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Abstract

In this work, we observe an interesting phe-001
nomenon: it is possible to generate reversible002
sentence embeddings that allow an LLM to re-003
construct the original text exactly, without mod-004
ifying the model’s weights. This is achieved005
by introducing a special memory token, whose006
embedding is optimized through training on007
a fixed sequence. When prompted with this008
embedding, the model reconstructs the fixed se-009
quence exactly. We evaluate this phenomenon010
across different datasets, sequence lengths, and011
model scales. Notably, Llama 3.1 8B success-012
fully reconstructs all tested sequences. Our013
findings highlight an interesting capability of014
LLMs and suggest potential applications in015
memory-based retrieval, compression, and con-016
trolled text generation.1017

1 Introduction018

Large Language Models (LLMs) encode textual019

information in high-dimensional embeddings, cap-020

turing semantic and syntactic structures.021

In this work, we observe and explore an inter-022

esting phenomenon using LLMs: it is possible to023

construct reversible embeddings that encode an ar-024

bitrary text sequence in such a way that the original025

text can be perfectly reconstructed when used as026

input to an LLM, without modifying the model’s027

weights.028

This reversibility emerges when training a dedi-029

cated embedding associated with a special token,030

which we call a memory token, on a fixed sequence.031

By overfitting this embedding to a given text while032

keeping the model frozen, we show that the same033

model can autoregressively reconstruct the text034

when prompted with the learned embedding.035

We study this phenomenon, evaluating its effec-036

tiveness across different domains, sequence lengths,037

and languages (English and Spanish). Addition-038

ally, we explore models of various sizes, including039

1Code repo with the implementation: <ANONYMIZED>

GPT-2 (Radford et al., 2019) and the Llama 3 fam- 040

ily (AI@Meta, 2024). 041

This observation sheds light on the representa- 042

tional capacity of LLMs and opens up new possi- 043

bilities for memory-based retrieval and controlled 044

text generation. It also suggests potential applica- 045

tions in text compression, adversarial attacks, and 046

interpretability research. 047

2 Related work 048

The method of optimizing a set of vectors and using 049

them as a prefix for a specific task belongs to a class 050

of techniques known as P*-tuning (Li and Liang, 051

2021). 052

Prefix tuning (Li and Liang, 2021) applies this 053

idea as a lightweight alternative to full fine-tuning. 054

It involves prepending a sequence of task-specific 055

vectors to the input, optimizing these vectors while 056

keeping the model frozen. 057

Building on Prefix tuning, Prompt-tuning (Lester 058

et al., 2021) applies the same principles and demon- 059

strates the importance of scale: larger models get 060

better results with this method and even become 061

competitive with full fine-tuning. 062

In a similar way, P-Tuning (Liu et al., 2024) is 063

proposed as a method to improve the performance 064

of discrete prompting. It employs trainable con- 065

tinuous prompt embeddings in concatenation with 066

discrete prompts. 067

There has also been work on creating reversible 068

sentence embeddings. Kugler et al. (2024) propose 069

a method for reconstructing text from contextual- 070

ized embeddings generated by BERT (Devlin et al., 071

2019). Their approach involves training a decoder 072

model to recover the original text given the contex- 073

tualized embedding as input. 074

Li et al. (2023) follow a similar approach to 075

the one proposed in this work. They use already 076

existing sentence embedding models to generate 077

an embedding, which is then used as the initial 078
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Figure 1: Left: Illustration of the training process. Only the embedding corresponding to the memory token is
trainable. Right: Illustration of inference with the memory token as input. Following a greedy decoding strategy,
the model reconstructs the original text.

input vector for a decoder model. The decoder079

is fine-tuned to reconstruct the original sequence.080

However, our approach differs in that we do not081

fine-tune the LLM or rely on pre-trained sentence082

embedding models.083

3 Memory token084

We define a memory token as a new token added085

to the model’s vocabulary. This token has a cor-086

responding embedding in the LLM’s embedding087

layer, that serves as a dense vector representation088

of an arbitrary text sequence.089

These embeddings are reversible, meaning that090

the original text sequence can be reconstructed091

from them, allowing the memory token to effec-092

tively store and retrieve the sequence it encodes.093

3.1 Training094

A new token, <MEMORY>, is added to the model’s095

vocabulary with a randomly initialized embed-096

ding in the LLM’s embedding layer. A se-097

quence of tokens x = x1, x2, ..., xN is defined098

to be used for training, following the template:099

“<MEMORY>{text}<|eot_id|>”, where text rep-100

resents the text to be memorized and <|eot_id|>101

is the EOS token of the model.102

The entire model is frozen, including its embed-103

ding layer, with the only exception of the <MEMORY>104

token’s embedding. This is the only set of parame-105

ters that is updated during training.106

The training objective is the standard cross-
entropy loss used for autoregressive generation.
Given the input sequence x, the model is trained to
predict each token xt conditioned on the preceding
tokens x<t. Formally, the loss function is defined
as:

L = − 1

N

N∑
t=1

logP (xt | x<t; θ)

where N is the sequence length, and P (xt | x<t; θ) 107

represents the model’s predicted probability of to- 108

ken xt. Figure 1 (left) demonstrates an example of 109

this process. 110

Training is performed by repeatedly optimizing 111

the embedding using the same sequence x until the 112

model generates the expected output exactly or a 113

maximum number of iterations is reached. This 114

process effectively overfits the embedding to the 115

given sequence, ensuring that it precisely encodes 116

the target text sequence. 117

This process must be repeated using a new mem- 118

ory token for each new sequence that needs to be 119

learned. 120

3.2 Inference 121

The resulting embedding can be extracted and used 122

as a dense representation of the input text. More 123

interestingly, if training is stopped before reaching 124

the maximum iterations, when this embedding is 125

provided as input to the same model it was trained 126

with, and a greedy decoding strategy is applied (se- 127

lecting the highest probability token at each step), 128

the model generates the original sequence word by 129

word. Figure 1 (right) illustrates this process. 130

It is important to note that the model itself re- 131

mains unchanged after the training phase. This 132

implies that the learned embedding encodes a rep- 133

resentation that forces the model to generate the 134

exact desired text. 135

4 Experiments 136

To demonstrate this phenomenon and evaluate its 137

scope and generalization, we construct datasets 138

with varying characteristics, including different do- 139

mains, sequence lengths, and languages. We then 140

measure the ability of different models to recon- 141

struct these sequences effectively. 142
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We evaluate the effectiveness of reconstruction
using accuracy, which we define as the proportion
of correctly predicted tokens with respect to the
original sequence x. For each predicted token x̂t,
the correct prefix x<t is given to the model. The
accuracy for a given sequence is then computed as:

Acc(x̂, x) =
1

N

N∑
t=1

I{x̂t = xt}

where I{x̂t = xt} is an indicator function that143

equals 1 if the predicted token x̂t matches the144

ground truth token xt, and 0 otherwise.145

All experiments were conducted with a maxi-146

mum of 3000 iterations. A linear learning rate147

scheduler was employed, initializing the learning148

rate at 0.2 and increasing it linearly to 1.0 by the149

100th iteration.150

Table 1 provides an overview of the LLMs used151

in these experiments. We selected models of vary-152

ing sizes to determine the impact of scale on this153

phenomenon. As shown in the table, smaller mod-154

els typically have lower-dimensional embeddings,155

which is an important factor to consider since the156

entire sequence must be encoded within a single157

embedding.158

4.1 Datasets159

Sebastian Raschka blog To ensure that the text160

is not present in the training corpus of the mod-161

els, we selected a recent blog post from Raschka’s162

blog, New LLM Pre-training and Post-training163

Paradigms2. We segmented the blog post into164

chunks of 100 and 1000 characters, creating two165

datasets with varying sequence lengths. For effi-166

ciency, we used only the first 20 sequences from167

each dataset.168

Faculty of Engineering chunks This cor-169

pus consists of Spanish text chunks extracted170

from the Faculty of Engineering website at the171

<ANONYMIZED>. These chunks were originally172

used in a Retrieval-Augmented Generation (RAG)173

system and present various challenges, such as em-174

bedded YouTube links and named entities. The175

average length of these chunks is 681 characters.176

As with the previous datasets, we only used the177

first 20 chunks for this evaluation.178

Figure 2: Number of memorized texts as a function of
model size across different datasets.

Figure 3: Average accuracy as a function of average
character length across different models.

4.2 Results 179

Tables 2 and 3 report the average accuracy and the 180

proportion of perfectly reconstructed chunks for 181

the Raschka blog corpus, using chunk sizes of 100 182

and 1000 characters, respectively. Table 4 presents 183

the same metrics for the Faculty of Engineering 184

corpus. 185

We observe that the largest model, Llama 3.1 8B, 186

successfully reconstructed all sequences across all 187

datasets. However, model size plays an important 188

role in the ability to reconstruct the original texts. 189

As shown in Figure 2, there is a clear correlation 190

between model size and the proportion of correctly 191

reconstructed texts across all datasets. 192

There is also a clear relationship between se- 193

quence length and the average accuracy of the 194

smaller models. Both GPT-2 and Llama 3.2 1B ex- 195

hibit significant performance degradation on longer 196

sequences, as shown in Figure 3. 197

2https://sebastianraschka.com/blog/2024/
new-llm-pre-training-and-post-training.html
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Model Param. count Emb. length
GPT-2 137 M 768

Llama 3.2 1B 1.24 B 2048
Llama 3.2 3B 3.21 B 3072
Llama 3.1 8B 8.03 B 4096

Table 1: Overview of the models used in the experi-
ments, including their number of parameters and em-
bedding dimension.

Model Avg. Acc Reconstructed
GPT-2 0.67 11 / 20

Llama 3.2 1B 0.90 15 / 20
Llama 3.2 3B 0.87 17 / 20
Llama 3.1 8B 1.00 20 / 20

Table 2: Results on the Raschka Blog corpus with
chunks of 100 characters.

Model Avg. Acc Reconstructed
GPT-2 0.13 0 / 20

Llama 3.2 1B 0.60 1 / 20
Llama 3.2 3B 0.85 7 / 20
Llama 3.1 8B 1.00 20 / 20

Table 3: Results on the Raschka Blog corpus with
chunks of 1000 characters.

Model Avg. Acc Reconstructed
GPT-2 0.27 0 / 20

Llama 3.2 1B 0.68 3 / 20
Llama 3.2 3B 0.89 3 / 20
Llama 3.1 8B 1.0 20 / 20

Table 4: Results on the Faculty of Engineering corpus.

In addition to these experiments, we experi-198

mented with even longer sequences and different199

domains, all of which were reconstructed by Llama200

3.1 8B with the same level of success. We also201

tested the reconstruction of Spanish tweets from the202

HUrtful HUmour (HUHU) shared task (Labadie-203

Tamayo et al., 2023), which have the particular204

challenge of containing hurtful language or con-205

veying prejudice towards minority groups, yet the206

model was still able to reconstruct them accurately.207

5 Conclusions and future work208

We have presented a method for obtaining sen-209

tence embeddings from arbitrary text sequences210

using LLMs and demonstrated that, with suffi-211

ciently large models, the original text can be recon-212

structed using the same LLM, without modifying213

its weights.214

We observed that Llama 3.1 8B was capable of215

perfectly reconstructing all the sequences. How-216

ever, smaller models were less robust and had217

greater difficulty reconstructing longer sequences,218

suggesting that, as in many other tasks, model scale219

plays an important role in performance.220

This phenomenon suggests numerous potential221

applications and directions for future research.222

One potential application is in Retrieval-223

Augmented Generation (RAG) (Gao et al., 2024).224

Memory tokens could be trained for each chunk.225

After the most relevant chunks are obtained in226

the retrieval step, instead of appending the full227

text of the retrieved chunks to the prompt, their228

corresponding embeddings could be used, signifi-229

cantly reducing the number of tokens required in 230

the prompt. 231

However, further work is needed to find a way 232

to use these embeddings within the LLM for pur- 233

poses beyond merely reconstructing the original 234

text. One possible direction is fine-tuning the 235

model with examples where queries are answered 236

using the correct memory tokens, allowing it to 237

learn how to utilize them effectively. 238

Another important direction for future work is 239

evaluating the effectiveness of the generated sen- 240

tence embeddings in various downstream tasks, 241

such as classification and retrieval, and comparing 242

their performance with existing methods. 243

This work also opens the door to exploring 244

LLMs for compression and decompression of infor- 245

mation, as memory tokens effectively store entire 246

sequences in compact representations. Addition- 247

ally, our experiment with hurtful tweets shows that 248

these embeddings can incite the models to gener- 249

ate harmful content, raising concerns about their 250

potential use in adversarial attacks. Finally, study- 251

ing the mechanistic interpretability of LLMs when 252

processing these embeddings could provide deeper 253

insights into why this phenomenon occurs, ulti- 254

mately contributing to a better understanding of 255

how these models internally represent and retrieve 256

information. 257

6 Limitations 258

There are some limitations to the work presented 259

in this paper, which we outline below. 260

This method of generating embeddings is compu- 261
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tationally expensive, as it requires backpropagating262

through the entire network to compute gradients263

and update the embedding. This makes it signifi-264

cantly more demanding than other approaches. For265

instance, BERT-based models can generate sen-266

tence embeddings with just a forward pass.267

This also imposes hardware constraints on run-268

ning the experiments. We conducted our exper-269

iments using the ClusterUY infrastructure (Nes-270

machnow and Iturriaga, 2019), with limited access271

to an NVIDIA A100 GPU. As a result, we were un-272

able to run experiments with larger models beyond273

those presented in Section 4.2.274

Another limitation of the phenomenon described275

is that, without fine-tuning or any modifications be-276

yond adding the new embedding, we were unable277

to use the stored information for tasks other than278

reconstructing the original sentence. Intuitively, we279

believe that LLMs should be capable of effectively280

use these embeddings for tasks such as Question281

Answering, without requiring full text reconstruc-282

tion. However, achieving this may require a fine-283

tuning step.284

This work serves as a demonstration of an inter-285

esting phenomenon in LLMs, but further research286

is essential to explore practical applications.287
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