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ABSTRACT

We give a comprehensive theoretical analysis of transformers as time series pre-
diction models, with a focus on MOIRAI (Woo et al., 2024). We study its ap-
proximation and generalization capabilities. First, we demonstrate that there exist
transformers that fit an autoregressive model on input univariate time series via
gradient descent. We then analyze MOIRALI, one of the state-of-the-art multivariate
time series prediction models capable of modeling arbitrary number of covariates.
We prove that MOIRALI is capable of automatically fitting autoregressive models
with an arbitrary number of covariates, offering insights into its design and em-
pirical success. For generalization, we establish learning bounds for pretraining
when the data satisfies Dobrushin’s condition. Experiments support our theoretical
findings, highlighting the efficacy of using transformers for time series forecasting.

1 INTRODUCTION

Recent advancement of transformers is reshaping the field of time series forecasting. Numerous
studies have demonstrated transformers are an effective architectures for various time series analysis
tasks such as forecasting (Woo et al., 2024; Ansari et al., 2024; Liang et al., 2024; Das et al., 2023),
anomaly detection (Zhang and Luo, 2025; Wen et al., 2025) and more. While recent works have
made efforts to enhance transformers for times series forecasting by modifying model architecture
(Zhang and Yan, 2023; Liu et al., 2023; Wu et al., 2021) or data processing (Reneau et al., 2023; Nie
et al., 2022), the research community has yet to understand how transformers perform so well on
forecasting tasks even on the simplest settings. Moreover, existing methods (Zhang and Yan, 2023;
Wu et al., 2021; Woo et al., 2024; Liu et al., 2023) predominantly depend on heuristic reasoning and
are notably deficient in rigorous theoretical analysis. A deeper understanding of transformers in time
series forecasting will guide the design of more effective architectures by future practitioners.

A critical challenge for transformers to handle time series data is to handle arbitrary number of
covariates as the architecture proposed in (Vaswani et al., 2017) is designed to handle a fixed
vocabulary size. Therefore, recent studies have developed several ways to address this issue. MOIRAI
(Woo et al., 2024) propose an unified way to concatenate all covariates into a single long univariate
time series (any-variate encoding). MOIRALI also propose a novel any-variate mechanism for
disambiguating different covariates. iTransformer (Liu et al., 2023) propose to use a pooling technique
to reshape arbitrary number of covariates into a unified size. Other models choose to discard covariate
features by only considering univariate time series (Ansari et al., 2024; Rasul et al., 2023). In this
paper, we start by theoretically analyzing MOIRAI and its novel mechanisms. The main goal of this
paper is to address the central question: What characteristics of architectures in MOIRAI contribute
to their strong performance on time series data?

To understand MOIRALI in time series learning, we begin by examining one of the most widely used
algorithms for time series regression: the auto-regressive (AR) regression (Hamilton, 2020). 1. We
show that transformers are indeed capable of performing AR regression on univariate time series,
indicating they can handle time series in a principled, algorithmic fashion. 2. We apply our theoretical
results on a state-of-the-art time series model, MOIRAI (Woo et al., 2024), a transformer-based
model that can handle arbitrary number of covariates in various time series tasks. While several novel
designs in MOIRALI are for engineering purpose and heuristic, we show that these unique designs
enable it to perform AR regression on arbitrary number of covariates. 3. Our theoretical results
contribute to understand the effectiveness of recent time series pretraining approaches (Ansari et al.,
2024; Woo et al., 2024; Jin et al., 2023; Das et al., 2023; Rasul et al., 2023; Liang et al., 2024). These
methods involve pretraining transformers on large collections of time series, often spanning diverse
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domains, and have demonstrated strong empirical performance on a wide range of domains. To
analyze this phenomenon, we derive generalization error bounds for pretrained transformer models
under a formal statistical framework. The contributions of this paper is threefold:

* From an algorithmic approximation view, we prove the existence of a transformer capable of fitting
an AR model on any given univariate time series via gradient descent. When extending this to the
multi-variate setting, we theoretically verify that a MOIRAI transformer can automatically adjust
the dimensionality of the AR model to fit time series with an arbitrary number of covariates. Our
approximation results not only explain the strong performance of modern models across diverse
datasets but also justify the design of MOIRALI

* We present the first pretraining generalization bound for MOIRAI on time series learning. We
show that when the pretraining data satisfies Dobrushin’s condition, the test error can be effectively
bounded even when the data does not satisfy i.i.d. Specifically, when pretraining MOIRAI on n
multi-variate time series with length 7', the test error decays by a rate of 1/vnT.

* Our experimental results on both synthetic and real-world data match our theories by showing that
the prediction error of transformers reduces as the input time series length increases, corresponding
to our approximation result. This empirical finding not only verifies our theoretical results, but also
demonstrates transformers are capable of acquiring algorithmic capability through training.

Organizations. Section 2 introduces our problem setup and preliminaries. Section 3 describes how
transformers simulate different AR regression algorithms and a case study on MOIRALI. Section 4
analyzes the pretraining guarantee for learning transformers over different time series. Section 5
conducts experiments to verify our theoretical results on synthetic and real-world datasets. Section 6
discusses how our findings generalize to other models and limitations. Additional Related works are
discussed in the Appendix C.

Notations. We use the following notation conventions. The vector-valued variable is given by
boldfaced characters. We denote [n] := {1,...,n}and [ : j] ;== {¢,i+ 1,...,5} fori < j. The
universal constants are given by C' and are ad hoc. Considering a sequence of vectors (x1,- - ,xT),
we use x without index to represent the whole sequence, and «;.; represents (x;,--- ,x;) for
7 < j. We impose periodic boundary conditions for the negative index, i.e., x_; = xp. For a
vector v we denote ||v]|2 as its Lo norm. For a matrix A € R™*"™ we denote its operator norm as
|All2 := sup,egn—1 |[Av]||2. Random variables are given by calligraphic characters XU, and elements
from a domain set are given by normal font x. For more details, see Table 1.

2 PROBLEM SETUP

This section presents backgrounds and formula definitions of the transformer model, and then
introduce the auto-regressive model.

Transformers. We consider a sequence of N input vectors {h;}; C R”. We introduce H =
[h1,--+,hn] € RPXN_ Given any H € RP*N | we define the attention layer as follows.

Definition 2.1 (Attention layer). A self-attention layer with M heads is denoted as Attng0 () with
parameters 8y = {(Vin), (Qm), (Km)}men) C RP*P. The self-attention layer processes any
given input sequence H € RP*N a5

Auny, (H) = H + % " (Vi) x 0 (QuH)T (K H)),

m=1

where o(t) := ReLU(t)/N is the ReLU function normalized by N.

Next, we introduce the any-variate attention, where Woo et al. (2024) uses it to replace the standard
attention in transformers. The any-variate attention introduces two learnable variables: Attention
Bias u1, us € R, for disambiguation between variates. In (Woo et al., 2024), they use this mechanism
to allow transformers to distinguish different covariates.

Definition 2.2 (Any-variate Attention.). An any-variate attention layer with M heads is denoted
as Atmg, (-) with parameters 01 = {(Vy,), (Qm), (Km), (u,), (up,) Ymen. With any input H €
RPXN we have

1 M
Atmo, (H) = H + - > (Vo H) x 0 ((QmH)T (KmH) +ub, U + 2, * U) ,

m=1



Under review as a conference paper at ICLR 2026

where o(t) = ReLU(t)/N. U € RN*N is a block diagonal matrix with block size T € NT, such
that each block consists of 1s, U = I — U, and * denotes element-wise multiplication.
Definition 2.3 (MLP Layer). We denote an MLP layer with hidden state dimension D’ as MLPg(-)

with parameters 8, = (W, Ws) € RP "D RP*D" The MLP layer processes any given input
sequence H € RP*N as MLPg,(H) := H + Wyo(W H).

Finally, we define a L-layer transformer.

Definition 2.4 (MOIRAI Transformer). We define the L-layer MOIRAI transformer (Woo et al.,
2024), TFo(-), as

TFg(H) = MLPgr (AzmelL ( - MLPg; (Attne% (H )))) .

Note that this transformer is equipped with any-variate attention instead of the standard attention.
For transformers with standard attention, we denote it as TF' L()

We use 6 to denote the vectorization of all parameters in a transformer and super-index ¢ to denote
the parameter of the ¢-th layer. Thus, the parameter of a transformer is defined by

6 = {{({Qh Kb Vit ubif w2 Yetnn, WEWE) by |-

We denote the “attention-only" transformers with Wl(e), WQ(Z) = 0, as TFy(-) for shorthand. We
define the following norm of a MOIRALI transformer as

Mt

18110y = mave { meve {1Q7 s 1K s gl |} + Zn Vil + I1W{llz + W2 },

where M* is the number of heads of the /-th Attention layer.

Auto-regressive Model. Here, we first consider the case where we aim to find a multi-layered
transformer that performs regression via In-context learning (ICL). Specifically, we assume our data
is generated from an autoregressive process AR,4(q) as follows, where ¢, d denotes the steps of lag
and number of covariates, respectively. Consider a sequence of data x € RIXT .— (z1,...,27),
where x; = (z},--- ,z) € R% Assuming our target (variate of interest) is univariate, we define the
AR4(q) process generates ; as follows:

d

q d
=Y > alal tea= (w el ) +e, @.1)

i=1 j=1 j=1

where €; ~ N(0,1), al € R'. We denote the concatenation of all weights w* = (w1, ,w’) €
R%¢, We assume bounded features l[Zi—g:t—1|]; < By, forallt € [T)]. The first equation writes the
AR process in scalar form, and the second writes it in vector form. In the following chapters, we will
start by considering the uni-variate case (AR;) and then move on to the multi-variate case (ARy).

3 TRANSFORMERS SIMULATE AUTO-REGRESSIVE REGRESSION

We first investigate how MOIRAI Next, we will move on to multi-variate AR regression and analyze
how MOIRAT’s unique design and pre-processing methods enable its advantages.

3.1 WARM UP: UNIVARIATE AUTOREGRESSIVE REGRESSION

We start our analysis with a warm-up example on the AR;(¢) model. We show that standard trans-
formers are capable of performing gradient descent via in-context learning on autoregressive data.
The results in this subsection apply to univariate time series models such as (Ansari et al., 2024).
Here, we consider an input sequence with the following form

Od/
Hie= T 72 11 0 pox(@en |8 g RIHTH 3
pPr P2 ... Pr Pr41 1
{i<T}

where e; is an one-hot vector with 1 at the i-th entry, and d’ + T + 3 = D. Here, our goal is to
predict x4 1.
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Remark 3.1. Most in-context learning studies (Akyiirek et al., 2023; Bai et al., 2024, Li et al., 2023)
make an assumption on the input data, where they assume it is formatted with features and labels in
L1 T2 EINY I contrast, we adopt a natural approach that leverages
Y1 Y2 . YN
the raw structure of the data, particularly for the AR4(q) process. In this setting, each time step’s
label also serves as a feature for future steps. Further, the unknown value of q complicates the task of
achieving such a format in Remark 3.1.

the same column, i.e.,

Our next lemma shows that transformers are indeed capable of reformatting H into the form in
Remark 3.1. Notably, we relax the assumption in Remark 3.1 of previous studies as well.

Lemma 3.2. Given a sequence of token H in the form of Equation 3.1, there exists a one-layer, Gmax
head attention layer, such that for any q < qmax, the columns of Attng(H ) has the following form:

04 g

;. €;
, Py = 1 . (3.2)

i< T}

Attng, (H); = [x; Ti—1 -+ Tiq p;]T

The proof is in Appendix E.1. Lemma 3.2 is crucial in our analysis as it connects the theoretical
results in ICL (Bai et al., 2024) to univariate time series forecasting. When data formats in the form
of Remark 3.1, Bai et al. (2024) show that there exists a multi-layer transformer that performs linear
regression via gradient descent on the first N — 1 data points and evaluates the N-th one. Thus,
Lemma 3.2 implies transformers are also capable of performing linear regression on time series data.

This lemma applies to both any-variate attention and standard attention, as the latter can be viewed
as a special case of any-variate attention by setting u!,u? = 0. Additionally, the construction of a
single layer with ¢ heads is not a strict requirement; the lemma also holds for ¢ layers of ¢/c head
attention, for any c satisfies ¢/c > 2.

With Lemma 3.2, we are able to apply the in-context learning results in (Bai et al., 2024) on the
AR, (q) case. Consider the data generated by the AR process in Equation 2.1. Given an input time
series £ € R?*T we define the least squares estimator as the empirical risk minimizer over the time
series, i.e.,

w,xl ., ozt ) —2l]?
greg(w7mt—1;t—q) — [< a[ t—1:t—q> 25 t—1:t q]> t]
1 T—1
Lreg(wv :IC) = ﬁ Z éreg ('w7 mt—l:t—q) , WeRM = argmin Lreg ('w7 -73) ;
= weR

where [v;u] denotes the concatenation between vectors, as [@ ;. ,TF 1 ]
(x_y,®f o,- -, &7 ,1,®; ,) € R*, & denotes masking out the last time step of the target
variate, and L,.q4 is a loss, which is a-strongly convex, and 3-smooth over R9, We make the
following assumption and then present our first result on univariate time series (d = 1).
Proposition 3.3 (Univariate Autoregressive Regression via MOIRAI). Assume the regression problem
is well-defined and has a bounded solution and fix a ¢max > 0. For any 0 < o < [ with k = g
By, >0, and € < B, B, /2, there exists a L-layer MOIRAI transformer TFy (-), with

BZEB’LU Qmax —
%)LLpﬂTTLm%meg&HﬂMSHR+%1L

(R = max{B,B,, B;,1}), the following holds. On any input data x generated by any AR;(q)
process such that 0 < ¢ < Gmax, ||Werm||y < Bw/2, we have

L=1L;+ Ly, L; =[2klog(

|z — <@ERMa [mtl—lzt—q; cees "Bgl—lzt—q]>|| <e (3.3)
where T = read(TFy (H)). read(H) operation reads out the first entry of T-th column of H.

This proposition follows immediately from Lemma 3.2 and (Bai et al., 2024, Theorem 4). The above
result applies for standard transformers as well as in our construction u},, u2, = 0 in all heads and

) m
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layers. Further, one can replace the least squares ERM with lasso or ridge ERM and obtain a similar
result by applying Theorem 4, 7, and 13 of (Bai et al., 2024).

So far, we show that transformers are capable of solving univariate AR regression with, at best, one
additional layer compared to the results in (Bai et al., 2024). The result above provides insights
on transformer-based univariate time series foundation models (Ansari et al., 2024; Rasul et al.,
2023; Das et al., 2023). To study MOIRALI, we then include two ingredients into our analysis: the
any-variate encoding and the covariates in the following chapters.

3.2 CASE STUuDY: MOIRAI TRANSFORMER

In this subsection, we extend our results to the multivariate autoregressive process (d > 1) and the
encoding method of MOIRALI Note that in the multi-variate case, we only focus on MOIRALI as it is
the only transformer-based model that is compatible with arbitrary number of covariates. We start by
introducing the any-variate encoding.

Any-Variate Encoding. Woo et al. (2024) propose to flatten a d-dimensional time series, 2z € R?*T,
into a 1-dimensional sequence, i.e., ' € R!*79, This operation transforms time series with arbitrary
number of covariates (d), into a long sequence with fixed dimension, enabling consistent input
dimension for transformers. Following the flattening operation, Woo et al. (2024) also proposes
to add two types of indices into the input sequence: the time and variate ID. We term the above
operations as the any-variate encoding, which transforms a multivariate sequence = € R¥*7T as

follows:
1 1

o o Zh
1 1 d d
Q;% IIJ% Xy T xq T
- |pr - pr - p - pr|, (3.4)
. el DY el ... ed ... ed
:Z/’il e :I:g.,

where e; is the variate index, a one-hot vector with i-th entry being 1, and p; is the time index, which
is defined the same as Equation (3.1). This is without loss of generality because the discrete-time
and variate ID used in (Woo et al., 2024) can be easily transformed into a high-dimensional vector
with the embedding layer. Note that only the target variate has length T', we highlight 2. as it is our
prediction target and will be masked as 0.

Now we define the history matrix A;(q) € R9***T for the i-th covariates (x, - - - , 2%.), with order g,
such that

Ai(Q)pw =l 4y, forp € [d],v € [q],
where in the j-th column of A;(q), it contains historical values of x; with lag ¢ > 0.

Lemma 3.4. Fix qu.., D € N*. Givenany T > 0,d" > q > 0,d > 0 such that T > q, Gumax > ¢
For any input matrix H in the form of any-variate encoding in Equation 3.4, such that H € RP> T
There exists a one layer, qmax head any-variate attention that performs the following operation.

T e B TUU " OO B 01,,@ Oz;,(q) %/(q)
p1 -+ pr p1 - Ppr -+ Pp1 --- pr|*— d’ xT d’' xT d’ xT s
el ... el 62 .. e2 .. ed .. ed . . .

where d' = d’ — gumax.

The proof is in Appendix E.2. Intuitively, the above operation performs the same operation in
Lemma 3.2 but in a variate-wise fashion. Lemma 3.4 is crucial to our understanding to MOIRAI
as it shows that any-variate attention is capable of organizing the history of each variate efficiently
and in a parallel way. To again achieve the format in Remark 3.1, one has to stack all A;(¢) in the
same columns, which can be easily done by a single layer of attention via Lemma 3.2 and (Bai et al.,
2024, Proposition A.5) (details in Appendix E.2). This lemma serves as a foundation for MOIRAI to
handle multi-variate time series with in-context learning which we present as the theorem below.

Remark 3.5. Comparing to Lemma 3.2, Lemma 3.4 is specifically for any-variate attention in our
construction, where we demonstrate that several special mechanisms in any-variate attention enables
variate-wise operations in parallel.

Theorem 3.6 (Any-variate Autoregressive Regression via MOIRAI). Let Ly = [f2=] + 1, Ly =

BmBm-L with some dmax, Gmax > 0. Forany 0 < o < f with k = g’ By >0, and

[2r log =4
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€ < BBy /2, there exists an (L1 + Ls)-layer of MOIRAI transformer equipped with any-variate
Attention, satisfies the following

Ly
max M <3, [0 <[4R+887, D MY = dumax + gmax, D = (gmax + Vmax + T +2,
¢e[L1+1,Ls)] o

such that for any input time series x with length T generated from an AR4(q) process, where
x € R>*T | ¢ < gmax, d < dmax, it satisfies

| E% - <w:7 [m’;flszq; BRI w%fl:qu}>|| S €, (35)

where T4 = read(TFy(H)), and H € RP*N js the any-variate encoding of x.

Remark 3.7. Theorem 3.6 indicates there exists a MOIRAI transformer that fits an autoregressive
model on time series as long as the number of covariates no greater than dp,.x and lags no greater
than quax. This shows its ability to infer the underlying AR model in a principled way and provides
a possible explanation for its zero-shot performance on a wide range of datasets. To modify the
setting from multi-variate prediction, one can easily apply Bai et al. (2024, proposition A.5), where
the hidden dimension scales linearly w.r.t. the number of variates to predict.

The proof is in Appendix D. Observe that there exist two trade-offs in Theorem 3.6. First, gmaxdmax
is upper bounded by the D (up to constant), which is a natural trade-off in our construction. Second,
the approximation error is roughly O(e~"), suppressed exponentially by the number of layers, as in
our analysis, each layer of MOIRAI performs a single step of gradient descent on L.

4 ANALYSIS ON PRETRAINING

Let m be a meta distribution, and each distribution drawn from it p(T) ~ 7, satisfies Dobrushin’s
condition (Dobrushin, 1968) (which we will introduce shortly). For pretraining data, we first sample
n distributions P;T) i.i.d. from 7, and for each distribution, we sample a time series (@1 G :ETj),

for j € [n], and each of them contains no more than d covariates and with lag step no more than g.

For each time series, we encode it with any-variate encoding into an input matrix denoted as
H < RP*N, ! We define each pretraining sample as z; := (H}, y;), where y; = @,;. We consider
the squared loss between model prediction and the label, i.e.

0(z¢,0) = % [Z/t —Clipg, (ready (TF? (H) )ﬂ 27

where Clipp (t) = max{min{t, B,}, —B.}, and TF% is the MOIRALI transformer defined in

Definition 2.4 with C1ip(-) applied after each layer. The pretraining loss and test loss is defined as
the following:

T n
=~ 1
L(9) = — t:zl ;e(e, zjt), L(0) =E_ ,r [£(8,2)]. .1
The goal of our pretraining algorithm is to find an empirical risk minimizer (ERM) over MOIRAI
transformers with L layers, M heads, and norm bounded by B:

6:= argmin L(6),

6€O, v D/ B

OLarpp = {9 - (99:“,0;1:”) - max M@ < M, max D < D, [|0]|op < B}. 42)
te(L] Le(L]

4.1 NON IID TIME SERIES

Here, we consider the training data x to be drawn from a distribution P satisfying Dobrushin’s
condition. Under this condition, we are able to present several generalization bounds on pretraining.

Definition 4.1 (Dobrushin’s Uniqueness Condition). Let X' = (Xy,--- ,Xr) be a sequence of

random variables over @32 The Dobrushin coefficient o of X and the influence I of variable X; on
variable JC; are defined as

a(X) = JBax Lii(X), Lisi(X) = max ||Pr o, (—i—j; %), Pryjo_, (Jr—imj, x5)||

)
TV
. g i— g Xg X
J#i I

'Due to any-variate encoding, N = dT.
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where x_;_; € @§727xj,x;» € Dy, |||, denotes the total variation distance, and x_; represents
the vector x after omitting the i-th element. We say the variable satisfies Dobrushin’s uniqueness
condition if «(XC) < 1. For a distribution P, we denote u(P) = supy,p a(X).

Definition 4.2 (Log Dobrushin’s Coefficients). Let X' = (X1, --- , Xr) be a random variable over
DL and let P, denote its density. Assume that P, > 0 on all OT. For anyi # j € [T, the log
influence between j and i is defined as:

o 1 P[Xi,X',.X_»L‘_ ]P X;,X’~,X_¢_'
Ijl-f(l’) = 4 5up log J J [ J J]

Plx},xj,x_i ] P [xi,x;,x,i,j]’

where the sup is taken over x_;_ ;, X;, X;, X;, X;, and the log-coefficient of X is defined as cuog(X') =

MaXie (7] D ;s I;OLg(I) Note that o(-) has a natural bound in [0, T — 1], with o = 0 implies i.i.d.
Remark 4.3 (On the choice of Dobrushin’s condition). In general, time series analysis (non IID)
requires certain level of regularity condition on data, to derive meaningful learning bounds and
exclude extream cases. For example, mixing properties (Mohri and Rostamizadeh, 2010; Steinwart
and Christmann, 2009; Kuznetsov and Mohri, 2014), hypercontractivity (Ziemann and Tu, 2022), or
Dobrushin’s condition (Dagan et al., 2019). Dobrushin’s condition is not only a commonly used
regularity condition for time series data, it also fits several common statistical models, which makes
our derivation suitable for further analysis on different models. An example is shown in our section
4.3. One more benefit of having this condition instead of mixing properties is that we do not need to
assume stationarity of the data, which can easily be violated in practice. We highlight that verifying
all those conditions is difficult in practice, as the true distribution of data is intractable.

4.2 GENERALIZATION BOUNDS OF MOIRAI

Theorem 4.4 (Pretraining Generalization Bound). Let © 1, ar,p/,B be the parameter space defined in

Equation 4.2. Assume cyog(PT)) < 1/2. Then with probability at least 1 — ¢, ERM 0 satisfies the
following:

-~

L(®) <  inf L(e)+o<1

—an(P(M) nT

T 6€OL v prB

B2 \/ L(MD? + DD')¢ + 10g(1/s))

where C'is an universal constant, and { = O(log(2 + max{B,R, B,, T, d})).

The proof is in Appendix E.4. Here we observe that the bound mainly depends on two terms,
the Dobrushin’s coefficient, and the demoninator n7". Under Dobrushin’s condition, increasing n
alleviates the performance degradation of 1/1—a exponentially in n. Further, increasing n also tightens
the bound with the order 1/\/n. Further, in Theorem 4.4, we do not assume our data is generated from
the AR process, only its Dobrushin coefficient. When the data is generated by the AR process, we are
able to give a more explicit bound on the same test loss as described below.

Proposition 4.5 (Test Error Bound). Following the setup in Theorem 4.4, if pretraining samples
are generated by some AR4(q) process with noise sampled from N(0,02)?, then with probability

A(1 —€), ERM 0 satisfies the following:

~ _ 2 2 /
L() < O(BZBUJ exp (%) + (fz?pm) \/L(MD + DST)C + log(l/E))v

where A = O(l—(f’e/Bsze‘L/z”)Q), C is an universal constant, and ¢ = O(log(2 +
max{B,R, By, T,d})).

Considering the model parameters (M, D, D’, d) are of constant level, one is able to further optimize
the bound to L(0) < (nT)~"/? by selecting L appropriately. Next we provide an example of the
application of Proposition 4.5 on AR(1) process with the following form

Ti41 = (W, @) + €, €~ N(0, Uf), withz; € RY, w e RY, e € R, g1 = :ctl_‘_l.

To satisfy the condition of al(P) < 3, we assume B2 < In1/2+(02), ||w]||,, < 1. The first condition
comes from the fact that we require the pair-wise potential of this time series to be less than 1/2
(For more details, see Appendix E.5). The second condition comes from the requirement of it being
stationary.

*Here we assume fixed d, g across all samples as one can describe a lower dimension/order AR process with
zero coefficients.
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Figure 1: Top: Model performance on data with different number of covariates. For both MOIRAI-based
models, we observe their performance behave like least squares. As in our construction, the longer the lookback
size is, the more examples available for transformers to fit an AR. Note that our test data has variance o? =1,
thus the MSE for both models are expected to converge to 1 as the g increases. Bottom: Generalization to unseen
values of d, q. From left to right, we have MOIRAT’s generalization power (pretrained on d € {4,5}, ¢ € {4,5})
on high dimensional (d = 10), low dimensional data (d¢ = 2) and high lag step + low dimensional data
(d = 3,q = 7). Note that high and low is compared with pretraining data. We observe that even when MOIRAI
did not learn from any time series with d = 10, it is still able to generalize well and shows even better sample
complexity than LSR. Finally, even when both g, d are unseen, it does not impact MOIRAT’s ability to make
accuracy predictions. The lines are the average over 5 runs.

Corollary 4.6 (Generalization Bound for MOIRAI on AR(1)). Considering n AR(1) processes with

each of its Dobrushin’s coefficient bounded by 1/2. With probability at least 5(1 —¢), ERM 0 satisfies
the following:

A~ O o2 —L o? L(MD? + DD')¢ + log(1/e)
He) ‘O(m+ 7o (3) * r=armnV T )

with
1 2v/2/7m B, *
a(AR(1)) < min 5 2y/2/m Ba|[wl« ’
.

and ¢ = O(log(2 + max{B,R, B, d})). If we further optimize the bound by viewing the hyperpa-
rameters as constants, the test error obeys O(e™ % + 1/ ,%T) w.h.p. whenever o, is small.

Remark 4.7. Corollary 4.6 provides an application of Dobrushin’s condition on common statistical
models, indicating that Dobrushin’s condition can be further used to certify stability and derive
generalization bounds for a broad class of time series processes beyond the i.i.d. setting.

5 EXPERIMENTS

To verify our analysis, we first train transformers on synthetic datasets generated from AR process
with different parameters. The goal of this experiment is to verify the existence of a transformer
that performs least squares regression (LSR) on input time series with bounded lags and number of
covariates. Next we study whether a pretrained transformer is capable of generalize such an ability to
unseen values of d, q. More empirical results such as on real-world data are in Appendix E.5.

Setup. We use MOIRAI-base, a 12 layer MOIRAI transformer. The hyperparameters of this
experiment are in Table 2. We use MSE loss for pretraining instead of NLL loss for simplicity. For
pretraining, we follow the setup in Woo et al. (2024) but set the patch size as 1 to minimize the impact
of patch embedding. During pretraining, each time series is randomly sampled. We evaluate the
pretrained model on our test data with d = {3, 4,5}, ¢ = 5 and 0% = 1 with different input length.
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We compare MOIRAI with LSR performing different gradient descent steps. For LSR, we assume ¢
is known. When MOIRALI takes a 7" length input, LSR is trained on 7" — 1 samples with each having
dq features. A detailed example on our implementation is in Appendix F.4. We also include the
standard transformers and MOIRAI with ReLU replacing Softmax, which we term it as MOIRAI-relu.
For standard transformers, we keep the any-variate encoding but use standard attention. *Details of
data generation can be found in Appendix F.3.

Results. Since our test data generation process obeys noise variance = 1, when fitting a linear model,
the expected MSE will converge towards 1 as lookback size increases. Based on Theorem 3.6, the
length of input time series also corresponds to the number of examples model perform least squares
on via gradient descent. We observe that as the input length increases, the predictive error of MOIRAI
decreases similarly to least squares, which verifies Theorem 3.6. Next, when pretrained on diverse
dataset, pretrained MOIRAI is able to adapt to different number of covariates and perform least
squares accordingly. Further, when replace softmax with ReLU, the performance gap is negligible.
For standard transformer, while it also behaves similar to other models, it does present higher error
comparing to other baselines, indicating the advantages of using any-variate attention.

Next we are interested in whether a pretrained transformer can generalize to unseen values of d and
q. Thus, we train transformers (MOIRALI) on synthetic data generated with AR with d € {4, 5}, and
q € {4,5}. In our construction, pretrained transformer is compatible with lower order and dimension
AR data. We evaluate the trained model on data with unseen values of d. We select d = 2,d = 10, to
represent the scenario when the number of covariates is lower and higher than pretraining data.

Results. We observe that even when facing data with unseen number of covariates, MOIRALI is still
capable of performing AR regression effectively. Note that for d = 10, LS require higher sample
complexity to obtain similar performance to d = 5 case. However, the pretrained MOIRALI is able to
outperform it from such an aspect. For d = 2 all models perform well, again verifies our theoretical
results. Finally, when facing data with unseen both d and g, it is still capable of performing well.

6 DISCUSSION

Here we discuss the implications of our results. First, we demonstrate how transformers perform
univariate AR regression, a classic time series prediction algorithm. Next, we demonstrate that the
unique any-variate attention proposed by Woo et al. (2024), indeed provides benefits for transformers
to process each covariate in a parallel fashion (Lemma 3.4). This observation not only leads to
our next result, showing MOIRAI can perform AR regression on arbitrary number of covariates,
also provides a justification on the design of any-variate encoding (Woo et al., 2024). The above
approximation results provide profound insight on designing transformer-based time series models.
Next, for pretraining, we derive generalization bounds when data is under Dobrushin’s condition,
where the bound scales roughly by \/% It is worth investigating how to further relax this assumption,
which we leave to future work. For predicting multiple time steps or multiple variates, one can easily
apply Bai et al. (2024, Proposition A.5) to obtain the same result with hidden dimension D scales
linearly. More discussions on the limitations of this work is in Appendix B.

Which transformers do we cover? Our results in Section 3.1 also covers notable SOTA models
including classic transformers (Vaswani et al., 2017), Chronos (Ansari et al., 2024) (Theorem E.5),
MOMENT (Goswami et al., 2024). Architectures using transformer-decoders are also compatible,
such as TimeGPT (Garza and Mergenthaler-Canseco, 2023), TimesFM (Das et al., 2023), see
Appendix B in (Bai et al., 2024). Furthermore, the use of patch embedding Nie et al. (2022) does
not affect our theoretical result as an AR sequence remains an AR sequence after patch embedding
transformation (linear), thus solvable by our AR regression framework. One simply needs to use
a weight-tying trick (for the last layer embedding), to obtain the prediction of the original input.
Univariate models with patch embedding also fits Section 3.1.

Notable transformer-based SOTA models we do not cover include iTransformer (Liu et al., 2023),
CrossFormer (Zhang and Yan, 2023), as they also applied attention mechanism on the covariate
dimension. This novel technique requires further analysis thus we leave to future work. Autoformer
(Wu et al., 2021) also utilizes a technique named auto-correlation, which requires different theoretical
tool to study. Similarly, Time-LLM (Jin et al., 2023) and Lag-Llama (Rasul et al., 2023) utilize either
natural language inputs, or the lag features, therefore cannot be covered by our theoretical analysis.

3In (Woo et al., 2024), without any-variate attention, the error of MOIRAI-small increases roughly 40%.
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A TABLE OF NOTATIONS

Table 1: Mathematical Notations and Symbols

Symbol Description

T; The ¢-th component of vector x
(a,b) Inner product for vectors a, b € R?

1] Index set {1,---, I}, where I € N*

-] Spectral norm, equivalent to the lo-norm when applied to a vector
I11]2 00 The largest L2 norm of column vectors of a matrix
The element on the i-th row and j-th column of matrix A
The sub-sequence of sequence x from coordinate  to j
Concatenation between column vectors v @ u — (v, u
Concatenation between two row vectors

T)T

Length of a transformer input sequence
Number of time steps of a time series
Number of attention heads.

Lag of an AR process.

The number of covariates in an AR process

Vector (bold lower)

Matrix (bold upper)

random variable (calligraphic)
element from a domain set

R |ae ENZ “S @:8::];

Dx Domain of random variable X’
€e; one-hot vector with its ¢-th entry as 1
Py Probability distribution of X

Pjw(z | w) The probability P [z = z | w = w]
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B LIMITATIONS AND IMPACT

Limitations. One limitation in our analysis is that we consider ReLLU instead of softmax in
attention mechanisms. While the same approach also is in theoretical (5; 22; 15) and empirical
works (40; 42; 32), one might obtain a different approximation bound comparing to Theorem 3.6.
However, in our generalization analysis, the difference is small as softmax does not affect the model
complexity too much. Another aspect is that we mainly focus on AR processes. While in the appendix,
we do show the approximation result for non-linear AR processes generated by a ReLU network, to
achieve universal forecasting, a more general assumption on data is required. Another limitation is
we consider MSE loss instead of NLL loss used in (39) for pretraining.

Impact Statement. This paper studies the theoretical aspect of transformers as time series foun-
dation models. No negative societal impacts that the authors feel should be specifically highlighted
here.

C RELATED WORKS

Transformers in Time Series Forecasting. The recent progress in foundation models (34; 6; 28)
has begun to reshape the field of time series forecasting, a critical task of predicting the future based
on history (14). However, there are two major challenges in building a time series foundation model:
(a) the model must be able to handle an arbitrary number of covariates, and (b) the model must
generalize to unseen time series domains. To circumvent (a), several studies simplify the task by
considering only univariate time series (4; 29; 8). (8) propose a decoder-only transformer pretrained
on both real and synthetic datasets. (29) incorporate lag features and the Llama architecture to
pretrain a large univariate time series foundation model. (4) leverage the power of large language
models (LLMs) by using pretrained LLMs backbones.

Recently, (39) proposed MOIRALI, the first time series foundation model capable of handling an
arbitrary number of covariates. It addresses (a) by concatenating all covariates into a uni-dimensional
sequence, ensuring a consistent input dimension across datasets. It addresses (b) by pretraining on
a large collection of time series datasets (12; 3; 41; 19) spanning domains such as weather, traffic,
electricity, and industry. MOIRALI not only generalizes across a wide range of domains, but its zero-
shot performance also surpasses several strong supervised learning baselines (23; 27; 44). However,
the machine learning community has yet to provide a suitable explanation for MOIRAI’s impressive
performance. Therefore, this paper is the first to offer theoretical guarantees for MOIRALI as a time
series foundation model.

In-Context Learning. In-context learning (ICL) is an emerging capability of large foundation
models, enabling them to learn diverse and unseen tasks from given examples. (6) first provide
empirical evidence of ICL in large language models (LLMs); by presenting several examples of
(z, y) pairs, GPT-3 effectively infers the relationship between  and y. (10) then conduct quantitative
experiments on simple function classes, such as linear regression. Their results demonstrate that large
foundation models can learn the parameters of these function classes. Subsequently, several theoretical
studies (5; 36; 1; 2) have proven that different types of transformers can implement algorithms such
as gradient descent. This discovery provides a theoretical foundation for the empirical findings in
(10).

The closest studies to this paper are (26; 31). However, (31) examines ICL in the context of next-token
prediction using a linear transformer. While their theoretical results relate to in-context learning on
sequential data, they are insufficient to explain transformers’ success in time series forecasting. (26)
explores another case where the data is modeled as a Markov chain generated by a transition matrix.
They demonstrate the existence of induction heads that enable transformers to perform next-token
prediction. However, their scenario does not align with multivariate time series, which is where our
main contribution lies.

The biggest different between our work to existing ICL studies (5; 26; 36; 24) is we do not consider
structured inputs as in practice, time series data is considered a long sequence instead of many
feature-label pairs. Next, in our case study, we show that MOIRAI can perform AR regression on
different dimensions of feature, while ICL studies mostly focused on a fixed dimension of features.
Last, our pretraining analysis considers the case where data is non IID, which is critical in time
series data due to the dependent nature. Therefore, this paper indeed provides new insights on using
transformers for time series learning.

14
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Learning Theory on Time Series Data. Efforts in time series learning theory have developed
frameworks for non-i.i.d. data using mixing or ergodic assumptions (7; 45; 25; 33). Yet these results
are largely agnostic to model architecture and thus offer limited insight into the specific advantages of
transformers. In short, a clear theoretical understanding of how transformer architectures contributes
to time series forecasting remains elusive.

D ADDITIONAL THEORETICAL BACKGROUND

Here, we include several technical lemme that are intensively used throughout our paper. The
Lipschitzness of an MLP layer is obtained in (5, Lemma J.1), which we restate it below

Lemma D.1 ((5)). For a single MLP layer, 05 = (W1, W5), we introduce its norm
1162]]] = [[Whll,, + [[W2ll,, -
For any fixed hidden dimension D', we consider
O2,5 :={602: [[|62]| < B}.
Then for H € #Hp, 03 € Oq p, the function (02, H) — MLPg, is (BR)-Lipschitz w.r.t. 0 and
(14 B?)-Lipschitz w.r.t. H.

The following lemma shows any-variate attention is capable of performing variate-wise operation on
arbitrary number of covariates under any-variate encoding.

Lemma D.2 (Group-Wise Operation via Any-Variate Attention). Let ||H ||, , = (ZZ\LI |[hi||5)/P
denote the column-wise (2,p)-norm of H. For any input matrix H = (hy,--- ,hr) such that
|[H]|, o, <R, suppose (-) : RPXT s RPXT s g sequence-to-sequence function implemented by

a single layer standard transformer (TF’ 2 ) such that
TF}(H) == ¢ (H).
Then there exists a single layer MOIRAI transformer TFg(-) such that for any input

H*=[H, H, --- Hg],
where Hy, € RP*T_ TFy(-) performs
TFo(H™) = [v(H1) (H2) --- (Hg)].

Proof of Lemma D.2. We start by showing the case of a single-head, single-layer standard transformer.

Let
MLPy, o Attn},(H) = MLPg, o VHo((QH, KH)) = VH A,

where Ay = o((QH, KH)).
Let o1 (H) .= VH Ag, to apply group-wise operation of ¢ (-) on some input such that
Y1 (H”) = [1(Hy) ¢i(Hy) -+ ¢1(Hg)].

Let 0 € RTX7T be a zero matrix, and 1 € RT*7 be a 1s matrix, for for any input | H*|]5 o <R, one
can find some u? < 0 to decompose %1 (+) into the following form.
1 (H*) =V [HiAg, H:An, -+ HgAmp,]
Apm, 0 0
0 A, - 0
=VH* .
0 0 - Am,
=VH"x
<QH1,KH1> <QH1,KH2> <QH1,KHK> 0 u2~1
<QH2,KH1> <QH2,KH2> <QH2,KHK> n 'LL2'1 0
ag . . . . . .
(QHix,KH,) (QHi,KH,) --- (QHg,KHg) w1 wu?-1
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Further, observe that operations in an MLP layer are either left multiplication or element-wise
operations, which implies group-wise as well. We then finish the proof by setting u! = 0.

O

Theorem D.3 ((37, Section 5.6)). Suppose i) : [0, +00_, [0, +00) is a convex, non-decreasing func-
tion satisfying (x + y) > ¥(x)Y(y). For any random variable X, we consider the Orlicz norm
induced by 1 : || X||,, == inf{K > 0 : E,(|X[/K)} < 1. Suppose that {X¢} is a zero-mean
random process indexed by 0 € © such that || X9 — Xg/|| < p(0,0") for some metric p on ©. Then
the following holds

1
P sup | Xg—Xo| <8(J+1t) | £ ———, forallt >0,
<9,9’€@ 0 ol ( )> Y(t/D) f

where D is the diameter of the metric space (O, p), and the generalized Dudley entropy integral J is
given by

D
1= [ et e, e
0
where N (§; 0, p) is the 6-covering number of (©, p).

The next technical lemma is in (5). Let BX (R) = [~ R, R]* denotes the standard /., ball in R* with
radius & > 0.

Definition D.4 (Sufficiently smooth k-variable function). We say a function g : R* s R is (R, Cy)-
smooth iffor s = [(k —1)/2] + 2, g is a C* faction on BX (R), and

sup Hvig(z)Hoo = sup sup  |Ogjy-a;,9(x) < Ly
z€BL (R) z€BE (R) j1, ,Ji €[K]

foralli=0,1,--- s, with maxo<;<s L;R' < C,.
Lemma D.5 (Approximating smooth k-variable functions). For any €qpprox > 0, R > 1,Cp > 0, we
have the following: Any (R, Cy)-smooth function g : R* — R is (qpprox, B, M, C)-approximable

by sum of relus with M < C(k)C7log(1 + Cy/el,,,,.) and C < C(k)Cy, where C(k) > 0 is a
constant that depends only on k, i.e.,

M M
f(z)= Z cmo(a,) [2z;:1])  with Z lem| < C, Hé?]\)}] llamll; <,
m=1 m=1 m

such that sup¢_ g gir |f(2) — 9(2)] < €gpprox-

16
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E PROOFS

E.1 PROOF OF LEMMA 3.2

Here we prove a slightly simpler result with the positional encoding containing only zero vectors and
a one-hot vector. One can easily extend the proof by padding the weight matrices.

= [T Z2 e ze O oy 00| paeT (E.D
P1 P2 ... Pr P14l €

Lemma E.1 (Lemma 3.2 Restate). Given a sequence of token H in the form of Equation E.1, there
exists a one-layer, ¢ — 1 head ReLU attention layer, such that the columns of Attng(H) has the
following form:

T
Ti—1 Od/—q ,
Az‘tn;g1 (H);=| 1 |, wherep]:= 1 € RY-at2, (E.2)
Ti g i< T+1}
P!
Proof. Consider an input of the following form
‘rl :L'2 ... :L'T
z=|0 0 --- 0],
e €s ‘e er

where z; € R, p; € R”, forallt = 1,--- ,T. We construct weights of the m-th head wWg. W
as following,

01 O: ei 01 OI ei_m

0" 0 ey o' 0 ey
WIT(n = ) Wén = " )

0" 0" el 0" 0" ef_,,

where we define the negative index as rotational index, i.e., e_; = er,e_o = er_;. We have

(WEX)" (WEX) =

€T—m

Note that the result of o ((W}?X)T (Wé"X)) is a rotation matrix, where right multiplication on
X will rotate the columns of X. Therefore, we have W77 that performs row-wise shifting and the
attention matrix o ((W}?X)T (Wé"X)) performs column-wise shifting. O

E.2 PROOF OF THEOREM 3.6

Autoregressive Linear Regression under Any-Variate Encoding. The ultimate goal of this setup
is to perform the following mechanism. Let « be the target variate we wish to predict, z7 be the j-th
covariate of , for j € [M]. We denote the lookback window size as ¢, and each covariate has length
T (T-time steps.). We denote the time encoding as p; for ¢ € [T'], and the variate encoding as g; for
Jj € [M]. Finally, our goal is to predict .

17
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Ai(q)

A
gl ooaho 22 22 gd gl 2(9)
pi - Pr opL o Proc pr o pr|e |
ey ey ey es ceeoeq e ey Ad(q)

Here, different colors represent different covariates. The motivation for performing such an operation
is to apply the in-context learning property of transformers proved in (5).

Lemma E.2 (Lemma 3.4 Restate). Define the matrix A;(q) for the i-th covariates (%, - - - , x%), with
order q, such that

i i i i i
Ty Lo o Iy Tyt Tyyo
3 N X3 a ¥
I Tr—1 0 T Ty Tit1
¥ 3 ¥ ¥ ¥
— |z x et i T
Ai((I) = T-1 T—2 t—2 t—1 t ,
Tr—q Tr—gq+1 7 Tieq Ti—g+1 Ti-gt2

where in the j-th column of A;(q), it contains historical values of xz with lag q.

Given fixed D,T € N*t, where T > q. For any input matrix H in the form of Any-Variate Encoding
in Equation 3.4, such that H € RD/XdT/, and D' < D, T" < T. There exists a 1-layer, q head
Any-Variate Attention that performs the following operation.

pr - Pr pr - Pr - pP1 o Pr| .
el e el 62 e 62 e ed e ed

Proof. The proof comes as a direct corollary of Lemma D.2 and (5, Proposition A.5). By Lemma 3.2,
there exists a single layer standard transformer layer (with W7, W5 being 0s) that generates 4;(q) for
each univariate (covariate). It then left applying Lemma D.2 for variate-wise operation and applying
(5, Proposition A.5) to keep the time indices p; unchanged.

Corollary E.3. There exists a dyax head standard attention layer that performs the following

A1(q)

A,y
M) b)) o h@] )

— . ) foranyd S dmﬂ-x)
A4(q)

where b;(q) is A;(q) without the first row.

Proof. Note that this operation in Corollary E.3 is straightforward with Lemma 3.2 and (5, Proposi-

tion A.5). As for each ¢ € [d], i # 1, the attention layer performs two operations to each element of
Ai(q):

11" columns to the left  right multiplication
Qmax TOWS below left multiplication .
zero out if in first row (left multiplication)

Note that one can simply construct weight matrices to perform the above permutations and masking.
In total, we need dp,ax heads to perform such operations for each A;(q), for any d < dyax. For

18
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q < Qmax, the remaining entries will be zero padded. Finally, with at best 2 layers of dyax head
any-variate attention, we then obtain

~ 1 1 -
e xT—l 'LT e
xh xh
T-2 Y11
Ai(q )
2(0) Thy T
= ) . 9CdT—1 Tr_1
H™ = = Tr_g Tp_o J
Aa(q)
p
€ d d
Tr_, T,
pPr-1 Pr
L €1 € i
where p is the matrix of (p1,- - ,pr), e is the matrix of (e1,--- ,eq).

Note that 2. in red is the target we wish to predict (masked as 0 initially), and the entries in blue is
considered the input feature of our AR model (a linear regression model in this case), and we are able
to directly apply several theoretical results in (5) with input H (). Specifically, for Theorem 3.6, it
follows directly from (5, Theorem 4) by setting A = 0.

O

Next, we present several approximation results from (5), which our approximation results follows
immediately from. Considering the general form of autoregressive data: z € R¥*T = (zy,..., z7),
where x; = (x%, s ,xf) € R Assuming our target (variate of interest) is in dimension 1, we
assume the autoregressive process generates x; as follows:

33% = f(x%:—dq:t—l) =+ €, (E3)

where ¢; ~ N(0,02), az € R!, and f is a function of interest. We then present several results when
f varies.

Non-Linear AR. Here we analyze that when the autoregressive process is generated by a 2 layer
ReLU network with look back window size ¢. Suppose the prediction function pred(x, w) =
Zkl,(zl ur(v)] ) is given by a two-layer neural network, parameterized by w = [wy, u]ke(x] €
RE(@+1) " Consider the ERM problem:

N N K
in D) = 4 o b Tk
min Ly(w) = 5N izzlf(pred(w“w),yl) = oN ZE <; upr(vy wl),xT) ,

i=1
where 1§/ is a bounded domain and Z; € R% is a flatten version of @;_,.;_, € R?¥4.
Proposition E4. Fix any B,,, B, >0, L > 3,v > 0, and € > 0. Suppose that

1. Both the activation function r and the loss function { is C*-smooth.

2. Wisaclosed domain such that W C {w = [vy; uk|pepr € REE@HD :[|og|ly, < By, luk| < By}
and Proj, = MLPag, for some MLP layer with hidden dimension D, and ||02| |0p < Ch.

Then there exists a (L1 + 2L2)-layer MOIRAI transformer with

max M® < 6(5*2), max DWW < 6(5*2) + Dy,
Le[L1+1,2L5] Le[L1+1,2L3]
Ly
1611, <O +n) +Cu, > MY = dinase + Gumax-
=1

where we hide the constants K, B, B,,, B,, C*, satisfies the following
||@ — wepl[, < Ly'(1+nLp)"e,

where Ly = sup,, ¢y

v?imw)HQ.

19
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Maximum Likelihood Estimation (Gaussian) via Transformers. The next result shows that
MOIRALI transformers are also capable of performing maximum likelihood estimation on any in-
put multi-variate time series. Given a data generated by some AR,;(q) process with parameter

(wy,- -+ ,w,) CRE (xy,--- ,27) C RY, the conditional likelihood f(-) of observing x; is
1 — (@ = Yo (wis ®4))?
@i ) = e =1} .

The goal is to estimate the mean vector (w1, - - - , w,) and the variance o2 by minimizing the negative
log-likelihood loss. Note that with n > d, the loss is strongly convex. The optimization over the
NLL Loss has two steps: estimating the mean vector: @, and then derive the variance 52 with the
following closed-form solution:

=7 Z <a:t ; wi7wt_i>> )

Theorem E.5. Given a set of input data generated by some ARy(q) process: X, € R"*4 Y € R",
considering the following negative log-likelihood loss, the goal is to find a set of parameters w €
R?, 02 € R to minimize the following loss

T q 2
n 1
Lyi(w, o) = 5 log(2mo?) + 257 Z <a:t - Z(wi,wt_i>>

t=q+1 i=1

We denote w*, o* as the ERM satisfying the NLL Loss. There exists a (L1 + Lo + 2)-layer MOIRAI
Transformer such that its first Ly + Lo layers follow the same requirement in Theorem 3.6, and the
last two layers each has two and one heads, it estimates w, o with bounded error:

|l —w*[| <&,
and the estimated variance is bounded by

< 2EB,e 4+ B2e = O(e + £2),

o 2
’02 — 0o

where E < B(1+ B,,), and O hides the values dependent on B, By,.

Proof of Theorem E.5.

T q 2
n 1
Ly (w, o) = 3 10g(27r02) + 352 Z ( Z (w;, T > .

t=1 =1
Following Theorem 3.6, the first L1 + Lo layers of MOIRAI obtains w such that the L; + Lo + 1-th
layer takes the following as input

7 (Li+L2) _ 1 2 . d
h [I Li 1i—qs Li—1i—qi """ Y Li—1:i— q?w + €; 0717t]

where w* + € € qu is the flatten mean Vectors For the simplicity of notations, for the i-th
column, we denote 2} with g;, and denote [@] ., ;&7 1., ;- ;xf as &; € R9%, as they
correspond to the label and feature of our AR model, respectively. € € R% satisfies

llel| < e (nBx).

i—l:i—q]

Now we start to construct the (L; + Lo + 1)-th layer. One can then construct
Qr'hi =[0;z;;0], K{*'h}=[0;w;0], V{""'hj=][0;1;0]
Q5 'hi =[0;2;;0], Ky*'hi =[0;—w;0], V;""'hi =[0;-1;0].

The above construction gives us
h'L+1 hL + Z Z QL+1h7L+17 K’rlrli+1h’jL>) ‘/n[L‘Jrth
J 1 m=1
= [ys; zi; w; 0; 1; 6] + (o ((w, z3)) — o(—(w, z3))) - [0;1; 0]
= [Yi; @i; w; (W, T;), 0; 1;4;].

20
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Next, we construct the last layer as

QIR = LB — (@,8);.], KPPRE = (g, — (@.&):.), ViPTRE = [0:150]

Finally, the result becomes

Thus, we complete the proof.
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E.3 PROOF OF THE LIPSCHITZNESS OF ANY-VARIATE TRANSFORMERS

We first show the Lipschitzness of each component in an Any-Variate Transformer. For any p € [1, oo],
let [[H||,,, = (N ||kl [2)1/7 denote the column-wise (2, p)-norm of H. For any radius R > 0,
we denote 7ty == {H : ||H||, ., < R} be the ball of radius R under norm [|-||, .

Lemma E.6. For a single Any-Variate attention layer, 01 = {(Vy, Q. Ky ul ufn)}me[M], we

introduce its norm
M

161]] := [ {IIQmH(,,,,HKmHo,,,IumI [uml} + D 1Vl

m=1
For any fixed hidden dimension D', we consider
©1,5 = {61 : [[|01]l] < B}.
Then for H € #s, 01 € O©4 p, the function (61, H) — Attng, is (1 + ¢)-Lipschitz w.r.t. 61, where
¢ = max{B?R?> + T + (T — 1)d, B(T — 1)d}, and (1 + B3R?)-Lipschitz w.r.t. H.
Proof. Given some € > 0, some set X and a function class . If F is L-Lipschitzness, i.e.,
[f(z1) = f(@2)|| < L|lzy — 22|, forall f € 7.

Then, the following holds
N(e, 7, ||) < N(</z, X, ||]]).

Define
@attn,B = {aattn : |||03ttn||| < B}

The output of the Any-Variate Attention [ﬁl] is given by

M N
~ 1
hi = h; + NZU«Q,,,Lhi,Kmh) Vil +ub, x U+ a2, «U).
m=1 j=1
We also define 0/, = {V/,, Ql, Klry ull w2}, cian- 1, as

~ 1
hy=hi+ > ﬁZo—«Q;nhi,K’ hi) - Vi h +ull «U+u «T) .
m= Jj=1

Now we bound ||Attng, (H) — Attng (H)||, = max; h; — k!

as follows
2,00 2

HZ [ thzaK h>+U}n*U+U3n*I_J)thJ—

N
Za (Q,hi, K, B )+u%*U+u%*U)V;nhj]

2

N
1
<3 o o (Que K} + 1, 50+ 2, 2 0) Vi
— 0 ((Qhi, Kl hy) +ul x U + 02« U) VI, by H
M 1 N
1 2 B
<37 5 D lhslly o ((Quihis Knhy) + uhy « U + 2, 4 0) V.,

J
— o ((Q,hi, Ko hy) +uly U +u +U) V),

op
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Let

A= (Qunhi,Kphj) +ul, xU+u2 «U
B =(Q,,hi, K ;) +ut «U+u2 xU.

By triangle inequality, we have

lo(A)Vin = a(B)Vll < llo(A)llop Vin = Vinllop + [10(A) = 0 (B)llgp [1Vinllop -

Note that o(-) is 1-Lipschitz, we get

lo(A) = a(B)llgp < 14 = Bl

= {[(Quihi Kohs) = (Quuhis Ky + (uh, = wi)U + (u, —u2)0

op

s\M«%mmem>—«%mmK;mw+-Hw;—u%wan+WHw%—u%wiﬂWH

For the first term in the last inequality, we have

(Quhi, Kmhj) = Q1 K7, Ty < {|Quy — Q[ a7 B || + [ B — K ] [ {]725]] 1| Q|
=R*B(|Qun — QL || + || K — K7, 1)

Further, we have

|| (g, = ) * U] < Jg, = un | U] < Ty, = ]

where T is the length of each variate (lookback window size).

2, — 2) » O] < 2, — 2| [[O]] < (7 = D, - )

where d is the number of variates.

Thus, we have

lo(A) = 0 (B)llop [Vinllop < B (RZB ([|Qun = Quull + [1 K — K ll) + T (Jug, = ugy]) + (T = 1)d (Jug, = uzyn]))
< B-max{R*B, (T = 1)d} - (||Qm — Quull + 1K — K[| + [tn, — | + |up, — i) -

Next, we bound

lo(A)llop < [[Allyy < B*R* + (T + (T — 1)d),

op —
due to the fact that
ANl < [|Qubil| || K| [|up, U || |[u2,T]|.

Overall, the Any-Variate Attention is max{B?R? + T + (T — 1)d, B(T — 1)d}-Lipshcitz in 6;. [

Proof. We start by considering H' = [h/] and

M 1

N
~ > o ((Quhl, Kpnh)) +ul, - U+u2, - U) -V, ).

m=1 j=1

h =h}+
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‘We then bound
CEEARICE

‘ 2

M N
= Z % Z [o’ (<th§7 Kmh;'> + urln -U + Ufn ) ﬁ) Vrn (<th/ Kmh/> ’}n U+ ugn ’ ﬁ) V””hﬂ
=1 j=1

M N
1
< Z NZH m||op||0' (<th;’7Kmh’;> m U+u U) h’j_ (<thlmeh3> "” U+u )h;H?
m=1 j=1
M 1 N 1 92 /
< D IVally {Io (Quhi Kinhy) + b, U+u2,0) |- ||h; = b,
m=1 7j=1

+
Y

((Quhi. Kinhy) +ub, U + 62, 0) — 0 ((Qub}, Kinhy) +ul, U +u2,0) | - [|RS]],

+

M=

Mo

< 20 3 2 Vmllap 3 11Qmlay ol B2 e = 5
J

< B*R?||H — H'

Where the third inequality comes from the fact that ReLU is 1-Lipschitzness, and the fourth and fifth
inequality comes from the AM-GM inequality. For more details, refer (5, Section J.2) O

S
i

H2,oo :

Corollary E.7 (Lipschitz Constant of Single Layer Moirai Transformer). For a fixed number of
heads M and hidden dimension D', we consider

Orr,1,5 = {0 = (01,02)} : M heads, hidden dimension D', |0||,, < B
Then for the function TF® given by
TF® (G,H) — ClipR(MLP92 (Allngl (H))), 0 c ®TF,1,BaH € Hy.

TF is Bg-Lipschitz w.r.t. @ and By-Lipschitz w.r.t. H, where Bg = (14 B?)(1+1)+ BR(1+ B3R?)
and By = (1 + B?)(1 + B3R?).

Proposition E.8 (Lipschitz Constant of Moirai Transformer). For a fixed number of heads M and
hidden dimension D', we consider

Orrr.p = {0 = (07", 05")y : MO = M, DO = 1 ||6)|,, < B
Then for the function TF® is (LBfI_lB@)—Lipschitz in @ € O 1 p for any fixed H.

Proof. Forany 0 = (01,03), H € #y, and 0’ = (61, 65), we have

||TFg(H) — TFy/ (H)|| ., < ||MLPg, (Attng, (H)) — MLPg, (Attng; (H))| |27OO +
||[MLPg, (Attng, (H)) — MLPy, (Attng, (H))| \2700
< (14 B?)||Attng, (H) — Attng, (H)Hz,C>o + BR||62 — 65,
< (1+ B)(1+1) 61 — 61|, + BR[|62 — 03], < Bo (|6 — '],

where R = R + B3R?, . = max{B?R? + T + (T — 1)d, B(T — 1)d}. The second inequality comes
from the fact ||Attng (H)|| < R+ B3R3.

Further, for H' € #g, we have
|ITFo(H) — TFo(H')||, ., < (14 B?)||Attng, (H) — Attng, (H')||
<(1+B*(1+B%®?)||H - H’||27oo )

For the multi-layer case, one can simply follow (5, Proposition J.1) to conclude the proof.
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E.4 PROOF OF THEOREM 4.4
We first describe our proving technique.

(i) We write out the pretraining data generation and objective.

(i) We show that the objective of pretraining on n time series satisfying Dobrushins condition
with length 7', is equivalent to pretraining on a single time series with length n’7" under
Dobrushin’s condition with the same coefficient.

(iii) We bound the complexity of transformers, and apply learning bounds from (7).

Let 7 be a meta distribution, and each distribution drawn from P(T) ~ 7 satisfies the Dobrushin’s
condition with max coefficient as . We then define the single-path average loss as

T
1
Yyper) = > U0, 20) — o [0, 2)]
t=1

Now, we assume our pretraining data is generated by the following
1. Sample n distributions from 7 i.i.d. to get P§T), fory=1,---,n

2. For each distribution Pg-T), we sample (251, , 2;,T)
Assumption E.9. We assume that for each j € [n), (z;.) has marginals equal to some distribution
Dfort=1,---,T.
We first present several lemma and theorems that will be used later.

Lemma E.10 (37, Example 5.8)). Given any well-defined norm ||-||". Let B be the R? unit-ball in
||, i.e. B=1{0 € R | ||0||' < 1}, we have

log N(6,B,||-||") < dlog <1 + ?) )

Theorem E.11 ((7, Theorem 5.3)). Given a function class F, such that |f| < B, forall f € F. Let
PT) be a distribution over some domain ZT), assuming Assumption E.9 holds and g (PT)) < 1/2.

Then for all t > 0,
, %Zf(zi)_Ez[f(Z)] >C<®pm(9")+Bt>> <o P2,

VT

Sfor some universal constant whenever 1/2 — Oqog(P(T)) is bounded away from zero.

The following theorem is from (7; 17).
Theorem E.12. Let P;T) be a distribution satisfying the Dobrushin’s condition with coefficient
a(P(zT)). Let (z1, - ,2z7) ~ P and let f : Z() — R be a real-valued function with the

Sfollowing bounded difference property, with parameters Ay, --- ,Ap > 0:

T
f(2) = FE) <D Lapuz A
t=1

Then for all t > 0,
(1-a)t? >

P(17() - EIF)] 2 1) < 2000 (- G

The following corollary directly follows from the above result
Corollary E.13. Following Theorem E.12, let
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where 0 < l(z;) < Bforallt =1,--- ,T and all z ~ P. Then the variance of £(-) is bounded by
[6(z) = £(z')| < B.
Then, the following holds

P (/6(z) —E[l(2)]| > t) < 2exp <<10‘)’5> .

Direct Application of Theorem E.11. By Theorem E.11, if Assumption E.9 holds, with probability
over 1 —e~**/2 forany 6 € ©, alog(PgT)) < 1/2 we have

2tB;
sup [Yypm| <C {ﬁpm (£(©)) + i} ’
c J

VT

where £(©) denotes the function class of £(6, ), for all § € ©, and C' > 0 is an universal constant.
Note that the above bound presents the naive learning bound for learning a single time series, which
is a direct result from (7).

Here we show properties of a time series generated by concatenating n series under Dobrushin’s
condition with bounded coefficient.

Lemma E.14 (Dobrushin submultiplicativity). Let P, Q) be Markov kernels on a measurable space
(X, F) with Dobrushin coefficients

a(P) = sup [P(z,:) = P(a", )[ltv, Q)= sup 1Q(z,) = Q") [Iv.
Then a(PQ) < a(P) a(Q).

Proof. For any probability measures p, v on X,

|1PQ = vPQllrv = [[(uP = vP)Q|rv < a(Q) [P — vP|rv < a(Q) a(P) || = V[lTv.
Taking sup,, , over Dirac measures yields a(PQ) < a(P)a(Q). O

Lemma E.15 (Concatenation preserves Dobrushin). Let { P}, be kernels with a(P;) < k; < 1.
For the T'-step kernel Py.7 := PiPs - - Pr,

T
a(Pr.r) < H Kt.
t=1
In particular, if k; < k < 1 for all t, then o(Py.7) < k7.

Proof. Apply the previous lemma repeatedly:

T T
a(Pr.r) < Ha(Pt) < Hm.

O

Corollary E.16 (Concatenating n Dobrushin blocks). Let {Pt(j ) ML for j =1,...,n be kernels for
n blocks, and suppose o (Pt(j )) < /igj ) < 1. For the concatenated nT’-step chain

1) p2) (n)
Pl:T Pl:T“.Pl:T’
N~ N~~~
block 1 block 2 block n
its per-step coefficients are bounded by k. := max; ; /{,(5] ) < 1, hence the entire nT-step kernel has

n

T n T
@ HHPt(J) < 1—[11_[1&9) < KILT.
j=1t=

j=1t=1

If all blocks share a common bound r < 1, then the concatenated process is Dobrushin with the same
per-step bound k and nT-step contraction < k™7 .
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Proof. A direct result after applying Lemma E.15. O

Remark E.17. A “reset” step (next state independent of current) has o = 0 and only improves the
bounds. The above results tell us that by concatenating n independent length T' Dobrushin time
series, we end up having a length n’I' Dobrushin time series.

Concatenation with resets. For block j € [n], let (Pt(j ))tT:1 be the Markov kernels and let 1(7)
be its prescribed initial law. Define the reset kernel R\Y) (z,-) = %) (). The concatenated nT-step
chain has kernels

p PV RO p® PP R p™ P,
— —
block 1 block 2 block n.

Lemma E.18. For any probability measure y, the reset kernel R(x,-) = pu(-) satisfies a(R) = 0.

Consequently, if oc(Pt(j )) < /@ij ) <1 for all blocks and steps, then the concatenated chain with resets

has
n

n T
o(TT (0P ) ) < TITTo0
j=1t=1

Jj=1

Lemma E.19 (Reduction to a single chain of length nT’). Let P(T) be the concatenation with resets.
Then: (a) aiog(Ps) < @ < for all s < nT; (b) the marginal at every time under p(nT)

(c) for every 0,
1 n 1 T
p(nT)[ Zf@ Zt} ZEZEPET)[TZKHzH}
j=1 t=1

equals D;

Proof. (a) Direct result from the submultlphcatlve property of Dobrushin series; resets satisfy

og (RY)) = 0, hence sup, alog(P ) < @. (b) By DP(]) D and RU) having output D, induction
over time yields marginal D at all positions. (c) Llnearlty and the blockingt = (j — 1)T'+s. O

Lemma E.20. Let

and
1
Yo = — —Esimy [— , .
0 nT ;K(@,zt) p(n )[nT ;E(Q 2t)]

Then {Xg}o and {Yy}g have the same expectation, i.e.

Sponl o] = £ 3 [

Proof of Lemma E.20. For all z,2’, R(z,-) = R(z2',-) = p, hence || R(z, ) R(z',-)|ltv =0, so
a(R) = 0. Submultiplicativity gives a(K L) < o(K)a(L) and a(RY) = 0. Use hneanty for the
expectation identity. O

M=

9(z1.0)]-

t=1

Remark E.21 (Equality in law of objectives). Under Lemma E.20, for each fixed 0, Xy and }79 have
the same mean (0) and the same Lipschitz modulus in the sample coordinates. In particular, it suffices

t0 bound sup, |Yy|.

Lemma E.22 (Increment control in 0). For any (z1,...,2,T),
1 nT 1 nT
—= > folz) = == > for(x)| < Le p(6.0').
[t [
~ ~ 2 N2
Hence Yy — Yy is subgaussian with variance proxy %.
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Proof. Direct application of He et al. (15, Theorem 2.3). O

Lemma E.23 (Suprema coincide under concatenation). Let Xy and }79 be

n T
Xg = %Z (% ZE(G,Z]‘¢) P(T) Zé 9 ZJ7 )
Jj=1 t=1
_ 1 nT nT
Fim S 00.50) B [ 5 0,2
t=1 t=1

where (21, ..., z,T) is the concatenation (with resets) of the blocks {(zj 1, ...,z T)}}—1. Then for
every realization of the data and for every 6,

Xg =Yy, hence sup|Xy|=sup|Yyl.
9cO 6c0

Proof. Write

Yo 330,50~ 1 [} 3 10510]
j=1t=1 t=1
By construction (z1,...,2,7) is just the stacked sequence, so -3 1£(9 zt) =

% 2?21 Zthl £(0, z;,;). Expectation alignment (concatenation with resets) gives

Fan e 3-10020] = 3B [ 35 10,5.0]
t=1

t=1

Substitute these two equalities into the definition of }79 to obtain Xy = }79 pointwise, hence the
equality of suprema. O

Proof of Theorem 4.4. Recall from Lemma E.23, it is sufficient to bound supy | Yy |

Now, to take supremum over }79, we get

E Sup 13(_T) .

To upper bound sup |)~/9 |, we take a similar approach to (5, Proposition A.4).

Assuming the index set O is equipped with a distance metric p and diameter D. We assume that for
any ball ©’ of radius r in O, there exists some constant C; such that the covering number admits
upper bound

log N (6,0, p) < dlog(2Ar/§),

forall 0 < 6 < 2r.
Now we select Og such that it is a (Dg/2)-covering of ©. The above assumption guarantees us

that we can have a O such that log |©¢| < dlog(24D/Dy). By Corollary E.13, Yy is a 2B%/(1-a)-
subgaussian (v = «(P("7))). Then, with probability at least 1 — §/2,

sup |Yy| < C
0€0©o (

25, 2@) \/dlog(2AD/ D) + log(2/5).

Note that the uniform bound for independent subgaussian random variables still applies here as for
each 6, we are re-sampling a new chain from a new distribution sampled from 7.
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Assume that ©g = {61, - -, 0, }. Now for each j € [m], we consider O is the ball centered at 6; of
radius Dy in (©, p). With Theorem D.3, for each process {Yp }oco,, then
~ ~ Bl ,
=1, ||[Yg—Yol|| < —=p(6,0"),
Y =1y H o= Yol \/n—TP( )

where £(6, z) — £(6, z) is a B*p(6, 0')-subgaussian random variable.

We then get

~ dlog(2A
P| sup |Yy—Yy|<C'B'D, dlog(24) +t] ) <2exp(—nTt?), forallt > 0.
0,0co, nT

If we further take ¢ < y/log(2m/d)/Tn, then with probability at least 1 — §/2, it holds that for all
j € [m],

sup [Yp — Yo | < C'B' Dy
9,9'6®j

\/ 2d1og(2AD/Dy) + log(4/4)
nT

By chaining, we have
Yol < [Yo,| + Yo — Yo,|.

Hence with probability at least 1 — 4, it holds that

~ ~ ~ = 282 dlog(2AD/D log(2/5
sup |YI9| < sup |YIQ|+SUP sup |Y9—Y9j| < C//($+B1DO)\/ Og( / 0) + 0g< / )
9cO 90, j 6eo, (1-a) nT

Next by taking Do = D/k, 5 =1+ BID(;gg), we get

| B'Dr) \/dlog(ZAn) + log(2/6)

~ 282
sup }/9 S C// xz
9co id ( nT

1 a)

Last, we check whether the assumptions we make above hold for our function class £g. Below, we
slightly abuse our notation by using D as the dimension for weight matrices in TFg. By Lemma E. 10,
it holds that

log N (3, Byjyy, () ||-llop) < LBMD? + DD' + 2) log(1 + 2/3),
where By (r) is a ball of radius r under norm ||-[| .

‘We check that
16(6,z) — £(¢', 2)|| < B(LBg; " Bo) (16 — 'l

where it is a direct result from Proposition E.8. By plugging all the parameters, we get

L(3BMD? + DD’ + 2). +1og(2/6)
nT ’

~ B2 \/
Yo < C =
= Ok

where ¢ = log(2 + 2(LBII}_1B@)B%)
By plugging the ERM 6, we get
L(6) < inf L(0) + 2sup |Yyl.
0

Finally, apply Lemma E.15, we have o < ™.
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E.5 ANALYSIS OF COROLLARY 4.6

Definition E.24 (Markov Random Field (MRF) with pairwise potentials). The random vector
Z = (Z1,-+ ,Zg) over Z% is an MRF with pariwise potentials if there exist functions \; : Z — R
and @;; : Z* — R fori # j € {1,--- ,d} such that for all z € Z4,

d
]P)ZNPd [Z = Z] = H ew(zi) H etpij(zi,Zj)
i=1 1<i<j<d

The functions 1p; are called as element-wise potentials and ¢;; are pairwise potentials.
Definition E.25. Given an MRF Z with potentials {;} and {1;; }, we define

AT — (. YR Y\ pd
Bus(Z) = sup loy(Zi Z))l: B(Z) lrgggd;ﬁu(P )
J i

Lemma E.26. Given an MRF z with pairwise potentials, for any i # j, I;:(z) < Bj:(2).
I;i(Z) < IjH(Z) < B;4(Z)

Lemma E.26 implies that to satisfy the condition o!°8(-) < 1/2, it is sufficient to show that 3(-) <
1/2, leading to the following condition.

1
(wxy, Tr1) < In 3 + (02). (E.4)

Observe that
(way, @p41) < [Jw]] - max|[a||
= BB,
<Ing o+ (02) ~ 03,

E.6 ADDITIONAL DETAILS
The History Matrix. The matrix form of A;(q) is presented below

i i i i i
T Lo v Iy Titq Tiyo
] 7 X3 3 3
T Tp_1 0 T Tt L1
3 ] X3 1 3
Ai(g) = |T1—1  Fr—2 0 Tia T Ty e (E.5)
i i i i i
Tr—q Fr—qy1 " Fimg Ti—gy1 Ti—g42
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F EXPERIMENTAL DETAILS

F.1 ENVIRONMENT

We mostly train our model on NVIDIA-H100 GPUs with 2 cores each with 128GB RAM. 2 GPUs
are sufficient for all of our experiments. We use PyTorch 2.1 and our code is based on the open source
published by (39). Training and evaluate takes roughly 12 hours for one run.

F.2  MODEL ARCHITECTURE
For most of our experiments, we use MOIRAI-base model. The hyperparameters are listed in Table 2.

Table 2: Hyperparameters

parameter values
batch size 64
initial learning rate le-3
learning rate decay cosine annealing
hidden dimension 768
MLP dimension 3072
number of heads 12
training steps 20k
max sequence length 512
optimizer AdamW
beta (51, 52) (0.9,0.98)
weight decay le-1
warm up steps (linear) 10k

F.3 SYNTHETIC DATA GENERATION

We generate the AR synthetic data similar to Equation (2.1) but use normalization to stabilize the
values. The parameters of synthetic data are in Table 3. Consider a sequence of data & € R**7T =
(x1,...,27), where &, = (zf,---,z¢) € R Assuming our target (variate of interest) is in

dimension 1, we assume the AR4(q) process generates x; as follows:

A
v fdzzai-wi_ﬂret, (E.1)
=1 j=1

where ¢, ~ N(0,1), a ~ N(0,1) € R. After recursively generating the time series, we remove
its first 50 time steps as burnout. Each AR time series has a number of covariates between 1 to 5.
For training data, we sampled 100 different time series, each with 20k time steps. For test data, we
randomly generate one time series with time step 5k, and evaluate our model on all time steps. We
set ¢, d < 5 in our experiments.

Seasonality. We also conduct experiments on datasets with seasonality information. Specifically,
we consider monthly information. After generating a multi-variate time series with 7" time steps
x € R™T we then add the seasonality information. For each time step t, its seasonal information is
. 27T
a-sin — € R,

f

where a € R is the amplitude, f € N* is the frequency which is 30 for monthly information. The
whole seasonal information will be added to the time series.

F.4 BASELINES

Least Squares Regression. Consider MOIRAI taking an input AR sequence x € R?*7', to match
our theoretical results (Theorem 3.6), we transform « into the following input-label pairs

z1 = (21, xg), Tgy1)
Ty = ((x2,--- qurl)a wq+2)
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Table 3: Parameter of Synthetic Data

parameter values
lag size {1,2,3,4,5}
variance unif(0.1,1)
length (7)) 20k
number of covariates (d) {1,2,3,4,5}
amplitude unif(0, 1.5)
frequency 30

After fitting least squares on this transformed dataset with 7" — ¢ samples, it predicts the 7' + 1-th
time step with the following input

Tiest = (mT—q-i-lv T mT) .

For least squares, we use learning rate as 0.1, and perform full gradient descent with 50, 100 iterations.

F.5 ADDITIONAL EXPERIMENTS

Seasonality Data. Here we present the experimental results on training transformers on seasonality
data. The data generation is the same as described above. We use the same setup for seasonality
data, where our training data comes from time series with d € {1,2,3,4,5},and ¢ = {1, 2, 3,4, 5}.
The evaluation results on seasonality data is in Figure 2. We observe that transformers are capable
of inferring data with seasonality. Note that transformers are capable of achieving nearly optimal
performance, while least squares regression fails, indicating that transformers are capable of fitting a
more complicated model than AR on a given time series.

Seasonality Data (d=5, q=5)

1.8 \ Model
\ —e— MOIRAI
. LS (iter=100)
1.6 \ —— LS (iter=50)
I .
=1.4 \\ _____ -
1.2 |
\'/.\'\ — O~
1.0 R o e
50 100 150

Lookback Size

Figure 2: We observe that when least squares regression fails to obtain the optimal error rate for
prediction, transformers are capable of having their MSE converge towards 1 as the lookback size
increases. This indicates that these models are capable of fitting a more complex model other than
linear regression on a given time series.

F.6 EVALUATION ON REAL-WORLD DATASETS.

Here we conduct a similar experiment to Section 5 to real-world datasets. We first pretrain a MOIRAI
transformer to simulate AR regression, and then we test it on real-world datasets to see if it can handle
real-world dataset in a principled way. Specifically, we use the same checkpoint of transformers in
Section 5, and we pick two common datasets: ETTh1 and ETTml to test transformers. The results
are in Figure 3.

We compare the pretrained transformer with AR models with different lag size varying from 3 to 20.
Each point in the figure is the average over 5 runs, the variance is small thus we omit it for better
visualization.
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ETTm1 Performance Comparison ETTh1 Performance Comparison
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04175 ARlag=s
- —e— ARlag=10
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—e— ARlag=20
—e— Transformer

04125 N\'——"/'/'/‘\.\"W

0.1034
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0.4075 ._M‘H/\\'_’,__.—o—'——¢
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01031
04025
200 25 50 75 100 125 150 175 200
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Mean Squared Error

Mean Squared Error

0.1032

Figure 3: Comparison between pretrained transformer and AR models. While different lag size
shows different performance, we are able to observe that transformers can indeed outperform all
other AR models. Indicating transformers’ predictive power might be more than just simulating the
AR algorithm.

Datasets. ETThl and ETTm] are datasets recording the electricity usage through out time. ETThI
records the usage every hour, and ETTmI records the usage every 15 minutes. The two datasets are
in the same domain, but with different frequency. We test all models on the whole dataset.
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