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ABSTRACT

Transformer conducts self attention which has achieved state-of-the-art perfor-
mance in many applications. Multi-head attention in transformer basically gath-
ers the features from individual tokens in input sequence to form the mapping to
output sequence. There are twofold weaknesses in learning representation using
transformer. First, due to the natural property that attention mechanism would mix
up the features of different tokens in input and output sequences, it is likely that
the representation of input tokens contains redundant information. Second, the
patterns of attention weights between different heads tend to be similar, the rep-
resentation capacity of the model might be bounded. To strengthen the sequential
learning representation, this paper presents a new disentangled mask attention in
transformer where the redundant features are reduced and the semantic informa-
tion is enriched. Latent disentanglement in multi-head attention is learned. The
attention weights are filtered by a mask which is optimized by semantic cluster-
ing. The proposed attention mechanism is implemented for sequential learning
according to the clustered disentanglement objective. The experiments on ma-
chine translation show the merit of this disentangled transformer in sequence-to-
sequence learning tasks.

1 INTRODUCTION

Attention mechanism has been achieving the promising performance in different sequence-to-
sequence learning tasks. In recent years, transformer (Vaswani et al., 2017) has obtained state-of-
the-art results on sequential learning in the applications of speech recognition, machine translation,
question answering, reading comprehension, to name a few. In spite of the success of self attention
in transformer, there are still some issues which restrict the learning performance such as the in-
ference speed, computational complexity and representation redundancy, etc. In order to deal with
theses challenges, several variants of transformer were proposed by using mask attention schemes.
Accordingly, the sparse transformer (Child et al., 2019), routing transformer (Roy et al., 2021) and
reformer (Kitaev et al., 2020) were proposed to calculate the dot-product in attention by only using
a small portion of tokens. The computational complexity was reduced by applying binary mask
on attention weights. In contrast to the binary mask, the adaptively sparse transformer (Correia
et al., 2019) and the adversarial sparse transformer (Wu et al., 2020) were proposed to construct
the real-valued mask where the α-entmax function (Peters et al., 2019) was presented to filter out
redundancy features in attention. In (Fan et al., 2021), a mask attention network was built to carry
out a dynamic attention mask based on the distance between two tokens in a sequence. In addition,
the transformer (Guo et al., 2019) with Gaussian-weighted self-attention (Kim et al., 2020) was ex-
ploited by constructing an attention mask where the relations for the pairs of tokens were measured.
In addition, there were a number of works pointing out that some of attention heads were redundant
(Correia et al., 2019) or the attention weights lacking of semantic interpretation. In (Bian et al.,
2021), it was found that the similarity of attention patterns between individual heads was high in
vanilla transformer so that similar performance was obtained after pruning some attention heads.
In (Jain & Wallace, 2019), the adversarial training was applied to estimate the attention weights of
transformer, and the resulting transformer received similar outputs even the attention weights were
considerably different. This phenomenon revealed that attention weights might not contain suffi-
cient semantics. To cope with these challenges, this paper aims to increase the semantic meaning
as well as reduce the redundancy of attention weights within each head and across different heads.
A new disentangled transform is constructed through two stages. The first stage is to disentangle
the representation of attention weights within individual heads. The semantics of these heads are
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represented via a latent topic model through a variational sequence-to-sequence learning (Bahuleyan
et al., 2018) based on the mixture of Gaussians as the prior model. The probabilistic clustering is per-
formed to construct a semantic mask and the mask is applied on the attention weights in latent space
for those semantically-close tokens. The real-valued clusters of attention mask are implemented to
strengthen the attention mechanism by a variational inference procedure. The second stage is to
reduce the redundancy of attention weights and disentangle the multi-head attention across various
heads. The mutual information of query vectors between two heads is calculated as the disentangle-
ment objective which is minimized to reduce the redundancy of attention patterns in attention-based
representation. There are threefold novelties compared with vanilla transformer. First, a semantic
mask on attention weights is proposed to reduce the attention redundancy and enhance the weights
for semantically similar tokens. Second, a stochastic clustering is incorporated to implement latent
disentanglement for variational attention. Third, a variational sequence-to-sequence model is car-
ried out for a probabilistic transformer. The experiments on machine translation tasks under different
scenarios illustrate the performance of the proposed semantic mask with disentanglement objective.

2 UNSUPERVISED REPRESENTATION LEARNING

The unsupervised learning of disentangled and semantic features is surveyed for model construction.

2.1 DISENTANGLED LEARNING

Disentangled representation is a line of researches (Locatello et al., 2019; Yingzhen & Mandt, 2018;
Denton & Birodkar, 2017) which aims to factorize the latent representation into several independent
low-dimensional representations by optimizing a specialized objective function. These researches
have been widely employed in various technical data such as image (Higgins et al., 2017; Chen
et al., 2018), text (John et al., 2019; Cheng et al., 2020) and voice (Yuan et al., 2021). This study
pursues the mutually independent latent variables in accordance with the variation of information
(VI). VI between variables zi and zj acts as the metric to measure the degree of independence which
is nonnegative and is defined through the notations of entropy H(·) and mutual information I(·, ·) as

VI(zi, zj) = H(zi) + H(zj)− 2I(zi, zj). (1)

Considering the disentanglement of variables zi and zj from original variable x, the triangular
inequality for these variables is held by VI(x, zi) + VI(x, zj) ≥ VI(zi, zj). The equality only
holds when zi and zj are statistically independent. VI is closely related to mutual information
(MI) as shown in Eq. (1). Minimizing MI is comparable to maximizing VI to learn independent
components. More specifically, the objective of disentanglement for independence between zi and
zj from x is measured by the difference D(·) between two sides of triangular inequality as

D(x; zi, zj) = VI(x, zi) + VI(x, zj)− VI(zi, zj)
= 2(H(x) + I(zi, zj)− I(x, zi)− I(x, zj))

(2)

where H(x) is seen as a constant and the remaining MI terms are required during model optimiza-
tion. However, direct calculation of MI is intractable. There are different upper and lower bounds
of MI provided in (Tschannen et al., 2020). These bounds are feasible to find the estimators of MI
to build information-theoretic objectives without the calculation of true value of MI. Latent disen-
tanglement is performed by minimizing D(x; zi, zj), or equivalently minimizing the upper bound
of I(zi, zj) and simultaneously maximizing the lower bounds of I(x, zi) and I(x, zj).

2.2 VARIATIONAL CLUSTERING

Based on the latent disentanglement, this paper presents the semantic mask attention where varia-
tional clustering in neural network is performed. In (Jiang et al., 2017), an Gaussian mixture model
(GMM) was introduced to carry out the variational deep embedding where the distribution of latent
embedding in neural network was characterized. Each latent sample z of observation x belongs
to a cluster c according to an GMM p(z) =

∑
c p(c)p(z|c) =

∑
c π

z
cN (µz

c , diag{(σz
c )2}) where

πz = {πz
c} ∈ Rnc denotes the weights of nc clusters, µz = {µz

c} ∈ Rnc×d denotes the mean
vectors, and (σz)2 = {(σz

c )2} ∈ Rnc×d denotes the set of variance entries of diagonal matrices.
A variational clustering method is developed via variational inference based on a special type of
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variational autoencoder (Kingma & Welling, 2014) by maximizing the likelihood of training data x
which is encoded as feature vector z in latent space where z is modeled by an GMM and used for
reconstruction of x in decoder. The loss is derived as a negative evidence lower bound (ELBO)

log p(x) = log

∫ ∑
c

p(x, z, c)dz

≥ Ez[log p(x|z)]− KL(q(z|x)‖p(z|c))− KL(q(c|x)‖p(c)) , −LELBO.

(3)

In Eq. (3), the first term represents a reconstruction objective for x under a latent variable model
and the remaining terms imply the Kullback-Leibler (KL) divergence due to latent variables z and c
driven by a variational distribution q(z, c|x) which is close to a prior of GMM using p(z|c) and p(c)
through KL minimization. Here, c denotes a latent cluster of z corresponding to an input sequence
x. Overall, the variational clustering is implemented as a new type of VAE where a mixture of
Gaussians is adopted as the variational distribution q(z, c|x). This method is feasible to build a deep
clustering and embedding model to represent similar samples with the same semantic topics which
can be developed and employed in semantic mask attention based on transformer.

Figure 1: Architecture of transformer driven by the disentangled mask attention.

3 DISENTANGLED MASK ATTENTION

This paper presents the disentangled mask attention (DMA) to build a disentangled transformer as
shown in Figure 1 where DMA is implemented to replace the attention module in encoder and de-
coder of vanilla transformer. This DMA is constructed with three schemes. First, the semantic mask
attention is presented to enhance the semantic meaning of attention weights via latent clustering.
Second, the disentangled attention heads are calculated by maximizing the independence among
attention heads for the queries q of words x. Third, the information-theoretic disentanglement is
implemented to carry out a variational learning procedure of transformer.

3.1 SEMANTIC MASK ATTENTION

Given a source sequence x and a target sequence y, a new variational transformer for sequence-to-
sequence learning is presented by merging GMM to express the prior distribution of latent variables
z. By extending the unsupervised learning from data x using p(x) based on VAE with GMM for z
in Eq. (3), this paper presents a novel latent variable model for transformer based on the supervised
learning by minimizing the sequence-to-sequence (S2S) classifier loss or the negative ELBO of
conditional likelihood p(y|x) of training data {x,y}

Ls2s =−
∑
n

Ezn,h∼q(zn,h|x)
[
log p(y|zn,h,x)

]
+ KL(q(zn,h, cn,hz |x)‖p(zn,h, cn,hz )) (4)
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where zn,h is the feed-forward network output of the nth transformer block or layer after applying
the head separation for multi-head attention, h is the head index, and cn,hz denotes the semantic
clusters of block n and head h. In this latent variable model, there are two latent variables zn,h

and cn,hz . The stochastic gradient variational Bayes estimator (Kingma & Welling, 2014) is applied
by using the reparameterization trick to draw latent sample zn,h from the variational distribution
q(zn,h|x) where the Gaussian parameters are calculated by the transformer layer. Alternatively, the
probability of latent sample cn,hz corresponding to zn,hi of token xi for cluster c is calculated as

p(chz = c|zhi ) =
πh
cN (zhi |µh

c , diag{(σh
c )2})∑

c′ π
h
c′N (zhi |µh

c′ , diag{(σh
c )2})

. (5)

Overall, the parameters of transformer layer and GMM {πh
c ,µ

h
c , (σ

h
c )2} are trained by minimizing

Ls2s in Eq. (4). For ease of expression, the block or layer index n is ignored hereafter. Through the
estimated prior of latent variable c using GMM, the semantic relation between two latent vectors zhi
and zhj associated with word tokens xi and token xj is characterized by constructing the semantic
mask M = {Mh

ij} based on the clustering probability of tokens belonging to the same cluster c

Mh
ij =

∑
c p(c

h
z = c|zhi )p(chz = c|zhj )∑

j

∑
c′ p(c

h
z = c′|zhi )p(chz = c′|zhj )

(6)

This calculation measures a probabilistic correlation between xi and xj driven and integrated by
different semantic clusters c. This semantic mask is helpful to enrich the semantic information of
attention weight as Āh

ij by using Mh
ij as the soft mask of original attention weight Aij in a form of

Āh
ij =

Mh
ijA

h
ij∑

j′M
h
ij′A

h
ij′

where Ah
ij = Softmax

(
((kh

1:J)Tqh
i )/
√
dk

)
j

(7)

where attention weight Ah
ij is calculated by dot-product of query qh

i = Wh
q xi + bh

q and key
kh
j = Wh

k xj + bh
k transformed by the parameters {Wh

q ,b
h
q } and {Wh

k ,b
h
k}. A softmax function is

calculated over kh
1:J for the set of J key tokens of head h, where kh

j ∈ Rdk , and then retrieved by
jth entry. Empirically, the training of this semantic mask attention can be improved by an interpola-
tion scheme to find the final attention for each word pair (i, j) as Âh

ij = (1 − γ)Ah
ij + γĀh

ij where
γ = 1−max(1−α, e5×10−4t) is an annealing mixing rate which is controlled a hyperparameter α at
each learning iteration t. New weights {Âh

ij} are used to implement a semantic-aware transformer.

3.2 DISENTANGLED ATTENTION HEADS

Semantic mask attention enhances the semantic meaning of attention weights in each head by using
the estimated M = {Mh

ij}. However, different heads are likely similar such that the redundancy
in multi-head representation does exist. Model capacity is restricted accordingly. To alleviate this
issue, this paper implements a new variant of attention mechanism, called the disentangled mask
attention (DMA), as shown in Figure 2 which focuses on the disentanglement of query vectors qh

in multi-head attention method. The disentangled queries are used to implement the semantic mask
attention. The disentanglement objective is constructed by extending the measure of independence
over two latent vectors in Eq. (2) to that over multiple query vectors for nh heads

D(x;qh=1, ...,qh=nh) =

nh∑
h=1

nh∑
h′ 6=h

I(qh,qh′)− I(x,qh) , LD (8)

where nh is the number of attention heads and qh = {qh
i } denotes all queries of tokens x = {xi} in

head h. Latent disentanglement is performed by minimizing Eq. (8) which correspondingly pursues
the semantic independence for individual queries {qh

i } across different heads h. This is because
that the semantic mask attention is applied by using those queries driven by the semantic clusters
or topics of the words via GMM. The independence of queries qh = {qh

i } is enhanced, and the
redundancy of attention weights across different heads is accordingly reduced.

In the implementation, the exact computation of MI terms I(qh,qh′) and I(qh,x) is intractable.
Finding the estimator of MI is required. To pursue independence, the minimization of disentangle-
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Figure 2: Implementation procedure of the disentangled mask attention, where the procedure details
of key k is omitted in figure, nq and nk denotes the number of query and key tokens, respectively.
First, the input xh

i of token i in head h is clustered by semantic clusters chz . The clustering probability
is used for constructing semantic mask M in mask attention indicated by dotted line. After, xh

i is
transformed to query qh

i by parameters {Wh
q ,b

h
q }, and is clustered by a set of additional clusters

cq for the disentanglement of qh
i in different head. Finally, the semantic mask M is applied on the

attention weight Ah calculated by qh and kh to construct a new attention weight.

ment objective in Eq. (8) is implemented by minimizing the upper bound of the first MI term

I(qh,qh′) ≤E

 1

nq

nq∑
i=1

log p(qh
i |qh′

i )− 1

nq − 1

nq∑
j 6=i

log p(qh
i |qh′

j )

 , LDqq
(9)

and simultaneously maximizing the lower bound of the second MI term (Poole et al., 2019)

I(x,qh) ≥E

[
1

nq

nq∑
i=1

(
log

exp(f(qh
i ,xi))

1
nq

∑nq

j=1 exp(f(qh
i ,xj))

)]
, LDxq (10)

where nq is the number of samples in qh or qh′ . In Eq. (9), a variational leave-one-out upper bound
of MI between qh and qh′ is calculated. The conditional probabilities p(qh

i |qh′

i ) and p(qh
i |qh′

j )
can be estimated by a trainable neural network. In Eq. (10), a variational lower bound is measured
by using a critic function f(qh

i ,xj) which identifies the semantic relation between qh
i and xj . In

this study, the critic function is defined by f(qh
i ,xj) ,

∑
c p(cq = c|qh

i )p(cq = c|qh
j ) which

reflects an integrated correlation over different semantic clusters c. The probabilistic correlation
between qh

i and xj under the same cluster or latent topic cq = c is measured. Importantly, a new
GMM is introduced to express the prior of latent query as p(qh

i ) =
∑

c π
q
cN (µq

c , diag{(σq
c )2})

with parameters {πq
c ,µ

q
c , (σ

q
c )2}. The posterior probability of the cluster of query p(cq = c|qh

i ) is
computed similar to that of transformer block output p(chz = c|zhi ) as shown in Eq. (5).

3.3 LEARNING CRITERIA

This study presents the semantic mask attention based on the disentangled attention heads. A disen-
tangled mask attention (DMA) is proposed for sequence-to-sequence learning via transformer. There
are four latent variables in such a Bayesian hierarchical model. The first level involves latent vari-
ables of transformer layer outputs and semantic clusters in different heads and layers {zn,h, cn,hz }
while the second level consists of queries and query clusters in different layers {qn,h, cnq }. Atten-
tion heads are disentangled over queries qh across different heads h in the same layer n. The latent
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variable model is trained by minimizing the negative ELBO or sequence-to-sequence classifier loss

Ls2s = −
∑
n

E(zn,h,qn,h)∼q(zn,h,qn,h|x)
[
log p(y|zn,h,qn,h,x)

]
+ KL(q(zn,h, cn,hz |x)‖p(zn,h, cn,hz )) + KL(q(qn,h, cnq |x)‖p(qn,h, cnq ))

(11)

which is extended from Eq. (4). An additional KL term is derived to regularize the estimated
variational distribution q(qh

i |x) which is close to its shared GMM prior p(qh
i ). Importantly, the

disentanglement of attention weights Aij is performed via that of queries qh over the groups of
queries across different heads h. A new type of disentangled transformer is fulfilled by minimizing
an information-theoretic objective using the estimators of MI or the upper bound LDqq

and lower
bound LDxq

of MI. Disentanglement objective is formed by LD = LDqq
− LDxq

where p(qh
i |qh′

i )

in LDqq is calculated by integrating the probabilities of queries {qh
i ,q

h′

i } under the same cluster c

p(qh
i |qh′

i ) =
∑
c

p(qh
i |cq = c)p(cq = c|qh′

i ). (12)

In Eq. (12), p(cq = c|qh′

i ) is computed by referring Eq. (5) and the first term is computed via GMM

p(qh
i |cq = c) =

p(cq = c|qh
i )p(qh

i )∑
i′ p(cq = c|qh

i′)p(q
h
i′)
. (13)

In addition, the loss functions LDqq
and LDxq

in Eqs. (9) and (10) are calculated over all queries
over nh heads including nq samples in each head. In this study, the diversity of semantic cluster-
ing is further enhanced and regularized towards increasing the probabilistic correlation within each
variable zhi via

∑
c p(c

h
z = c|zhi )p(chz = c|zhi ) and simultaneously decreasing the correlation be-

tween variables zhi and zhj via
∑

c p(c
h
z = c|zhi )p(chz = c|zhj ), accordingly different samples zhi and

zhj likely go to different clusters c. An objective to enhance the cluster diversity is calculated by
summing up all entries (i, j) of the squared values of a matrix (Lin et al., 2017) shown below

Ldv =
1

n2q

∑
i

∑
j

(CCT − I)2i,j (14)

where I is a nq × nq identity matrix, C = [Cic] and Cic , p(chz = c|zhi ) for GMM of zhi , and
Cic , p(cq = c|qh

i ) for GMM of qh
i . The overall loss L for the transformer with disentangled

mask attention is composed of classification loss, disentanglement loss and diversity loss as L =
Ls2s +LD+Ldv where the regularization parameters are adopted in three objectives. The parameters
of the encoder based on transformation of query, key and value {Wh

q ,b
h
q ,W

h
k ,b

h
k ,W

h
v ,b

h
v} and the

GMMs {πz
c ,µ

z
c , (σ

z
c )2, πq

c ,µ
q
c , (σ

q
c )2} are estimated by finding the corresponding gradients over L.

4 EXPERIMENTS

In the experiments, three machine translation tasks including IWSLT’14 De-En, WMT’14 En-De
and WMT’17 Zh-En were used to evaluate the performance of the proposed model. All models in
the following experiments were trained and evaluated by using Fairseq (Ott et al., 2019) toolkit.

4.1 DATASET DESCRIPTIONS

IWSLT’14 De-En contained 167K of German and English sentence pairs, and WMT’14 En-De
contained 4.5M of English and German sentence pairs. For WMT’17 Zh-En, only the data in ‘news-
commentary-v12’ set were collected for training. There were roughly 212K of Chinese and En-
glish sentence pairs in WMT’17 Zh-En. The byte-pair-encoding (BPE) dictionary of the models in
WMT’14 En-De were shared between encoder and decoder. For the other two tasks, encoder and
decoder have independent BPE dictionary. In addition, Jieba1 was used as the tokenization tool for
Chinese sentences.

1https://github.com/fxsjy/jieba
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4.2 EVALUATION METRICS

The performance of translation models were evaluated in terms of BLEU (Papineni et al., 2002)
score. The BLEU score of models in IWSLT’14 De-En and WMT’17 Zh-En was calculated by
using the evaluation script2 provided by Fairseq. The BELU score of models in WMT’14 En-De
was evaluated after applying compound splitting3, similar to the setting in (Wu et al., 2019).

In addition, two metrics were introduced to measure the redundancy of attention weights based
on the Jensen-Shannon (JS) distance (Correia et al., 2019; Bian et al., 2021). One is the layer
redundancy (LR), LR , 1

N (
∑N

n=1(log2 nh − 1
nq

∑
i JS(Ân,h=1

i , . . . , Ân,h=nh

i ))), and the other is

the head redundancy (HR), HR , 1
N2nh

2

∑N
n1,n2

∑nh

h1,h2

1
nq

∑
i(1− JS(Ân1,h1

i , Ân2,h2

i )) where N
is the number of transformer layers, and Ai denotes the ith row of attention matrix A. LR measures
the similarity of attention weights between different attention heads in the same layer while HR
measures the similarity between each attention head in whole model. The lower the redundancy
metric, the larger the difference of attention weights between each head.

4.3 MODEL CONFIGURATIONS

The vanilla transformer was used as baseline model. All settings in transformer and the proposed
DMA transformer were identical for fair comparison. All models in the experiments were com-
posed of N = 6 layers of encoder and decoder. To reduce the computational cost, the term
p(qh

i |qh′

j ) in LDqq
was neglected, and q(zhi |x) and q(qh

i |x) were estimated by a single Gaussian
with a constant variance σ2 = 0.1 and zhi and qh

i as means, i.e. q(zhi |x) = N (zhi , diag{σ2}) and
q(qh

i |x) = N (qh
i , diag{σ2}). In addition, the semantic mask was disregarded in the transformer

block of masked DMA in test phase. DMA transformer worked well under this setting. In order to
rapid the convergence of GMMs, the gradient of cluster centroid was multiplied by a constant cgrad
during training. To evaluate the proposed model under different model sizes, DMA transformer was
built with three configuration types, which were base, small, and tiny. The only difference between
these configurations was the size of attention and feed-forward layers. In loss calculation, there were
three regularization parameters cqq, cxq , and ckl which were used to control the contributions of loss
terms LDqq

and LDxq
, and KL terms in Ls2s. The details of settings are listed in Appendix A.2.

4.4 EXPERIMENTAL RESULTS

Comparison on model performance: The experiment results on three tasks are shown and com-
pared. Generally speaking, the proposed DMA transformer achieved higher BLEU score than base-
line transformer in various tasks. In IWSLT’14 De-En (Table 1), DMA transformer absolutely im-
proved 0.8 BLEU score over transformer. In WMT’14 En-De (Table 2), DMA transformer outper-
formed transformer by 0.6 BLEU score. In WMT’17 Zh-En (Table 3), DMA transformer achieved
0.37 BLEU score higher than transformer. These results illustrate that DMA transformer performs
better than other models for translation with grammatically similar and different languages.

Model Params BPE nc LR HR BLEU

Transformer (base, (Mehta et al., 2021)) 42.0M (1.06x) 10K - - - 34.30
Transformer (base, ours) 39.5M (1.00x) 6K/8K - 0.74 0.65 34.50
DMA transformer (base) 39.7M (1.00x) 6K/8K 8 0.62 0.53 35.31
DeLighT (Mehta et al., 2021) 14.0M (0.35x) 10K - - - 33.80
DMA transformer (small) 26.1M (0.66x) 6K/8K 4 0.64 0.57 35.00
DMA transformer (tiny) 11.9M (0.30x) 6K/8K 4 0.63 0.58 34.96

Table 1: Experimental results on IWSLT’14 De-En translation task. ‘BPE’ denotes the number of
tokens in the dictionary of encoder and decoder (encoder/decoder). ‘Ours’ denotes the model is
trained by ourselves. ‘Params’ denotes the number of parameters in model.

2https://github.com/pytorch/fairseq/blob/main/fairseq cli/generate.py
3https://github.com/pytorch/fairseq/blob/main/scripts/compound split bleu.sh
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Model Params BPE LR HR BLEU

Transformer (base, (Mehta et al., 2021)) 67.0M (1.01x) 44K - - 27.70
Transformer (base, ours) 66.5M (1.00x) 44K 0.79 0.69 27.75
DMA transformer (base) 66.6M (1.00x) 44K 0.73 0.58 28.35
DeLighT (Mehta et al., 2021) 54.0M (0.81x) 44K - - 28.00
DMA transformer (small) 46.4M (0.70x) 44K 0.70 0.57 28.16

Transformer (big, (Vaswani et al., 2017)) 213.0M (3.20x) 37K - - 28.40

Table 2: Experimental results on WMT’14 En-De translation task. DMA with nc = 4 is used.

Model Params BPE nc LR HR BLEU

Transformer (ours) 55.0M (1.00x) 25K/20K - 0.71 0.60 12.76
DMA transformer 55.1M (1.00x) 25K/20K 4 0.62 0.55 13.13

Table 3: Experimental results on WMT’17 Zh-En translation task with very different languages.

Analysis on model size: The number of additional parameters introduced by proposed methods
was only 1% more compared to vanilla transformer. In IWSLT’14 De-En (Table 1), DMA trans-
former (tiny) achieved 0.46 BLEU score higher than transformer by using only 30% of parameters.
Compared to another state-of-the-art model, DeLighT (Mehta et al., 2021), with smallest model size,
DMA transformer (tiny) obtained about 1.16 BLEU score higher with using 5% less of parameters.

In WMT14’En-De (Table 2), DMA transformer (small) achieved 0.41 BLEU score higher than trans-
former with using 30% less of parameters. On the other hand, the performance of DMA transformer
(base) is close to transformer (big) with slightly 0.05 drop in terms of BLEU score, but using only
one third of the size of parameters. In conclusion, introducing the objectives of variational cluster-
ing and disentangled attention heads into transformer does strengthen the latent representation of
sequences so that similar or even higher performance can be achieved by using much smaller model.

Analysis on attention redundancy: Figure 3 depicts the head redundancy between individual
attention heads in encoder. The similarity of DMA transformer attention weights between each
head is generally smaller than that of transformer. Diversity is improved. In addition, LR and HR
metrics of DMA transformer in three translation tasks are lower than transformer by 0.05 to 0.1,
respectively, while the performance is improved. These results illustrate that the proposed methods
could encourage different attention heads identifying different semantic relations between individual
tokens. The model performance is benefited from the reduction of attention redundancy.

Figure 3: Head redundancy in encoder of transformer (left) and DMA transformer (right), where
IWSLT’14 De-En test set is used for evaluation. The head index in x-axis and y-axis are accumulated
from first head in first layer to last head in last layer.

Analysis on semantic clustering: Figure 4 depicts top 15 tokens captured by one of clusters
in DMA transformer, where the punctuations and common stopwords are removed. This cluster
captures the semantic meaning of topic words, which can be observed from the followings tokens,
‘es’, ‘ing’, ‘ed’, ‘ies’. In addition, Figure 5 depicts the clustering probability distribution and the
corresponding semantic mask of another cluster in DMA transformer. With the help of applyingLdv ,
each token was clustered into different clusters without collapsing into same cluster. In the figure
of corresponding semantic mask, the mask was composed of several rectangles. This indicates this
set of semantic clusters were learned to find out and enrich the local features. In addition, we also
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found there were some semantic masks formed to identifying the semantic relation between token
in longer distance.

Figure 4: Top 15 tokens captured by the second cluster in the first head of the last decoder layer by
using DMA transformer, where the text in x-axis shows the BPE tokens, and IWSLT’14 De-En test
set is used for evaluation.

Figure 5: Clustering probability distribution (left) and the corresponding semantic mask (right) in
the 1st head of 6th DMA transformer encoder layer, where the BPE tokens in two axes of (right) are
same as the tokens in x-axis of (left), and IWSLT’14 De-En test set is used for evaluation.

Analysis on latent representations: Figure 6 depicts the distribution of query on latent space
by using t-SNE for dimension reduction. The gaps between queries of different heads in DMA
transformer are larger than transformer, and the distribution is more diverse within the same head.
The head redundancy is reduced because the proposed methods increase the semantic diversity of
query vectors in same and different heads, and this also improves the performance of model.

Figure 6: Query distribution of 104 sentences (13,312 tokens) in the last decoder layer of transformer
(left) and DMA transformer (right), where the point with different colors indicates the query of
different heads, and IWSLT’14 De-En test set is used for evaluation.

5 CONCLUSIONS

This paper presented a variant of transformer, DMA transformer, which replaced the vanilla atten-
tion with the disentangled mask attention. This variational attention represented the prior probability
distribution of feed-forward output and query as the mixture of Gaussians, constructed the semantic
mask based on the corresponding clustering probability, and optimized the model with the objec-
tive of disentangled attention heads. Experimental results showed that the redundancy of attention
weight was reduced, and the semantic diversity of query within same head and between different
heads was increased. By applying the proposed methods, the compact DMA transformer outper-
formed other transformers in different translation tasks either with identical or smaller model size.
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A EXPERIMENTAL DETAILS

A.1 STATISTICS OF DATASET

The number of sentence pairs after preprocessing in WMT’14 En-De, IWSLT’14 De-En and
WMT’17 Zh-En are listed in Table 4.

Task Train Validation Test

IWSLT’14 De-En 160K 7K 7K
WMT’14 En-De 3.9M 39K 3K
WMT’17 Zh-En 208K 2K 2K

Table 4: Number of sentence pairs in different translation tasks.

A.2 CONFIGURATION OF MODELS

The details of model configuration in three translation tasks are listed in Table 5, where ckl = 0.01
in all configurations. Before evaluation, the weights of model were averaged over last 5 epochs.
During evaluation, beam search was applied on the predicted output with beam size 5 for all tasks.

Task Configuration Embed/FFN nh cqq cxq cgrad Iterations

WMT’14 En-De base 512/2048 8 100 10 10 196K
small 384/2048 8 100 10 10 313K

WMT’17 Zh-En - 512/1024 4 50 5 5 79K

IWSLT’14 De-En
base 512/1024 4 100 10 10 55K
small 384/1024 4 100 10 10 55K
tiny 256/512 4 50 5 10 99K

Table 5: Model configurations of DMA transformer in different tasks. Embed and FFN denotes the
dimension of hidden layer in attention and feed-forward layers, respectively. Iterations denotes the
number of parameters updates.

A.3 ABLATION ON DICTIONARY SIZE

The ablation study was established by varying the size of dictionary in WMT’14 En-De. The model
with larger dictionary tends to have better performance. From results in Table 6, DMA transformer
with smaller dictionary obtained 0.19 BLEU score higher than transformer with larger dictionary,
while using 5% less of parameters. This is due to the semantic information of DMA transformer
is enhanced by semantic clustering, so that similar performance as transformer can be achieved by
DMA transformer with using smaller number of parameters.

Model Params BPE nc LR HR BLEU

Transformer (base, ours) 63.08M (1.00x) 37K - 0.79 0.70 27.44
DMA transformer (base) 63.16M (1.00x) 37K 4 0.73 0.61 27.94

Transformer (base, ours) 66.52M (1.05x) 44K - 0.79 0.69 27.75
DMA transformer (base) 66.61M (1.06x) 44K 4 0.73 0.58 28.35

Table 6: Ablation study of dictionary size on WMT’14 En-De translation task.

A.4 ABLATION ON CLUSTER NUMBERS

The ablation study was established by varying the number of clusters in IWSLT’14 De-En. The
BLEU score of DMA transformer is slightly impacted by different number of clusters within the
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range of 0.1. From the trend in Table 7, suitable number of clusters is required to achieve best
performance. Fewer or more number of clusters may make the clusters fail to capture the semantic
meaning or some clusters become redundant.

Model Params BPE nc LR HR BLEU

DMA transformer (base) 39.56M (1.00x) 6K/8K 4 0.63 0.52 35.22
DMA transformer (base) 39.65M (1.00x) 6K/8K 8 0.62 0.53 35.31
DMA transformer (base) 39.74M (1.01x) 6K/8K 12 0.62 0.53 35.29

Table 7: Ablation of cluster numbers nc on IWSLT’14 De-En translations task.

B EXPERIMENTAL ANALYSIS

B.1 ADDITIONAL ANALYSIS ON LATENT REPRESENTATIONS

Figure 7 and Figure 8 depict the query distribution of transformer or DMA transformer in WMT’14
En-De and WMT’17 Zh-En translation tasks, where t-SNE was used for dimension reduction. Sim-
ilar to query distribution in IWSLT’14 De-En (Figure 6), the query vectors in DMA transformer
within same head or between different heads were more diverse than transformer. And the gaps
between different heads were larger. In addition, by using either 4 heads in WMT’17 Zh-En or 8
heads in WMT’14 En-De, the semantic diversity of query were all increased by proposed methods.

Figure 7: Query distribution of 88 sentences (30,272 tokens) in last decoder layer of transformer
(left) and DMA transformer (right), where WMT’14 En-De test set is used for evaluation.

Figure 8: Query distribution of 72 sentences (15,552 tokens) in last decoder layer of transformer
(left) and DMA transformer (right), where WMT’17 Zh-En test set is used for evaluation.
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B.2 ADDITIONAL ANALYSIS ON ATTENTION REDUNDANCY

Figure 9 and Figure 10 depict the head redundancy of transformer or DMA transformer encoder in
WMT’14 De-En and WMT’17 Zh-En translation tasks. Similar to the results in IWSLT’14 De-En
(Figure 3), head redundancy of DMA transformer with either 4 or 8 attention heads were all smaller
than transformer. These results illustrates the proposed methods successfully reduce the attention
redundancy between each head and work for any number of attention heads.

Figure 9: Head redundancy in encoder of transformer (left) and DMA transformer (right), where
WMT’14 En-De test set was used for evaluation.

Figure 10: Head redundancy in encoder of transformer (left) and DMA transformer (right), where
WMT’17 En-De test set is used for evaluation.

B.3 ADDITIONAL ANALYSIS ON SEMANTIC CLUSTERING

Figure 11 depicts the top 15 tokens captured by one cluster of DMA transformer in WMT’14 En-
De. The semantic meaning of topic words can be observed from following tokens, ‘year’, ‘time’,
‘Thursday’, and ‘times’.

Figure 11: Top 15 tokens captured by the second cluster in the first head of the 5th encoder layer by
using DMA transformer, where WMT’14 En-De test set is used for evaluation.

Figure 12: Clustering probability distribution (left) and the semantic mask (right) in the 1st head of
2nd DMA transformer encoder layer, where WMT’14 En-De test set is used for evaluation.
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Figure 13: Clustering probability distribution (left) and the semantic mask (right) in the 1st head of
6th DMA transformer encoder layer, where WMT’14 En-De test set is used for evaluation.

Figure 12 and Figure 13 depict the probability distribution of semantic clustering and corresponding
semantic mask of different DMA transformer encoder layers in WMT’14 En-De. The semantic
mask in Figure 12 captures the local dependencies, while the semantic mask in Figure 13 captures
the semantic dependency in longer distance.
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