
One-to-many testing for code generation from (just) natural language

Anonymous ACL submission

Abstract

MBPP is a popular dataset for evaluating mod-001
els on the task of code generation. Despite its002
popularitym there are three problems with the003
original MBPP: (1) reliance on providing test004
cases to generate the right signature, (2) con-005
tamination of the exact phrasing being present006
in training datasets, and (3) poor alignment be-007
tween instruction and evaluation testcases. To008
overcome this, we create MBUPP, by adapting009
the popular MBPP dataset for code generation010
from natural language to emphasize on the nat-011
ural language aspect by evaluating generated012
code on multiple sets of assertions. Addition-013
ally, we update the text descriptions to remove014
ambiguity and instructions that are not evalu-015
ated by the assertions, like specific algorithms016
to use. This adapted dataset resolves the chal-017
lenges around contamination, ambiguity and018
testcase alignment. Further, we compare popu-019
lar open and closed weight models on the origi-020
nal (MBPP) and adapted (MBUPP) datasets.021

1 Introduction022

Code generation from natural language (NL-to-023

code) is a popular task to evaluate the capabilities024

of language models (Abdin et al., 2024; Achiam025

et al., 2023; Jiang et al., 2024). One of the most026

popular NL-to-code datasets is the mostly basic027

Python programs (MBPP) dataset (Odena et al.,028

2021). In this dataset, each problem contains a029

natural language description, a code solution and030

three test cases in the form of assert statements.031

We identify three main problems with MBPP.032

First, it heavily relies on test cases to identify syn-033

tactic properties of the code to generate, as the pro-034

vided assertions require a specific signature. Sec-035

ond, descriptions sometimes contain instructions036

that the assertions are not testing for, like asking037

to sort “using heap queue.” Third, being a popular038

dataset distributed on many channels, data contam-039

ination is a significant issue (Riddell et al., 2024).040

In this paper, we introduce an adapted code gen- 041

eration benchmark, called MBUPP, that allows for 042

the description to be underspecified with respect 043

to syntactic properties of code. Each problem con- 044

sists of a text description as input to the model, 045

and a set of assertions to validate the output. We 046

generate both the descriptions and assertions from 047

MBPP problems using a combination of LLMs, 048

intuition and validation. Additionally, we provide 049

results of different open and closed weight models 050

on MBPP and MBUPP. We show which assertions 051

are more often picked, indicating data contamina- 052

tion. Further, We release the dataset and the model 053

generations to seed further research in this area. 054

We make the following contributions. 055

• MBUPP: An adapted version of MBPP that 056

allows code to be underspecified and uses gen- 057

eralized testcases to account for that. 058

• An analysis of different models on MBPP 059

and MBUPP that highlights the need for an 060

improved code generation benchmark. 061

2 Motivating example 062

As an example, let us look at the problem “Write 063

a function to find sequences of lowercase letters 064

joined with an underscore using regex” and the 065

associated assertions (with f = text_match) 066

assert f('aab_cbbbc ') == 'Found a match!' 067
assert f('aab_Abbbc ') == 'Not matched!' 068
assert f('Aaab_abbbc ') == 'Not matched!' 069

Based on just the text description, it is not clear if 070

the user expects a function str → bool (validation) 071

or str[] → str[] (filter) or str → str (extraction). 072

The tests also do not evaluate whether the function 073

actually uses a regular expression or not. 074

Our adapted benchmark puts all emphasis on 075

the “NL” part of NL-to-code. We assume that a 076

user is not specific about the syntax of the program 077

and does not care about it: they want to obtain any 078

1

Write a function to convert the given
binary number to its decimal equivalent.

def bin_to_dec(b):
 return int(b, 2)

assert f(100) == 4,
assert f(1011) == 11 def f(b):

 return int(b, 2)

Assertion set 1: number → number

Passes all tests within
any set of assertions?

Generator(user) input (model) output

Evaluation framework. . .

assert f("100") == 4,
assert f("1011") == 11

Assertion set 2: string → number

assert f(100) == "4",
assert f(1011) == "11"

Assertion set 3: number → string

Figure 1: Example of an MBUPP benchmark problem.
Given only the description, any code generator returns
a function. Instead of providing the signature, which
users will not likely do, we match the generated function
to the signature of our assertions and then verify if the
program satisfies any of the assertion sets.

function that does what they describe. The adapted079

description is “Write a function to find sequences of080

lowercase letters joined with an underscore” with081

the “using regex“ part removed. This description082

is the only input needed by the code generator. We083

therefore introduce multiple sets of assertions084

validator085
assert f('aab_cbbbc ') == True086
...087

088
filter089
assert f(['aab_cbbb ',090

'aab_Abbbc ']) == ['aab_cbbb ']091
...092

093
extractor094
assert f('01 aab_cbbbc 23') == 'aab_cbbbc '095
...096

and consider a success if the function generated by097

the model (with any function name or execution098

semantics) passes any of the above assertion sets.099

3 MBUPP100

An example of an evaluation in MBUPP is shown101

in Figure 2. The only input to the code generator is102

a text description. This text description is allowed103

to be underspecified with respect to syntactic prop-104

erties of the function, like argument order and types105

(data structures) used to represent the output, and106

we provide multiple sets of assertions that capture107

this underspecification. Additionally, if multiple108

functions are generated to solve the problem, we109

verify if any of them satisfies the assertions to allow110

the generator to use helper functions.111

We adapt benchmarks in two phases: improving112

the text descriptions and obtaining sets of assertions113

Write a function that matches the
beginning of a string to a word.

Write a function that matches if there is a
word at the beginning of a string.

Write a function that matches a word at
the beginning of a string.

Write a function that matches if there is a
word at the beginning of a string.

correct

Create a function that matches the word
at the start of a string.

paraphrase

Write a function that checks for the
presence of a word at the start of a string.

vote

Figure 2: Improving the clarity and diversity of code
generation tasks in three steps.

to capture ambiguity on syntactic properties. 114

3.1 Improving descriptions 115

First, the original description is corrected, remov- 116

ing method specifiers (“using regex”) and ambi- 117

guity. Next, we use GPT-4 to generate three para- 118

phrased versions using the following strategies. 119

• Directly paraphrasing the text description. 120

• Extracting structured information about the 121

problem specification from the description 122

(task, input type, input property, output type, 123

output property, edge cases) in one model gen- 124

eration and generating a textual description 125

from those properties in another generation. 126

• Similar to the previous extraction, but first in- 127

structing the model to individually paraphrase 128

each of the pieces of task information. 129

Finally, we manually vote to select the best instruc- 130

tion. An example this process is shown in Figure 2. 131

3.2 Obtaining assertions 132

We now iteratively update the assertion sets using a 133

combination of intuition and suggestions provided 134

by a code generation model. Starting with the first 135

task, we ask the model to generate multiple com- 136

pletions and verify if they satisfy and of the current 137

assertions. We then inspect all failing programs 138

and select those where the code does the right thing 139

according to the descriptions, but not adhere to the 140

right signature. A new assertion set is added for 141

each mismatch. If we suspect the same mismatch 142

in other programs, like returning a tuple instead 143

of a list, we automatically find other assertions 144

would be affected by this transformation and verify 145

if they make sense. 146

2

Table 1: An overview of common assertion transformations.

Description Before After

Ensure list comparisons for sequences. We
wrap the function in a list call to support
any iterable.

assert f(x) == [1,2,3] assert list(f(x)) == [1,2,3]

Permutation of arguments. assert f(a, b) == a + b assert f(b, a) == a + b
assert f(m, x, y) == m[x][y] assert f(x, y, m) == m[x][y]

Grouping of arguments. assert f(m, x, y) == m[x][y] assert f(m, (x, y)) == m[x][y]

Removing redundant arguments. assert f(a, b) == a + 1 assert f(a) == a + 1

Including selection criteria, like counts and
extrema, to allow functions that show their
work.

assert f([1,1,2]) == 1 assert f([1,1,2]) == (1, 2)

Dictionaries ↔ list of tuples assert f(a) == {1: 2} assert f(a) == [(1, 2)]

Validator ↔ filter assert f(a) == True assert f([a]) == [a]

Numbers ↔ strings assert f(2) == 10 assert f(2) == "10"
assert f(10) == 2 assert f("10") == "10"

Table 2: Some examples of one-off assertions updates.

Utterance Description Before After

... splits a string at
lowercase letters

Original assertion
has error and is am-
biguous.

f("AbCd") == ["bC", "d"] f("AbCd") == ["A", "b", "C", "d"]
f("AbCd") == ["A", "C"]

... calculate the
4 most frequent
words with their
counts.

Allow both lists
and strings as in-
put.

f(["a", "a"]) == [("a", 2)] f("a a") == [("a", 2)]

Example 1 Consider the task to “Write a python147

function to detect non-prime numbers.” One of the148

generated programs is (GPT-4,n = 25,temp = 0.4)149

def is_not_prime(numbers):150
return [num for num in numbers151

if not is_prime(num)]152
153

def is_prime(num):154
omitted155

We rename each function to f and verify whether156

it satisfies the (default) assertion style assert f(2)157

== True which fails. Since the description can be158

interpreted as a filter function, we add159

assert f([2]) == [2]160
assert f([35]) == []161

as new assertions. We then look for other problems162

where the assertions test for bool outputs and add163

the new assertion if relevant.164

An overview of all common assertion transfor-165

mations found in MBUPP is shown in Table 1.166

Some one-off transformations are shown in Table 2.167

Figure 4 shows the distribution of frequency of168

length of updated test sets proposed in benchmark.169

We observe the concentration of samples with 4, 6,170

0 2
Updated Test Sets used

0

10

20

30

Fr
eq

ue
nc

y

MBUPP

0 2
Updated Test Sets used

MBPP+Updated Tests

Figure 3: Distributions of unique assertion sets used by
gpt-4-turbo at n = 25 and t = 0.8. On the utterances
from MBUPP, there is more variety, which hints towards
less contamination.

or 8 updated test sets, that prove to provide more 171

possibilities of acceptable code responses. During 172

transformation of test sets, we do a permutation 173

and combination of all the transformations on both 174

input and output arguments . This highlights the 175

reason for significant amount of cases with 16 test 176

sets, that accounts for all possible such cases. 177

3

Model MBPP + NL + Tests MBUPP

gpt-4-turbo 0.66 0.64 0.90 0.96
gpt-4o 0.76 0.68 0.92 0.94
gpt-35-turbo 0.68 0.66 0.86 0.88
phi 0.58 0.60 0.80 0.84
mistral 0.50 0.46 0.66 0.62

Table 3: Evaluation of LLMs on the proposed MBUPP
benchmark. We report the fraction of samples with
pass@1>0 for n = 25 and t = 0.4. We find that all
models have a higher solve-ability on MBUPP.

4 Results on MBUPP178

We describe our evaluation setup, main results, and179

further analysis on behaviour of different models.180

4.1 Evaluation setup181

We use a diverse set of open and closed weight182

models from the GPT, phi and mistral series for eval-183

uation. The input to the models is just the natural184

language specification alone. During evaluation185

we test multiple code generations (n = 25 and186

t = 0.4) over the updated assertion and measure187

solvability as any of these generations being cor-188

rect.189

4.2 Results190

In this section, we discuss the impact each com-191

ponent of MBUPP benchmark on code generation192

performance.193

One-to-many evaluation Table 3 shows the com-194

parison of the number of samples being solved in195

MBPP versus the proposed MBUPP benchmark.196

We find that with updating assertion sets, there is197

a 45% jump in solvability of the benchmark. This198

is also seen in smaller models like phi and mistral199

which tend to have a more diverse response.200

Dataset contamination MBPP being a popular201

and common dataset has made its way into training202

datasets used in larger models. This contamination203

in the model training set makes the performance204

on MBPP an unreliable indicator of model per-205

formance. Table 3 shows that with changing the206

NL phrasing (MBPP + Updated NL) while keeping207

the semantic consistent, there is a 4.5% drop in208

solvability, showing that the models remember the209

phrasing of the descriptions in the original dataset.210

Effect of temperature Table 4 shows the task211

solve-ability for gpt-4-turbo with varying gener-212

ation temperature. We find that performance on213

MBUPP increases with temperature because with214

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Updated Test Sets

0

4

8

12

16

Fr
eq

ue
nc

y

Figure 4: Distribution of number of assertion sets per
task in MBUPP. MBUPP on average has 4-5 assertion
sets per task showing the ambiguity in utterances.

Temperature MBPP + NL + Tests MBUPP

0.1 0.58 0.56 0.80 0.88
0.2 0.62 0.64 0.84 0.92
0.4 0.66 0.64 0.90 0.96
0.6 0.68 0.70 0.88 0.98
0.8 0.68 0.70 0.92 0.98

Table 4: Effect of temperature on responses with GPT-
4-TURBO for n = 25 and different temperatures.

updated assertion sets the generation diversity im- 215

proves performance. As shown in Table 4, for 216

lower temperature, (t = 0.1) the overall increase in 217

success of model on MBUPP over MBPP is as high 218

as +30%. With the higher temperature, (t = 0.8) 219

we see performance of system be all time high 220

98%. Less contamination allows for more diver- 221

sity, which benefits from the additional assertions. 222

4.3 Analysis 223

Qualitatively looking at the generations, we find 224

that on MBUPP, gpt-4-turbo failing cases are 225

mainly attributed to logic and knowledge errors. 226

These cases prove the efficiency of updating the 227

test sets, ensuring to capture all possible responses 228

of semantically acceptable code functions. 229

5 Conclusion 230

In this paper, we introduce MBUPP, an adaptation 231

of MBPP which addresses three main challenges 232

with the original dataset: (1) ambiguity and under- 233

specification in the descriptions, (2) contamination 234

of the dataset by being present in common train- 235

ing corpora of models, (3) poor alignment of the 236

assertions with the description. We show results 237

of popular open and closed weight models on the 238

original and adapted dataset. Further, we present 239

analysis on different components of MBUPP, di- 240

versity and temperature of the generations. 241

4

6 Limitation242

The adaptation and analysis done in this work are243

primarily for English language and the same tech-244

nique needs to be tested for other languages. This245

work focuses on the scenario when the specific im-246

plementation semantics are not relevant for the suc-247

cess of the task. For the case where the utterance248

needs to be made complete with required specifica-249

tion, we present a case study in the Appendix.250

References251

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,252
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,253
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-254
rat Behl, et al. 2024. Phi-3 technical report: A highly255
capable language model locally on your phone. arXiv256
preprint arXiv:2404.14219.257

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama258
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,259
Diogo Almeida, Janko Altenschmidt, Sam Altman,260
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.261
arXiv preprint arXiv:2303.08774.262

Albert Q Jiang, Alexandre Sablayrolles, Antoine263
Roux, Arthur Mensch, Blanche Savary, Chris Bam-264
ford, Devendra Singh Chaplot, Diego de las Casas,265
Emma Bou Hanna, Florian Bressand, et al. 2024.266
Mixtral of experts. arXiv preprint arXiv:2401.04088.267

Augustus Odena, Charles Sutton, David Martin Do-268
han, Ellen Jiang, Henryk Michalewski, Jacob Austin,269
Maarten Paul Bosma, Maxwell Nye, Michael Terry,270
and Quoc V. Le. 2021. Program synthesis with large271
language models. In n/a, page n/a, n/a. N/a.272

Martin Riddell, Ansong Ni, and Arman Cohan. 2024.273
Quantifying contamination in evaluating code gener-274
ation capabilities of language models. arXiv preprint275
arXiv:2403.04811.276

5

A Appendix277

A.1 Effect of updating test sets278

We observe the distribution of various transforma-279

tions used while updating the test sets of which280

were used as possible solutions for the NL. With-281

out the case for updated test sets we observe 44%282

and 56% of samples that could not be captured in283

corresponding NL of MBPP and MBUPP.284

One of the most occurring transformation of List-285

ToTuple signifies the impact we create by incor-286

porating possible cases of variations in input and287

output type which are syntactically correct and per-288

forming the intended task correctly. Other trans-289

formations like RemoveArgs, provides variation of290

inclusive response handling with List size being291

an input parameter or not, and NumToStr, helps292

handling samples with binary to decimal conver-293

sion and vice-versa where the number can also be294

considered as string to start with.295

A.2 Case Study: MBOPP296

In the proposed benchmark we focus entirely on297

problem solving case for the various LLM, to pro-298

vide in all possible responses that can be acceptable299

by the user with the given under-specified NL. As300

a followup, the NL for the task can be to trans-301

late this cleaned benchmark to the state where user302

mentions all details. Such specification of infor-303

mation would connect to user explicitly about the304

formatting of the arguments along with checking305

on the task completion for the desired Python func-306

tion. We provide this set of benchmark as MBOPP307

(mostly basic over-specified Python programs).308

For this set of benchmark the focus here is for309

adding more and more information to make the310

generated code exactly as the desired one, where311

the user is focused on every possible detail and312

formatting of the input output responses and the313

task.314

Example for such a transformation is like:315

"Write a function to find the similar elements from316

the given two tuple lists." sample within the cur-317

rent MBPP benchmark being translated to "Write318

a function to find similar elements from two tuple319

lists and return a tuple.", which mentions the exact320

output format that the code should respond with321

and thus pass for all original test cases only. The322

latter is more specified, where the user is precise323

about the correct code generated.324

One thing to note here is that for evaluation we325

only consider the generated code that passes all326

original test cases. The augmented test cases are 327

not considered for evaluation to capture the instruc- 328

tion following of the LLM system, over the eval- 329

uation of MBUPP’s task completion capability of 330

LLM system solely where those augmented test 331

cases where used. This contains the need for infor- 332

mation extraction with bucketing the information 333

present in the specification keeping the test cases in 334

mind, to the various task components, and generate 335

the next set of specifications with explicit mention- 336

ing of all information. This ensures mapping back 337

any step of generation of the benchmark for quality 338

assessment, while leveraging the LLMs with a re- 339

duced risk of hallucinations and nondeterministic 340

behaviour. 341

6

	Introduction
	Motivating example
	MBUPP
	Improving descriptions
	Obtaining assertions

	Results on MBUPP
	Evaluation setup
	Results
	Analysis

	Conclusion
	Limitation
	Appendix
	Effect of updating test sets
	Case Study: MBOPP

