin fashion. The Nash equilibrium of this game between environments is a solution to the IRM objective (Ahuja et al., 2020).

We argue that the IRM paradigm, and IRM-games specifically, is well-suited to improve modern NLP systems. Textual data naturally comes from different environments, e.g., encyclopedic texts, Twitter, news articles, etc. Moreover, not knowing the causal mechanisms behind language generation within these environments is not a blocker, as the relevant variables can now remain latent. In this work, we adapt IRM-games to language modeling. This involves continuing the training of existing pretrained models to enforce invariant representations. We then investigate the ability of iLM to remove undesired correlations in a series of controlled experiments, effectively answering our core research question: Does the invariance principle give rise to a practical strategy to remove undesired correlations from language models?

Contributions. (i) We introduce a new training paradigm (iLM) for language models based on the invariance principle (Sec. 3). Thanks to the use of the IRM-games training schedule (see Sec. 2), our iLM framework results in negligible computational overhead compared to standard ERM training, does not require changing the local loss, and is agnostic to the language model architecture. (ii) In a series of controlled experiments (Sec. 4), we demonstrate the ability of iLM to remove structured noise
While the invariance principle is a general and powerful idea, works based on this principle often require knowing which random variables are part of the causal model (Akuzawa et al., 2019; Peters et al., 2016). Arjovsky et al. introduced invariant risk minimization (IRM), an alternative to empirical risk minimization, and a practical training objective compliant with the invariance principle. IRM allows for relevant variables to remain latent. Under specific assumptions, it will ignore correlations not due to the causal parents of the target variables.

IRM builds on the idea that the training data comes from different environments $e \in \mathcal{E}$. Each environment $e \in \mathcal{E}$ induces i.i.d. samples D^e from a distribution $P(X^e, Y^e)$. Then, the goal is to use these multiple datasets to learn a predictor $Y \approx f(X)$, which performs well across the set of all environments \mathcal{E}^*, only part of which were seen during training: $\mathcal{E} \subset \mathcal{E}^*$. This is accomplished by decomposing f into a feature representation ϕ and a classifier w as $f = w \circ \phi$, where \circ denotes function composition, i.e., $(w \circ \phi)(X) = w(\phi(X))$. The feature representation ϕ elicits invariant representation of the data if the same classifier w is simultaneously optimal for all environments $e \in \mathcal{E}$.

Thus, IRM solves the following optimization problem:

$$\min_{\phi, w} \sum_{e \in \mathcal{E}} R^e(w \circ \phi),$$

subject to $w \in \arg \min_{w'} R^e(w' \circ \phi), \forall e \in \mathcal{E}$,

where R^e is the empirical risk computed within an environment e; i.e., if \mathcal{L} is a loss function, $\mathcal{R}^e = \mathbb{E}[\mathcal{L}((w \circ \phi)(X^e), Y^e)]$.

2.3 IRM-games

IRM is a challenging bi-level optimization originally solved (Arjovsky et al., 2019) by relaxing the objective function, setting the invariance criteria as a regularizer. Later, Ahuja et al. improved the training procedure by using a game-theoretic perspective in which each environment e is tied to its own classifier w^e, and the feature representation ϕ is shared. The global classifier w is then defined as the ensemble of all environment-specific classifiers.

Environments take turns to make a stochastic gradient update to minimize their own empirical risk $R^e(w \circ \phi)$ but the update concerns only their own classifier w^e, while the shared ϕ is updated periodically. For more details see the algorithm called V-IRM in the original paper. Ahuja et al. showed that the equilibrium of this game is a solution to the IRM objective.

3 Model

We introduce a way to train language models inspired from the IRM-games setup. This involves distinguishing the shared invariant feature learner...
\[\phi \] from the environment specific \(w_e \)'s. With modern language models architectures, a natural choice emerges: \(\phi \) as the main body of the encoder, and \(w_e \) as the language modeling head that outputs the logits after the last layer.

Formally, suppose we have \(n \) environments consisting of data \(\{(X^e, Y^e)\}_{e=1}^{n} \). For a batch \((x_i, y_i) \sim P(X^e, Y^e) \) from environment \(i \), the model output is formed using an ensemble of \(n \) language modeling heads \(\{w_e\}_{e=1}^{n} \) on top of the transformer encoder: \(\hat{y} = \text{softmax} \left(\frac{1}{n} \sum_{e=1}^{n} w_e \circ \phi(x_i) \right) \).

Then, a (masked) language modeling loss \(\mathcal{L} \) is computed on the model output \(\hat{y} \). Note that it is the predictions of the \(n \) heads that are averaged (compared to the weights or gradients as in a multi-task setup). No head gets to predict alone; the \(n \) heads always predict together as an ensemble but performing competitive gradient updates in a round-robin fashion, which in turn creates the game-theoretic conditions that enforces the invariance of Eq. 1.

Training The training of iLM follows the pseudocode described in Alg. 1, where environments take turn to send a batch of data and update \(\phi \) and their associated head. An illustration is provided in Appendix A. Each head periodically gets an opportunity to pull the global ensemble classifier \(\mathbf{w} \) and the feature learner \(\phi \) towards fitting the distribution of its associated environment. Intuitively, since each head gets the same amount of updates, the game converges to a global classifier that is simultaneously optimal for each environment, as demonstrated by (Ahuja et al., 2020). If the model one head per environment trained in round-robin fashion but without the ensemble prediction and competitive gradient update (similar to multi-task learning), it would not enforce invariance across environments.

While the V-IRM algorithm of Ahuja et al. (2020) only updates \(\phi \) periodically, we found it more stable to update it together with every head update.

Advantages of design choices Choosing the heads as environment-specific \(w_e \) is agnostic to the model architecture because the whole body of the model is included in \(\phi \). Only the components specific to language modeling -- the heads-- have a different structure compared to the standard ERM setup. This makes the iLM framework compatible with any kind of pretrained language model. Moreover, the whole body of the model is the invariant feature learner \(\phi \). Finally, since only the heads and their training dynamic differ from standard eLM, the usage of iLM models does not differ in downstream tasks.

4 Experiments

Invariance training comes with the promise of robustness and generalization (Peters et al., 2016; Muandet et al., 2013; Ahuja et al., 2020). In the following series of experiments, we test whether our proposed architecture for language modeling can provide such benefits. Since the causal model governing language production is unknown, we do not have access to the gold standard answer about which correlation is spurious. Thus, we focus on controlled setups: crafting environments whose difference is known, from which we know the expected behavior. We describe three main experiments: structured noise removal, controlled correlation removal, and out-of-domain generalization. We emphasize that we use perplexity evaluation in two out of three experiments, not because we view low perplexities as desirable for language models, but because perplexity is an objective measure of the ability of a language model to fit data.
that matches its training goal. Perplexity evaluation is part of the simplified and controlled setup used to test the new core benefits of iLM. The results presented here open the way for more practical future works based on what we call environment design: how to choose environment splits to be useful in downstream tasks (see Sec. 5 for an extended discussion).

For all the experiments, each plot reports 95% confidence intervals from bootstrap resampling of the data. We repeat each experiment for two base pretrained transformer models with different properties (size, tokenization method): distilBERT (Sanh et al., 2019) and ROBERTA (Liu et al., 2019). We also repeat each experiment with different learning rates, number of training steps and random restarts with different random seeds. Appendix B provides additional details regarding each experiment and further results about the importance of hyper-parameters.

4.1 Structured Noise Removal

Description. In this experiment, we test robustness in a controlled setup. We craft two environments: Env-A made of clean Wikipedia articles and Env-B made of full HTML pages of Wikipedia articles. Then, we continue the training with the masked language modeling (MLM) loss from existing checkpoints for both iLM and eLM with these two environments and evaluate the MLM perplexity on a held-out dataset of clean Wikipedia articles. Intuitively, eLM should try to fit the HTML part of the training data and thus be more surprised by the clean Wikipedia articles during the test set. However, iLM should learn to ignore the HTML because it does not generalize from Env-B to Env-A.

The results are visualized in Fig. 2. See Appendix B.1 for hyper-parameters considered. On the left plot, we report the average perplexity on the test set averaged over all experiments. On the right plot, we report the probability that for any given hyper-parameter configuration, iLM has a lower perplexity than eLM. In these experiments, paired comparison is particularly important because varying hyper-parameters results in large variations of perplexity. Blindly averaging amplifies the variance and hides the structure of model performance (Peyrard et al., 2021). For reference, the perplexities on the same test set of pretrained distilBERT and ROBERTA are, respectively, 14.43 and 6.71.

Analysis. We observe that iLM has an overall lower test perplexity when averaged over all experiments (Fig. 2 a). Furthermore, for any given hyper-parameter choice, iLM is better than eLM (Fig. 2 c) with a probability > .95 for both distilBERT and ROBERTA. Note that the few cases where eLM matches or beats iLM happen when few training steps have been taken (< 50). The trends are the same for both distilBERT and ROBERTA despite large perplexity differences between them.

4.2 Controlled Correlation Removal

Description. In this experiment, we test the capacity to remove one precise and known correlation by crafting two environments differing only in this specific correlation. We use binarized gendered terms and create two environments where the gendered terms are used differently. More precisely, we take a textual data source with known gender bias, in this case, Wikitext-2 (Merity et al., 2016). A fraction \(p \) of the data goes into Env-A, the rest \((1 - p) \) goes into Env-B. Env-A remains untouched and preserves all the properties of the original data source. Whereas Env-B is intervened upon by inverting all gendered terms based on a dictionary provided by previous work (Bordia and Bowman, 2019). When \(p = 1 - p = 0.5 \), this setup matches the counterfactual data-augmentation methods (Lu et al., 2018) already used to mitigate gender-bias in language models. Intuitively, iLM should learn to ignore gender-based correlations no matter what is the fraction \(p \). However, eLM is only expected to ignore them when \(p = 1 - p = 0.5 \), i.e., the two environments have the same number of samples (Lu et al., 2018).

We craft this experiment as an example of controlled correlation removal, but it shows promise for practical bias removal because selecting or crafting environments where biases do not hold is arguably simpler than precisely counter-balance the bias by data processing/augmentation or regularization. iLM can directly improve current bias-removal strategies based on counterfactual data augmentation. We come back to this in Sec. 5.

Experimental setup. To measure whether the correlation has been successfully removed: (i) we take

1 We recognize the non-binary nature of gender as well as the many ethical principles in the design, evaluation, and reporting of results in studying gender as a variable in NLP (Larson, 2017). Because iLM is not limited to training only with two environments, this architecture can also support more general bias removal goals.
Figure 3: Controlled correlation removal experiment: On the x-axis, we report the relative size between the modified environment and the unmodified one, and report on the y-axis the average bias for both iLM and eLM. Note that $P(iLM \text{ beats } eLM) > 0.95$ when the relative size is < 80%, eLM and iLM become indistinguishable for relative sizes > 80%.

all gendered terms in the test set, (ii) replace them by the mask token, (iii) use trained eLM and iLM models to predict the missing term, (iv) look in the softmaxes the scores received by the terms of the target gendered-pair. We note s_f and s_m the score assigned to the male and female terms in the softmax. (v) Finally, we compute an entropy-bias measure: $B_H = H_2\left(\frac{1}{2}\right) - H_2\left(\frac{s_f}{s_f + s_m}\right)$, where H_2 is the binary entropy (note that $H_2\left(\frac{1}{2}\right) = 1$). B_H measures the extent to which a softmax has a preference for the male or female term in a gendered pair of terms. For example, in the sentence "MASK is the best doctor", we look at the softmax score of the gendered-pair [he, she]. If a model has learned to ignore gender-based correlation, the entropy should be high, i.e., which gender to be used is uncertain and the entropy bias B_H should be low.

We ran the experiments for varying values of p and report the results in Fig. 3. See Appendix B.2 for hyper-parameters considered. For reference, the entropy bias of distilBERT and RoBERTa before training are, respectively, 0.39 and 0.46.

Analysis. Both eLM and iLM decrease the average entropy bias in the balanced setup but only iLM succeeds in the unbalanced setup. In the balanced setup (relative sizes close to 100%), eLM and iLM perform within each other’s confidence intervals. However, in the unbalanced setup, iLM largely outperforms eLM. We note that the probability that iLM beats eLM for any given hyper-parameter configuration is > 0.9 for both distilBERT and RoBERTa when the relative sizes is below 80%. As desired iLM is not affected by the relative size of the environments. These results confirm the hypothesis, that correlation reduction needs a precisely balanced dataset for eLM (Lu et al., 2018), while it matter much less for iLM. Furthermore, this entropy bias reduction does not happen at the cost of worst general perplexities (See Appendix B.2).

4.3 Out-of-domain Generalization
In this experiment, we venture beyond carefully controlled setups and test out-of-domain generalization with naturally occurring domains. We use subsamples from thePile dataset (Gao et al., 2020) which contains 20 very diverse textual domains: OpenSubtitles, ArXiv papers, News, GitHub comments, etc.

Experimental setup. We randomly sample n domains from thePile, use $n - 1$ of these domains as training and the remaining unseen one for testing. We compare iLM and eLM on their ability to generalize on the unseen domains by measuring the perplexity on the test domain.

The disparity of domains in thePile results in vast differences in perplexities between different domains, making the perplexities not comparable from one testing domain to the next. Instead of reporting averages of different domains, we report the better suited paired evaluation: comparing iLM and eLM in the same experimental setup (same hyper-parameters and same training/testing domains).

The probability that iLM is better than eLM after 5000 training step is 0.9 with the 95% confidence interval of (0.79, 1). In Appendix B.3, we provide details about the impact of hyper-parameters.

However, the advantage of iLM over eLM is less striking in this experiment than in the two previous ones. The average perplexities of iLM is not always significantly lower than that of eLM (see Appendix B.3 for details). We come back to potential reasons for this behavior in Sec. 5.

5 Discussion
In this section, we discuss our contributions in the context of previous work.

5.1 Related Work

Domain generalization. The performance of deep learning models substantially degrades on Out-of-Domain (OoD) datasets, even in the face of small variations of the data generating process (Hendrycks and Dietterich, 2019). Blanchard et al.
(2011) have proposed domain generalization (DG) as a formalism for studying this problem. In DG, the goal is to learn a model using data from a single or multiple related but distinct training domains, in such a way that the model generalizes well to any OoD testing domain, unknown during training. Recently, the problem of DG has attracted a lot of attention, and has been approached from different facets. Most of the existing methods fall under the paradigm of domain alignment (Muandet et al., 2013; Li et al., 2018b; Akuzawa et al., 2019; Liu et al., 2020; Zhao et al., 2020). Motivated by the idea that features that are stable across the training domains should also be robust to the unseen testing domains, these methods try to learn domain-invariant representations. A group of other methods is based on meta-learning (Dou et al., 2019; Balaji et al., 2018; Li et al., 2018a). The motivation behind this approach is that it exposes the model to domain shifts during training, which will allow it to generalize better during testing. Regularization through data augmentation is commonly used in the training of machine learning models to alleviate overfitting and thereby improve generalization (Zhou et al., 2021, 2020).

Domain generalization applied to language models. In NLP, the default pipeline involves pretraining a task-agnostic language model, which is then finetuned on downstream tasks. This pretraining/finetuning division of learning is already known to improve robustness on downstream tasks (Hendrycks and Dietterich, 2019). However, the language models themselves suffer from spurious correlations and poor generalization even with small perturbations of the inputs (Moradi and Samwald, 2021). To alleviate such problems, Oren et al. (2019) adapt Distribution Robust Optimization (Ben-Tal et al., 2013) to language models. This results in a new loss minimizing the worst-case performance over subsamples of the training set. They focus on domains with topic shifts. Then, Vernikos et al. (2020) use domain adversarial regularization to improve testing performance on unseen domains.

Also related to our framework are techniques aiming at de-biasing language models. Biases are correlations that may or may not be spurious but are nevertheless undesired. Removing such biases is typically done by (i) adding a bias-specific penalty term (Qian et al., 2019; Bordia and Bowman, 2019; Zhao et al., 2018) to the loss, and/or (ii) augmenting the data to counterbalance the undesired correlation (Lu et al., 2018; Zhao et al., 2017). For example, counterfactual data-augmentation used to reduce gender-bias (Lu et al., 2018) flips half of the gendered terms to destroy existing correlations in the original inputs.

Justification of IRM-games. The rich literature in domain generalization begets the question why we should focus specifically on IRM-games to adapt to language models. Counterfactual data-augmentation techniques require some knowledge of and some ability to manipulate the possible mechanisms generating the data. Meta-learning techniques come with a large extra-computation cost as they are based on multiple rounds of training. This is not practical for modern language models. IRM-games lends itself particularly well to modern implementations of language models with the natural distinction between the transformer body as ϕ and the language modeling heads as w. Importantly, as opposed to most other methods, it does not require extra computation about the environments (like matching, variance, drift, etc.). It is sufficient to keep track of environment indices during training and the invariance comes from the particular game-theoretic dynamics of the training schedule. Thus, the local language modeling loss can remain unchanged, there is no need for a regularization term for which the strength needs to be tuned. Finally, iLM has a minimal computational overhead compared to eLM because only the heads are multiplied (one per environment) but the number of parameters in these heads is small in comparison to the number of parameters in the main body a modern language model.

5.2 Potential Limitations of Domain Generalization Methods

Discussion of potential limitations. With the recent interest in invariance-based methods came a trend of questioning the real generalization ability of these methods. For example, Gulrajani and Lopez-Paz (2021) finds that finetuning ERM can be as good as vanilla IRM (Arjovsky et al., 2019). Similarly, Rosenfeld et al. (2021) find that the number of environments needed for full generalization can be large. To organize the discussion around the benefits of OoD generalization methods, Ye et al. (2021) argue about the importance of distinguishing different types of distribution shifts according to the underlying data generation mechanism. In particular, they distinguish diversity shifts.
and correlation shifts, and claim that invariance-based methods perform well for correlation shifts but not for diversity shifts.

In the language context. These limitations did not include IRM-games as part of their analysis. In language, since the latent causal model is unknown, it is difficult to anticipate which kind of distribution shifts our models might face. Nevertheless, the experiments of structured noise removal (Sec. 4.1) and controlled correlation removal (Sec. 4.2) are instances of correlation shifts as defined by Ye et al. (2021). On these experiments, we observe striking improvements when compared to eLM. The OoD experiment (Sec. 4.3) involves more latent variables in the shifts from one domain to another and possibly exhibits both correlation and distribution shifts. This can explain the smaller performance gains observed in this experiment.

Possible problems with environment choices. One question that might arise from the iLM training schedule is what happens when environments have no lexical overlap? Maybe no correlation remains in iLM? To demonstrate that iLM operates on latent variables and not just on surface-level correlations, we perform a simple experiment with languages as environments. We train iLM with a pretrained multilingual model (XLM-ROBERTA) using English Wikipedia articles and Farsi Wikipedia articles as two environments. Despite absolutely no surface-level overlap, iLM is still able to improve perplexity in each language individually and does not destroy previously learned correlations. This experiment is detailed in Appendix B.4.

Also, if the number of environments grows arbitrarily large, certainly iLM would not find any stable correlations in the data. However, the choice of environments is not intended to be arbitrary; throwing as many environments as possible could not be expected to be useful. The choice of environments has to reflect assumptions about the underlying data generation mechanism. iLM then leverages the assumptions encoded in the choice of environments.

5.3 Environment Design

Causal perspective. Pearl organized causal problems in a three-level hierarchy termed the “ladder of causation”: observational queries correspond to seeing and observing; interventional queries correspond to acting and intervening; and counterfactual queries correspond to imagining, reasoning, and understanding. In this ladder, it is in general impossible to solve problems at the higher-levels with only data and assumptions from lower levels. When performing invariant feature learning, we hope for generalization benefits from the interventional level (Peters et al., 2016; Arjovsky et al., 2019; Ahuja et al., 2020). However, ERM training and eLM operate at the observational level. The iLM setup also uses only observational data because the model is not performing experiments. Therefore, we need to inject causal assumptions (interventional level) to hope to get generalization benefits. These assumptions are encoded by the choice of environments (Peters et al., 2016; Arjovsky et al., 2019), which dictates where the interventions have happened in the unobserved data-generating process.

Environment design. This work has shown that iLM can effectively remove unstable correlations, the next question becomes that of environment design: how to choose environment splits to be useful in practice? or equivalently, what assumptions are useful for tasks of interest? Useful environment splits will likely be different for different tasks and different purposes. This work already demonstrated that the new paradigm of (i) environment design then (ii) iLM is practical for language-related problems. Simple environment choices already improve robustness, subsumes existing bias removal strategies, and are useful for OoD generalization. Choosing environment splits is a flexible way to inject priors and assumptions compared to manually deciding which correlation are desired (as in bias removal) or fully learning the causal graph (as in causal reasoning).

6 Conclusion

We introduce invariant language models trained to learn invariant feature representations that generalize across different training environments. In a series of controlled experiments, we demonstrate the ability of our method to remove structured noise, ignore specific spurious correlations without affecting global performance, and perform better out-of-domain generalization. These benefits come with a negligible computational overhead compared to standard training, do not require changing the loss, and apply to any language model architecture. We believe this framework is promising to help alleviate the reliance on spurious correlations and the presence of biases in language models.
References

A Illustration of iLM Architecture

In the main paper, we described formally the pseudo-code involved in training iLM models. The model architecture and the logic of the training schedule is illustrated in Fig. 4 for the special-case of 2 environments (n = 2).

B Details about Experiments

B.1 Structured Noise Removal

Data. The data used for this experiment comes from an HTML Wikipedia Dump of August 2018. The files were pre-processed to remove the HTML content resulting in clean text articles. We randomly selected 6K articles with HTML (Env-B), and 6K different articles without HTML (Env-A). The test set contains 620 different articles without HTML.

Hyper-parameters. We ran the experiments reported in the main paper while varying several hyper-parameters: base transformers (ϕ): [distilBERT, RoBERTa], learning rates: [1e−5, 5e−5], number of training steps: [10, 100, 200, 500, 2500, 5000], 5 random restarts with different random seeds, 2 · 2 · 6 · 5 = 120, ran with both eLM and iLM resulting in 240 experiments.

Number of lines vs. number of articles. In Fig. 2 of the main paper, we report the result of iLM and eLM when trained with environments having the same number of articles. However, the HTML articles have more lines and thus more sentences. Therefore, we also report in Fig. 5 the same analysis repeated when the number of lines between Env-A and Env-B is the same, meaning Env-B contains fewer articles. The conclusion remains largely unchanged in this scenario.

B.2 Controlled Correlation Removal

Data. The dataset used for this experiment is Wikitext-2 (Merity et al., 2016) and the dictionary of gendered terms comes from Bordia and Bowman (2019) which was originally constructed to measure gender bias in language models.

The dictionary contains basic gender-pairs augmented with their variations in terms of casing, plural vs. singular forms and different spellings. The basic gendered pairs are: (actor, actress), (boy, girl), (boyfriend, girlfriend), (father, mother), (gentleman, lady), (grandson, granddaughter), (he, she), (hero, heroine), (him, her), (husband, wife), (king, queen), (male, female), (man, woman), (mr., mrs.), (prince, princess), (son, daughter), (spokesman, spokeswoman), (stepfather, stepmother), (uncle, aunt)

Perplexities after training. To ensure that the gender-based correlations were not removed at the cost of a worse perplexity, we report in Table 1 the perplexities of iLM models in comparison eLM ones on the test set of Wikitext-2. For reference, before our training distilBERT and RoBERTa had, this same test set, perplexities of 14.25 and 6.92, respectively.

In Table 1, the 95% confidence intervals all give uncertainties ≈ 0.15, meaning that for a fixed base model (distilBERT or RoBERTa) all perplexities are within each other’s error bounds. There is no significant perplexity difference between eLM and iLM or between the unbalanced and balanced setups.

B.3 Out-of-domain Generalization

Data. The data used for this experiment comes from subsamples of thePile (Gao et al., 2020). Af-

<table>
<thead>
<tr>
<th></th>
<th>Unbalanced</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>iLM Roberta</td>
<td>4.16</td>
<td>4.13</td>
</tr>
<tr>
<td>iLM DistilBERT</td>
<td>5.82</td>
<td>5.81</td>
</tr>
<tr>
<td>eLM Roberta</td>
<td>4.14</td>
<td>4.14</td>
</tr>
<tr>
<td>eLM DistilBERT</td>
<td>5.82</td>
<td>5.85</td>
</tr>
</tbody>
</table>

Table 1: Perplexities of iLM and eLM models after training.
Figure 4: **Model description** In the forward pass, input text goes through the main body of language model noted \(\phi \) (e.g., a Transformer \cite{devlin2019bert}), then one head per environment predicts logits over the vocabulary. These predictions are averaged over all heads and go through a Softmax. During training, the model receives a batch of data from one environment \(e \) and performs a gradient update only on the parameters of the main body of the language model (\(\phi \)) and on the parameters of the head tied to this environment \(w_e \). Then batches are taken from each environment in a round-robin fashion.

<table>
<thead>
<tr>
<th>hyper-parameters</th>
<th>(\phi)</th>
<th>(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>base-model (\phi)</td>
<td>DistilBERT</td>
<td>(\rho)</td>
</tr>
<tr>
<td>learning-rates</td>
<td>(1e-5, 5e-5)</td>
<td>(1e-5)</td>
</tr>
<tr>
<td>number of training steps</td>
<td>(100, 1000, 2500, 5000)</td>
<td>(5)</td>
</tr>
<tr>
<td>number of environments for training</td>
<td>(3, 9, 13)</td>
<td>(5)</td>
</tr>
<tr>
<td>random restarts</td>
<td>(\phi)</td>
<td></td>
</tr>
<tr>
<td>different random seeds</td>
<td>(w)</td>
<td></td>
</tr>
<tr>
<td>different choices of training/testing domains</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Fig. 7, we report the probability that iLM has lower perplexity than eLM as a function of the number of training steps in Fig. 7 (a) and as a function of the number of training environments Fig. 7 (b).

We observe that overall iLM is better perplexities on unseen domains. The advantage of iLM increases with the number of training steps (Fig. 7 a) but also with number of training environments (Fig. 7 b). This indicates that using more environments is even more beneficial for iLM than for eLM.

Perplexities. In the main paper, we focus on the paired comparison between iLM and eLM. In Table 2, we report the test perplexities of iLM and eLM for distilBERT and RoBERTa average over different hyper-parameters. We observe that differences between eLM and iLM are smaller than for other experiments but iLM still has advantage over eLM.

<table>
<thead>
<tr>
<th>test set</th>
<th>iLM</th>
<th>eLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>arxiv</td>
<td>5.71</td>
<td>5.93</td>
</tr>
<tr>
<td>openwebtext</td>
<td>3.90</td>
<td>3.96</td>
</tr>
<tr>
<td>pile-cc</td>
<td>4.42</td>
<td>4.44</td>
</tr>
<tr>
<td>uspto</td>
<td>4.14</td>
<td>4.19</td>
</tr>
<tr>
<td>pubmed-abstract</td>
<td>4.13</td>
<td>4.17</td>
</tr>
<tr>
<td>pubmed-central</td>
<td>4.23</td>
<td>4.29</td>
</tr>
<tr>
<td>github</td>
<td>5.84</td>
<td>5.93</td>
</tr>
<tr>
<td>youtube</td>
<td>4.78</td>
<td>4.76</td>
</tr>
</tbody>
</table>

Table 2: Perplexities of iLM and eLM models for both RoBERTa on testing domains subsampled from the Pile. The bold font indicates that iLM is significantly better than eLM \((p < .05, \text{paired t-test})\).
Figure 6: **Controlled correlation removal experiment:** On the first row, the modified environment is 25% of the size of the unmodified environment. On the second row, both have the same number of samples. On the left-most column, average bias over all hyper-parameters. On the center column: average bias as a function of the number of training steps. On the right-most column: Probability that iLM is less biased than eLM when compared on the same hyper-parameters.

Figure 7: **OoD generalization:** a) Probability that iLM is better than eLM all hyper-parameters being the same as a function of: the number of training steps in a) and the number of training environments in b).

B.4 Languages as Environments

One question that might arise from iLM training schedule is whether it simply focuses on surface-level lexical correlations in the data. For example, if the lexical correlations are different across environments, maybe no correlation remain generalizable and iLM learns an empty set of correlations. To better demonstrate that iLM operate on latent variable and not on surface-level correlations, we perform a simple experiment with languages as environments.

Description. We use two languages with no lexical overlap: English and Farsi. We put english Wikipedia articles as one environment and farsi Wikipedia articles as the other. In this setup, no surface-level correlations can generalize across environment as the two environments don’t even have the same vocabulary. We train iLM with a multilingual pre-trained RoBERTa: XLM-RoBERTa for 5000 steps with these two environments of equal size (10K articles per language). Then, we test whether this choice of environments destructs previously learn correlations in the language model by comparing perplexities on a balanced held-out test set of english and farsi documents against the model before finetuning. If the perplexities decrease, we would conclude that iLM destroy surface-level correlations.

Results. We found that before finetuning, XLM-RoBERTa had a perplexity of 14.56 on the held-out test set, where iLM could improve it perplexity down to 6.44. This indicates that iLM with environments having no lexical overlap does not destroy previously learned correlations. It can even improve its perplexities for each language. A possible reason why iLM can even improve so dramatically compared to before finetuning might come from the fact that \(\phi \) learns to recognize the languages, separate them and treat them separately. Similar effects have been observed in previous work (Guo et al., 2021) when the correlation between the environment index and the target variable is very strong (which is the case here).

B.5 Head dynamics

The main components of our framework are the heads and their training dynamic. Therefore, we investigate aspects related to behaviour of the heads.

Description. During training, the loss of each head is still entangled with the prediction of every other head. So we wonder whether the heads still capture information related to the environment it is tied to during training. In particular, we ask (i) whether the
parameters of the heads for different environments are drifting apart during training? Indeed, all heads are initialized to the same pretrained weights at the beginning of training. (ii) Are the parameters of the heads predicting which environments are more similar?

Experimental setup. To answer these two questions in one go, we take two environments A and B and split each of them into two new environments resulting in $A_1, A_2, B_1,$ and B_2 such that A_1 and A_2 are very similar B_1 and B_2 are very similar but A_i and B_i are different. We then train iLM with the four environments and, thus, with four heads $w_{A_1}, w_{A_2}, w_{B_1},$ and w_{B_2}. We measure whether the heads’ weights can predict the similarities between A’s and B’s environments.

$$D_{in} = \frac{1}{2} (d(w_{A_1}, w_{A_2}) + d(w_{B_1}, w_{B_2})), \quad (3)$$

$$D_{out} = \frac{1}{4} \sum_{i,j} d(w_{A_i}, w_{B_j}), \quad (4)$$

where d is the L2 distance between the linearized weights of two heads. Then, D_{in} is the average distance between heads tied the same domain, and D_{out} is the average distance between heads tied to different domains. Remember that in this case, there are 2 domains A and B and 4 environments A_i and B_i.

In this experiment, we randomly select the base environments A and B from the domains of the Pile (A is the Enron-Email, and B is PubMed abstract). We create A_i and B_i by randomly subsampling 2 environments of the same size from each domain. We train iLM with ROBERTa for 5000 training steps, taking checkpoints of the heads every 500 steps. We perform 10 random restarts with different seeds to uncertainty estimates. In Fig. 8, we report D_{in} and D_{out} as functions of the number of training steps.

Analysis. We first notice that indeed the heads are drifting apart from each other as training advances. More interestingly, the distance between heads from the same domain is significantly much smaller than the distance between heads from different domains. We conclude that heads retain environment-specific information in their parameters and are predictive of environment similarities.

Now, we visualize the geometry of head similarity by training iLM with ROBERTa for 5000 steps with 9 environments from the Pile. After training, we take the heads’ parameters and compute the pairwise distance between all 9 heads and embed them in 2D with Multi-Dimensional Scaling to visualize the similarity structure. The result is depicted in Fig. 9.