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ABSTRACT

Detecting text generated by modern large language models is thought to be hard,
as both LLMs and humans can exhibit a wide range of complex behaviors. How-
ever, we find that a score based on contrasting two closely related language mod-
els is highly accurate at separating human-generated and machine-generated text.
Based on this mechanism, we propose a novel LLM detector that only requires
simple calculations using pre-trained LLMs. The method, called Binoculars,
achieves state-of-the-art accuracy without any training data. It is capable of spot-
ting machine text from a range of modern LLMs without any model-specific mod-
ifications. We comprehensively evaluate Binoculars on a number of text sources
and in varied situations. On news documents Binoculars detects 94.92% of syn-
thetic samples at a false positive rate of 0.01%, given 512 tokens of text from
either humans or ChatGPT, matching highly competitive commercial detectors
tuned specifically to detect ChatGPT.

1 INTRODUCTION

We present a method for detecting LLM-generated text that works in the zero-shot setting in which
no training examples are used from the LLM source. Even with this strict limitation, our scheme
still out-performs all open-source methods for ChatGPT detection and is competitive with or better
than commercial APIs, despite these competitors using training samples from ChatGPT (Mitchell
et al., 2023; Verma et al., 2023). At the same time, because of the zero-shot nature of our detector,
the very same detector can spot multiple different LLMs with high accuracy – something that all
existing solutions fail to do.
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Figure 1: Detection of Machine-Generated Text from ChatGPT. Our detection approach using
Binoculars is highly accurate at separating machine-generated and human-written samples from
News, Creative Writing and Student Essay with a false positive rate of 0.01%. Binoculars, based
on open-source Falcon models with no finetuning, outperforms both commercial detection systems,
such as GPTZero, as well as strong open-source detectors – even though both of these baselines
are specifically tuned to detect ChatGPT (Verma et al., 2023; Tian, 2023a). Our approach operates
entirely in a zero-shot setting and has neither been tuned nor trained to detect ChatGPT in particular.
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The ability to detect LLMs in the zero-shot setting addresses issues of growing importance. Prior
research on combating academic plagiarism (TurnitIn.com) has fixated strongly on ChatGPT be-
cause of its simple and accessible interface. But more sophisticated actors use LLM APIs to operate
bots, create fake product reviews, and spread misinformation on social media platforms at a large
scale. These actors have a wide range of LLMs available to them beyond just ChatGPT, mak-
ing zero-shot, model-agnostic detection critical for social media moderation and platform integrity
assurance (Crothers et al., 2022; Bail et al., 2023). This zero-shot capability is a departure from
existing detectors that rely on model-specific training data and often fail to transfer to new models.

Our proposed detector, called Binoculars, works by viewing text through two lenses. First, we
compute the log perplexity of the text in question using an “observer” LLM. Then, we compute all
the next-token predictions that a “performer” LLM would make at each position in the string, and
compute their perplexity according to the observer. If the string is written by a machine, we should
expect these two perplexities to be similar. If it is written by a human they should be different.

2 THE LLM DETECTION LANDSCAPE

A common first step in harm reduction for generative AI is detection. Specifically, from docu-
menting and tracing of text origins (Biderman & Raff, 2022) to investigating spam and fake news
campaigns (Zellers et al., 2019) and to analyzing training data corpora, classifying text as human
or machine generated is common practice (Bender et al., 2021; Crothers et al., 2022; Mirsky et al.,
2023).

Successful efforts to spot machine-generated text showed early promise on models whose genera-
tion output is not convincingly human. However, with the rise of transformer models for language
modeling (Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023),
primitive mechanisms to detect machine-generated text are rendered useless. While one approach
is to record (Krishna et al., 2023) or watermark all generated text (Kirchenbauer et al., 2023), these
preemptive detection approaches can only be implemented with full control over a generation model.

Instead, the recent spread of machine-generated text, especially via ChatGPT, has lead to a flurry of
work on post-hoc detection, or approaches that can be used to detect machine text without coopera-
tion from model owners. These detectors can be separated into two main groups. The first is trained
detection models, where a pretrained language model backbone is finetuned for the binary classi-
fication task of detection (Solaiman et al., 2019; Zellers et al., 2019; Yu et al., 2023; Zhan et al.,
2023). These techniques include adversarial training (Hu et al., 2023) or abstention (Tian et al.,
2023). Instead of finetuning the whole backbone, a linear classifier can also fit on top of frozen
learned features, which allows for the inclusion of commercial API outputs (Verma et al., 2023).

The second category of approaches comprises statistical signatures that are characteristic of
machine-generated text. These approaches have the advantage of requiring none or little training
data and they can easily be adapted to newer model families (Pu et al., 2022). Examples include
detectors based on perplexity (Tian, 2023b; Vasilatos et al., 2023; Wang et al., 2023), perplexity
curvature (Mitchell et al., 2023), log rank (Su et al., 2023), intrinsic dimensionality of generated text
(Tulchinskii et al., 2023), and n-gram analysis (Yang et al., 2023). Our coverage of the landscape
is non-exhaustive, and we refer to recent surveys Tang et al. (2023); Dhaini et al. (2023); Guo et al.
(2023) as well as our appendix for additional details.

In Section 3, we motivate our approach and discuss why detecting language model text, especially in
the ChatGPT world, is difficult. In this work, our emphasis is directed toward baselines that function
within post hoc, out-of-domain (zero-order), and black-box detection scenarios. We use state-of-
the-art Ghostbuster (Verma et al., 2023), the commercially deployed GPTZero1, and DetectGPT
(Mitchell et al., 2023) to compare detection performance over various datasets in Section 4. In
Section 5, we evaluate the reliability of Binoculars in various settings that constitute edge cases and
interesting behaviors of our detector.

With an understanding of how much work exists on LLM detection, a crucial question arises: How
do we appropriately and thoroughly evaluate detectors? Many works focus on accuracy on bal-
anced test sets and/or AUC of their proposed classifiers, but these metrics are not well-suited for

1https://gptzero.me/
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the high-stakes question of detection. Ultimately, only detectors with low false-positive rates across
wide distributions of human-written text, truly reduce harm. Further, Liang et al. (2023) note that
detectors are often only evaluated on relatively easy in-domain datasets. Their performance on out-
of-domain samples is abysmal, for example TOEFL essays written by non-native English speakers
were wrongly marked as machine-generated 48-76% of the time by commercial detectors (Liang
et al., 2023).

From a theoretical perspective, Varshney et al. (2020), Helm et al. (2023), and Sadasivan et al. (2023)
all discuss the limits of detection. These works generally agree that fully general-purpose models
of language would be, by definition, impossible to detect. However, Chakraborty et al. (2023) note
that even models that are arbitrarily close to this optimum are technically detectable given a suffi-
cient number of samples. In practice, the relative success of detection approaches, such as the one
we propose and analyze in this work, provides constructive evidence that current language models
are imperfect representations of human writing – and thereby detectable. Finally, the robustness of
detectors to attacks attempting to circumvent detection can provide stronger practical limits on reli-
ability in the worst case (Bhat & Parthasarathy, 2020; Wolff & Wolff, 2022; Liyanage & Buscaldi,
2023).

3 Binoculars: HOW IT WORKS

Our approach, Binoculars, is so named as we look at inputs through the lenses of two different
language models. It is well known that perplexity – a common baseline for machine/human classi-
fication – is insufficient on its own, leading prior work to disfavor approaches based on statistical
signatures. However we propose using a ratio of two scores, where one is a perplexity measurement
and the other is cross-perplexity, a notion of how surprising the next token predictions of one model
are to another model. This two-model mechanism is the basis for our general and accurate detector,
and we show that this mechanism is able to detect a number of large language models, even when
they are unrelated to the two models used in the Binoculars.

3.1 BACKGROUND & NOTATION

A string of characters s can be parsed into tokens and represented as a list of token indices x⃗.
Let xi denote the token ID of the i-th token, which refers to an entry in the LLMs vocabulary
V = {1, 2..., n}. Given a token sequence as input, a language model M predicts the next token by
outputting a probability distribution over the vocabulary:

M(T (s)) = M(x⃗) = Y

Yij = P(vj |x0:i−1) for all j ∈ V.
(1)

We will abuse notation and abbreviate M(T (s)) as M(s) where the tokenizer is implicitly the
one used in training M. For our purposes, we define log PPL, the log-perplexity, as the average
log-likelihood of all tokens in the given sequence. Formally, let

log PPLM(s) = − 1

L

L∑
i=1

log(Yixi
),

where x⃗ = T (s), Y = M(x⃗) and L = number of tokens in s

(2)

Intuitively, log-perplexity measures how “surprising” a string is to a language model. As mentioned
above, perplexity has been used to detect LLMs, as humans produce more surprising text than LLMs.
This is reasonable, as log PPL is also the loss function used to train generative LLMs, and models
are likely to score their own outputs as unsurprising. For narrative purposes, it is convenient to
discuss the perplexity of a string according to some model.

Our method also measures how surprising the output of one model is to another. We define the
cross-perplexity, which takes two models and a string as its arguments. Let log X-PPLM1,M2

(s)
measure the average per-token cross-entropy between the outputs of two models, M1 and M2 ,
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when operating on the tokenization of s.2

log X-PPLM1,M2
(s) = − 1

L

L∑
i=1

M1(s)i · log (M2(s)i) (3)

Note that · denotes the dot product between two vector-valued quantities. Intuitively, the cross
perplexity measures how surprising one language model’s predictions are to another observer model.

3.2 WHAT MAKES DETECTION HARD? A PRIMER ON THE CAPYBARA PROBLEM.

Why do we require measurements of both perplexity and cross-perplexity? Unsurprisingly, LLMs
tend to generate text that is unsurprising. Meanwhile, because humans differ from machines, human
text has high perplexity to an LLM observer. For this reason, it is tempting to use raw perplexity for
LLM detection.

Unfortunately, this intuition breaks when hand-crafted prompts are involved. Prompts have a strong
influence over downstream text, and prompts are typically unknown to the detector. On the one
hand, the prompt “1, 2, 3,” might result in the very low perplexity completion “4, 5, 6.” On the
other hand, the prompt “Can you write a few sentences about a capybara that is an astrophysicist?”
will yield a response that seems more strange. In the presence of the prompt, the response may be
unsurprising. In the absence of the prompt, a response containing the curious words “capybara” and
“astrophysicist” in the same sentence will have high perplexity, resulting in the false determination
that the text was written by a human, see the example in Table 1. Clearly, certain contexts will result
in high perplexity and others low perplexity, regardless of whether the author is human or machine.
We refer to this dilemma as “the capybara problem” – in the absence of the prompt, LLM detection
seems difficult.

“Dr. Capy Cosmos, a capybara unlike any other, astounded the scientific community
with his groundbreaking research in astrophysics. With his keen sense of observation
and unparalleled ability to interpret cosmic data, he uncovered new insights into the
mysteries of black holes and the origins of the universe. As he peered through tele-
scopes with his large, round eyes, fellow researchers often remarked that it seemed as
if the stars themselves whispered their secrets directly to him. Dr. Cosmos not only
became a beacon of inspiration to aspiring scientists but also proved that intellect and
innovation can be found in the most unexpected of creatures.” - ChatGPT

Table 1: This quote is LLM output from ChatGPT (GPT-4) when prompted with “Can you write
a few sentences about a capybara that is an astrophysicist?” The Falcon LLM assigns this sample
a high perplexity (2.20), well above the mean for both human and machine data. Despite this
problem, our detector correctly assigns a Binoculars score of 0.73, which is well below the ma-
chine/human threshold of 0.84, resulting in a correct classification with high confidence. For ref-
erence, DetectGPT wrongly assigns a score of 0.14, which is below the optimal threshold of 0.17,
and classifies the text as human. GPTZero assigns a 49.71% score that this text is generated by AI.

3.3 OUR DETECTION SCORE

Binoculars solves the capybara problem by providing a mechanism for estimating the baseline per-
plexity induced by the prompt. By comparing the perplexity of the observed text to this expected
baseline, we get fiercely improved LLM detection.

Motivation Language models are known for producing low-perplexity text relative to humans and
thus a perplexity threshold classifier makes for an obvious detecting scheme. However, in the LLM
era, the generated text may exhibit a high perplexity score in the absence of the prompt (see the
“Capybara Problem” in Table 1). To calibrate for prompts that yield high-perplexity generation,
we use cross-perplexity introduced Equation (3) as a normalizing factor that roughly encodes the
perplexity level of next-token predictions from two models.

2This requires that M1 and M2 share a tokenizer.
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Rather than examining raw perplexity scores, we instead propose measuring whether the tokens that
appear in a string are surprising relative to the baseline perplexity of an LLM acting on the same
string. A string might have properties that result in high perplexity when completed by any agent,
machine or human. Yet, we expect the next-token choices of humans to be even higher perplexity
than those of a machine. By normalizing the observed perplexity by the expected perplexity of a
machine acting on the same text, we can arrive at a detection metric that is fairly invariant to the
prompt; see Table 1.

We propose the Binoculars score B as a sort of normalization or reorientation of perplexity. In
particular we look at the ratio of perplexity to cross-perplexity.

BM1,M2
(s) =

log PPLM1(s)

logX-PPLM1,M2
(s)

(4)

Here, the numerator is simply the perplexity, which measures how surprising a string is to M1.
The denominator measures how surprising the token predictions of M2 are when observed by M1.
Intuitively, we expect a human to diverge from M1 more than M2 diverges from M1, provided the
LLMs M1 and M2 are more similar to each other than they are to a human.

The Binoculars score is a general mechanism that captures a statistical signature of machine text.
We will see that, for most obvious choices of M1 and M2, it does separate machine and human
text much better than perplexity alone. Importantly, it is capable of detecting generic machine-text
generated by neither model M1 nor M2.

Interestingly, we can draw some connection to other approaches that contrast two strong language
models, such as contrastive decoding (Li et al., 2023), which aims to generate high-quality text
completions by generating text that roughly maximizes the difference between a weak and a strong
model. Speculative decoding is similar (Chen et al., 2023; Leviathan et al., 2023), it uses a weaker
model to plan completions. Both approaches function best when pairing a strong model with a very
weak secondary model. However, as we show below, our approach works best for two models that
are very close to each other in performance. In the remainder of this work, we use the open-source
models Falcon-7b model (M1) and the Falcon-7b-instruct (M2) (Almazrouei et al., 2023).

4 ACCURATE ZERO-SHOT DETECTION

In this section we evaluate our proposed score, and build a zero-shot LLM detector with it. With
Binoculars, we are able to spot machine-generated text in a number of domains. In our experimental
evaluation, we focus on the problem setting of detection of machine-generated text from a modern
LLM, as generated in common use cases without consideration for the detection mechanism.

4.1 DATASETS

We start our experiments with several datasets described in the LLM detection literature. The most
recent baseline to which we compare is Ghostbuster. Verma et al. (2023), who propose this method,
introduce three datasets that we include in our study: Writing Prompts, News, and Student Essay.
These are balanced datasets with equal numbers of human samples and machine samples. The
machine samples are written by ChatGPT.

We also generate several datasets of our own to evaluate our capability in detecting other language
models aside from ChatGPT. Drawing samples of human-written text from CCNews (Hamborg
et al., 2017), PubMed (Sen et al., 2008), and CNN (Hermann et al., 2015), we generate alternative,
machine-generated completions using LLaMA-2-7B and Falcon-7B. To do so, we peel off the first
50 tokens of each human sample and use it as a prompt to generate up to 512 tokens of machine
output. We then remove the human prompt from the generation and only use the purely machine-
generated text in our machine-text datasets. Further, we use the Orca dataset (Lian et al., 2023),
which provides several million instruction prompts with their machine-generated completions from
chat versions of GPT-3 and GPT-4. This dataset allows us to check the reliability of the proposed
method when detecting instruction-tuned models, and allows us to quantify detection differences
between GPT-3 and GPT-4.
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4.2 METRICS

Since detectors are binary classifiers, the standard suite of binary classification metrics are relevant.
In particular, it is often considered comprehensive to look at ROC curves and use the area under
the curve (AUC) as a performance metric. In fact, Verma et al. (2023) and Mitchell et al. (2023)
only report performance as measured by AUC and F1 scores. We argue that these metrics alone are
inadequate when measuring LLM detection accuracy.

In high-stakes detection settings, the most concerning harms often arise from false positives, i.e.,
instances when human text is wrongly labeled as machine-generated. For this reason, we focus on
true-positive rates (TPR) at low false-positive rates (FPR), and adopt a standard FPR threshold of
0.01%.3 We will present F1 scores and AUC values only for comparison to prior publications, but
we prefer to focus on TPR values at low FPR as a key metric. The reader may observe that AUC
scores are often uncorrelated with TRP@FPR when the FPR is below 1%.

4.3 BENCHMARK PERFORMANCE

Using a handful of datasets, we compare the AUC and TPR of Binoculars to Ghostbuster (Verma
et al., 2023), GPTZero (Tian, 2023a), and DetectGPT (using LLaMA-2-13B to score curvature)
(Mitchell et al., 2023). We highlight that this is a comparisons on machine samples from ChatGPT
are in favor of GPTZero and Ghostbuster, as these detectors have been tuned to detect ChatGPT
output, and comparisons using samples from LLaMA models are in favor of DetectGPT for the
same reason.

Figure 2: F1 scores for detection of ChatGPT-generated text indicate that several detectors perform
similarly. We discuss below how this metric can be a poor indicator of performance at low FPR.

Our score-based detector needs only a threshold to separate machine and human text, which we
preset using reference data. To maintain our “zero-shot” claim, we set the threshold using the com-
bination of training splits from all of our reference datasets: News, Creative Writing, and Student
Essay datasets from Verma et al. (2023), which are generated using ChatGPT. We also compare
detectors on LLaMA-2-13B and Falcon-7B generated text with prompts from CC News, CNN, and
PubMed datasets. All of these datasets have an equal number of human and machine-generated text
samples. We optimize and fix our threshold globally using these datasets. As one exception, to be
sure that we meet the Ghostbuster definition of “out-of-domain,” when comparing our performance
with Ghostbuster we do not include the ChatGPT datasets (News, Creative Writing, and Student
Essay) in the threshold determination, and only use samples from CC News, CNN, and PubMed
(generated via LLaMA and Falcon) to choose our threshold.

Ghostbuster Datasets. The Ghostbuster detector is a recent detector tuned to detect output from
ChatGPT. Using the same three datasets introduced and examined in the original work by Verma
et al. (2023), we show in Figure 2 that Binoculars outperforms Ghostbuster in the “out-of-domain”
setting. This setting is the most realistic, and includes evaluation on datasets other than Ghostbuster’s
training data. A desirable property for detectors is that with more information they get stronger.
Figure 3 shows that both Binoculars and Ghostbuster have this property, and that the advantages of
Binoculars are even clearer in the few-token regime.

3The smallest threshold we can comprehensively evaluate with our limited compute resources.
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Figure 3: Document Size Impact on Detection Performance. The plot displays the TPR at 0.01%
FPR across varying document sizes. The x-axis represents the number of tokens of the observed doc-
ument, while the y-axis indicates the corresponding detection performance, highlighting the Binoc-
ulars ability to detect with a low number of tokens.

Open-Source Language Models. We show that our detector is capable of detecting the output
of several LLMs, such as LLaMA as shown in Figure 4 and Falcon as shown in Figure 13 in the
appendix. Here we also observe that Ghostbuster is indeed only capable of detecting ChatGPT
generation and fails to reliably detect LLaMA generated text. We use AUC plot to compare threshold
invariant performance for all methods.
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Figure 4: Detecting LLaMA-2-13B generations. Binoculars achieves higher TPR for low FPR
than competing baselines.

Orca Data. The Orca dataset contains machine generations from both GPT-3 and GPT-4 for a wide
range of tasks (Lian et al., 2023). This serves as a diverse test bed for measuring Binoculars on
both of these modern and high-performing LLMs. Impressively, Binoculars detects 92% of GPT-
3 samples and 89.57% of GPT-4 samples when using the F1-optimal threshold (from reference
datasets). Note, we only report accuracy since this is over a set of machine-generated text only.

5 RELIABILITY IN THE WILD

How well does Binoculars work when faced with scenarios encountered in the wild? We com-
prehensively evaluate on memorized samples, text from non-native speakers, modified prompting
strategies, and other edge cases in this section.

5.1 VARIED TEXT SOURCES

To explore detector performance in even more settings, we also investigate the Multi-generator,
Multi-domain, and Multi-lingual (M4) detection datasets (Wang et al., 2023). These samples come
from Arxiv, Reddit, Wikihow, and Wikipedia sources, and include examples in varied languages,
such as Urdu, Russian, Bulgarian, and Arabic. Machine text samples in this dataset are generated
via ChatGPT. In Figure 7, we show the precision and recall of Binoculars and four other base-
lines, showing that our method generalizes across domains and languages. These baselines, released
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with M4 Datasets, include Logistic Regression over Giant Language Model Test Room (LR GLTR)
(Gehrmann et al., 2019) which generates features assuming predictions are sampled from predicted
token distribution, Stylistic (Li et al., 2014) which employs syntactic features at character, word and
sentence level, News Landscape classifiers (NELA) (Horne et al., 2019) which generates and lever-
ages semantic and structural features for veracity classification. Results with more source models
appear in Figure 5.
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Figure 7: Detection of ChatGPT-generated text in various domains from M4 Dataset. Binoc-
ulars maintain high precision over 4 domains using the global threshold (tuned out-of-domain) for
detection. We use the mean of out-of-domain performance metrics reported by Wang et al. (2023)

5.2 OTHER LANGUAGES

When evaluating Binoculars on sample from languages that are not largely present in Common
Crawl data (standard LLM pretraining data), we find that false-positives rates remain rather low.
However, even machine text in these other languages is classified as human. Figure 6 shows that
we have reasonable precision but poor recall in these settings. (A stronger multilingual pair of
models would likely lead to a version of Binoculars that can see ChatGPT-generated text in these
languages reliably.) This finding suggests that it may be more accurate to consider Binoculars as a
detector for LLM output rather than a human-machine classifier. This subtle difference aligns with
the performance on samples in languages that most LLMs trained on Common Crawl data cannot
generate as well as the findings on randomized data and on memorized examples above.

English text written by non-native speakers. A significant concern about LLM detection algo-
rithms, as raised in Liang et al. (2023), is that LLM detectors are inadvertently biased against non-
native English speakers (ESL) classifying their writing exceedingly often as machine-generated.
To test this, we analyze essays from EssayForum, a web page for ESL students to improve their
academic writing (EssayForum, 2022). This dataset contains both the original essays, as well as
grammar-corrected versions. We compare the distribution of Binoculars scores across the original
and the grammar-corrected samples. Interestingly, and in stark comparison to commercial detectors
examined by Liang et al. (2023) on a similar dataset, Binoculars attain equal accuracy at 99.67%
(see Figure 8) for both corrected and uncorrected essay datasets. We also point out that Binoculars
distribution of non-native English speaker’s text highly overlaps with that of grammar-corrected
versions of the same essays, showing that detection through Binoculars is insensitive to this type of
shift.

8



Under review as a conference paper at ICLR 2024

5.3 MEMORIZATION

One common feature of perplexity-based detection is that memorized examples are also classified
as machine-generated. For example, famous quotes that appear many times in the training data
likely have low perplexity even though they are human samples. By looking at several examples, we
examine how Binoculars performs on this type of data.

First, we ask about the US Constitution – a famous document on which modern LLMs are great
at sentence completion. This example has a Binoculars score of 0.76, well into the machine range
– perhaps less than ideal, but of the 11 famous texts we study,4 this was the lowest score (most
machine-y), and only three fall on the machine-side of our threshold.

It is important to note that while this behavior may be surprising, and does require careful consid-
eration in deployment, it is fully consistent with a machine-text detector. Memorized text is in an
interesting category, as it is both text written by human writers, and text that is likely to be generated
by an LLM.

Classification of memorized text as machine generated may be acceptable or even desirable in some
applications (e.g., plagiarism detection), or undesirable in others (e.g., removal of LLM-generated
text from a training corpus). Thus, these experiments highlight the care one needs to take when
deploying detectors in practice.
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prompt for text generation.

5.4 MODIFIED PROMPTING STRATEGIES

Simple detection schemes are sometimes fooled by simple changes to prompting strategies, which
can produce stylized text that deviates from the standard output distribution. With this in mind,
we use LLaMA-2-13B-chat and prompts designed to tweak the style of the output. Specifically,
we prompt LLaMA2-13B-chat with three different system prompts by appending to the standard
system prompt a request to write like a pirate, like Carl Sagan, or without any mechanical or robotic
sounding words. The biggest impact we observe arises when asking for pirate-sounding output and
this only increases the error rate by 1%; see Figure 9.

5.5 RANDOMIZED DATA

We want to test whether arbitrary mistakes, hashcodes, or other kinds of randomized errors will
bias the model towards false positives. To test the impact of randomness, we generate random
sequences of tokens from the Falcon tokenizer, and score them with our Binoculars as usual. We plot
histograms for this distribution in Fig. 16. We find that this distribution is assigned an abnormally
high score, with a mean around 1.35 for Falcon, far beyond the range of human text (which has a
mean of around 1).

4See table 4 in appendix A.2 for all famous text evaluated under Binoculars.
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This behavior is the opposite of what we observed above; while memorized text is classified as
machine-generated, with generally lower scores, randomized text is classified with a score exceeding
human text. This is expected, as trained LLMs are strong models of language and exceedingly
unlikely to replicate a completely random sequence of tokens in any situation.

6 DISCUSSION AND LIMITATIONS

Figure 10: Score distribution when sampling ran-
dom tokens from the Falcon tokenizer.

We present Binoculars, a method for detect-
ing LLMs without training data. Our transfer-
able detector works in the zero-shot setting,
without access to the particular model used
for generation or example data from it. We
speculate that this transferability arises from
the similarity between modern LLMs, as they
all use nearly identical transformer compo-
nents and are likely trained on datasets comprising mostly Common Crawl (commoncrawl.org) data
from similar time periods. As the number of open source LLMs rapidly increases, the ability to de-
tect multiple LLMs with a single detector is a major advantage of Binoculars when used in practice,
for example for platform moderation.

Our study has a number of limitations. Due to limited GPU memory, we could not perform ex-
tensive studies with larger (30B+) open-source models. Further, we focus on the problem setting
of detecting machine-generated text in normal use, and we do not consider explicit efforts to by-
pass detection. Finally, we also do not have access to sufficient data at this time to perform further
evaluation on non-conversational domains, such as source code.

Overall, we propose a simple detection strategy based on a two-model mechanism using cross-
perplexity that is surprisingly capable of detecting generic machine-generated context, regardless of
which exact LLM generated the text, and without tuning.

REPRODUCIBILITY STATEMENT

We provide details on all datasets used, and on the exact method that we employ in the main body
of this work. Additionally, we provide code to exactly replicate our detection score implementation
with the supplementary material of this work. We note that comparisons to commercial detection
APIs, such as GPTZero are based on API evaluations from September 2023, and may not be repro-
ducible in the future, underscoring the importance of transparent, open-source solutions.

ETHICS STATEMENT

Language model detection may be a key technology to reduce harm, whether to monitor machine-
generated text on internet platforms and social media, filter training data, or identify responses in
chat applications. Nevertheless, care has to be taken so that detection mechanisms actually reduce
harm, instead of proliferating or increasing it. We provide an extensive reliability investigation of
the proposed Binoculars mechanisms in Section 5, and believe that this is a significant step forward
in terms of reliability, for example when considering domains such as text written by non-native
speakers. Yet, we note that this analysis is only a first step in the process of deploying LLM detection
strategies and does not absolve developers of such applications from carefully verifying the impact
on their systems. We especially caution that the existence of LLM detectors does not imply that
using them is worthwhile in all scenarios.

Also, we explicitly highlight that we consider the task of detecting “naturally” occurring machine-
generated text, as generated by LLMs in common use cases. We understand that no detector is
perfect and we do not guarantee any performance in settings where a motivated adversary tries to
fool our system. We present a thorough evaluation across a wide variety of test sources, but we
maintain that directed attempts to bypass detection might be possible as is often the case.
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A APPENDIX

A.1 ABLATION STUDIES

Comparison to Other Model Pairs.

Table 2: Other combinations of scoring models, evaluated on our reference datasets as described in
the main body.

PPL Scorer (M1) X-Cross PPL Scorers (M′
1, M2) TPR at

0.01%
FPR

TPR at
0.1% FPR

F1-Score AUC

Falcon-7B-Instruct Falcon-7B, Falcon-7B-Instruct 100.0 100.0 1.0 1.0
Llama-2-13B Llama-13B, Llama-2-13B 99.6539 99.6539 0.9982 0.9999
Llama-2-7B Llama-7B, Llama-2-7B 99.3079 99.3079 0.9965 0.9998

Llama-2-13B Llama-13B, Llama-2-13B 98.3549 98.3549 0.9913 0.9997
Falcon-7B-Instruct Falcon-7B, Falcon-7B-Instruct 98.72 99.16 0.9953 0.9996
Falcon-7B-Instruct Falcon-7B, Falcon-7B-Instruct 94.92 99.4 0.9963 0.9996

Llama-2-7B Llama-7B, Llama-2-7B 95.8441 97.5757 0.9922 0.9996
Llama-2-13B Llama-13B, Llama-2-13B 98.64 99.04 0.9953 0.9995
Llama-2-7B Llama-7B, Llama-2-7B 98.8 99.28 0.9959 0.9995
Llama-2-7B Llama-7B, Llama-2-7B 98.16 98.6 0.9937 0.9992

Llama-2-13B Llama-13B, Llama-2-13B 98.4 98.72 0.9943 0.9992
Falcon-7B-Instruct Falcon-7B, Falcon-7B-Instruct 94.1125 97.922 0.9926 0.9992
Falcon-7B-Instruct Falcon-7B, Falcon-7B-Instruct 93.5 93.5 0.9875 0.9990
Falcon-7B-Instruct Falcon-7B, Falcon-7B-Instruct 92.0 92.0 0.9918 0.9990

Llama-2-7B Llama-7B, Llama-2-7B 94.0 94.0 0.9850 0.9989
Llama-2-7B Llama-7B, Llama-2-7B 98.0 98.0 0.9956 0.9988

Falcon-7B-Instruct Falcon-7B, Falcon-7B-Instruct 72.6957 72.7857 0.9908 0.9988
Llama-2-13B Llama-13B, Llama-2-13B 97.875 97.875 0.9931 0.9987

Llama-2-13B-Chat Llama-2-13B, Llama-2-13B-Chat 71.3199 82.6799 0.9846 0.9986
Llama-2-13B Llama-13B, Llama-2-13B 97.5 97.5 0.9875 0.9985

Falcon-7B-Instruct Falcon-7B, Falcon-7B-Instruct 97.5778 97.5778 0.9930 0.9983
Falcon-7B-Instruct Falcon-7B, Falcon-7B-Instruct 23.3076 48.3732 0.9842 0.9975

Llama-2-13B Llama-13B, Llama-2-13B 0.32 32.08 0.9840 0.9968
Llama-2-13B-Chat Llama-2-13B, Llama-2-13B-Chat 20.9172 60.0671 0.9763 0.9968

Llama-2-13B Llama-13B, Llama-2-13B 47.1476 69.2953 0.9747 0.9964

String Length. Is there a correlation between Binoculars score and sequence length? Such correla-
tions may create a bias towards incorrect results for certain lengths. In Figure 11, we show the joint
distribution of token sequence length and Binocular score. Sequence length offers little information
about class membership.

Score Components. Perplexity is used by many detecting formulations in isolation. We show in
Figure 12 that both perplexity and cross-perplexity are not effective detectors in isolation.

A.2 OTHER FAMOUS TEXTS

Two songs by Bob Dylan further demonstrate this behavior. Blowin’ In The Wind, a famous Dylan
track has a much lower Falcon perplexity than his unreleased song To Fall In Love With You (PPL
values are 1.11 and 3.30, respectively.) It might be reasonable for famous songs to get classified as
machine text and they are more likely output than less famous songs. Binoculars, however, labels
both of these samples confidently as human samples (with scores of 0.92, and 1.01, respectively).

A.3 DISTRIBUTION OVER VARIOUS DATASETS
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Figure 11: A closer look at the actual distribution of scores in terms of sequence length for the
Ghostbuster news dataset.
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Figure 12: Perplexity and Cross-perplexity are not strong detectors on their own.

Table 3: Over various datasets, we show that perplexity alone or cross-perplexity alone are poor
predictors of human versus machine, whereas Binoculars perform well even at low false-positive
rates (FPR).

True Positive Rate
Dataset Detector AUC @ 0.01% FPR @ 0.1% FPR @ 1% FPR @ 5% FPR

Falcon PPL 1.00 0.86 0.86 0.94 0.98
Falcon X-PPL 0.94 0.56 0.56 0.59 0.79

Writing LLaMA PPL 0.99 0.86 0.86 0.92 0.98
Prompts LLaMA X-PPL 0.86 0.04 0.04 0.10 0.43

Binoculars-Falcon 1.00 0.93 0.93 0.96 1.00
Binoculars-LLaMA 1.00 0.95 0.95 0.98 1.00

Falcon PPL 0.99 0.65 0.77 0.90 0.95
Falcon X-PPL 0.85 0.04 0.12 0.29 0.53

News LLaMA PPL 0.98 0.67 0.71 0.89 0.95
LLaMA X-PPL 0.26 0.00 0.00 0.00 0.01
Binoculars-Falcon 1.00 0.95 0.99 1.00 1.00
Binoculars-LLaMA 1.00 0.99 0.99 1.00 1.00

Falcon PPL 1.00 0.78 0.78 0.88 0.99
Falcon X-PPL 0.93 0.25 0.25 0.38 0.70

Essay LLaMA PPL 0.99 0.42 0.42 0.90 0.98
LLaMA X-PPL 0.80 0.01 0.01 0.04 0.16
Binoculars-Falcon 1.00 0.98 0.98 0.99 1.00
Binoculars-LLaMA 1.00 0.99 0.99 1.00 1.00

Table 4: Case Studies of Text Samples likely to be memorized by LLMs.

Human Sample PPL (Falcon 7B In-
struct)

Cross PPL (Falcon
7B, Falcon 7B In-
struct)

Binoculars Score

Predicted
as
Human-
Written

US Constitution 0.6680 0.8789 0.7600 p
“I have a dream speech” 1.0000 1.2344 0.8101 p
Snippet from Cosmos series 2.3906 2.8281 0.8453 p
Blowin’ In the Wind (song) 1.1172 1.2188 0.9167 ✓
Oscar Wilde’s quote 2.9219 3.0781 0.9492 ✓
Snippet from White Night 2.6875 2.8125 0.9556 ✓
Wish You Were Here 2.5000 2.5938 0.9639 ✓
Snippet from Harry Potter book 2.5938 2.6875 0.9651 ✓
First chapter of A Tale of Two Cities 2.7188 2.7500 0.9886 ✓
Snippet from Crime and Punishment 2.8750 2.9063 0.9892 ✓
To Fall In Love With You (song) 3.2969 3.2656 1.0096 ✓
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Figure 13: Comparison of Ghostbuster and Binoculars AUC on PubMed, CCNews and CNN
datasets.

Figure 14: Binoculars Score on generations based on arxiv documents
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Figure 15: Binoculars Score on generations based on Reddit documents
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A.4 RANDOMIZED DATA

We want to test whether arbitrary mistakes, hashcodes, or other kinds of randomized errors will
bias the model towards false positives. To test the impact of randomness, we generate random
sequences of tokens from the Falcon tokenizer, and score them with our Binoculars as usual. We plot
histograms for this distribution in Fig. 16. We find that this distribution is assigned an abnormally
high score, with a mean around 1.35 for Falcon, far beyond the range of human text (which has a
mean of around 1).

Figure 16: Score distribution when sampling ran-
dom tokens from the Falcon tokenizer.

This behavior is the opposite of what we ob-
served above; while memorized text is clas-
sified as machine-generated, with generally
lower scores, the randomized text is classified
with a score exceeding human text. This is
expected, as trained LLMs are strong models
of language and exceedingly unlikely to repli-
cate a completely random sequence of tokens
in any situation.

A.5 IDENTICAL SCORING MODEL

We inspect Binocular’s performance when we choose to use identical M1 and M1 models in equa-
tion (4). We use Falcon-7B and Falcon-7B-Instruct models and compare the two performances with
Binoculars Score over dataset by (Verma et al., 2023) in Fig. 17. We observe although the vanilla
Binoculars score is best over 3 domains, using Falcon-7B as input models is competitive.
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Figure 17: AUC Curve Binoculars score using identical M1 and M2 models using Falcon-7B and
Falcon-7B-Instruct.
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