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ABSTRACT

In this paper, we explore the application of Large Language Models (LLMs) to
the pre-training on symbolic music. While the prevalent use of MIDI in music
modeling is well-established, our findings suggest that LLMs are inherently more
compatible with ABC Notation, which aligns more closely with their design and
strengths, thereby enhancing the model’s performance in musical composition. To
address the challenges associated with misaligned measures from different tracks
during generation, we propose the development of a Synchronized Multi-Track
ABC Notation (SMT-ABC Notation), which aims to preserve coherence across
multiple musical tracks. Our contributions include a series of models capable of
handling up to 8192 tokens, covering 90% of the symbolic music data in our train-
ing set. Furthermore, we explore the implications of the Symbolic Music Scaling
Law (SMS Law) on model performance. In music structure experiments on rep-
etition, we outperform GPT-4 by 17% (average Intra Similarity and Repetition
Rate) on the full test set, and surpass the SOTA ABC-notation model ChatMusi-
cian by 6% on the single-track test set. In terms of subject evaluation, listeners
preferred music from our system in 79% of cases, comparing to GPT-4. The
results indicate a promising direction for future research in music generation, of-
fering extensive resources for community-led research through our open-source
contributions.

1 INTRODUCTION

Large Language Models (LLMs) have experienced remarkable advancements, leading to their broad
application across numerous domains. As these models extend into multimodal areas, such as visual
and auditory fields, their capability to represent and model complex information, including images
(Liu et al., 2023) and speech (Baevski et al., 2020) becomes increasingly critical. However, this ex-
pansion also highlights significant challenges that must be addressed. Specifically, the development
of effective tokenizers for images and videos, as well as advanced codecs for the audio domain.

In the domain of music, LLMs encounter inherent challenges that hinder their effective utilization.
These models often struggle to capture the consistency of long-term structural consistency of music
essential for pleasing music (Dai et al., 2022; Briot & Pachet, 2020; Dai et al., 2021). This issue
stems from the use of Musical Instrument Digital Interface (MIDI), which, while effective, poses
significant challenges in terms of music’s readability and structural representation. The widely-used
performance MIDI data may lack structural annotations and cannot inherently encode phenomena
such as music repetition, thus resulting in longer sequence lengths (Yuan et al., 2024).

To tackle this issue, the integration of ABC notation offers a novel approach to overcoming the
limitations of MIDI formats, visualized in Figure 1. Yuan et al. (2024) advocate for this method,
highlighting ABC notation’s readability and structural coherence. Their methodology involves fine-
tuning the LLAMA2 model, leveraging instruction tuning to enhance the model’s musical output
capabilities (Touvron et al., 2023b;a). The research overlooks critical tokenization considerations
within musical compositions.

In this paper, we aim to propose a training standard with transformer decoder-only architecture for
symbolic music generation tasks, which is suitable for single / multi-track music generation. We
observe that mismatches between measures can occur by employing the traditional ’next-token-
prediction’ paradigm for symbolic data training. This issue arises because ABC notations are gen-
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erally notated track by track, completing one track before moving on to the next. To address this
challenge, we propose SMT-ABC notation to facilitate the model’s learning of how each measure is
expressed across various tracks.

Furthermore, we observe that the ABC Notation model benefits from additional epochs in the train-
ing phase. This suggests that repeated data positively impacts the model’s performance. To under-
stand this phenomenon, we introduced the SMS Law for repetitive training with symbolic music
data. This law explores how scaling up the training data affects the performance of symbolic mu-
sic generation models, particularly in terms of validation loss. This investigation aims to provide
clear insights into the relationship between data repetition and model efficacy, offering guidance for
optimizing model training strategies.

We conducted both objective and subjective evaluations comparing our MuPT model with state-
of-the-art models like GPT-4 ChatMusician and MMT, focusing on ABC-notation and MIDI-based
approaches. Objectively, MuPT achieved the closest approximation to ground truth, with an average
gap of just 0.11, significantly outperforming ChatMusician’s 0.48. This seemingly small numerical
difference marks a substantial improvement in music generation quality. Notably, MuPT supports
multi-track music generation, a feature absent in ChatMusician, enhancing its utility in realistic
settings where such complexity is common. In experiments assessing music structure, MuPT sur-
passed GPT-4 by 17% and ChatMusician by 6% in terms of Intra Similarity and Repetition Rate,
demonstrating its superior capability in handling complex musical compositions.Subjective evalua-
tions further validated MuPT’s superiority, with over 70% preference ratings against both MMT and
GPT-4, underscoring its appeal to human listeners.

Our main contributions are chiefly as follows:

• Models. We introduce a series of long-context symbolic music foundation models trained on ABC
notation, featuring an extended sequence length of 8,192 tokens, enabling them to accommodate
over 90% of the symbolic musical data in our collected dataset. This advancement significantly
enhances our ability to process and generate longer, more complex musical compositions.

• Method. We propose SMT-ABC notation, a novel approach that seamlessly integrates the char-
acteristics of auto-regressive models with the inherent nature of repeat and music structure with
a high compression rate. Our extensive experimentation demonstrates that SMT-ABC not only
improves the coherence of generated musical pieces but also preserves the nuanced patterns and
structures inherent in music.

• Scaling Law. We explore the SMS(Symbolic Music Scaling) Law insights for music modeling
based on the ABC notation. We demonstrate that comprehensive music modeling yields superior
performance with a positive correlation between model size and metric improvement. We also
reveal unique training epoch dynamics in music repetition and performance enhancement.

• Open Source. We release a suite of state-of-the-art long-context symbolic music foundation mod-
els along with all the intermediate training checkpoints to foster community research and innova-
tion in symbolic music modeling.

2 RELATED WORK

Music Pre-training Audio pre-training through the self-supervised learning paradigm has made
great progress in speech (Baevski et al., 2020; Hsu et al., 2021; Baevski et al., 2022; Ma et al.,
2023b; Yang et al., 2023; Lin et al., 2023), general-purpose audio (Huang et al., 2022; Baade et al.,
2022; Chen et al., 2023; 2024), as well as music (Zhu et al., 2021; Dong et al., 2023; Thickstun
et al., 2023; Ma et al., 2023a; Li et al., 2023). Two types of music pre-training have been explored:
non-autoregressive discriminative models and autoregressive generative models. Autoregressive
generative music pre-training models employ a GPT-style framework to generate music, either in
codec (Copet et al., 2024) form or in symbolic form (Thickstun et al., 2023; Dong et al., 2023).

Data Representation for Symbolic Music Symbolic music representation formats such as MIDI,
Humdrum, and ABC notation offer distinct approaches for representing musical information.
Specifically, MIDI, which excels in capturing musical notes and performance, is a popular choice
in the music industry and research community(Huang & Yang, 2020; Huang et al., 2019; Lu et al.,
2023). However, the complexity and length of MIDI sequences often challenge music models, which
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limit the preservation of a composition’s full continuity. MIDI sequences are typically segmented
into shorter fragments, which limit capturing a composition’s full continuity. MIDI’s encoding of
performance nuances can lead to quantization errors and unstable rhythms when being tokenized.
Besides, there are some score-level symbolic music, such as MusicXML, MEI, and Lilypond, that
are not typically used for model training due to the limitation of large-high-quality data and the
length to representing the same music clips Ma et al. (2024) In contrast, ABC notation stands out for
its textual simplicity and compactness, making it particularly suited for Natural Language Process-
ing (NLP) techniques. It can be efficiently processed and analyzed using sequence modeling and
pattern recognition algorithms similar to those used in language translation and text generation, en-
abling automated music generation and retrieval(Sturm et al., 2016; Casini et al., 2023; Yuan et al.,
2024). However, each soundtrack is recorded sequentially in typical ABC notation, which is dif-
ferent from music performance when each measure within every track is performed simultaneously
Yuan et al. (2024). This making multi-track ABC notation somehow incompatible with LLMs on
next token prediction. Since if a token is far from the current tokens, it becomes challenging to
capture and measure the results effectively.

Scaling Law A wide range of research underscores a significant pattern in language model perfor-
mance, indicating a power-law relationship between model performance and the increases in both
the number of parameters and the size of the training data (Kaplan et al., 2020; Hoffmann et al.,
2022; Ghorbani et al., 2021). Scaling law plays a pivotal role in advancing large language mod-
els (LLMs), offering a framework to predict the optimal configurations for larger models based on
the training logs of their smaller counterparts (Gao et al., 2022). The research by Muennighoff
et al. (2024), which involves the repetition of the entire pre-training dataset across multiple epochs,
presents promising results yet raises questions regarding its effectiveness for musical data. This un-
certainty prompts a need for further research into the impact of data repetition strategy by achieving
improved outcomes for models engaged in music-related tasks.

Data Type Count Pct. (%) Avg. Tks

Single Track 3.5M 51.2 450
2 Tracks 605K 8.7 2.0K
3 Tracks 412K 5.9 3.1K
4 Tracks 632K 9.0 4.2K
5 Tracks 362K 5.2 5.2K
6 Tracks 248K 3.6 6.7K
7 Tracks 176K 2.5 8.2K
8 Tracks 149K 2.1 10.1K
9 Tracks 104K 1.5 10.3K
10 Tracks 88K 1.3 11.8L
11+ Tracks 633K 9.1 25.9K

Total 6.9M 100.00 4.53

Table 1: Training Set Statistics. Pct.(%)
refers to the percentage of the specific type
of data. Avg. Tks refers to the average num-
ber of tokens.

Genre Count Pct. (%) Type

Pop 227 18.7 S/M
Jazz 213 17.5 S/M
Country 168 13.8 S/M
Rock 99 8.1 S/M
Dance 75 6.2 S/M
Latin 22 1.8 S/M
Folk 95 7.8 S/M
R&B 111 9.1 S/M
Classical 207 17.0 S/M

Total 1217 100.00

Table 2: Test Set Statistics. Each genre includes both
single and multi-track music pieces. Pct.(%) refers to
the percentage of the specific type of music. S refers
to Single track music, M refers to Multi-Track music.

3 DATASET

The dataset used in our empirical study is divided into two parts: a testing set and a training set.
The testing set is derived from WIKIMT++(Zhou et al., 2023), which includes 1,010 ABC notation
scores from eight music genres (e.g., Pop, Jazz, Rock, R&B, Latin, etc.) along with 12 subjective
emotions. Additionally, the test set comprises 207 multi-track classical music pieces manually se-
lected from Bach’s compositions. Importantly, none of these pieces overlap with the training set,
ensuring that the test set can effectively evaluate the model’s performance across diverse musical
genres, various emotions and in generating out-of-domain music.
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Figure 1: A comparison between MIDI represented by a piano roll (left) and ABC notation (right)
of the same music excerpt. MIDI note number represents the pitch and the square’s length on the
time axis represents the duration of a musical note.

The training set is built from a comprehensive collection, incorporating the Nottingham Music
Dataset1, the ABC tune book of Henrik Norbeck(Ji et al., 2020), the Irishman dataset (Wu et al.,
2023), and a private dataset owned by the Central Conservatory of Music (including university li-
brary corpus in ABC and other formats that can be converted to ABC like MusicXML, along with
internet collections). This rich dataset spans nearly all music genres and includes a diverse range of
both single-track and multi-track data. Due to the unavailability of detailed genre metadata for most
of the training data, we have not included genre-specific breakdowns in the statistics. We are com-
mitted to open-sourcing the training data for research purposes once all datasets are well-organized.

Tables 1 and 2 provide an overview of the statistics for both the testing and training sets, illustrating
the number of samples, their distribution, and average token lengths across various categories.

4 METHOD

4.1 SMT-ABC NOTATION

ABC notation is a widely adopted system for notating music using plain text, and it offers unique
advantages when used in conjunction with deep learning models. Its well-structured text format
ensures easy preprocessing, efficient data transmission, and scalability of datasets. The diverse
collection of tunes and compositions in ABC notation facilitates learning various musical structures
and styles. Moreover, ABC notation allows models to generate human-readable outputs, leading
to immediate feedback and iterative refinement. These attributes significantly enhance both the
efficiency and quality of the training process.

An ABC file is composed of headers following the music notation. The former contains metadata
regarding the tune, such as its composer and tempo, while the latter defines the melody. Each note
is represented by a letter, with additional symbols conveyingduration, rhythm, and other musical
characteristics. Compared to MIDI, another symbolic representation form of music, ABC notation
offers a simple and user-friendly text-based format that is easy to read and write, making it accessible
for musicians of all skill levels. An example is shown in Figure 1. “V:1” indicates the beginning of
the first music track and the lines before it are headers. A tune can consist of one or more tracks,
each representing a distinct musical element within the composition. The bars within each track are
separated by bar line symbols like vertical lines (“|”), which refer to the standard bar line.

In Yuan et al. (2024), ABC files without any modification are the input of models. However, we
found that the models struggle with bar alignment when dealing with multiple tracks. Since a track
represents a section or division within a musical composition, such as one of the instrumental or
vocal parts in a piece of symbolic music, it is crucial for models to capture the correspondence
between tracks. Specifically, this correspondence exists in bars with the same indices, and thus,
they should be treated as a series of groups. To this end, we reorganize the tracks as depicted in
Figure 2. We concatenate music segments from bars with the same index across all tracks, including
their right bar lines. These concatenated elements from different tracks are then enclosed by a pair
of a newly introduced symbol “<|>”, which is not part of the original ABC system. This symbol

1https://ifdo.ca/seymour/nottingham/nottingham.html
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represents the beginning or the end of a group of bars at the same stage. In cases where a tune
contains only one track, each new unit will consist of a single bar. After processing all the bars,
we obtain a synchronized version of the music notation, while the headers remain unchanged. The
length of the tracks is not always identical due to repetition or other specific musical structures,
which are difficult to handle exhaustively. Considering these special samples typically account for
just a small portion (0.01% in our dataset) of the entire dataset, we simply skip them in this scenario.
This simple and efficient measure only require 8CPU 1-2 hours to process the whole 33.6B dataset,
but provide impressive results in ablation study in subsection B.3.

<|> z3 E/F/ | z6 C2 | z6 A,2 | <|> 
<|> G A G C | C2 C2 C2 CD | G,2 
F,2 E,F G,A | <|> <|> ... | ... | ... | <|>

Align BarsV:1  z3 E/F/ | G A G C | ...
V:2  z6 C2 | C2 C2 C2 CD | ...
V:3 z6 A,2 | G,2 F,2 E,F G,A | ...

Figure 2: Illustration of synchronized multiple-track ABC notation. Music segments from bars shar-
ing the same index across all tracks, along with their right bar lines, are concatenated to guarantee
alignment. The combined elements are then enclosed by a pair of a newly introduced symbol “<|>”.

4.2 TOKENIZER

We chose YouTokenToMe (YTTM) (YouTokenToMe, 2021) framework to develop a tokenizer with
a vocabulary of 50,000 tokens, leveraging the Byte-Pair Encoding (BPE) (Shibata et al., 1999) for
ABC notation tokenization. This method is instrumental in segmenting the ABC text into manage-
able units, thereby enhancing the model’s ability to interpret and process the input effectively. We
do not apply any normalization and dummy prefix to the training corpus, without changing its form
or adding extra parts at the beginning. Additionally, a unique symbol “<n>“is employed to denote
spaces within the ABC text, ensuring accurate space recognition by the model.

Parameters 190M 505M 1.07B 1.97B 4.23B

Hidden Size 768 1024 1280 1536 2048
# Layers 12 16 20 24 32
# Feedforward dims. 3072 4096 5120 6144 8192
# Heads 12 16 20 24 32
Head Size 256 256 256 256 256

Table 3: MuPT model with different model sizes.

4.3 MODEL ARCHITECTURE

MuPT utilizes a standard Transformer model architecture (Vaswani et al., 2023) in a decoder-only
setup. Models are trained on a context length of 8192 tokens. We list our MuPT model parameter
in Table 4.2 and utilize several improvements proposed after the original transformer paper. Below,
we list the included improvements:

• SwiGLU Activation: The SwiGLU activation mechanism, represented as (Swish(xW ) · xV ),
is utilized for the MLP (Multi-Layer Perceptron) intermediate activations. This approach signifi-
cantly surpasses traditional activation functions such as ReLU, GeLU, and Swish in performance
(Shazeer, 2020).

• RMSNorm Each transformer sub-layer, including the attention and feedforward layers, is nor-
malized using RMSNorm as proposed by Zhang & Sennrich (2019)

• RoPE Embeddings: In contrast to positional encoding (PE) strategy, we use the Rotary Positional
Encoding (RoPE) technique, as developed by Su et al. (2023), aimed at enhancing long-context
modeling.
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4.4 SCALING LAW

The Chinchilla Law, proposed by DeepMind, is a scaling law that provides insights into the training
of LLMs. Our experiments reveal that the Chinchilla Law (Hoffmann et al., 2022) provides a good
fit for general cases, where moderate models were trained with a moderate amount of data. In this
section, we will list several improvements to Chinchilla Law for symbolic music scaling principles
on limited training data.

4.4.1 OPTIMIZING BASELINE SCALING LAWS UNDER COMPUTATIONAL CONSTRAINTS

A pivotal aspect of scaling laws is the optimization of loss within the bounds of computational
feasibility. This is formalized as minimizing the valid loss L, subject to constraints imposed by
available computational resources (C), specifically FLOPs, as denoted below:

argminN,D L(N,D) s.t. FLOPs(N,D) = C (1)

This framework encapsulates the trade-offs between parameters (N ) and training tokens (D), and
decision-making processes inherent in scaling models under resource limitations, illuminating path-
ways to efficiency and efficacy in LLMs training. More details can be found in Appendix A.1.

In this paper, we will use the Chinchilla Law(Hoffmann et al., 2022) and Data-Constrained
law(Muennighoff et al., 2024) as baselines. The former is a classical baseline in LLMs’ training
and the latter is crucial to address the constraints faced in scenarios where the volume of available
training data does not meet the ideal requisites. This phenomenon is typical in the music domain.
Please refer to A.1.2 for more information.

4.4.2 SYMBOLIC MUSIC SCALING (SMS) LAW
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Figure 3: Chinchilla Law prediction and authentic validation loss in the setting with 2.1B unique
training tokens for models with 190, 505 and 1072MB.
Figure 3 demonstrates the Chinchilla prediction in yellow lines and the observed loss in blue. We
can tell that the Chinchilla law does not provide good results when the data volume D is small
when the model just begins the pre-training stage, and when D is large where repeated data provides
overfitting. We proposed two terms to address these problems.

Incorporation of a New Term. We can observe that when that model parameter is small (e.g.
N = 190M ), the Chinchilla underestimates the loss value and overestimates when the model size
is large (e.g. N = 1072M ). This suggests that the coefficient B in the Chinchilla formula L =
A
Nα + B

Dβ +E shall be relevant to D instead of a constant. To cope with, we incorporate a new term.
After that, we proposed another term to predict the early stop points and overfited loss curve:

L(N,D) = d
Nα·Dβ + A

Nα + B
Dβ + E. (2)

Where {A,B, d,E, α, β} are learned variables fit using the training runs. To address the model’s
limitations in accurately capturing performance metrics for smaller data sizes, we introduce an ad-
ditional term, as delineated in Equation 2. This modification aims to refine the model’s fidelity,
particularly in scenarios characterized by limited data availability. Further details on this modifica-
tion can be found in the Appendix A.3.1.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Modelling Overfitting Settings. Crucially, previous iterations of the model fall short in predict-
ing overfitting, particularly beyond early stopping thresholds. This gap is especially pronounced in
the context of Data-Constrained environments, such as music, where open-source data is limited.
To this end, we introduce a new component, Loverfit, to the model, encapsulated in Equation 3, to
specifically account for overfitting losses:

L (N,D,UD) = d
Nα·Dβ + A

Nα + B
Dβ + E + Loverfit (3)

where
Loverfit = GELU {kd ·D + kn · log(N)− ku · log(UD)− kin} (4)

is our overfitting formulation where {kd, kn, ku, kin} are learned variables for overfitting calibra-
tion. For comprehensive insights into the overfitting loss component, please refer to Appendix A.3.2.

Parameter Fitting and Model Integration. Initial parameter fitting for {α, β, A, B, E}, and d,
subsequent linear regression analysis, focusing on the residuals between Equation 2 and empirical
observations, facilitates the calibration of overfitting parameters {kd, kn, ku, kin} within Equation 4.
The integration of these components in Equation 3 not only predicts performance under constrained
conditions but accounts for overfitting dynamics, helping to predict the true minimum of loss curve.

5 EXPERIMENTS

5.1 DATASET & EXPERIMENTAL SETUP

As outlined in section 4.3, we adopt similar model architecture from LLaMA2(Touvron et al.,
2023b), including RMSNorm(Zhang & Sennrich, 2019) and SwiGLU(Shazeer, 2020). All the hy-
perparameters are detailed in Appendix B.1. In the full-scale data setting, we trained models of
various sizes (ranging from 190M to 4.23B parameters) on the ABC text corpus, which consists of
33.6 billion tokens derived from a diverse collection of monophonic and polyphonic musical com-
positions spanning various genres and styles. And the validation set includes 8 pop music genres
and classical music, providing good generalization capability for scaling law evaluation. For more
information about the corpus, please refer to subsection B.2. In data repetition experiments, we uti-
lized subsets of the corpus, specifically 6.25% and 25% random sampled data. The Adam(Kingma
& Ba, 2014) optimizer and cosine learning rate schedules are applied for the training process.

5.2 SCALING LAW

5.2.1 EVALUATION METRICS & FITTING METHODOLOGY

We use the R2 value and Huber loss (with the parameter δ = 1e − 3) between the authentic valid
loss and predicted valid loss on small models (190M, 505M, 1.07B) to acquire the best scaling law.
Then we use the best law to train two large models (with 1.97B and 4.23B). See Appendix A.4 for
more details about the two evaluation methods.

We optimized the SMS Law using the L-BFGS algorithm, the same with Chinchilla and Data-
Constrained Laws. For more information, please refer to Appendix A.5.

5.2.2 SMS LAW ARE THE BEST ON THE TRAINING SET

Paramatic fit R2 Value (train) ↑ Huber Loss (train) ↓ R2 Value (test) ↑ Huber Loss (test) ↓

Chinchilla law 0.9347 0.0109 -0.0933 0.0080
Data-Constrained law 0.7179 0.0206 0.1524 0.0071

Equation 11 0.9075 0.0129 0.3114 0.0073
Equation 2 0.9759 0.0102 0.8580 0.0062
SMS Law 0.9780 0.0085 0.9612 0.0028

Table 4: Comparison of parametric fitting performance of different scaling laws.

The integration of an additional term as delineated in Equation 2, alongside the introduction of a
GELU regularization component in Equation 4, collectively underpins the superior performance of
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the SMS Law, as empirically evidenced by its training set outcomes. This is particularly notable
in the context of our parametric fitting performance comparison (see Table 4), where the SMS Law
outshines other scaling laws, achieving the highest R2 value (0.9780) and the lowest Huber loss
(0.0085) on the training set.

Although Equation 11 does not eclipse the Chinchilla Law in performance metrics, it nonetheless
presents a significant improvement over the Data-Constrained Law’s D′ by leveraging D′′, which is
indicative of a refined approach to managing the constraints posed by data repetition. This nuanced
handling of data repetition, inherent to Equation 11, suggests an enhanced generalization capability
in such scenarios. Therefore, we culminate it along with other modifications, manifest in the SMS
Law in order to enhance model performance and generalization at the same time. In fact, it indeed
provides much better results in the test set.

5.2.3 SCALED-UP PERFORMANCE USING SMS LAW

In our SMS Law experimentation under a computational budget of 2 × 1020 FLOPs, we initially
aim to train a 2.10B (or 1.98B) parameter model across 2.82 epochs on the whole 33.6B dataset per
epoch, achieving a loss of 0.5279 (or 0.5280). Engineering constraints necessitated a slight scale-
down to a 1.97 billion parameter model, which, intriguingly, showed a minimal loss increase to 0.529
around 2.5 epochs. Contrary to the predictions of SMS Law, the Chinchilla Law suggests optimal
performance for a 990M parameter model over 6.1 epochs. Pushing boundaries, we continuously
train the 1.07B parameter model and observe overfitting returns beyond 3 epochs, validating the
SMS Law’s advantages in this context. Further, we train a 4.23B parameter model that underscored
the SMS Law’s predictive accuracy regarding overfitting risks, affirming its value as a strategic
guide in scaling up models effectively within fixed computational constraints, beneficial for efficient
model scaling decisions.

In validating SMS Law, we analyze the performance of 1.97B and 4.23B parameter models, detailed
on the right-hand side of Table 4. This comparative study highlights the SMS Law’s exceptional
performance, evidenced by its unparalleled R2 values and minimal Huber Loss on testset as well.

Unlike the Chinchilla and Data-Constrained laws, the SMS Law not only showcase superior predic-
tive accuracy but also demonstrates its efficacy in optimizing neural network scaling within com-
putational constraints. These results affirm the SMS Law’s value in guiding scaling strategies for
symbolic music, marking a significant advancement in the field. For other advantage of SMT-ABC
such as consistency and the subjective evaluation results, please refer to subsection B.3.
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Figure 4: Training Loss for different model sizes and training strategy.

5.3 EVALUATION

5.3.1 EFFICIENCY OF OUR TRAINING STRATEGY

To demonstrate the efficiency of our training strategies, we reference the training loss curves in Fig-
ure 4. Our comparison spans four different model sizes: 190M, 505M, 1.1B, and 2B. We observed
that increasing the training input length from 4096 to 8192 significantly reduces the loss, especially
noticeable in the convergence phase. The comparison shows that after aligning data, our training
loss slightly decreases compared to the original ABC loss, demonstrating our method’s efficiency in
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improving training for various model sizes. For more discussion on the compression between MIDI,
ABC and SMT-ABC, please refer to Appendix C.

5.3.2 OBJECTIVE METRICS OF SYMBOLIC MUSIC ELEMENTS

Following the previous studies on music generation (Dong et al., 2023; Wu & Yang, 2020; Mogren,
2016), we adopt the pitch entropy, scale consistency and groove consistency to evaluate how well
the systems can generate music from the perspectives of different musical elements given the first
measure. Table 5 shows the mean values of these three metrics, where MuPT achieves overall
better performances than other systems compared to the ground truths. For the whole test set, only
51% of samples generated from GPT-4 have the correct ABC notation format. To compare MIDI
representation with ABC notations, we incorporate Multitrack Music Transfomers (MMT) (Dong
et al., 2023), a MIDI-based music generation model to infer the MIDI data transformed from the
ABC notations by abc2midi2. Moreover, to compare MuPT with ChatMusician (Yuan et al., 2024),
another LLM pre-trained on large-scale single-track (st.) ABC notation data, we separate the single-
track samples from our test set and obtain the results in Table 5. MuPT also achieves better results.
5.3.3 REPETITION METRICS

Repetition Rate Repetition is significant in evaluating how well-structured the music is. In Table
6, the piece-level average repetition rate of each system is calculated to reveal how often the repeat
sign : | appears in a generated set. It appears that 43.7% of the generated samples from MuPT, which
is quite close to the ground truth, higher than Chatmusician in single-track data, and much higher
than GPT-4. This suggests that MuPT is more likely to generate music with repetition and structure.

System PE SC (%) GC (%)

GT 2.708 96.80 93.46
MuPT-SMT 2.631 97.48 93.45
MuPT-Ori. 2.621 98.09 93.36

MMT 2.784 95.64 91.65
GPT-4 2.783 97.90 95.32

GT(st.) 2.617 98.39 93.25
MuPT-SMT(st.) 2.612 98.20 93.39
MuPT-Ori.(st.) 2.619 98.16 93.49

ChatMusician(st.) 2.664 98.55 94.47
MMT(st.) 2.808 95.88 91.60
GPT-4(st.) 2.686 99.27 95.72

Table 5: Mean values of pitch entropy (PE),
scale consistency (SC), and groove consistency
(GC) for each system. A closer value to the
ground truth (GT) is considered better.

System ITS RR (%)

GT 0.3729 43.5
MuPT-SMT 0.4193 43.7

MMT 0.1767 -
GPT-4 0.3614 16.9

GT(st.) 0.4753 59.2
MuPT-SMT(st.) 0.4507 52.6

ChatMusician(st.) 0.5260 40.1
MMT(st.) 0.2158 -
GPT-4(st.) 0.4235 23.0

Table 6: Mean value of intra-texture similarity
(ITS) and repetition rate (RR) of each system.
The ABC notation string generated by MuPT
achieves higher intra-similarity than the GT and
GPT-4.

Intra Similarity In addition to the naive repetition rate, we also adopt the methods introduced in
Wang et al. (2024) to calculate the intra-similarity of symbolic music in each system. Specifically,
a pre-trained VAE from Yang et al. (2019) and Wang et al. (2020) is transferred to compute the
texture latent for each music piece; the intra-similarity of a music piece is defined as the average
value of its texture latent similarity matrix, excluding the diagonal. Since the texture encoder is pre-
trained on MIDI data, we transform ABC notations into MIDI format before the latent is obtained.
Table 6 shows the mean value of each system’s intra-similarity under the first-measure conditioned
generation. For the whole test set, MuPT achieves the highest score among all systems, while for the
single track, its value is lower than the ChatMusician. Generated pieces of MMT have notably lower
intra similarity than MuPT and GPT-4. This result corresponds with the intuition that score-level
ABC notation is more capable of generating structured music than performance-level MIDI.

5.3.4 SUBJECTIVE EVALUATION
Human assessment should be involved to further testify the objective repetition metrics above. Fol-
lowing Donahue et al. (2023) and and Thickstun et al. (2023), we conduct a subjective listening

2https://github.com/xlvector/abcmidi

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model A Model B Wins (A/B) p-value

Human Works

MuPT 81/69 0.4237
MMT 109/41 4.2249 × 10−6

GPT-4 119/31 6.6315 × 10−9

Random 138/12 4.4648 × 10−17

MuPT
MMT 110/40 4.2249 × 10−6

GPT-4 115/35 6.6641 × 10−8

Random 131/19 1.3618 × 10−13

MMT GPT-4 95/55 0.0093
Random 103/47 0.0001

GPT-4 Random 106/44 2.6691 × 10−5

Table 7: Human evaluation of paired completions of musical excerpts generated by different sources
given the first bar as the condition. The left is the matrix based on the AB test. Each row indicates the
% of times listeners preferred instrumentals from that system compared to those from each system
individually (N = 150). Ground truth is denoted by GT. i.e.77 means that listeners preferred MuPT
over GPT-4 in 77% of cases. The right is the absolute win numbers and the corresponding p-value
of each pair. P-values are reported by a Wilcoxon signed rank test.

study to measure the qualitative performance of , we conduct a subjective listening study to mea-
sure the qualitative performance of MuPT against the ground truth (GT) and baselines consisting of
against the ground truth (GT) and baselines consisting of GPT-4, MMT and random note sequences
(Random). Listeners are asked to identify which of two musical excerpts from different sources is
more ”musical” during the test process. They are also instructed to focus on two aspects of musical-
ity: how consistently the music sounds throughout (e.g., in terms of its melodic contours, rhythmic
patterns, and chord progression); and how likely it is that the development of the music follows a
clear structure (e.g., verse-chorus division, repetitions). This process is similar to that in and ran-
dom note sequences (Random). Listeners are asked to identify which of two musical excerpts from
different sources is more ”musical” during the test process. They are also instructed to focus on two
aspects of musicality: how consistently the music sounds throughout (e.g., in terms of its melodic
contours, rhythmic patterns, and chord progression); and how likely it is that the development of the
music follows a clear structure (e.g., verse-chorus division, repetitions). This process is similar to
that in Yuan et al. (2024) and its details are shown in the Appendix and its details are shown in the
Appendix E.. Results for all systems are shown in Table 7. Comparing MuPT to GPT-4, listeners
prefer music from our system in 79% of cases. A Wilcoxon signed-rank test of these pairwise judg-
ments shows that listeners preferred music from MuPT significantly more than MMT and GPT-4
(p = 4.2249 × 10−6 and p = 6.6641 × 10−8, respectively). We use Fleiss’ kappaFleiss & Cohen
(1973) to measure the inter-annotator agreement among 15 participants. A kappa value of 0.5807
was obtained, indicating that the participants achieved moderate agreement. This demonstrates the
quality of our subjective annotators.

6 CONCLUSION

In this paper, we introduce the MuPT series of pre-trained models trained on the largest possi-
ble amount of ABC Notation data which set the standard for training open-source symbolic music
LLMs. Additionally, we dive deep into the scaling law exploration and propose SMS Law, a spe-
cialist in guiding future scaling of symbolic music GPTs. Our results demonstrate that the MuPT se-
ries is competitive with mediocre human composers and guarantees state-of-the-art performance on
symbolic music generation. Moreover, MuPT introduces SMT-ABC, reordering the multiple-track
original ABC notation format to assist pre-training of MuPT. We conducted comprehensive evalu-
ations of our MuPT model against state-of-the-art models like GPT-4k, ChatMusician and MMT.
Objectively, MuPT closely approximated the ground truth, significantly outperforming ChatMusi-
cian and demonstrating superior handling of complex musical compositions, including multi-track
music, which is absent in ChatMusician. Subjectively, MuPT was preferred by over 70% of human
listeners, outperforming both MMT and GPT-4, confirming its effectiveness in realistic music gen-
eration scenarios. We believe that the open access of intermediate checkpoints of MuPT, SMS Law,
and MuPT series will foster collaboration and innovation within the open-source computational mu-
sic community, and open the door to the next-generation symbolic music foundation models.
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ETHICS STATEMENT

In designing the MuPT series, we have meticulously adhered to ethical guidelines to ensure fair-
ness, transparency, and the responsible use of AI in music generation. Despite these efforts, ethical
challenges such as potential copyright infringement and unintended use of AI-generated music in
sensitive contexts remain. We urge the research community to approach these challenges with vig-
ilance and to consider ethical implications carefully when deploying similar technologies. Besides,
as suggested by Ma et al. (2024), we strongly urge people to tag music as “AI-generated” for music
pieces when uploading to the website, enabling the user to choose (non-)AI-generated music to bet-
ter protect the rights of musicians. Furthermore, all 15 participants were chosen by the author of this
paper, and therefore, there is no additional requirement for ethical approval for the listening test.
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A SCALING LAW

A.1 SCALING LAW BASELINE

A.1.1 ABSTRACTING LOSS METRICS THROUGH THE CHINCHILLA LAW

In this part, we focus on the relationship of loss metrics to various resource budgets in deep learning.
It is first put forward by the Chinchilla Law as illustrated in Equation 5. This law posits that both
training and evaluation losses can be abstracted as a function of model capacity N and training
data size D, thus offering an insight to estimate the best combination of resources to be assigned to
training.

L(N,D) =
A

Nα
+

B

Dβ
+ E (5)

Here, L(N,D) denotes the loss metric during training or evaluation, which is assumed to exhibit a
power-law dependency on N and D. The parameters A, B, E, α, and β are determined by empirical
fitting.

A.1.2 DATA-CONSTRAINED LAW

Data-Constrained Law: Scaling under Data Limitations. Complementing the Chinchilla Law,
the Data-Constrained Law shows the scaling dynamics of LLMs when facing the data scarcity prob-
lem. Here, we strictly refer to the derivation method of Muennighoff et al. (2024). The goal of
discovering Data-Constrained Scaling Law is to generalize the expression to multiple epochs where
tokens are repeated.

Data-constrained law is defined as:

L (N,D,UD) =
A

N ′α +
B

D′β + E (6)

where

N ′ = UN + UNR⋆
N

(
1− exp

(
−RN

R⋆
N

))
D′ = UD + UDR⋆

D

(
1− exp

(
−RD

R⋆
D

)) (7)

To get a better understanding of the equation, the definitions of each of the above parameters are as
follows: Like Chinchilla Law, N is defined as the number of model parameters, and D is defined as
the training tokens.

UD is defined as the number of unique tokens used. For data-constrained law, UD is computed as
min{D,DC} given a budget of unique data Dc.

UN is defined as the number of “unique” parameters that provide an optimal fit for UD. Accord-
ing to the method mentioned in Muennighoff et al. (2024), given the following learned variables,
{A,α,B, β E}, the optimal allocation of compute(C) to N and D as follows:

Nopt(C) = G

(
C

6

)a

Dopt(C) = G−1

(
C

6

)b

G =

(
αA

βB

) 1
α+β

a =
β

α+ β

b =
α

α+ β

(8)
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Thus, UN is equal to min{Nopt, N}.

RD is defined as the number of times the data is repeated. When training for a single epoch, RD = 0.

RN is the number that the ‘unique’ parameters are repeated where RN = max{
(

N
UN

)
− 1, 0}.

D′ is defined as the ”effective data size”: the number of unique data needed to get the same value as
repeating U unique tokens for RD repeats.The derivation process is as followed:

From a conceptual standpoint, the redundancy of data samples diminishes their incremental value in
enhancing the model’s knowledge base, given the model’s prior exposure to said information. This
principle underlies the hypothesis that each successive repetition of a sample contributes marginally
less to the learning process, as the model has partially assimilated the information contained within
the sample through prior iterations. To describe the process of training information loss, we have

D′ = U + U
∑RD

k=1(1− δ)k = U + (1− δ)U (1−(1−δ)RD )
δ (9)

where δ is defined as the ‘forgetting rate’. Each time a series of tokens is trained on a model,
the model learns a 1 − δ fraction information from the optimization process. Assuming that the
number of epochs beyond which repeating does not help, the right-hand side goes to to (1−δ)U

δ ,
since limRD→∞(1− (1− δ)RD ) = 1. We define R⋆

D is defined as 1−δ
δ , which is a learned constant.

According to Taylor expansion, if δ is small, we have:

e
−1
R⋆

D ≈ (1− δ) (10)

Now inserting (1−δ)
δ = R⋆

D and (1 − δ)RD = e
( −1
R⋆

D
)RD

into Equation9, we get our final equation
representing the effective data.

As the frequency of encountering repeated tokens diminishes, the benefit gained from processing
them also decreases. Hence, the derivation of the N ′ is similar to D′. In this context, there’s no need
to elaborate further. It should be pointed out that R⋆

N is a learned parameter.

A.2 ABLITION STUDY ON CONTINUOUS ADAPTATION OF THE DATA-CONSTRAINED LAW.

To enhance the predictive accuracy of the Data-Constrained law (Muennighoff et al., 2024) for
continuous domains, we extend the original discrete formulation 11 to accommodate continuous
variables, allowing for a more nuanced understanding of data constraints in varied contexts. For an
in-depth discussion on the derivation and implications of this continuous formulation, please refer
to Appendix A.2.

L(N,D,UD) =
A

Nα
+

B

D′′β
+ E (11)

where k is a new parameter to be fit, and D′′, the adjusted data size, is given by:

D′′ =
1− kD/UD

1− k
UD. (12)

The definition of D′ in Equation 9 is defined from a discrete version and can not be extended to the
case when D is less than UD. So we reform the Equation 9 to

D′ =
1− (1− δ)

D
UD

δ
· UD

=
1− k

D
UD

d

1− kd
· UD

(13)

where kd := 1 − δ. This equation is equivalent to equation 10 when D is a positive integer times
UD.

We implemented a formula symmetric to N ′ with UN and kN . But the calculation results of kN ≈
0.999. To make the formula simple, we use the original N instead of N ′ in the following formula.
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A.3 MOTIVATION OF SMS LAW

A.3.1 MOTIVATION OF ADDING POWER OF “ND” TERM

Figure 5: The loss curve, Chinchilla prediction, and Equation11 on 2.1B, 8.4B and 33.6B training
data.

In our submission, we present an in-depth analysis of the model’s loss dynamics as illustrated in
Figure 5, which juxtaposes the empirical loss trajectory (depicted through a blue line) against the
theoretical predictions derived from the Chinchilla Law (illustrated by a yellow line) and further
contextualized by Equation 11. This comparative study spans three distinct datasets—2.1B, 8.4B,
and 33.6B data points—across models of varying capacities: 190M, 505M, and 1.07B parameters,
respectively, arranged in a matrix of subfigures with datasets delineated by rows and model capaci-
ties by columns.

Observations across all data volumes reveal a nuanced interaction between model and data sizes.
Specifically, for smaller datasets and model sizes (190M parameters), predictions consistently un-
derestimate actual loss values, whereas for smaller datasets paired with larger models (1.07B pa-
rameters), predictions tend to overestimate. This discrepancy underscores a critical insight: loss
reduction accelerates with increasing model size, suggesting a modified loss function, A+ϵ

Nα over the
simpler A

Nα

Crucially, the term ϵ emerges as a function of a single variable N , ensuring variability in ϵ
Nα across

each unique model configuration shifting upwards or downwards without changing the shape. The
ideal adjustment implies that ϵ approaches zero for large datasets, yet remains significant for smaller
ones, highlighting its dependency on data volume D.

In addressing potential overfitting, our strategy focuses on minimizing parameter growth in line
with Equation 11. A straightforward approach involves augmenting the loss L into a polynomial
encompassing A

Nα and B
Dβ , with Equation 2 introducing an additional term, d

Nα·Dβ , to the existing
framework. This refinement, while ostensibly simple, has been shown to yield robust and promising
outcomes, exemplifying the efficacy of our proposed modifications in enhancing model performance
within the context of scaling laws.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3.2 MOTIVATION OF LINEAR REGRESSION TERM FOR OVERFITTED RESIDUAL

Figure 6: The loss curve, Chinchilla prediction, and Equation 2 (green lines) on 2.1B training data.

Figure 6 offers a detailed exposition on the fidelity of Equation 2 in capturing the loss trajectory
across training sets of varied model capacities (190M, 505M, and 1.07B parameters). It is evident
from the analysis that the equation adeptly mirrors the empirical loss curve across a broad spectrum
of configurations, with the exception of scenarios characterized by concurrently large model sizes
and token counts. A notable oversight in the literature is the scant consideration of loss dynamics
beyond early stopping points, a consideration of paramount importance in music domain due to the
inherent constraints on training data.

In addressing the challenges posed by modelling loss post-early stopping, our investigation delin-
eates two distinct methodologies. The first approach involves the integration of a regularization
term within D′′, aimed at reducing its magnitude beyond the early stopping threshold. Despite its
conceptual appeal, this method falls short of providing an adequate fit to the observed data. Alter-
natively, we explore the augmentation of the loss function L with an additional term, engineered to
be negligible when both D and N are minimal, yet incrementally assertive in influencing the loss
trajectory after early stopping points. This latter strategy not only aligns more closely with empirical
observations but also introduces a nuanced mechanism to accommodate the unique requirements of
training in the music domain, thereby extending the utility and applicability of scaling laws within
this context.

Figure 7: Residule between authentical valid loss and Equation 2 prediction (blue lines), and the
linear regression results (yellow lines).

As delineated in Figure 7, the analysis of residuals post the 40 billion token threshold unveils a
discernible onset of overfitting, which intriguingly appears to correlate with the model size, data
capacity, and the count of unique tokens processed within a single epoch. This overfitting is fur-
ther characterized by a linear dependency of loss on the total number of processed tokens, coupled
with a quasi-linear transition of early stopping points observed across different model capacities (as
organized in rows) and magnified across columns.
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The progression of model capacities—doubling across rows and quadrupling across
columns—illuminates a systematic pattern, suggesting that the early stopping points and con-
sequently, the predicted loss, might be effectively modeled through a linear regression involving
dataset size D, the logarithm of model capacity log(N), and and the logarithm of unique tokens per
epoch log(UD). This observation culminates in the proposition of a regularization term formulated
as kd ·D + kn · log(N)− ku · log(UD)− kin, aimed at encapsulating and mitigating the observed
overfitting dynamics.

Activation Function R2 (test)↑ Huber Loss (test)↓
ReLU 0.9786 0.0095
LeakyReLU 0.9786 0.0095
GELU 0.9780 0.0085
Tanh 0.9786 0.0094
SELU 0.9779 0.010
Sigmoid 0.6030 0.0700

Table 8: Ablition study on the activation function.

In addressing the intricacies of regularization within the context of early model training, especially
when considering models of smaller scale (where UD and D are minimal while N is comparatively
large), it becomes imperative to ensure that the regularization term does not adopt a substantially
negative value. This stipulation aims to prevent undue penalization at the onset of training, thereby
necessitating the incorporation of an activation function that tempers the regularization term’s be-
havior. The Gaussian Error Linear Unit (GELU) function emerges as an apt choice in this scenario.
GELU approximates the Rectified Linear Unit (ReLU) function for positive inputs, while also per-
mitting slight negative values with minimal absolute magnitude, thus offering a balanced solution.

Empirical evidence, as detailed in our analysis, underscores the efficacy of applying the GELU
function to the regularization term, notably achieving the lowest training loss alongside the second-
highest R2 value among the tested models. This finding is particularly salient given the broader mag-
nitude of loss variations relative to R2 values, thereby accentuating the GELU function’s suitability
for our regularization term. Consequently, the finalized model, incorporating the GELU-modulated
regularization term, is depicted through a yellow line in Figure 7. This strategic application of the
GELU function not only mitigates the potential for excessive early training penalization but also
optimizes the regularization term to enhance model performance effectively.

This approach not only elucidates the linear interdependencies among critical factors influencing
model performance but also presents a nuanced regularization strategy designed to enhance model
generalizability. Through the integration of this regularization term, we aim to establish a more
robust and theoretically informed framework for predicting and managing loss trajectories in large-
scale training regimes.

A.4 EVALUATION METRICS

The R-squared value, also known as the ”Coefficient of Determination,” is a statistical measure used
to evaluate the goodness-of-fit of a regression model. It is defined as:

R2 = 1− SSres

SStot
(14)

Where SSres represents the Sum of Squares of Residuals, indicating the total sum of squared differ-
ences between the predicted values of the model and the actual observed values, SStot represents the
Total Sum of Squares, indicating the total sum of squared differences between the observed values
of the dependent variable and their mean value.

The Huber loss is a type of loss function commonly employed in robust regression models. Unlike
the squared error loss, which is sensitive to outliers in the data, the Huber loss is designed to be less
affected by outliers. It achieves this by combining the characteristics of both the squared error loss
and the absolute error loss. It is defined piecewise by:

Huberδ(y, f(x)) =

{
1
2 (y − f(x))2, if |y − f(x)| ≤ δ

δ(|y − f(x)| − 1
2δ), otherwise

(15)
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For small residuals, it behaves like the squared error loss, whereas for large residuals, it behaves like
the absolute error loss. This allows the Huber loss to provide a balance between the two, resulting
in a more robust estimation procedure.

A.5 PARAMETERS FITTING APPROACH

In our study, we adopt a methodology analogous to the Chinchilla Law and the Data-Constrained
Law, employing the L-BFGS algorithm—a limited-memory quasi-Newton method—for the opti-
mization of the Huber Loss. This loss function is applied between the logarithm of the predicted
loss and the logarithm of the observed (authentic) loss across multiple runs. The objective is to
identify the optimal parameters (best para) that minimize this Huber Loss, formalized as follows:

best para = min
∑
runi

Huberδ

{
log

[
d

Nα ·D′′β +
A

Nα
+

B

D′′β + E

]
i

, log(Li)

}
= min

∑
runi

Huberδ

{
LSE

[
log

(
d

Nα ·D′′β

)
, log

(
A

Nα

)
, log

(
B

D′′β

)
, log(E)

]
i

, log(Li)

}

= min
∑
runi

Huberδ

LSE


log(d)− α log(N)− β log(D′′)

log(A)− α log(N)

log(B)− β log(D′′)

log(E)

 , log(Li)


(16)

where LSE refers to the log-sum-exp a numerically stable method to compute the logarithm
of a sum of exponentials of inputs. The Huber Loss parameter, δ is set to 1e − 3, reflecting a
stringent criterion for switching between squared loss and absolute loss to ensure robustness in
optimization. Additionally, the L-BFGS algorithm’s learning rate is configured at 1e − 1, with an
update history size of 10 to balance between computational efficiency and the capacity to capture
relevant optimization trends.

A.6 RESULTS OF PROPOSED METHODS WITH EARLY STOPS

Paramatic fit R2 Value (train) ↑ Huber Loss (train) ↓ R2 Value (test) ↑ Huber Loss (test) ↓
Chinchilla law 0.9443 0.0073 -0.0004 0.0029

Data-Constrained law 0.7216 0.0189 0.1005 0.0050
Equation 11 0.8356 0.0151 0.5829 0.0045
Equation 2 0.9843 0.0072 0.9866 0.00088
SMS Law 0.9851 0.0055 0.9864 0.00091

Table 9: Comparison parametric fitting performance of different Scaling Laws on the curve before
early stop points.

From the table, we can see that most of the experimental results increase after we delete the curve
after the early stop points. Adding the linear regression still contributes to the performance increase
on the training set but provides worse results on test set compared to Equation 2.
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B TRAINING DETAILS & DATASET

B.1 TRAINING DETAILS

All the models are trained using AdamKingma & Ba (2014), with β1 = 0.9, β2 = 0.95, eps = 10−8.
We use a cosine learning rate schedule, decay the final learning rate from 3−5 to 3−6, with warmup
ratio of 0.1. We apply a weight decay of 0.1 and gradient clipping of 1.0. Table 10 shows other
training details of each model.

Table 10: Training Details for different ABC format and model settings.
Parameters Context Length Trained Tokens Training Days Num of GPUs

Original ABC

190M 4096 119B 8.4 2
505M 4096 97B 8.4 4
1.07B 4096 49B 8.3 4
1.97B 4096 56B 8.4 8

190M 8192 346B 6.9 8
505M 8192 322B 4.1 32
1.07B 8192 223B 5.4 32
1.97B 8192 196B 8.1 32

SMT-ABC

190M 8192 276B 5.5 8
505M 8192 212B 2.7 32
1.07B 8192 181B 4.4 32
1.97B 8192 272B 11.3 32
4.23B 8192 262B 10.7 64

B.2 ADDITIONAL INFORMATION ON TRAINING SET

Metadata for the training dataset The dataset includes a total of more than 1.8 million songs. For the
subset of data with genre metadata, the approximate genre distribution is as follows.

Genre Number of Songs
Pop 256k
Jazz 107k

Country 49k
Rock 217k
Disco 6k

World Music (including Latin) 47k
Folk 118k

R&B, Funk & Soul 63k
Classical 466k

Table 11: Genre metadata in Training Set. Each song can have more than one genre tag, and can
also have no tag information.

Due to the lack of comprehensive metadata for the entire dataset, we cannot provide precise genre
statistics for all songs. Nevertheless, we ensured that the training data is diverse and representative
of a wide range of musical styles, enabling robust and comprehensive model training. Besides, to
address intellectual property concerns, the datasets are sourced from publicly available repositories,
ensuring ethical usage and proper citation. The authors explicitly state that the data is used strictly
for research purposes, complying with licenses and copyright laws. The dataset is not redistributed,
ensuring adherence to the terms set by the original sources.

B.3 ABLATION STUDIES ON (SMT-)ABC REPSENTATIONS FOR TRAINING

To validate the effect of the SMT-ABC Notation training strategy, which has previously shown
advantages in reduced training loss 5.3.1 and higher consistency rate 5.3.2, we conduct two exper-
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iments: the first evaluates measure consistency in multi-track notations, and the second involves
subjective evaluations.
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Figure 8: Measure consistency of SMT-ABC and ABC models in different training iterations.
Measure Consistency To assess the measure consistency in generated ABC music sequences, we
measure the proportion of sequences where all tracks contain an equal number of measures. Fig-
ure 8 illustrates that the sequences generated by the SMT-ABC model demonstrate a significantly
higher consistency rate compared to those generated by the model trained on Original-ABC nota-
tion. This suggests that the SMT-ABC notation facilitates models to maintain structural uniformity
across different tracks, which is critical for ensuring the coherence and usability of the generated
compositions in practical applications.

Objective and Subjective Evaluation In Table 5, MuPT-SMT and MuPT-Ori. represent the SMT-
ABC notation and Original-ABC notation respectively. The results show that mostly SMT-ABC
performs better than Original-ABC. Meanwhile, we also conduct the AB test of all multi-track
samples in the test set between these two systems and it shows listeners prefer music from SMT-
ABC in 53% of cases than Original-ABC. (p = 2.7265× 10−6).

C FURTHER DISCUSSION ON SYMBOLIC MUSIC TOKENIZATION

While there are many representations for symbolic music besides ABC notation and MIDI, including
some adaptations of MIDI such as REMI, etc. (Ma et al., 2024), the following discussion focuses
on the vanilla setting of MIDI, ABC notation and our proposed method SMIT-ABC. We leave the
ablation study on different symbolic music tokenizers to the future work

C.1 THE ALIGNMENT AND DIFFERENCE BETWEEN ABC NOTATION AND MIDI

ABC is the music staff/stave in terms of natural language notations, including tune info (e.g. title,
composer, meter, key, pitches, rhythms, bar lines & repeats, instrument, etc. The “K: Bb” you
mentioned in ABC means the key of the music piece is Bb, which is the same as the key of the MIDI
note in the piano roll and is related to the overall pitch of the MIDI note in the piano roll. And “ | F2
z G | ” corresponds to one music bar that includes a quarter note at pitch F, an eighth-note/quaver
rest, and an eighth-note at pitch G. MIDI start and stop times are absolute time slots in seconds and
do not include quantized beat/bar information. This given measure corresponds to two MIDI note
rectangles on the chart that correspond to the pitch and time (the rest is not shown).

The velocity, control information, and also sound effects that are included in MIDI are not included
in ABC notations. ABC notation includes bar and note quantization information (how many beats
v.s. how many seconds per note), key, and music/tune structure such as repeat sign, etc., that MIDI
does not include. In general, MIDI can keep more information on the styles of performers with
acoustic information, and ABC notations are better with modelling repeats and structures, leading
to better compression rate and more suitable for LLM training.
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C.2 ADVANTAGE OF ABC NOTATION

ABC notation offers significant advantages over MIDI in terms of compression ratio, which directly
impacts model efficiency and reduces training costs. As highlighted in ChatMusician, ABC notation
achieves an average of 288.21 tokens per song and 5.16 tokens per second, requiring roughly 38%
fewer tokens than various MIDI-based representations. This remarkable reduction in token count
stems from ABC’s ability to efficiently encode symbolic musical repetition using concise notations
such as repeat signs (| : and : |). These symbols effectively represent patterns spanning several
seconds to minutes. By reducing sequence length, ABC not only lowers computational overhead
but also simplifies the learning complexity, making it an ideal format for music-related tasks.

It is undeniable that MIDI offers more detailed dynamic information compared to leadsheet formats
like ABC. However, a major drawback of MIDI is that, within a limited context length, it may not
be possible to encode an entire song. While hierarchical modeling methods, such as Whole-Song
Hierarchical Generation of Symbolic Music Using Cascaded Diffusion Models, have been proposed
to address this issue, scaling up such approaches can be challenging. In contrast, ABC notation
is compatible with natural language symbols and naturally encoded structures like repetition, ben-
efitting training efficiency, convergence speed, and modelling the overall structure of a song with
NLP codebase. Moreover, ABC notation integrates seamlessly with text tokenizers, making it an
efficient choice. After carefully weighing the pros and cons of both formats and considering the
characteristics of our collected dataset, we decided to use ABC notation.

C.3 COMPARSION BETWEEN SMT-ABC AND ABC

Our proposed SMT-ABC notation effectively addresses the alignment challenges in multitrack ABC
notation, significantly improving training loss and overall model performance.

One major issue is the measure consistency problem. As shown in Appendix Figure 8, this fig-
ure illustrates the measure consistency scores for SMT-ABC and standard ABC notation under the
same training iterations and model structures. The results demonstrate that as training progresses,
SMT-ABC quickly achieves consistent measures across tracks, indicating effective alignment and
coherence. In contrast, models trained solely with ABC notation struggle to maintain measure con-
sistency across tracks, even as training iterations increase. This highlights the advantage of SMT-
ABC in addressing alignment issues and improving overall musical structure.

The concepts of bar coherence and track coherence are useful but challenging to evaluate directly.
Instead, we propose the concept of the closeness of related tokens. Since this is a causal model for
pretraining, the later tokens in the sequence are less influenced by earlier tokens as the tokens gap
increases. The purpose of designing the SMT-ABC notation is to ensure that bars played in each
track at the same time are generated as closely as possible. Thus, we focus on discussing the token
gaps between different tracks.

In our training dataset, which aligns with the natural distribution of ABC notation, the average tokens
per bar is 3.38 tokens, while the average bars per track is 77.40 bars. This means that the benefits
of reducing token distances between tracks significantly outweigh those of reducing token distances
within a track.

For example, we define the most related bars as: the bar with the same index in a different track,
and the next bar in the same track. In a 4-track piece of music: the token distance between Track 1,
Bar 1 and Track 4, Bar 1 in standard ABC notation is approximately 77.4× (4− 1) = 232.2 tokens.
And the token distance to the next bar within the same track is much smaller ( 3.38 tokens ).

In contrast, with SMT-ABC notation: the token distance between Track 1, Bar 1 and Track 4, Bar
1 is reduced to: 3.38 × (4 − 1) = 10.14 tokens. However, the token distance to the next bar in
the same track increases slightly to 3.38 × 4 = 13.52 tokens . This design in SMT-ABC notation
brings related bars closer together while slightly increasing the distance for less related bars. This
shift in token distribution improves the closeness of related tokens, enhancing the overall coherence
and ultimately boosting the model’s final performance.
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C.4 APPLICATIONS OF ABC NOTATION

Though MIDI is widely used in the music industry, ABC has a strong potential for application in
music generation. Leadsheet-based multitrack symbolic music generation is a promising yet un-
derexplored area. Leadsheets effectively compress the semantic information of music, facilitating
whole-song-level modeling. Besides, ABC notation is designed with natural language symbols that
can be easily combined with natural language. This approach could guide the text-to-music gener-
ation models similar to Suno’s framework integrating multimodal capability easily. Furthermore, it
is also worth noting that audio can be generated from ABC leadsheets by using a rendering model
in various style. For example, Seed-Music: A Unified Framework for High Quality and Controlled
Music Generation demonstrates this approach, enabling the generation of high-quality audio based
on ABC notation. This allows for the inclusion of performance characteristics and timbre while
maintaining the capability to model entire songs with ease.

D SIMILARITY BETWEEN TRAININGSET AND INFERENCE SAMPLES

We conducted experiments to investigate whether the music generated by the model exhibits any
copying from the training data. Specifically, we sampled 750 pieces of music with 1-15 tracks
and 100 pieces with more than 15 tracks from the training set. For these samples, we used their
headers and the first bar as prompts and calculated the similarity between the model-generated music
and the original music from the training set. The similarity was measured using three metrics:
n-grams (character-based segmentation), n-gram-music (note/chord-based segmentation), and the
longest common subsequence(LCS) between the two music sequences. The results are shown in the
table below.

N-gram(n=4) N-gram-Music(n=4) LCS
0.19 0.08 0.29

Table 12: Similarity between Training set samples and model generation.

The results suggest that the model is capable of generating novel sequences rather than simply
copying training data. The low n-gram and n-gram-music scores, paired with the moderate LCS
score, indicate that the model retains stylistic or structural influences from the training set without
overfitting to exact examples.

E HUMAN ASSESSMENT

E.1 ADDITIONAL INFORMATION OF HUMAN ASSESSMENT

We use webMUSHRA toolkit (Schoeffler et al., 2018) to conduct a web-based subjective listening
AB-test. About the music background of participants, 30% of them are beginners, 40% are interme-
diates, 25% are advanced and 5% are experts. During the listening test, we ask the participants to
choose the better one between a pair of music excerpts generated from two randomly selected dif-
ferent systems from GT, MuPT, GPT-4, MMT and Random by considering the ”Musicality” which
indicates the overall perceptive quality of the music. Participants are encouraged to make a choice
by refering to the guidelines below:

• How consistent the music sounds as a whole (e.g., in terms of its melodic contours, rhyth-
mic patterns, and chord progression).

• How likely the development of the music follows a clear structure (e.g. verse-chorus divi-
sion, repetitions).

• If you cannot understand the two guidelines above, just choose the one from A and B you
prefer.

We use Fleiss’ kappa (McHugh, 2012) value to measure the inter-annotator agreement among 15
participants. A kappa value of 0.5807 was obtained, indicating that the participants at least achieved
moderate agreement (if the value is 1, the perfect agreement is obtained) by referencing Table 13
with only two participants. This demonstrates an acceptable quality of our subjective annotators.
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Table 13: Fleiss’ kappa metrics interpretation
Subjective example: only for two annotators, on two classes (Landis JRKoch, 1977).

0 Poor agreement
0.01 – 0.20 Slight agreement
0.21 – 0.40 Fair agreement

0.41 – 0.60 Moderate agreement
0.61 – 0.80 Substantial agreement

0.81 – 1.00 Almost perfect agreement

E.2 CASE STUDY ON GENERATION RESULT OF MUPT AND GPT-4

We show two pairs of examples generated by MuPT and GPT-4. Each pair of examples are generated
given the same first bar. For all outputs in ABC notation, we export the corresponding human-
readable music sheets here. The single-track samples of MuPT and GPT-4 are shown in Figure 9
and Figure 10 and the multi-track samples are shown in Figure 11 and Figure 12. Compared with
GPT-4, the MuPT generates a better-structured single-track sample with more harmonious chords
and repetition symbols in separated theme and a multi-track sample with a closer relationship and
more similar progression.

Figure 9: MuPT single-track example.

GPT-4 Monophonic Example

= 140
Intro
Dm A7 Gm Dm C B♭ A7 Dm

4
2

Figure 10: GPT-4 single-track example.

F LIMITATIONS

In this paper, we introduce the MuPT series, comprising pre-trained models dedicated to symbolic
music generation. These models set a new standard for training open-source symbolic music GPT.
However, our models primarily accept input in ABC notations and lack the capability for interactive
generation based on human instructions, unlike systems such as Chat Musician Yuan et al. (2024)..
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Figure 11: MuPT multi-track example.
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Figure 12: GPT-4 multi-track example.
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