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Abstract

Modern pretrained language models are criti-001
cal components of NLP pipelines. Yet, they002
suffer from spurious correlations, poor out-of-003
domain generalization, and biases. Inspired by004
recent progress in causal machine learning, in005
particular the invariant risk minimization (IRM)006
paradigm, we propose invariant language mod-007
eling, a framework for learning invariant rep-008
resentations that generalize better across mul-009
tiple environments. In particular, we adapt a010
game-theoretic implementation of IRM (IRM-011
games) to language models, where the invari-012
ance emerges from a specific training schedule013
in which all the environments compete to op-014
timize their own environment-specific loss by015
updating subsets of the model in a round-robin016
fashion. In a series of controlled experiments,017
we demonstrate the ability of our method to018
(i) remove structured noise, (ii) ignore specific019
spurious correlations without affecting global020
performance, and (iii) achieve better out-of-021
domain generalization. These benefits come022
with a negligible computational overhead com-023
pared to standard training, do not require chang-024
ing the local loss, and can be applied to any025
language model architecture. We believe this026
framework is promising to help mitigate spuri-027
ous correlations and biases in language models.028

1 Introduction029

Despite dramatic progress in NLP tasks obtained030

by modern pretrained transformer models, impor-031

tant limitations remain. In particular, pretrained032

language models suffer from poor generalization,033

even under small perturbations of the input distri-034

bution (Moradi and Samwald, 2021). Indeed, these035

models encode (Moradi and Samwald, 2021) and036

exploit (Tu et al., 2020; Niven and Kao, 2019) spu-037

rious correlations, i.e., correlations that do not gen-038

eralize across data distributions. Since language039

models are trained on large unverified corpora, they040

also suffer from biases (Nadeem et al., 2021; Bor-041

dia and Bowman, 2019). Biases are correlations042
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Figure 1: High-level overview using a simplified
causal structure. The distinction between environ-
ments makes it possible to separate spurious from sta-
ble features. Indeed, the relationship between the tar-
get variable Y and the stable features XC is invariant
across environments: E[Y |XC,E] = E[Y |XC]. However,
the correlation between Y and XS is spurious and does
not generalize across environments: E[Y |XS,E = e] ̸=
E[Y |XS,E = e′],e ̸= e′. Language models trained with
the standard ERM, denoted as eLM in this work, ex-
ploit all correlations available during training and aim
to learn E[Y |XC,XS]. Our proposed invariant language
models, denoted as iLM, focus on invariant features and
aim to learn E[Y |XC]. In language modeling, Y could
represent the missing-word prediction task.

that may or may not be spurious according to the 043

available textual data distributions but are never- 044

theless undesired. Existing techniques aiming to 045

remove spuriousness or biases involve computa- 046

tionally expensive domain alignment (Akuzawa 047

et al., 2019; Liu et al., 2020; Zhao et al., 2020), do- 048

main transfer (Balaji et al., 2018) or adding penalty 049

terms in the loss targeted at specific undesired cor- 050

relations (Qian et al., 2019; Zhao et al., 2018). Al- 051

ternatively, data preprocessing (Zhao et al., 2017; 052

Zhou et al., 2021) or manipulation such as coun- 053

terfacual data-augmentation (Lu et al., 2018) can 054

yield datasets where the undesired correlations are 055
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less present. Pretraining with larger and more di-056

verse datasets can also help (Tu et al., 2020; Brown057

et al., 2020).058

However, recent works on the theory of causality059

(Pearl, 2018; Schölkopf, 2019) argue that removal060

of spurious correlations requires altogether differ-061

ent learning and training paradigms going beyond062

purely statistical learning. Indeed, generalization,063

spuriousness, and biases are all better understood in064

the language of causality (Pearl, 2018). Intuitively,065

causal relationships are the ones expected to be sta-066

ble (Schölkopf et al., 2021; Peters et al., 2017) and067

generalizable (Peters et al., 2016). When the causal068

graph underlying the data generation mechanism is069

known, there exist causal identification algorithms070

to distinguish desired from undesired correlations071

(Shpitser and Pearl, 2008). However, for complex072

tasks of interest, the underlying causal model is not073

known. Language modeling is one of these tasks,074

where it is unclear what would even be the relevant075

random variables constituting the causal model.076

Therefore, causal identification from the causal077

graph seems out-of-reach for language modeling.078

Similarly, removing undesired correlations one by079

one is impractical due to the sheer amount of pos-080

sible correlations to consider. In this work, we081

propose to leverage recent progress in causal ma-082

chine learning to offer a new and more flexible083

lever for dealing with spuriousness and biases.084

We take inspiration from the invariance princi-085

ple, which states that only relationships invariant086

across training environments should be learned (Pe-087

ters et al., 2016). Under specific assumptions, the088

invariant representation would then only encode089

the causal relationships relevant to the task and090

should thus generalize. Environments correspond091

to different views of the learning task, i.e., dif-092

ferent data distributions. The invariance princi-093

ple is illustrated by Fig. 1 with a simplified causal094

model as an example. E represents environment095

indices, Y is the target variable, XC are the causal096

features, such that E[Y |XC] is stable across envi-097

ronments (E[Y |XC,E] = E[Y |XC]), and XS are the098

spurious features, not generalizing across environ-099

ments (E[Y |XS,E = e] ̸= E[Y |XS,E = e′],e ̸= e′).100

Language models trained with standard empirical101

risk minimization (ERM), denoted as eLM in this102

work, exploit all correlations available during train-103

ing and aim to learn E[Y |XC,XS]. Our proposed104

invariant language models, denoted as iLM, focus105

on invariant features and aim to learn E[Y |XC]. In106

practice, since the causal model is unknown, it 107

is the choice of environments that defines what 108

correlations are spurious. Invariant learning with 109

appropriate choices of environments is the lever 110

we propose to employ to more flexibly deal with 111

spuriousness and biases. 112

A practical implementation of the invariance 113

principle was proposed by Arjovsky et al. (2019). 114

They introduced invariant risk minimization (IRM), 115

an alternative to ERM as a training objective enforc- 116

ing the learning of invariant representations. Ahuja 117

et al. (2020) later improved the training procedure 118

to solve the IRM objective with a method called 119

IRM-games. Unlike previous methods for remov- 120

ing biases and spurious correlations, IRM-games 121

does not modify the loss with a regularization 122

term and does not compute domain alignment (or 123

matching) statistics. The invariance benefits come 124

from the specific training schedule where environ- 125

ments compete to optimize their own environment- 126

specific loss by updating subsets of the model in 127

a round-robin fashion. The Nash equilibrium of 128

this game between environments is a solution to 129

the IRM objective (Ahuja et al., 2020). 130

We argue that the IRM paradigm, and IRM- 131

games specifically, is well-suited to improve mod- 132

ern NLP systems. Textual data naturally comes 133

from different environments, e.g., encyclopedic 134

texts, Twitter, news articles, etc. Moreover, not 135

knowing the causal mechanisms behind language 136

generation within these environments is not a 137

blocker, as the relevant variables can now remain 138

latent. In this work, we adapt IRM-games to lan- 139

guage modeling. This involves continuing the train- 140

ing of existing pretrained models to enforce invari- 141

ant representations. We then investigate the ability 142

of iLM to remove undesired correlations in a series 143

of controlled experiments, effectively answering 144

our core research question: Does the invariance 145

principle give rise to a practical strategy to remove 146

undesired correlations from language models? 147

Contributions. (i) We introduce a new training 148

paradigm (iLM) for language models based on the 149

invariance principle (Sec. 3). Thanks to the use of 150

the IRM-games training schedule (see Sec. 2), our 151

iLM framework results in negligible computational 152

overhead compared to standard ERM training, does 153

not require changing the local loss, and is agnostic 154

to the language model architecture. (ii) In a se- 155

ries of controlled experiments (Sec. 4), we demon- 156

strate the ability of iLM to remove structured noise 157
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(Sec. 4.1), ignore specific spurious correlations158

without affecting global performance (Sec. 4.2),159

and achieve better out-of-domain generalization160

(Sec. 4.3). (iii) We discuss our contributions in161

relation to previous work (Sec. 5). (iv) Finally, we162

release Huggingface-compatible code for training163

iLM using existing language model checkpoints164

(Wolf et al., 2020): anonymized165

2 Background166

In this section, we present the ideas and previous167

work necessary to understand our proposed models.168

2.1 Invariance across Environments (IaE)169

Recent works on the theory of causality (Pearl,170

2018; Schölkopf, 2019) have argued that out-of-171

distribution generalization and removal of spurious172

correlations require going beyond purely statistical173

learning. This is motivated by the intuition that174

causal relationships are the ones that are expected175

to be robust and generalizable (Peters et al., 2016).176

Unfortunately, for problems of interest, the causal177

model is usually unknown. Then, different meth-178

ods based on different assumptions can still hope to179

capture some causal properties important for gen-180

eralization, e.g., ensuring that only causal parents181

of the target variable are used for prediction. In182

causal machine learning, these ideas crystallized in183

the invariance principle which states that only re-184

lationships invariant across training environments185

should be learned (Peters et al., 2016; Muandet186

et al., 2013). In this paradigm, different environ-187

ments correspond to data collected in different se-188

tups, i.e., different data distributions (Pearl, 2018).189

Interestingly, learning according to the invariance190

principle does not require knowing what modifica-191

tions of the data generation mechanism happened192

in which environment, it only requires that E[Y |XC]193

remains unchanged, where XC are the causal par-194

ents of the target variable Y (Arjovsky et al., 2019;195

Rosenfeld et al., 2021).196

2.2 Invariant Risk Minimization (IRM)197

While the invariance principle is a general and pow-198

erful idea, works based on this principle often re-199

quire knowing which random variables are part200

of the causal model (Akuzawa et al., 2019; Peters201

et al., 2016). Arjovsky et al. introduced invariant202

risk minimization (IRM), an alternative to empirical203

risk minimization, and a practical training objec-204

tive compliant with the invariance principle. IRM205

allows for relevant variables to remain latent. Un- 206

der specific assumptions, it will ignore correlations 207

not due to the causal parents of the target variables. 208

IRM builds on the idea that the training data 209

comes from different environments e ∈ E. Each en- 210

vironment e ∈ E induces i.i.d. samples De from 211

a distribution P(Xe,Y e). Then, the goal is to 212

use these multiple datasets to learn a predictor 213

Y ≈ f (X), which performs well across the set of 214

all environments E ∗, only part of which were seen 215

during training: E ⊂ E ∗. This is accomplished 216

by decomposing f into a feature representation ϕ 217

and a classifier w as f = w ◦ϕ, where ◦ denotes 218

function composition, i.e., (w◦ϕ)(X) = w(ϕ(X)). 219

The feature representation ϕ elicits invariant rep- 220

resentation of the data if the same classifier w is 221

simultaneously optimal for all environments e ∈ E. 222

Thus, IRM solves the following optimization prob- 223

lem: 224

min
ϕ,w

∑
e∈E

Re(w◦ϕ), (1) 225

subject to w ∈ argmin
w′

Re(w′ ◦ϕ),∀e ∈ E, (2) 226

where Re is the empirical risk computed within an 227

environment e; i.e., if L is a loss function, Re = 228

E[L ((w◦ϕ)(Xe),Y e)]. 229

2.3 IRM-games 230

IRM is a challenging bi-level optimization origi- 231

nally solved (Arjovsky et al., 2019) by relaxing the 232

objective function, setting the invariance criteria 233

as a regularizer. Later, Ahuja et al. improved the 234

training procedure by using a game-theoretic per- 235

spective in which each environment e is tied to its 236

own classifier we, and the feature representation ϕ 237

is shared. The global classifier w is then defined as 238

the ensemble of all environment-specific classifiers. 239

Environments take turns to make a stochastic gra- 240

dient update to minimize their own empirical risk 241

Re(w◦ϕ) but the update concerns only their own 242

classifier we, while the shared ϕ is updated period- 243

ically. For more details see the algorithm called 244

V-IRM in the original paper. Ahuja et al. showed 245

that the equilibrium of this game is a solution to 246

the IRM objective. 247

3 Model 248

We introduce a way to train language models in- 249

spired from the IRM-games setup. This involves 250

distinguishing the shared invariant feature learner 251
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ϕ from the environment specific we’s. With mod-252

ern language models architectures, a natural choice253

emerges: ϕ as the main body of the encoder, and254

we as the language modeling head that outputs the255

logits after the last layer.256

Formally, suppose we have n environments con-257

sisting of data {(Xe,Y e)}e = 1 . . .n. For a batch258

(xi,yi)∼ P(X i,Y i) from environment i, the model259

output is formed using an ensemble of n language260

modeling heads {we}e=1...n on top of the trans-261

former encoder: ŷ = softmax
(

1
n

n∑
e=1

we ◦ϕ(xi)

)
.262

Then, a (masked) language modeling loss L is263

computed on the model output ŷ. Note that it is the264

predictions of the n heads that are averaged (com-265

pared to the weights or gradients as in a multi-task266

setup). No head gets to predict alone; the n heads267

always predict together as an ensemble but perform-268

ing competitive gradient updates in a round-robin269

fashion, which in turn creates the game-theoretic270

conditions that enforces the invariance of Eq. 1.271

Training The training of iLM follows the pseudo-272

code described in Alg. 1, where environments take273

turn to send a batch of data and update ϕ and their274

associated head. An illustration is provided in275

Appendix A. Each head periodically gets an op-276

portunity to pull the global ensemble classifier w277

and the feature learner ϕ towards fitting the distri-278

bution of its associated environment. Intuitively,279

since each head gets the same amount of updates,280

the game converges to a global classifier that is281

simultaneously optimal for each environment, as282

demonstrated by (Ahuja et al., 2020). If the model283

one head per environment trained in round-robin284

fashion but without the ensemble prediction and285

competitive gradient update (similar to multi-task286

learning), it would not enforce invariance across287

environments.288

While the V-IRM algorithm of Ahuja et al.289

(2020) only updates ϕ periodically, we found it290

more stable to update it together with every head291

update.292

Advantages of design choices Choosing the293

heads as environment-specific we is agnostic to294

the model architecture because the whole body of295

the model is included in ϕ. Only the components296

specific to language modeling – the heads– have a297

different structure compared to the standard ERM298

setup. This makes the iLM framework compati-299

ble with any kind of pretrained language model.300

Moreover, the whole body of the model is the in-301

Algorithm 1 iLM training

1: Initialize(ϕ)
2: Initialize({we}e∈E )

3: for iteration ∈ {1,2, . . . , Nsteps
|E | } do

4: for environment i ∈ E do
5: (xi,yi)← GetBatchFromEnv(e)
6: CompetitiveUpdate(xi,yi,ϕ,{we}e∈E )
7: end for
8: end for
9: function COMPETITIVEUPDATE(xi,yi,ϕ,{we}e∈E )

10: L = L

(
softmax

(
1
n

n∑
e=1

we ◦ϕ(xi)

)
,yi

)
11: GradientUpdate(L,ϕ,wi)
12: end function
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Figure 2: Structured noise removal experiment: a)
average perplexity over all hyper-parameters, b) Proba-
bility that iLM has a lower perplexity than eLM when
compared on the same hyper-parameters.

variant feature learner ϕ. Finally, since only the 302

heads and their training dynamic differ from stan- 303

dard eLM, the usage of iLM models does not differ 304

in downstream tasks. 305

4 Experiments 306

Invariance training comes with the promise of ro- 307

bustness and generalization (Peters et al., 2016; 308

Muandet et al., 2013; Ahuja et al., 2020). In the 309

following series of experiments, we test whether 310

our proposed architecture for language modeling 311

can provide such benefits. Since the causal model 312

governing language production is unknown, we 313

do not have access to the gold standard answer 314

about which correlation is spurious. Thus, we fo- 315

cus on controlled setups: crafting environments 316

whose difference is known, from which we know 317

the expected behavior. We describe three main 318

experiments: structured noise removal, controlled 319

correlation removal, and out-of-domain generaliza- 320

tion. We emphasize that we use perplexity evalua- 321

tion in two out of three experiments, not because 322

we view low perplexities as desirable for language 323

models, but because perplexity is an objective mea- 324

sure of the ability of a language model to fit data 325
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that matches its training goal. Perplexity evaluation326

is part of the simplified and controlled setup used327

to test the new core benefits of iLM. The results328

presented here open the way for more practical329

future works based on what we call environment330

design: how to choose environment splits to be use-331

ful in downstream tasks (see Sec. 5 for an extended332

discussion).333

For all the experiments, each plot reports 95%334

confidence intervals from bootstrap resampling335

of the data. We repeat each experiment for two336

base pretrained transformer models with differ-337

ent properties (size, tokenization method): dis-338

tilBERT (Sanh et al., 2019) and RoBERTa (Liu et al.,339

2019). We also repeat each experiment with dif-340

ferent learning rates, number of training steps and341

random restarts with different random seeds. Ap-342

pendix B provides additional details regarding each343

experiment and further results about the importance344

of hyper-parameters.345

4.1 Structured Noise Removal346

Description. In this experiment, we test robust-347

ness in a controlled setup. We craft two environ-348

ments: Env-A made of clean Wikipedia articles349

and Env-B made of full HTML pages of Wikipe-350

dia articles. Then, we continue the training with351

the masked language modeling (MLM) loss from352

existing checkpoints for both iLM and eLM with353

these two environments and evaluate the MLM354

perplexity on a held-out dataset of clean Wikipe-355

dia articles. Intuitively, eLM should try to fit the356

HTML part of the training data and thus be more357

surprised by the clean Wikipedia articles during the358

test set. However, iLM should learn to ignore the359

HTML because it does not generalize from Env-B360

to Env-A.361

The results are visualized in Fig. 2. See Ap-362

pendix B.1 for hyper-parameters considered. On363

the left plot, we report the average perplexity on the364

test set averaged over all experiments. On the right365

plot, we report the probability that for any given366

hyper-parameter configuration, iLM has a lower367

perplexity than eLM. In these experiments, paired368

comparison is particularly important because vary-369

ing hyper-parameters results in large variations of370

perplexity. Blindly averaging amplifies the vari-371

ance and hides the structure of model performance372

(Peyrard et al., 2021). For reference, the perplex-373

ities on the same test set of pretrained distilBERT374

and RoBERTa are, respectively, 14.43 and 6.71.375

Analysis. We observe that iLM has an overall 376

lower test perplexity when averaged over all ex- 377

periments (Fig. 2 a). Furthermore, for any given 378

hyper-parameter choice, iLM is better than eLM 379

(Fig. 2 c) with a probability > .95 for both dis- 380

tilBERT and RoBERTa. Note that the few cases 381

where eLM matches or beats iLM happen when few 382

training steps have been taken (< 50). The trends 383

are the same for both distilBERT and RoBERTa de- 384

spite large perplexity differences between them. 385

4.2 Controlled Correlation Removal 386

Description. In this experiment, we test the capac- 387

ity to remove one precise and known correlation 388

by crafting two environments differing only in this 389

specific correlation. We use binarized gendered 390

terms and create two environments where the gen- 391

dered terms are used differently.1 More precisely, 392

we take a textual data source with known gender 393

bias, in this case, Wikitext-2 (Merity et al., 2016). 394

A fraction p of the data goes into Env-A, the rest 395

(1− p) goes into Env-B. Env-A remains untouched 396

and preserves all the properties of the original data 397

source. Whereas Env-B is intervened upon by in- 398

verting all gendered terms based on a dictionary 399

provided by previous work (Bordia and Bowman, 400

2019). When p = 1− p = 0.5, this setup matches 401

the couterfactual data-augmentation methods (Lu 402

et al., 2018) already used to mitigate gender-bias 403

in language models. Intuitively, iLM should learn 404

to ignore gender-based correlations no matter what 405

is the fraction p. However, eLM is only expected 406

to ignore them when p = 1− p = 0.5, i.e., the two 407

environments have the same number of samples 408

(Lu et al., 2018). 409

We craft this experiment as an example of con- 410

trolled correlation removal, but it shows promise 411

for practical bias removal because selecting or craft- 412

ing environments where biases do not hold is ar- 413

guably simpler than precisely counter-balance the 414

bias by data processing/augmentation or regular- 415

ization. iLM can directly improve current bias- 416

removal strategies based on counterfactual data 417

augmentation. We come back to this in Sec. 5. 418

Experimental setup. To measure whether the cor- 419

relation has been successfully removed: (i) we take 420

1We recognize the non-binary nature of gender as well
as the many ethical principles in the design, evaluation, and
reporting of results in studying gender as a variable in NLP
(Larson, 2017). Because iLM is not limited to training only
with two environments, this architecture can also support more
general bias removal goals.
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Figure 3: Controlled correlation removal experiment:
On the x-axis, we report the relative size between the
modified environment and the unmodified one, and re-
port on the y-axis the average bias for both iLM and
eLM. Note that P(iLM beats eLM)> 0.95 when the rel-
ative size is < 80%, eLM and iLM become indistin-
guishable for relative sizes > 80%.

all gendered terms in the test set, (ii) replace them421

by the MASK token, (iii) use trained eLM and iLM422

models to predict the missing term, (iv) look in423

the softmaxes the scores received by the terms of424

the target gendered-pair. We note s f and sm the425

score assigned to the female and male terms in the426

softmax. (v) Finally, we compute an entropy-bias427

measure: BH = H2
(1

2

)
−H2

(
s f

s f +sm

)
, where H2 is428

the binary entropy (note that H2
( 1

2

)
= 1). BH mea-429

sures the extent to which a softmax has a preference430

for the male or female term in a gendered pair of431

terms. For example, in the sentence "MASK is the432

best doctor", we look at the softmax score of the433

gendered-pair [he, she]. If a model has learned to434

ignore gender-based correlation, the entropy should435

be high, i.e., which gender to be used is uncertain436

and the entropy bias BH should be low.437

We ran the experiments for varying values of p438

and report the results in Fig. 3. See Appendix B.2439

for hyper-parameters considered. For reference,440

the entropy bias of distilBERT and RoBERTa before441

training are, respectively, 0.39 and 0.46.442

Analysis. Both eLM and iLM decrease the average443

entropy bias in the balanced setup but only iLM444

succeeds in the unbalanced setup. In the balanced445

setup (relative sizes close to 100%), eLM and iLM446

perform within each other’s confidence intervals.447

However, in the unbalanced setup, iLM largely out-448

performs eLM. We note that the probability that449

iLM beats eLM for any given hyper-parameter450

configuration is > 0.9 for both distilBERT and451

RoBERTa when the relative sizes is below 80%. As452

desired iLM is not affected by the relative size of 453

the environments. These results confirm the hypoth- 454

esis, that correlation reduction needs a precisely 455

balanced dataset for eLM (Lu et al., 2018), while 456

it matter much less for iLM. Furthermore, this en- 457

tropy bias reduction does not happen at the cost of 458

worst general perplexities (See Appendix B.2). 459

4.3 Out-of-domain Generalization 460

In this experiment, we venture beyond carefully 461

controlled setups and test out-of-domain general- 462

ization with naturally occurring domains. We use 463

subsamples from thePile dataset (Gao et al., 2020) 464

which contains 20 very diverse textual domains: 465

OpenSubtitles, ArXiv papers, News, GitHub com- 466

ments, etc. 467

Experimental setup. We randomly sample n do- 468

mains from thePile, use n−1 of these domains as 469

training and the remaining unseen one for testing. 470

We compare iLM and eLM on their ability to gen- 471

eralize on the unseen domains by measuring the 472

perplexity on the test domain. 473

The disparity of domains in thePile results in 474

vast differences in perplexities between different 475

domains, making the perplexities not comparable 476

from one testing domains to the next. Instead of re- 477

porting averages of different domains, we report the 478

better suited paired evaluation: comparing iLM and 479

eLM in the same experimental setup (same hyper- 480

parameters and same training/testing domains). 481

The probability that iLM is better than eLM after 482

5000 training step is 0.9 with the 95% confidence 483

interval of (0.79,1). In Appendix B.3, we provide 484

details about the impact of hyper-parameters. 485

However, the advantage of iLM over eLM is 486

less striking in this experiment than in the two 487

previous ones. The average perplexities of iLM 488

is not always significantly lower than that of eLM 489

(see Appendix B.3 for details). We come back to 490

potential reasons for this behavior in Sec. 5. 491

5 Discussion 492

In this section, we discuss our contributions in the 493

context of previous work. 494

5.1 Related Work 495

Domain generalization. The performance of deep 496

learning models substantially degrades on Out- 497

of-Domain (OoD) datasets, even in the face of 498

small variations of the data generating process 499

(Hendrycks and Dietterich, 2019). Blanchard et al. 500

6



(2011) have proposed domain generalization (DG)501

as a formalism for studying this problem. In DG,502

the goal is to learn a model using data from a single503

or multiple related but distinct training domains,504

in such a way that the model generalizes well to505

any OoD testing domain, unknown during training.506

Recently, the problem of DG has attracted a lot of507

attention, and has been approached from different508

facets. Most of the existing methods fall under509

the paradigm of domain alignment (Muandet et al.,510

2013; Li et al., 2018b; Akuzawa et al., 2019; Liu511

et al., 2020; Zhao et al., 2020). Motivated by the512

idea that features that are stable across the train-513

ing domains should also be robust to the unseen514

testing domains, these methods try to learn domain-515

invariant representations. A group of other methods516

is based on meta-learning (Dou et al., 2019; Balaji517

et al., 2018; Li et al., 2018a). The motivation be-518

hind this approach is that it exposes the model to519

domain shifts during training, which will allow it520

to generalize better during testing. Regularization521

through data augmentation is commonly used in522

the training of machine learning models to allevi-523

ate overfitting and thereby improve generalization524

(Zhou et al., 2021, 2020).525

Domain generalization applied to language mod-526

els. In NLP, the default pipeline involves pre-527

training a task-agnostic language model, which528

is then finetuned on downstream tasks. This pre-529

training/finetuning division of learning is already530

known to improve robustness on downstream tasks531

(Hendrycks and Dietterich, 2019). However, the532

language models themselves suffer from spuri-533

ous correlations and poor generalization even with534

small perturbations of the inputs (Moradi and535

Samwald, 2021). To alleviate such problems, Oren536

et al. (2019) adapt Distribution Robust Optimiza-537

tion (Ben-Tal et al., 2013) to language models. This538

results in a new loss minimizing the worst-case per-539

formance over subsamples of the training set. They540

focus on domains with topic shifts. Then, Vernikos541

et al. (2020) use domain adversarial regularization542

to improve testing performance on unseen domains.543

Also related to our framework are techniques544

aiming at de-biasing language models. Biases are545

correlations that may or may not be spurious but are546

nevertheless undesired. Removing such biases is547

typically done by (i) adding a bias-specific penalty548

term (Qian et al., 2019; Bordia and Bowman, 2019;549

Zhao et al., 2018) to the loss, and/or (ii) augmenting550

the data to counterbalance the undesired correlation551

(Lu et al., 2018; Zhao et al., 2017). For example, 552

counterfactual data-augmentation used to reduce 553

gender-bias (Lu et al., 2018) flips half of the gen- 554

dered terms to destroy existing correlations in the 555

original inputs. 556

Justification of IRM-games. The rich literature in 557

domain generalization begets the question why we 558

should focus specifically on IRM-games to adapt 559

to language models. Counterfactual data augmenta- 560

tion techniques require some knowledge of and 561

some ability to manipulate the possible mecha- 562

nisms generating the data. Meta-learning tech- 563

niques come with a large extra-computation cost 564

as they are based on multiple rounds of training. 565

This is not practical for modern language models. 566

IRM-games lends itself particularly well to modern 567

implementations of language models with the natu- 568

ral distinction between the transformer body as ϕ 569

and the language modeling heads as w. Importantly, 570

as opposed to most other methods, it does not re- 571

quire extra computation about the environments 572

(like matching, variance, drift, etc.). It is sufficient 573

to keep track of environment indices during train- 574

ing and the invariance comes from the particular 575

game-theoretic dynamics of the training schedule. 576

Thus, the local language modeling loss can remain 577

unchanged, there is no need for a regularization 578

term for which the strength needs to be tuned. Fi- 579

nally, iLM has a minimal computational overhead 580

compared to eLM because only the heads are mul- 581

tiplied (one per environment) but the number of 582

parameters in these heads is small in comparison 583

to the number of parameters in the main body a 584

modern language model. 585

5.2 Potential Limitations of Domain 586

Generalization Methods 587

Discussion of potential limitations. With the re- 588

cent interest in invariance-based methods came a 589

other works questioning the real generalization abil- 590

ity of these methods. For example, Gulrajani and 591

Lopez-Paz (2021) finds that finetuning ERM can 592

be as good as vanilla IRM (Arjovsky et al., 2019). 593

Similarly, Rosenfeld et al. (2021) find that the num- 594

ber of environments needed for full generalization 595

can be large. To organize the discussion around 596

the benefits of OoD generalization methods, Ye 597

et al. (2021) argue about the importance of distin- 598

guishing different types of distribution shifts ac- 599

cording to the underlying data generation mecha- 600

nism. In particular, they distinguish diversity shifts 601
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and correlation shifts, and claim that invariance-602

based methods perform well for correlation shifts603

but not for diversity shifts.604

In the language context. These limitations did605

not include IRM-games as part of their analysis. In606

language, since the latent causal model is unknown,607

it is difficult to anticipate which kind of distribu-608

tion shifts our models might face. Nevertheless, the609

experiments of structured noise removal (Sec. 4.1)610

and controlled correlation removal (Sec. 4.2) are611

instances of correlation shifts as defined by Ye et al.612

(2021). On these experiments, we observe striking613

improvements when compared to eLM. The OoD614

experiment (Sec. 4.3) involves more latent vari-615

ables in the shifts from one domain to another and616

possibly exhibits both correlation and distribution617

shifts. This can explain the smaller performance618

gains observed in this experiment.619

Possible problems with environment choices.620

One question that might arise from the iLM train-621

ing schedule is what happens when environments622

have no lexical overlap? Maybe no correlation re-623

mains in iLM? To demonstrate that iLM operates624

on latent variables and not just on surface-level625

correlations, we perform a simple experiment with626

languages as environments. We train iLM with a627

pretrained multilingual model (XLM-RoBERTa) us-628

ing English Wikipedia articles and Farsi Wikipedia629

articles as two environments. Despite absolutely no630

surface-level overlap, iLM is still able to improve631

perplexity in each language individually and does632

not destroy previously learned correlations. This633

experiment is detailed in Appendix B.4.634

Also, if the number of environments grows ar-635

bitrarily large, certainly iLM would not find any636

stable correlations in the data. However, the choice637

of environments is not intended to be arbitrary;638

throwing as many environments as possible could639

not be expected to be useful. The choice of en-640

vironments has to reflect assumptions about the641

underlying data generation mechanism. iLM then642

leverages the assumptions encoded in the choice of643

environments.644

5.3 Environment Design645

Causal perspective. Pearl organized causal prob-646

lems in a three-level hierarchy termed the “ladder647

of causation”: observational queries correspond to648

seeing and observing; interventional queries corre-649

spond to acting and intervening; and counterfactual650

queries correspond to imagining, reasoning, and un- 651

derstanding. In this ladder, it is in general impossi- 652

ble to solve problems at the higher-levels with only 653

data and assumptions from lower levels. When 654

performing invariant feature learning, we hope for 655

generalization benefits from the interventional level 656

(Peters et al., 2016; Arjovsky et al., 2019; Ahuja 657

et al., 2020). However, ERM training and eLM op- 658

erate at the observational level. The iLM setup also 659

uses only observational data because the model is 660

not performing experiments. Therefore, we need to 661

inject causal assumptions (interventional level) to 662

hope to get generalization benefits. These assump- 663

tions are encoded by the choice of environments 664

(Peters et al., 2016; Arjovsky et al., 2019), which 665

dictates where the interventions have happened in 666

the unobserved data-generating process. 667

Environment design. This work has shown that 668

iLM can effectively remove unstable correlations, 669

the next question becomes that of environment de- 670

sign: how to choose environment splits to be useful 671

in practice? or equivalently, what assumptions are 672

useful for tasks of interest? Useful environment 673

splits will likely be different for different tasks 674

and different purposes. This work already demon- 675

strated that the new paradigm of (i) environment de- 676

sign then (ii) iLM is practical for language-related 677

problems. Simple environment choices already im- 678

prove robustness, subsumes existing bias removal 679

strategies, and are useful for OoD generalization. 680

Choosing environment splits is a flexible way to in- 681

ject priors and assumptions compared to manually 682

deciding which correlation are desired (as in bias 683

removal) or fully learning the causal graph (as in 684

causal reasoning). 685

6 Conclusion 686

We introduce invariant language models trained to 687

learn invariant feature representations that general- 688

ize across different training environments. In a se- 689

ries of controlled experiments, we demonstrate the 690

ability of our method to remove structured noise, 691

ignore specific spurious correlations without affect- 692

ing global performance, and perform better out-of- 693

domain generalization. These benefits come with 694

a negligible computational overhead compared to 695

standard training, do not require changing the loss, 696

and apply to any language model architecture. We 697

believe this framework is promising to help alle- 698

viate the reliance on spurious correlations and the 699

presence of biases in language models. 700
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A Illustration of iLM Architecture960

In the main paper, we described formally the961

pseudo-code involved in training iLM models. The962

model architecture and the logic of the training963

schedule is illustrated in Fig. 4 for the special-case964

of 2 environments (n = 2).965

B Details about Experiments966

B.1 Structured Noise Removal967

Data. The data used for this experiment comes968

from an HTML Wikipedia Dump of August 2018.969

The files were pre-processed to remove the HTML970

content resulting in clean text articles. We ran-971

domly selected 6K articles with HTML (Env-B),972

and 6K different articles without HTML (Env-A).973

The test set contains 620 different articles without974

HTML.975

Hyper-parameters. We ran the experiments976

reported in the main paper while varying977

several hyper-parameters: base transformers978

(ϕ): [distilBERT, RoBERTa], learning rates:979

[1e − 5,5e − 5], number of training steps:980

[10,100,200,500,2500,5000], 5 random restarts981

with different random seeds, 2 ·2 ·6 ·5 = 120, ran982

with both eLM and iLM resulting in 240 experi-983

ments.984

Number of lines vs. number of articles. In Fig. 2985

of the main paper, we report the result of iLM and986

eLM when trained with environments having the987

same number of articles. However, the HTML ar-988

ticles have more lines and thus more sentences.989

Therefore, we also report in Fig. 5 the same anal-990

ysis repeated when the number of lines between991

Env-A and Env-B is the same, meaning Env-B con-992

tains fewer articles. The conclusion remains largely993

unchanged in this scenario.994

B.2 Controlled Correlation Removal995

Data. The dataset used for this experiment is996

Wikitext-2 (Merity et al., 2016) and the dictionary997

of gendered terms comes from Bordia and Bow-998

man (2019) which was originally constructed to999

measure gender bias in language models.1000

The dictionary contains basic gender-pairs aug-1001

mented with their variations in terms of casing,1002

plural vs. singular forms and different spellings.1003

The basic gendered pairs are: (actor, actress), (boy,1004

girl), (boyfriend, girlfriend), (father, mother), (gen-1005

tleman, lady), (grandson, granddaughter), (he, she),1006

Unbalanced Balanced

iLM RoBERTa 4.16 4.13
iLM distilBERT 5.82 5.81
eLM RoBERTa 4.14 4.14
eLM distilBERT 5.82 5.85

Table 1: Perplexities of iLM and eLM models after
training.

(hero, heroine), (him, her), (husband, wife), (king, 1007

queen), (male, female), (man, woman), (mr., mrs.), 1008

(prince, princess), (son, daughter), (spokesman, 1009

spokeswoman), (stepfather, stepmother), (uncle, 1010

aunt) 1011

Hyper-parameters. We ran the experiments re- 1012

ported in the main paper while varying several 1013

hyper-parameters: base-model (ϕ): [distilBERT, 1014

RoBERTa], learning-rates: [1e− 5,5e− 5], num- 1015

ber of training steps: [10,50,100,200,1000,2500], 1016

5 random restarts with different random seeds 1017

2 ·2 ·6 ·5 = 120 experimental parameters, ran for 1018

both eLM and iLM for both the balanced and un- 1019

balanced setups resulting in 480 experiments. 1020

Details about the results. Similar to the structured 1021

noise experiment, we report the performance of 1022

eLM and iLM as a function of the number of train- 1023

ing steps and the probability that iLM is better then 1024

eLM when matched on hyper-parameter configu- 1025

ration. This is reported by Fig. 6 for two relative 1026

size: 25% (the modified environment has 4 times 1027

fewer examples) and 100%. 1028

Perplexities after training. To ensure that the 1029

gender-based correlations were not removed at the 1030

cost of a worse perplexity, we report in Table 1 the 1031

perplexities of iLM models in comparison eLM 1032

ones on the test set of Wikitext-2. For reference, 1033

before our training distilBERT and RoBERTa had, 1034

this same test set, perplexities of 14.25 and 6.92, 1035

respectively. 1036

In Table 1, the 95% confidence intervals all give 1037

uncertainties ≈ 0.15, meaning that for a fixed base 1038

model (distilBERT or RoBERTa) all perplexities are 1039

within each other’s error bounds. There is no signif- 1040

icant perplexity difference between eLM and iLM 1041

or between the unbalanced and balanced setups. 1042

B.3 Out-of-domain Generalization 1043

Data. The data used for this experiment comes 1044

from subsamples of thePile (Gao et al., 2020). Af- 1045
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Figure 4: Model description In the forward pass, input text goes through the main body of language model noted
ϕ (e.g., a Transformer (Devlin et al., 2019)), then one head per environment predicts logits over the vocabulary.
These predictions are averaged over all heads and go through a Softmax. During training, the model receives a batch
of data from one environment e and performs a gradient update only on the parameters of the main body of the
language model (ϕ) and on the parameters of the head tied to this environment we. Then batches are taken from
each environment in a round-robin fashion.
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perplexity over all hyper-parameters b) average perplexity as a function of the number of training steps (for learning
rate 10−5), c) Probability that iLM is better than eLM when compared on the same hyper-parameters

ter the result of our sampling described in the main1046

paper, 8 domains have ended-up as test domain.1047

Hyper-parameters. We ran the experiments re-1048

ported in the main paper while varying several1049

hyper-parameters: base-model (ϕ): [distilBERT,1050

RoBERTa], learning-rates: [1e−5,5e−5], number1051

of training steps: [100,1000,2500,5000], number1052

of environments for training: [3,9,13], 5 random1053

restarts with different random seeds and different1054

choices of training/testing domains.1055

In Fig. 7, we report the probability that iLM1056

has lower perplexity than eLM as a function of1057

the number of training steps in Fig. 7 (a) and as a1058

function of the number of training environments1059

Fig. 7 (b).1060

We observe that overall iLM is better perplexi-1061

ties on unseen domains. The advantage of iLM in-1062

creases with the number of training steps (Fig. 7 a)1063

but also with number of training environments1064

(Fig. 7 b). This indicates that using more envi-1065

ronments is even more beneficial for iLM than for1066

eLM.1067

iLM eLM

arxiv 5.71 5.93
openwebtext 3.90 3.96
pile-cc 4.42 4.44
uspto 4.14 4.19
pubmed-abstract 4.13 4.17
pubmed-central 4.23 4.29
github 5.84 5.93
youtube 4.78 4.76

Table 2: Perplexities of iLM and eLM models for both
RoBERTa on testing domains subsampled from thePile.
The bold font indicates that iLM is significantly better
than eLM (p < .05 paired t-test).

Perplexities. In the main paper, we focus on the 1068

paired comparison between iLM and eLM. In Ta- 1069

ble 2, we report the test perplexities of iLM and 1070

eLM for distilBERT and RoBERTa average over 1071

different hyper-parameters. We observe that differ- 1072

ences between eLM and iLM are smaller than for 1073

other experiments but iLM still has advantage over 1074

eLM. 1075
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as a function of: the number of training steps in a) and
the number of training environments in b).

B.4 Languages as Environments1076

One question that might arise from iLM training1077

schedule is whether it simply focuses on surface-1078

level lexical correlations in the data. For example,1079

if the lexical correlations are different across envi-1080

ronments, maybe no correlation remain generaliz-1081

able and iLM learns an empty set of correlations.1082

To better demonstrate that iLM operate on latent1083

variable and not on surface-level correlations, we1084

perform a simple experiment with languages as1085

environments.1086

Description. We use two languages with no lexical1087

overlap: English and Farsi. We put english Wikipe-1088

dia articles as one environment and farsi Wikipedia1089

articles as the other. In this setup, no surface-level1090

correlations can generalize across environment as1091

the two environments don’t even have the same1092

vocabulary.1093

We train iLM with a multilingual pre-trained1094

RoBERTa: XLM-RoBERTa for 5000 steps with1095

these two environments of equal size (10K arti-1096

cles per language). Then, we test whether this 1097

choice of environments destructs previously learn 1098

correlations in the language model by comparing 1099

perplexities on a balanced held-out test set of en- 1100

glish and farsi documents against the model before 1101

finetuning. If the perplexities decrease, we would 1102

conclude that iLM destroy surface-level correla- 1103

tions. 1104

Results. We found that before finetuning, XLM- 1105

RoBERTa had a perplexity of 14.56 on the held-out 1106

test set, where iLM could improve it perplexity 1107

down to 6.44. This indicates that iLM with environ- 1108

ments having no lexical overlap does not destroy 1109

previously learned correlations. It can even im- 1110

prove its perplexities for each language. A possible 1111

reason why iLM can even improve so dramatically 1112

compared to before finetuning might come from 1113

the fact that ϕ learns to recognize the languages, 1114

separate them and treat them separately. Similar 1115

effects have been observed in previous work (Guo 1116

et al., 2021) when the correlation between the envi- 1117

ronment index and the target variable is very strong 1118

(which is the case here). 1119

B.5 Head dynamics 1120

The main components of our framework are the 1121

heads and their training dynamic. Therefore, we in- 1122

vestigate aspects related to behaviour of the heads. 1123

Description. During training, the loss of each head 1124

is still entangled with the prediction of every other 1125

head. So we wonder whether the heads still capture 1126

information related to the environment it is tied to 1127

during training. In particular, we ask (i) whether the 1128
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Figure 8: Comparing distance between heads weights in-
and out-domain as functions of the number of training
step. (95% confidence interval from random restart with
different seeds.)

parameters of the heads for different environments1129

are drifting apart during training? Indeed, all heads1130

are initialized to the same pretrained weights at the1131

beginning of training. (ii) Are the parameters of1132

the heads predicting which environments are more1133

similar?1134

Experimental setup. To answer these two ques-1135

tions in one go, we take two environments A and B1136

and split each of them into two new environments1137

resulting in A1, A2, B1, and B2 such that A1 and1138

A2 are very similar B1 and B2 are very similar but1139

Ai and Bi are different. We then train iLM with1140

the four environments and, thus, with four heads1141

wA1 , wA2 , wB1 , and wB2 . We measure whether the1142

heads’ weights can predict the similarities between1143

A’s and B’s environments.1144

Din =
1
2
(d(wA1 ,wA2)+d(wB1 ,wB2)) , (3)1145

Dout =
1
4

∑
i, j

d(wAi ,wB j), (4)1146

where d is the L2 distance between the linearized1147

weights of two heads. Then, Din is the average1148

distance between heads tied the same domain, and1149

Dout is the average distance between heads tied1150

to different domains. Remember that in this case,1151

there are 2 domains A and B and 4 environments1152

Ai and Bi.1153

In this experiment, we randomly select the base1154

environments A and B from the domains of thePile1155

(A is the Enron-Email, and B is PubMed abstract).1156

We create Ai and Bi by randomly subsampling 21157

environments of the same size from each domain.1158

We train iLM with RoBERTa for 5000 training steps,1159

taking checkpoints of the heads every 500 steps.1160

We perform 10 random restarts with different seeds1161

to uncertainty estimates. In Fig. 8, we report Din1162

and Dout as functions of the number of training 1163

steps. 1164

Maths
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StackExchange

USPTO
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2D MDS embedding of heads
 after 5000 steps

Figure 9: Heads embeddings: 2D projection of the
heads parameters similarity structure after training iLM
with RoBERTa for 5000 steps with 9 domains. Each dot
represent one head of the model after training and the
labels indicate to which domain it is tied to.

Analysis. We first notice that indeed the heads 1165

are drifting apart from each other as training ad- 1166

vances. More interestingly, the distance between 1167

heads from the same domain is significantly much 1168

smaller than the distance between heads from dif- 1169

ferent domains. We conclude that heads retain 1170

environment-specific information in their parame- 1171

ters and are predictive of environment similarities. 1172

Now, we visualize the geometry of head similar- 1173

ity by training iLM with RoBERTa for 5000 steps 1174

with 9 environments from thePile: . After train- 1175

ing, we take the heads’ parameters and compute 1176

the pairwise distance between all 9 heads and em- 1177

bed them in 2D with Multi-Dimensional Scaling 1178

to visualize the similarity structure. The result is 1179

depicted in Fig. 9. 1180
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