
Published as a conference paper at ICLR 2024

NEGATIVELY CORRELATED ENSEMBLE REINFORCE-
MENT LEARNING FOR ONLINE DIVERSE GAME LEVEL
GENERATION

Ziqi Wang1,2, Chengpeng Hu1,2, Jialin Liu∗1,2, Xin Yao3
1Department of Computer Science and Engineering,

Southern University of Science and Technology
2Research Institute of Trustworthy Autonomous Systems,

Southern University of Science and Technology
3Department of Computing and Decision Sciences, Lingnan University
{wangzq2021,hucp2021}@mail.sustech.edu.cn,
liujl@sustech.edu.cn, xinyao@ln.edu.hk

ABSTRACT

Deep reinforcement learning has recently been successfully applied to online pro-
cedural content generation in which a policy determines promising game-level
segments. However, existing methods can hardly discover diverse level patterns,
while the lack of diversity makes the gameplay boring. This paper proposes an
ensemble reinforcement learning approach that uses multiple negatively corre-
lated sub-policies to generate different alternative level segments, and stochasti-
cally selects one of them following a dynamic selector policy. A novel policy
regularisation technique is integrated into the approach to diversify the generated
alternatives. In addition, we develop theorems to provide general methodologies
for optimising policy regularisation in a Markov decision process. The proposed
approach is compared with several state-of-the-art policy ensemble methods and
classic methods on a well-known level generation benchmark, with two differ-
ent reward functions expressing game-design goals from different perspectives.
Results show that our approach boosts level diversity notably with competitive
performance in terms of the reward. Furthermore, by varying the regularisation
coefficient values, the trained generators form a well-spread Pareto front, allowing
explicit trade-offs between diversity and rewards of generated levels.

1 INTRODUCTION

Continuously generating new content in a game level in real-time during game-playing, namely
online level generation (OLG), is an important demand from the game industry (Amato, 2017).
Recent works show that reinforcement learning (RL) is capable of training generators that can offline
generate levels to satisfy customised needs using carefully designed reward functions (Khalifa et al.,
2020; Huber et al., 2021). Inspired by those works, Shu et al. (2021) propose the experience-driven
procedural content generation (PCG) via RL (EDRL) framework, in which an RL policy observes
previously generated level segments and determines the following segment in real-time during game-
playing. EDRL is shown to be efficient and effective in generating promising levels (Shu et al.,
2021; Wang et al., 2022). Then, Wang et al. (2023) show that levels generated by EDRL can be
quite similar, i.e., lacking diversity. Diversity is one of the essential characteristics for levels since
similar levels make players bored soon (Koster, 2013; Gravina et al., 2019). Research interests in
generating diverse levels have a long history of at least two decades (Greuter et al., 2003; Togelius
et al., 2011) and has been rapidly growing over the past few years (Gravina et al., 2019; Liu et al.,
2021; Guzdial et al., 2022). However, to the best of our knowledge, no work has tackled the issue
of limited diversity of levels online generated by RL policies yet.

∗Corresponding author.

1

Published as a conference paper at ICLR 2024

There are mainly two limitations in existing deep RL algorithms for learning to online generate di-
verse game levels. Firstly, existing deep RL algorithms typically use a greedy or unimodal stochastic
policy. Such policy has a limited capability of representing complex and diverse decision distribu-
tion (Ren et al., 2021), thus it is hard to enable diverse level generation. Secondly, the diversity
being concerned in this work is about the variations among the generated levels. In the context of
OLG via RL, it is induced by the probability distribution of trajectories from the Markov decision
process (MDP). A reward function only evaluates single actions, but is not aware of the entire MDP-
trajectory distribution. Therefore, one can hardly formulate a reward function to express diversity.

?

State (Observation)

π1
µ1

σ1

π2
µ2

σ2

··
·

··
·

πm
µm

σm

β

In
di

vi
du

al
A

ct
or

s
Se

le
ct

or

(Action Space)

β1 β2 · · · βm[]

Actor Selection Distribution

Selects πi

Alternative
Level Segments

G

··
·

× a1

× a2

× am Decoder

Reward (e.g., is it playable? how fun is it to play?)

Figure 1: Overview of our approach.
The decoder G maps a continuous ac-
tion a to a segment. The selector out-
puts a probability vector β. One of
the individual actors πi will be selected
following β to generate a new seg-
ment. Section 3 details the notations.

To address the two challenges, this paper proposes an en-
semble RL approach which performs a stochastic branch-
ing generation process, namely negatively correlated en-
semble RL (NCERL). NCERL uses multiple individual ac-
tors to generate different alternative level segments. A
selector policy is employed to determine the final output
segment from the alternatives. Figure 1 shows a diagram
of the approach. To diversify the generated alternatives,
NCERL incorporates a negative correlation regularisation
to increase the distances between the decision distributions
determined by each pair of actors. As the regularisation
evaluates the decision distributions rather than the action
instances, traditional RL methodologies do not directly
work for it. To tackle this problem, we derive the reg-
ularised versions of the policy iteration (Sutton & Barto,
2018) and policy gradient (Sutton et al., 1999) to provide
fundamental methodologies for optimising policy regular-
isation in an MDP. Those theorems can derive general loss
functions to establish regularised off-policy and on-policy
deep RL algorithms, respectively. Furthermore, the re-
ward evaluation in OLG tasks usually relies on simulating
a game-playing agent on the generated levels, which is time-consuming. Our work also reduces the
time cost of training OLG agents by designing an asynchronous off-policy training framework.

Main contributions of our work are as follows: (i) we propose an ensemble RL approach with a novel
negative correlation regularisation to promote the diversity of levels online generated by RL policies;
(ii) regularised versions of policy iteration and policy gradient theorems are derived to illustrate how
the policy regularisation can be optimised; (iii) comprehensive experiments show that by using
different regularisation coefficient values, our approach produces a wide range of non-dominated
policies against state-of-the-art policy ensemble RL methods, in terms of cumulative reward and
diversity of generated levels. This makes it possible to make trade-offs based on specific preferences.
Code and results are available at https://github.com/PneuC/NCERL-Diverse-PCG.

2 BACKGROUND AND RELATED WORK

Procedural Content Generation via RL PCG has been investigated for decades (Togelius et al.,
2011; Yannakakis & Togelius, 2018; Risi & Togelius, 2020; Liu et al., 2021; Guzdial et al., 2022).
RL has been applied to a variety of offline PCG tasks, including level generation (Susanto & Tjan-
drasa, 2021) and map generation (Khalifa et al., 2020; Earle et al., 2021; Jiang et al., 2022), and
shown to be powerful on those tasks. However, those works focus on offline content generation,
where the content is determined before game-playing. Besides, RL has also been applied to mixed-
initiative or interactive PCG (Guzdial et al., 2019), which considers the interactions between human
designers and content generators. The focus of this work is generating diverse levels in an online
manner. The word “online” not only refers to real-time generation but also implies the considera-
tion of player experience while generating new content (Yannakakis & Togelius, 2011). Therefore,
our work is more aligned with player-centered approaches, rather than interactive PCG or mixed-
initiative systems (Guzdial et al., 2019).

Recently, research interest in online PCG via RL has been raised. Compared to traditional methods
for online PCG like rule-based methods (Stammer et al., 2015; Jennings-Teats et al., 2010) and

2

https://github.com/PneuC/NCERL-Diverse-PCG

Published as a conference paper at ICLR 2024

search-based methods (Shaker et al., 2012; de Pontes et al., 2022), the RL-based methods rely on
little domain knowledge and are scalable. Shu et al. (2021) introduce the EDRL framework to
online generate playable, fun and historically deviated levels. Wang et al. (2022) propose a model to
estimate player experience and use EDRL to train generators that optimise the experience of playing
the online generated levels. RL has also been applied to specific online PCG scenarios including
dynamic difficulty adjustment (Huber et al., 2021), music-driven level generation (Wang & Liu,
2022) and adaptive virtual reality exposure therapy (Mahmoudi-Nejad et al., 2021). In research of
OLG via RL, the limited diversity of generated levels has been reported by Wang & Liu (2022) and
Wang et al. (2023) but not addressed yet. Our work implements EDRL as the online PCG framework
and specifically focuses on the RL part of it to improve diversity.

Methods for Diverse Game Content Generation In offline PCG, it is applicable to formulate
the contribution of an individual to the diversity and generate a set of diverse game content grad-
ually given the formulation. A representative method is novelty search (Preuss et al., 2014; Liapis
et al., 2013). Beukman et al. (2022) integrate neuroevolution and novelty search to evolve multi-
ple generators to online generate diverse levels. Another popular method is quality-diversity (QD)
search (Gravina et al., 2019; Fontaine et al., 2021), which searches for the best quality content under
each possible attribute or behaviour combination. QD search has been applied to offline PCG (Grav-
ina et al., 2019; Fontaine et al., 2021; Guzdial et al., 2022), mixed-initiative PCG (Alvarez et al.,
2019) and has also been integrated with RL to train diverse policies (Tjanaka et al., 2022). However,
searching for game content is typically slower than generating content via machine learning mod-
els, thus existing novelty search and QD search approaches are not likely efficient enough to realise
real-time generation. Moreover, the QD method is powerful for problems with some attribute or
behaviour descriptors to express diversity as the coverage over the corresponding attribute or be-
haviour space, while our work does not use such descriptors. Besides, Nam et al. (2021) use RL to
generate role-playing game stages and use a diversity-enhancing strategy based on some rules.

Population-based RL Population-based RL is used for a variety of aspects. Saphal et al. (2021)
select a diverse subset from a set of trained policies to make decisions. ACE (Zhang & Yao, 2019)
combines tree search and policy ensemble for better sample efficiency and value prediction. A
number of works consider the population diversity in policy ensemble to encourage the explo-
ration. SUNRISE (Lee et al., 2021) integrates several enhancement techniques into ensemble RL.
PMOE (Ren et al., 2021) leverages multimodal ensemble policy to improve the exploration ability
of RL agents. Parker-Holder et al. (2020) define population diversity as the determinant of an em-
bedding matrix and show that incorporating such a diversity formulation into the training objective
generally improves the reward performance of RL algorithms. Yang et al. (2022) integrate a regu-
larisation loss to enhance the decision diversity of ensemble policy. Diversity of policy population
is also concerned in multi-agent RL. For example, Cui et al. (2023) propose adversarial diversity
to produce meaningfully diverse policies, Lupu et al. (2021) propose trajectory diversity to enable
more robust zero-shot coordination, while Charakorn et al. (2023) propose compatibility gap to
train a population of diverse policies. While diversity in policy populations has been explored in the
aforementioned works, our work uniquely extends this consideration to the context of PCG, making
diversity a primary goal alongside reward. Our ensemble policy uses a selector and multiple indi-
vidual actors, which is similar to hierarchical RL (Pateria et al., 2021) and skill discovery (Konidaris
& Barto, 2009). However, our method features a novel diversity regularisation.

Regularisation in RL According to (Sheikh et al., 2022), regularisation methods in RL are applied
for better exploration (Grau-Moya et al., 2019; Haarnoja et al., 2018a), generalisation (Farebrother
et al., 2018) and other aspects that promote overall rewards (Sheikh et al., 2022; Grau-Moya et al.,
2019; Cheng et al., 2019; Galashov et al.). The works of (Sheikh et al., 2022; Yang et al., 2022) study
a combination of ensemble and regularisation. Different from our approach, the former regularises
network parameters rather than policy behaviour, while the latter focuses on discrete action space
rather than the continuous action space addressed in this work. The work by Haarnoja et al. (2018a)
integrates an entropy regularisation for the decision distribution determined by the policy. Compared
with their work, this work extends their theoretical results from entropy regularisation to general
regularisation. Moreover, we derive the policy gradient for regularisation, which is a basis of on-
policy deep RL algorithms but is not discussed in the work by Haarnoja et al. (2018a).

3

Published as a conference paper at ICLR 2024

3 NEGATIVELY CORRELATED ENSEMBLE RL

This section introduces the problem formulation, then describes our proposed ensemble approach,
called negatively correlated ensemble RL (NCERL). NCERL features a multimodal ensemble policy
and a negative correlation regularisation, to address the two aforementioned limitations.

Problem Formulation According to (Sutton & Barto, 2018), a general MDP M consists of a
state space S, an action space A and its dynamics defined by a probability (density) function
p(s′, r|s, a) over S × R × S × A, where s ∈ S and s′ ∈ S are the current and next state, re-
spectively, r ∈ R ⊂ R is a reward, and a ∈ A is the action taken at s. In addition, an initial state
distribution is considered, with p0(s) denoting its probability (density) at s for any s ∈ S . A pol-
icy π is the decision maker which observes a state s and takes an action a stochastically following
a probability (density) of π(a|s), at each time step. The interaction between π and M induces a
trajectory ⟨S0, A0, R0⟩, · · · , ⟨St, At, Rt⟩, · · · . Our work uses a decoder trained via generative ad-
versarial networks (Goodfellow et al., 2014; Volz et al., 2018) to map a low-dimensional continuous
latent vector to a game level segment. The action is a latent vector. The state is represented by a
fixed number of latent vectors of recently generated segments. These latent vectors are concatenated
into a single vector. Conventionally, the initial state is a randomly sampled latent vector. If there are
not enough segments generated to construct a complete state, zeros will be padded into the vacant
entries. The reward function is defined to evaluate the newly generated segment.

3.1 MULTIMODAL ENSEMBLE POLICY

Similar to (Ren et al., 2021), we use a multimodal ensemble policy that makes decisions following
Gaussian mixture models. The ensemble policy π consists of m sub-policies, namely π1, · · · , πm,
and a weight function β(·) : S 7→ Rm. The decision distribution determined by π at state s, namely
π(·|s), can be viewed as an m-component Gaussian mixture model. Each component πi(·|s) is the
decision distribution determined by πi at s , while its mixture weight βi(s) is given by the weight
function with

∑m
i=1 βi(s) = 1 holds. Specifically in this work, the components are i.i.d. spherical

Gaussian distributions, and their means and standard deviations are denoted by µi(s) and σi(s),
i.e., πi(·|s) = N (µi(s),σi(s)I). The ensemble policy samples a sub-policy πi based on the weight
vector β(s) first, and then samples an action with the sub-policy πi, i.e., the final output a ∼ πi(·|s).
We use m + 1 independent muti-layer perceptrons (MLPs) to model the ensemble policy. Each
of the m sub-policies is modelled by an individual actor using an MLP, while the weight function
is modelled by a selector using an additional MLP. We regard the m + 1 MLPs as a union model
with multiple output heads, though they do not share any common parameters. The union of their
parameters is denoted by θ. The ith individual actor outputs two vectors µθ

i (s) and σθ
i (s), and the

selector outputs an m-dimensional vector βθ(s) that represents the mixture weights.

3.2 NEGATIVE CORRELATION REGULARISATION FOR DIVERSITY

Inspired by (Liu & Yao, 1999), we propose a negative correlation regularisation to diversify the
behaviours of sub-policies. The regularisation calculates the 2-Wasserstein distances (Olkin &
Pukelsheim, 1982) ωi,j(s) between each pair of Gaussian decision distributions πi(·|s) and πj(·|s).
2-Wasserstein distance is chosen because it is widely used and differentiable when both distribu-
tions are Gaussian. The formula of the distance measure is detailed in Section C.2. Let ⌈·⌉c denote
a down-clip function bounding its argument under a constant upper bound c, the formulation of the
negative correlation regularisation ϱ(·) is

ϱ(π(·|s)) =
∑m

i=1

∑m

j=1
βi(s)βj(s)⌈ωi,j(s)⌉ω̄, (1)

where ω̄ is a clip size parameter. This work arbitrarily sets ω̄ = 0.6
√
d where d is the dimensionality

of the action space. We abbreviate ϱ(π(·|s)) as ϱπ(s) in the rest of this paper. Omitting the clipping
function, ϱπ(s) is the expected Wasserstein distance of two sub-decision distributions stochastically
sampled according to β(s). Two ideas motivate the use of the clipping function: (i) if the distance is
already large, continuously maximising the distance does not benefit a lot for diversity of generated
levels but harms the rewards; (ii) a few (even two) far-away clusters can have large expected distance
but such pattern has limited diversity. Taking the down-clip helps with avoiding this case. ϱπ(s) is

4

Published as a conference paper at ICLR 2024

maximised only if ωi,j(s) ≥ ω̄ and βi(s) = βj(s) for all pairs of i and j. This regularisation term
is integrated into the MDP, thus the objective to be maximised in NCERL is defined as

Jπ = EM,π

[∑∞

t=0
γt
(
r(St, At) + λϱπ(St)

)]
, (2)

where λ is a regularisation coefficient and γ is the discount rate. The regularisation follows a
different form compared to the reward r(St, At), which is based on the decision distribution rather
than a single action and is independent of the actual action taken by the policy. This raises the
question of how to optimise the regularised objective Jπ? We adapt the traditional RL theorems,
policy iteration (Sutton & Barto, 2018) and policy gradient (Sutton et al., 1999) to answer it.

4 POLICY REGULARISATION THEOREMS

To answer the question above, this section derives regularised policy iteration and policy-
regularisation gradient. All lemmas and theorems are proved in Appendix A.

Value Functions Similar to the standard one (Sutton & Barto, 2018), the state value for policy
regularisation is defined as V π

ϱ (s)
.
= EM,π

[∑∞
k=0 γ

kϱπ(St+k) | St = s
]
. The state-action value,

however, is varied from the standard Q-value, defined as

Qπ
ϱ (s, a)

.
= EM,π

[∑∞

k=1
γkϱπ(St+k)

∣∣∣St = s,At = a
]
. (3)

The counter k starts from 1 rather than 0, because ϱπ is independent on the actual action. We further
define a regularised state value function Vπ

ϱ (s) = V π(s) + λV π
ϱ (s) and a regularised state-action

value functionQπ
ϱ (s, a) = Qπ(s, a) + λQπ

ϱ (s, a). An optimal policy π∗ is defined as ∀s ∈ S,∀π ∈
Π, Vπ∗

ϱ (s) ≥ Vπ
ϱ (s), where Π is the hypothesis policy space. A π∗ maximises J over Π.

4.1 REGULARISED POLICY ITERATION

We now describe the regularised policy iteration for an arbitrary policy regularisation ϱπ . Off-policy
regularised deep RL algorithms can be established by approximating this theoretical algorithm. Con-
sidering an RL algorithm in a tabular setting, we define a Bellman operator T π

ϱ of Qϱ-function for
all paired s, a ∈ S ×A to derive the Qρ of a policy as

T π
ϱ Qϱ(s, a)← Es′∼p(·|s,a),a′∼π(·|s′) [γϱ

π(s′) + γQϱ(s
′, a′)] . (4)

Having this definition, it is guaranteed that applying the operators over S × A repeatedly will con-
verge to the true Qϱ-function of any policy π, as formalised below.

Lemma 1 (Qϱ-Function Evaluation). By repeatedly applying Qk+1
ϱ = T π

ϱ Q
k
ϱ from an arbitrary

Qϱ-function Q0
ϱ, the sequence Q0

ϱ, · · · , Qk
ϱ, · · · converges to Qπ

ϱ as k →∞.

The complete regularised policy evaluation applies standard policy evaluation andQϱ-function eval-
uation either jointly (by summing Qπ with λQπ

ϱ directly) or separately.

To derive an improved policy πnew from an arbitrary policy πold assuming Qπold
ϱ (s, a) is known for

any s, a ∈ S ×A, we define a greedy regularised policy improvement operator for all s ∈ S as

πnew(·|s)← argmaxπ(·|s)∈Π(·|s)
[
λϱπ(s) + Ea∼π(·|s)

[
Qπold

ϱ (s, a)
]]
. (5)

We say a policy π′ is better than another π, denoted as π′ ≻ π, if ∀s ∈ S,Vπ′

ϱ (s) ≥ Vπ
ϱ (s) and

∃s ∈ S,Vπ′

ϱ (s) > Vπ
ϱ (s). Then a lemma of regularised policy improvement is formalised as follows.

Lemma 2 (Regularised Policy Improvement). For any πold ∈ Π and its πnew derived via equation 5,
it is guaranteed that πnew ≻ πold if πold is not optimal.

The regularised policy iteration algorithm alters between the regularised policy evaluation and the
regularised policy improvement repeatedly. It is proved that given a finite Π, such an algorithm
converges to an optimal policy over Π. This convergence guarantee is formulated into Theorem 1.
Theorem 1 (Regularised Policy Iteration). Given a finite hypothesis policy space Π, regularised
policy iteration converges to an optimal policy over Π from any π0 ∈ Π.

5

Published as a conference paper at ICLR 2024

4.2 POLICY-REGULARISATION GRADIENT

We derive the gradient for policy regularisation, namely the policy-regularisation gradient (PRG) to
provide a theoretical foundation of regularised RL for on-policy algorithms.

An improper discounted state distribution dπ is defined as dπ(s) .=
∑∞

t=0 γ
t
∫
S p0(u)P[u

t→ s, π] du

like in standard policy gradient, where P[s k→ s′, π] denotes the probability density of transiting to s′
after k steps from s, by applying π. Consider a policy represented by a parametric model πθ where
θ is its parameters. Using ϱθ(s) as the abbreviation of ϱ(πθ(·|s)), PRG is formalised as follows.
Theorem 2 (Policy-Regularisation Gradient, PRG). The gradient of a policy regularisation objec-
tive Jθ

ϱ = EM,πθ [
∑∞

t=0 γ
tϱθ(St)] w.r.t. θ follows

∂Jθ
ϱ

∂θ
=

∫
S
d
π
(s)

(
∂ϱθ(s)

∂θ
+

∫
A

Q
π
ϱ (s, a)

∂πθ(a|s)
∂θ

da

)
ds = E s∼dπ,

a∼π(·|s)

[
∂ϱθ(s)

∂θ
+ Q

π
ϱ (s, a)

∂ lnπθ(a|s)
∂θ

]
. (6)

5 IMPLEMENTING NCERL WITH ASYNCHRONOUS EVALUATION

5.1 IMPLEMENTING NCERL AGENT

We implement NCERL agents based on the soft-actor critic (SAC) (Haarnoja et al., 2018b). An
NCERL agent carries two critics for soft Q-function, two critics for Qϱ-function and the ensemble
policy. All critics use MLPs. With Qϱ(s, a;ϕ1) and Qϱ(s, a;ϕ2) denoting Qϱ-value predictions
at state-action pair s, a of two Qϱ-critics, where ϕ1 and ϕ2 denote their parameters, each critic
j ∈ {1, 2} is trained to minimise the Bellman residual of the negative correlation regularisation

Lϕ = Es,a,s′∼D

[(
Qϱ(s, a;ϕj)− γVϱ(s′; ϕ̄)

)2]
, (7)

where D is the replay memory. Vϱ(s′; ϕ̄) is the prediction of Vϱ-value with target parameters ϕ̄:

Vϱ(s
′; ϕ̄) = ϱθ(s′) +

∑m

i=1
βθ
i (s) min

j∈{1,2}
Qϱ(s

′, ã′
i; ϕ̄j), (8)

where ϱθ(s′) is the negative correlation regularisation (cf. equation 1) of the ensemble policy model
πθ at s′, ã′i is an action sampled from πθ

i (·|s′). The target parameters are updated with the same
smoothing technique as in SAC. The Q-critics are trained with SAC, but when computing the soft
Q-value target, we take expectation over all individual actors as in equation 8.

The ensemble policy model is updated by approximating the regularised policy improvement oper-
ator defined in equation 5 with critics and gradient ascent. The loss function is

Lθ = −Es∼D

[
λϱθ(s) +

∑m

i=1
βθ
i (s)Eϵi∼N

[
Qϱ(s, f

θ(s, ϵi))
]]

, (9)

where the reparametrisation trick is used with fθ(s, ϵi) = µθ
i (s)+σθ

i (s)⊙ ϵi where ϵi ∼ N (0, I),
and the regularised state-action value is predicted by Qϱ(s, a) ← mink∈{1,2}Q(s, a;ψk) +
λminj∈{1,2}Qϱ(s, a;ϕj). The gradient of −Lθ is also an approximated estimation of PRG (cf.
equation 6 and Appendix B). The agent learns through performing gradient descent using Adam
optimiser (Kingma & Ba, 2015) periodically to Lϕ and Lθ, respectively. For exploration, the agent
directly samples an action from the ensemble policy model.

5.2 ASYNCHRONOUS OFF-POLICY TRAINING FRAMEWORK

Reward evaluation in OLG typically requires simulations of gameplay on complete levels to test
their playability or simulate player behaviours (Wang et al., 2022). Such a simulation is usually
realised by running a game-playing agent to play the level, which is time-consuming. The paral-
lel off-policy training framework devised for OLG in previous work is synchronous (Wang et al.,
2022), which causes unnecessary hang-on of CPU processes and GPU. On the other hand, existing
asynchronous RL frameworks focus on on-policy algorithms (Mnih et al., 2016) or distributed learn-
ers (Gu et al., 2017), which do not apply to this work. Therefore, we design an asynchronous training
framework. It separates model training and reward evaluation into two parallel processes, while the
reward evaluation uses an asynchronous process pool to compute rewards of complete levels through
multi-processing. This framework is also potentially beneficial to other tasks such as neural com-
binatorial optimisation where the reward evaluation operates on complete trajectories (Liu et al.,
2023). Appendix C.1 provides the pseudo-code.

6

Published as a conference paper at ICLR 2024

6 EXPERIMENTAL STUDIES

NCERL is evaluated on the well-known Mario level generation benchmark (Karakovskiy & To-
gelius, 2012), with two different tasks. This section introduces the experiment settings and discusses
experimental results. Appendix D.2 and E.1 provide more details and analysis.

6.1 EXPERIMENT SETTING

NCERL instances1 with different numbers of individual actors and regularisation coefficient values
are compared to several state-of-the-art policy ensemble algorithms and classic algorithms.

Online Level Generation Tasks Algorithm instances are tested on two OLG tasks of a well-
known benchmark (Hu et al., 2023) from recent literature, namely MarioPuzzle (Shu et al., 2021)
and MultiFacet (Wang et al., 2022). They are mainly different in terms of the reward functions.
MarioPuzzle defines two reward terms, fun and historical deviation. Fun restricts the divergence
between new segments and old ones while historical deviation encourages the RL policy to generate
novel segments in relation to previously generated ones. MultiFacet defines two reward terms to
guide the RL policy to generate segments that introduce new tile patterns and play traces. Both of
them use a playability reward, penalising the RL policy for generating unpassable segments. The
full reward function in each task is a weighted sum of these reward terms. The two tasks are selected
as they are the state-of-the-art for online Mario level generation and their source codes are publicly
available online. Formulations and more details of the two tasks are presented in Appendix D.1.

Compared Algorithms In total, 30 algorithm instances are used to train 5 independent generators
each (thus 150 generators in total), which can be categorised into three groups. (i) 24 NCERL in-
stances are trained with all the combinations of the ensemble sizem ∈ {2, 3, 4, 5} and regularisation
coefficient λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. (ii) Three state-of-the-art ensemble RL algorithms pub-
lished within the past three years, including PMOE (Ren et al., 2021), DvD (Parker-Holder et al.,
2020) and SUNRISE (Lee et al., 2021) reviewed in Section 2. The algorithm proposed in (Yang
et al., 2022) is excluded as it is designed for discrete action space. All of them are trained in our pro-
posed asynchronous framework, using five individual actors following (Parker-Holder et al., 2020;
Lee et al., 2021). During the test, one of the sub-policies is randomly selected to make the decision
at each step for better diversity. (iii) Three SACs are trained in the standard single-process setting, in
the synchronous multi-process framework in (Wang et al., 2022), and in our proposed asynchronous
framework, referred to as SAC, EGSAC and ASAC, respectively.

All algorithm instances are trained for one million steps. Common hyperparameters shared by all
instances are set to the same values. Hyperparameters uniquely belonging to an algorithm are set as
reported in its original paper. Appendix D.2 reports all the hyperparameters and their values.

6.2 RESULTS AND DISCUSSION

Performance Criteria All of the trained generators are tested by generating 500 levels of 25 seg-
ments each. Cumulative reward and diversity evaluated on the 500 levels generated by the generators
are compared. The diversity is measured by the expectation of distance between pairs of generated
levels, which is extensively used in PCG (Nam et al., 2021; Earle et al., 2021; Beukman et al., 2022).
Additionally, geometric mean (G-mean) (Derringer, 1994) and average ranking (Avg-rank) (Zhang
et al., 2022) are used to enable unified comparisons. The average ranking criterion estimates the
average of reward rank and diversity rank of an algorithm instance out of all compared ones. Both
unified criteria are suitable for combining multiple metrics in different scales. Appendix D.4 formu-
lates the criteria and discusses more details.

Effectiveness of NCERL Table 1 reports the performances of the tested algorithm instances. On
both tasks, NCERL achieves the highest diversity. In terms of the G-mean criterion which unifies
reward and diversity, NCERL almost outperforms all the other algorithms with any λ except for
PMOE. With λ = 0.3, 0.4 and 0.5, the G-mean score of NCERL is higher than PMOE on both
tasks. The superior G-mean scores indicate that NCERL balances reward and diversity better and

1We refer to an algorithm with specific hyperparameters as an algorithm instance.

7

Published as a conference paper at ICLR 2024

outperforms other compared algorithms in a unified sense. In terms of the other unified criterion, the
average ranking, NCERL surpasses all other algorithms except for SUNRISE on the MarioPuzzle
task. Compared to SUNRISE, NCERL allows one to make trade-offs between reward and diversity
by specifying the regularisation coefficient. With λ = 0.5, NCERL achieves the best diversity score
on both tasks. PMOE shows competitive performance in terms of diversity, which is only lower than
the NCERL instance s of λ = 0.2 and λ = 0.5 on MarioPuzzle and only lower than the NCERL
of λ = 0.5 on MultiFacet, but the reward gained by PMOE is worse than most NCERL instances.
The reward gained by NCERL is not superior among all compared ones, but the enhancement to
diversity is more significant than the sacrifice of reward, according to the results of the G-mean.

Table 1: Average and ±standard deviation of each algorithm’s performance over 5 independent
trials. All ensemble algorithms reported in this table are trained with 5 individual actors.

Task Criterion Non-ensemble Ensemble (m = 5) NCERL (m = 5)
SAC EGSAC ASAC PMOE DvD SUNRISE λ=0.0 λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5

Mario
Puzzle

Reward 56.21 54.86 57.22 46.39 58.78 60.43 55.24 51.42 53.78 53.22 54.59 53.26
±.896 ±.966 ±1.00 ±11.1 ±1.41 ±1.08 ±2.20 ±10.9 ±3.72 ±7.15 ±2.68 ±3.23

Diversity 628.5 809.9 760.8 1714 760.1 984.8 1342 1570 1940 1688 1698 1967
±173 ±77.1 ±123 ±161 ±128 ±58.4 ±326 ±327 ±101 ±318 ±262 ±278

G-mean 186.1 210.5 207.9 279.4 210.6 243.8 269.7 279.1 322.7 296.1 302.8 322.1
±26.9 ±9.89 ±14.9 ±41.0 ±16.9 ±6.89 ±27.7 ±35.6 ±14.5 ±19.4 ±19.3 ±19.3

Avg-rank 8.32 8.50 6.96 7.14 6.10 4.28 6.16 5.30 4.88 4.98 5.54 5.04
±.808 ±.544 ±.450 ±.723 ±.829 ±.319 ±.564 ±1.48 ±1.37 ±.778 ±1.03 ±.599

Multi
Facet

Reward 46.93 44.35 46.83 37.40 45.68 46.53 46.39 46.16 45.35 37.87 40.86 35.77
±.270 ±.640 ±.456 ±8.59 ±2.29 ±.246 ±.376 ±.356 ±1.12 ±3.55 ±4.21 ±5.52

Diversity 249.6 451.6 213.0 973.9 394.0 388.6 401.6 492.3 620.2 1024 889.6 1142
±22.7 ±62.7 ±31.9 ±380 ±201 ±53.9 ±107 ±69.6 ±92.5 ±151 ±234 ±224

G-mean 108.1 141.2 99.56 181.7 129.9 134.1 135.1 150.3 167.1 195.5 187.3 199.0
±4.94 ±10.3 ±7.41 ±12.6 ±26.1 ±9.18 ±18.2 ±10.4 ±11.2 ±5.17 ±19.7 ±6.94

Avg-rank 6.14 7.26 6.88 6.10 5.82 5.76 5.94 5.64 5.60 6.10 5.90 6.06
±.422 ±.656 ±.752 ±.155 ±.640 ±.516 ±.408 ±.398 ±.410 ±.0632 ±.237 ±.102

Figure 2: Solid curves correspond to the learning
curves of NCERL instances with different values of
λ. Dashed and dotted curves refer to the ones of com-
pared algorithms. Shadow represents standard devia-
tions over the five trials.

Figure 2 further shows the learning curves
of tested algorithms. On both tasks, the re-
ward of all algorithms ascends over time
steps. Meanwhile, except for NCERL and
PMOE, the diversity scores of all other al-
gorithms descend over time steps. On the
MarioPuzzle task, the G-mean scores of
NCERL and PMOE ascend, while on Mul-
tiFacet, their G-mean values remain high.
The G-mean values of all other algorithms
descend on both tasks. As both NCERL
and PMOE use multimodal policy, this ob-
servation implies that the multimodal pol-
icy is key to balancing reward and diver-
sity. Overall, NCERL better balances re-
ward and diversity.

To analyse the performance of each in-
dependent trial, we illustrate the locations
of all trained generators in the reward-
diversity objective space via scatter plots
(Figure 3). According to Figure 3, the compared algorithms are generally located in regions of
low diversity, while NCERLs spread widely and contribute a major portion of the Pareto front. Most
of the generators trained by the compared algorithms are dominated by NCERL generators, while
the non-dominated ones are generally biased towards the reward. The observations further indicate
that NCERL is able to train generators with varied trade-offs between reward and diversity, making
it possible to cater to varied preferences.

The locations of NCERL generators trained under the same hyperparameters sometimes vary a lot,
revealing that NCERL can be instable over trials. Table 1 and Figure 2 also show the standard
deviation of NCERL’s performance is generally big. Meanwhile, PMOE also suffers from instability

8

Published as a conference paper at ICLR 2024

across trials, especially on the MultiFacet task. As both PMOE and NCERL use multimodal policy,
future work may investigate techniques to mitigate the instability of training multimodal policy. On
the other hand, it is expected to integrate NCERL with multi-objective RL (Hayes et al., 2022), to
train a set of non-dominated generators in which the instability may not be a disadvantage.

Figure 3: All trained generators’ locations in the reward-diversity objective space are visualised in
these scatter plots. Coloured markers correspond to generators trained with NCERL, where shapes
represent the ensemble size m (round: m = 2, triangle: m = 3, diamond: m = 4, pentagon:
m = 5). Grey curves indicate the Pareto front across all trained generators.

Verification of the Asynchronous Framework To verify our proposed asynchronous framework,
SAC, EGSAC and ASAC are compared. According to Table 1, the EGSAC, which trains SAC in a
synchronous framework (Wang et al., 2022), gets lower rewards and higher diversity scores. ASAC’s
performance is very similar to SAC, especially in terms of the cumulative reward. Therefore, it is
more reliable to plug base algorithms into our proposed asynchronous framework. Meanwhile, our
asynchronous framework is faster than the synchronous framework of EGSAC. We train generators
with ASAC, EGSAC and standard SAC for one million time steps each on a computation platform
with 64 CPU cores and GTX 2080 GPU to compare their time efficiency. Using 20 processes for
evaluation, ASAC costs 4.93h while EGSAC costs 6.06h, i.e., ASAC is 22.9% faster than EGSAC.
The standard single-process SAC costs 34.26h, i.e., ASAC speeds up SAC by 596%.

Influence of Hypareparamters According to Table 1 and Figure 3, as λ increases, the diversity
score generally increases while the reward generally decreases. The influence of varying the ensem-
ble size m does not show clear regularities. We investigate and discuss the influence of ensemble
size and regularisation coefficient more comprehensively in Appendix E.1.

7 CONCLUSION

In this paper, we propose a novel negatively correlated ensemble RL approach, to enable online
diverse game level generation. The NCERL approach uses a Wasserstein distance-based regulari-
sation to diversify the behaviour of a multimodal ensemble policy. Furthermore, an asynchronous
off-policy training framework is designed to train online level generators faster. To show how the
regularisation can be optimised in MDP, we derive the regularised RL theorems, which facilitate
NCERL. NCERL is shown to be able to generate diverse game levels with competitive performance
on the reward. It achieves superior G-mean scores, which indicates that NCERL better balances the
reward and diversity. The proposed method and theorems make it possible to further develop multi-
objective RL algorithms that consider the diversity of generated levels as an objective, which can
train a set of non-dominated generators in one single trial to cater to varied preferences. Because
the levels generated by NCERL are diverse, it is likely to enable fresh and interesting gameplay
experiences even after numerous levels have been generated and played.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (Grant No.
2023YFE0106300), the National Natural Science Foundation of China (Grant No. 62250710682),
the Shenzhen Science and Technology Program (Grant No. 20220815181327001), the Research In-
stitute of Trustworthy Autonomous Systems, and the Guangdong Provincial Key Laboratory (Grant
No. 2020B121201001).

REFERENCES

Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius. Empowering quality diversity in
Dungeon design with interactive constrained MAP-Elites. In 2019 IEEE Conference on Games,
pp. 1–8. IEEE, 2019.

Alba Amato. Procedural content generation in the game industry. In Game Dynamics: Best Prac-
tices in Procedural and Dynamic Game Content Generation, pp. 15–25. Springer International
Publishing, 2017.

Michael Beukman, Christopher W Cleghorn, and Steven James. Procedural content generation using
neuroevolution and novelty search for diverse video game levels. In Genetic and Evolutionary
Computation Conference, pp. 1028–1037. ACM, 2022.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Generating diverse coopera-
tive agents by learning incompatible policies. In International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=UkU05GOH7_6.

Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick.
Control regularization for reduced variance reinforcement learning. In International Conference
on Machine Learning, pp. 1141–1150. PMLR, 2019.

Brandon Cui, Andrei Lupu, Samuel Sokota, Hengyuan Hu, David J Wu, and Jakob Nicolaus Foer-
ster. Adversarial diversity in Hanabi. In International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=uLE3WF3-H_5.

Rafael Guerra de Pontes, Herman Martins Gomes, and Igor Santa Ritta Seabra. Particle swarm
optimization for procedural content generation in an endless platform game. Entertainment Com-
puting, 43:100496, 2022.

Thomas Degris, Martha White, and Richard Sutton. Off-policy actor-critic. In International Con-
ference on Machine Learning, pp. 179–186, 2012.

George C Derringer. A balancing act-optimizing a products properties. Quality Progress, 27(6):
51–58, 1994.

Sam Earle, Maria Edwards, Ahmed Khalifa, Philip Bontrager, and Julian Togelius. Learning con-
trollable content generators. In 2021 IEEE Conference on Games, pp. 1–9. IEEE, 2021.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
DQN. arXiv preprint arXiv:1810.00123, 2018.

Matthew C Fontaine, Ruilin Liu, Ahmed Khalifa, Jignesh Modi, Julian Togelius, Amy K Hoover,
and Stefanos Nikolaidis. Illuminating Mario scenes in the latent space of a generative adversarial
network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 5922–
5930, 2021.

Alexandre Galashov, Siddhant M Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan
Schwarz, Guillaume Desjardins, Wojciech M Czarnecki, Yee Whye Teh, Razvan Pascanu, and
Nicolas Heess. Information asymmetry in KL-regularized RL. In International Conference on
Learning Representations. URL https://openreview.net/forum?id=S1lqMn05Ym.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, volume 27, pp. 1–9. Curran Associates, Inc., 2014.

10

https://openreview.net/forum?id=UkU05GOH7_6
https://openreview.net/forum?id=uLE3WF3-H_5
https://openreview.net/forum?id=S1lqMn05Ym

Published as a conference paper at ICLR 2024

Jordi Grau-Moya, Felix Leibfried, and Peter Vrancx. Soft Q-learning with mutual-information
regularization. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyEtjoCqFX.

Daniele Gravina, Ahmed Khalifa, Antonios Liapis, Julian Togelius, and Georgios N Yannakakis.
Procedural content generation through quality diversity. In 2019 IEEE Conference on Games, pp.
1–8. IEEE, 2019.

Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geoff Leach. Real-time procedural generation
of ‘pseudo infinite’ cities. In International Conference on Computer Graphics and Interactive
Techniques in Australasia and South East Asia, pp. 87–94, 2003.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In International Conference on
Robotics and Automation, pp. 3389–3396. IEEE, 2017.

Matthew Guzdial, Nicholas Liao, Jonathan Chen, Shao-Yu Chen, Shukan Shah, Vishwa Shah,
Joshua Reno, Gillian Smith, and Mark O Riedl. Friend, collaborator, student, manager: How
design of an AI-driven game level editor affects creators. In Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems, pp. 1–13. ACM, 2019.

Matthew Guzdial, Sam Snodgrass, and Adam J Summerville. Procedural Content Generation via
Machine Learning: An Overview. Springer, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz,
et al. A practical guide to multi-objective reinforcement learning and planning. Autonomous
Agents and Multi-Agent Systems, 36(1):26, 2022.

Chengpeng Hu, Yunlong Zhao, Ziqi Wang, Haocheng Du, and Jialin Liu. Game-based platforms for
artificial intelligence research. arXiv preprint arXiv:2304.13269, 2023.

Tobias Huber, Silvan Mertes, Stanislava Rangelova, Simon Flutura, and Elisabeth André. Dynamic
difficulty adjustment in virtual reality exergames through experience-driven procedural content
generation. In Symposium Series on Computational Intelligence, pp. 1–8. IEEE, 2021.

Martin Jennings-Teats, Gillian Smith, and Noah Wardrip-Fruin. Polymorph: A model for dynamic
level generation. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 6, pp. 138–143. AAAI, 2010.

Zehua Jiang, Sam Earle, Michael Green, and Julian Togelius. Learning controllable 3D level gener-
ators. In Proceedings of the 17th International Conference on the Foundations of Digital Games,
pp. 1–9. ACM, 2022.

Sergey Karakovskiy and Julian Togelius. The Mario AI benchmark and competitions. IEEE Trans-
actions on Computational Intelligence and AI in Games, 4(1):55–67, 2012.

Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. PCGRL: Procedural content
generation via reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 16, pp. 95–101. AAAI, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL https://openreview.net/forum?
id=8gmWwjFyLj.

11

https://openreview.net/forum?id=HyEtjoCqFX
https://openreview.net/forum?id=HyEtjoCqFX
https://openreview.net/forum?id=8gmWwjFyLj
https://openreview.net/forum?id=8gmWwjFyLj

Published as a conference paper at ICLR 2024

George Konidaris and Andrew Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In Advances in Neural Information Processing Systems, volume 22, pp. 1–9,
2009.

Raph Koster. Theory of fun for game design. O’Reilly Media, Inc., 2013.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. SUNRISE: A simple unified
framework for ensemble learning in deep reinforcement learning. In International Conference on
Machine Learning, pp. 6131–6141. PMLR, 2021.

Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. Enhancements to constrained novelty
search: Two-population novelty search for generating game content. In Conference on Genetic
and Evolutionary Computation, pp. 343–350. ACM, 2013.

Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N Yannakakis, and Julian
Togelius. Deep learning for procedural content generation. Neural Computing and Applications,
33(1):19–37, 2021.

Shengcai Liu, Yu Zhang, Ke Tang, and Xin Yao. How good is neural combinatorial optimization?
a systematic evaluation on the traveling salesman problem. IEEE Computational Intelligence
Magazine, 18(3):14–28, 2023.

Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural Networks, 12(10):
1399–1404, 1999.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International Conference on Machine Learning, pp. 7204–7213. PMLR, 2021.

Athar Mahmoudi-Nejad, Matthew Guzdial, and Pierre Boulanger. Arachnophobia exposure therapy
using experience-driven procedural content generation via reinforcement learning (EDPCGRL).
In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Enter-
tainment, volume 17, pp. 164–171. AAAI, 2021.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937. PMLR, 2016.

Sang-Gyu Nam, Chu-Hsuan Hsueh, and Kokolo Ikeda. Generation of game stages with quality and
diversity by reinforcement learning in turn-based RPG. IEEE Transactions on Games, 14(3):
488–501, 2021.

Ingram Olkin and Friedrich Pukelsheim. The distance between two random vectors with given
dispersion matrices. Linear Algebra and its Applications, 48:257–263, 1982.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effec-
tive diversity in population based reinforcement learning. In Advances in Neural Information
Processing Systems, volume 33, pp. 18050–18062. MIT Press, 2020.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys, 54(5):1–35, 2021.

Mike Preuss, Antonios Liapis, and Julian Togelius. Searching for good and diverse game levels. In
Conference on Computational Intelligence and Games, pp. 1–8. IEEE, 2014.

Jie Ren, Yewen Li, Zihan Ding, Wei Pan, and Hao Dong. Probabilistic mixture-of-experts for
efficient deep reinforcement learning. arXiv preprint arXiv:2104.09122, 2021.

Sebastian Risi and Julian Togelius. Increasing generality in machine learning through procedural
content generation. Nature Machine Intelligence, 2(8):428–436, 2020.

Rohan Saphal, Balaraman Ravindran, Dheevatsa Mudigere, Sasikant Avancha, and Bharat Kaul.
SEERL: Sample efficient ensemble reinforcement learning. In International Conference on Au-
tonomous Agents and Multi Agent Systems, pp. 1100–1108, 2021.

12

Published as a conference paper at ICLR 2024

Noor Shaker, Georgios N Yannakakis, Julian Togelius, Miguel Nicolau, and Michael O’neill. Evolv-
ing personalized content for Super Mario Bros using grammatical evolution. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 8,
pp. 75–80. AAAI, 2012.

Hassam Sheikh, Mariano Phielipp, and Ladislau Boloni. Maximizing ensemble diversity in deep
reinforcement learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=2ftXf1-JZMy.

Tianye Shu, Jialin Liu, and Georgios N Yannakakis. Experience-driven PCG via reinforcement
learning: A Super Mario Bros study. In 2021 IEEE Conference on Games, pp. 1–9. IEEE, 2021.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning, pp.
387–395. PMLR, 2014.

David Stammer, Tobias Günther, and Mike Preuss. Player-adaptive Spelunky level generation. In
Conference on Computational Intelligence and Games, pp. 130–137. IEEE, 2015.

Evan Kusuma Susanto and Handayani Tjandrasa. Applying hindsight experience replay to proce-
dural level generation. In Indonesia Conference on Computer and Information Technology, pp.
427–432, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems, volume 12, pp. 1–7. MIT Press, 1999.

Bryon Tjanaka, Matthew C Fontaine, Julian Togelius, and Stefanos Nikolaidis. Approximating gra-
dients for differentiable quality diversity in reinforcement learning. In Genetic and Evolutionary
Computation Conference, pp. 1102–1111. ACM, 2022.

Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron Browne. Search-based
procedural content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):172–186, 2011.

Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and Sebastian Risi. Evolving
Mario levels in the latent space of a deep convolutional generative adversarial network. In Genetic
and Evolutionary Computation Conference, pp. 221–228. ACM, 2018.

Ziqi Wang and Jialin Liu. Online game level generation from music. In 2022 IEEE Conference on
Games, pp. 119–126. IEEE, 2022.

Ziqi Wang, Jialin Liu, and Georgios N Yannakakis. The fun facets of Mario: Multifaceted
experience-driven PCG via reinforcement learning. In Proceedings of the 17th International
Conference on the Foundations of Digital Games, pp. 1–8. ACM, 2022.

Ziqi Wang, Tianye Shu, and Jialin Liu. State space closure: Revisiting endless online level gen-
eration via reinforcement learning. IEEE Transactions on Games, Early Access, 2023. doi:
10.1109/TG.2023.3262297.

Zhengyu Yang, Kan Ren, Xufang Luo, Minghuan Liu, Weiqing Liu, Jiang Bian, Weinan Zhang,
and Dongsheng Li. Towards applicable reinforcement learning: Improving the generalization and
sample efficiency with policy ensemble. In International Joint Conference on Artificial Intelli-
gence, pp. 3659–3665. IJCAI Organization, 2022.

Georgios N Yannakakis and Julian Togelius. Experience-driven procedural content generation. IEEE
Transactions on Affective Computing, 2(3):147–161, 2011.

Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games. Springer, 2018.

Qingquan Zhang, Jialin Liu, Zeqi Zhang, Junyi Wen, Bifei Mao, and Xin Yao. Mitigating unfairness
via evolutionary multi-objective ensemble learning. IEEE Transactions on Evolutionary Compu-
tation, 27(4):848–862, 2022.

13

https://openreview.net/forum?id=2ftXf1-JZMy

Published as a conference paper at ICLR 2024

Shangtong Zhang and Hengshuai Yao. ACE: An actor ensemble algorithm for continuous control
with tree search. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pp. 5789–5796. AAAI, 2019.

A PROOFS

The proofs of Lemma 1, Lemma 2, Theorem 1 and Theorem 2 are provided in this section.

A.1 BEHAVIOUR REGULARISED POLICY ITERATION

Our proof of regularised policy iteration follows the similar line of soft policy iteration (Haarnoja
et al., 2018a) but considers a general decision distribution regularisation setting rather than the spe-
cific maximising entropy setting.

Lemma 1 (Qϱ-Function Evaluation). By repeatedly applying Qk+1
ϱ = T π

ϱ Q
k
ϱ from an arbitrary

Qϱ-function Q0
ϱ, the sequence Q0

ϱ, · · · , Qk
ϱ, · · · converges to Qπ

ϱ as k →∞.

Proof. As the policy π to be evaluated is fixed at this stage, we can treat
γEa∼π(·|s),s′∼p(·|s,a)[ϱ

π(s′)] as a reward function r̂(s, a), and then treat Qπ
ϱ (s, a) as a Q-function

since

Qπ
ϱ (s, a)

.
= EM,π

[∑∞

k=1
γkϱπ(St+k)

∣∣∣St = s,At = a
]

= EM,π

[∑∞

k=0
γk (γϱπ(St+k+1))

∣∣∣St = s,At = a
]

= EM,π

[∑∞

k=0
γkR̂t+k

∣∣∣St = s,At = a
]
,

where the last expression is the same as the definition of standard Q-function. Then we can simply
borrow the theoretical results of standard policy evaluation (Sutton & Barto, 2018).

Lemma 2 (Regularised Policy Improvement). For any πold ∈ Π and its πnew derived via equation 5,
it is guaranteed that πnew ≻ πold if πold is not optimal.

Recap of equation 5:

∀s ∈ S, πnew(·|s) = argmax
π(·|s)∈Π(·|s)

[
λϱπ(s) + Ea∼π(·|s)

[
Qπold

ϱ (s, a)
]]
. (5)

Proof. By taking the operator described in equation 5, it is definite that ∀s ∈ S , λϱπnew(s) +
Ea∼πnew(·|s)

[
Qπold

ϱ (s, a)
]
≥ λϱπold(s) + Ea∼πold(·|s)

[
Qπold

ϱ (s, a)
]
= Vπold

ϱ (s). With Qπ
ϱ (s, a) =

r(s, a) + Es′∼p(·|s,a) [γVπ(s′)], we have:

Vπold(s) ≤ λϱπnew(s) + Ea∼πnew(·|s)
[
Qπold

ϱ (s, a)
]

= λϱπnew(s) + Ea∼πnew(·|s)

[
r(s, a) + Es′∼p(·|s,a)

[
γVπold

ϱ (s′)
]]

= Ea∼πnew(·|s)[λϱ
πnew(s) + r(s, a)] + γEM,πnew

[
Vπold
ϱ (St+1)

∣∣St = s
]

≤ Ea∼πnew(·|s)[λϱ
πnew(s) + r(s, a)] + γEM,πnew

[
λϱπnew(St+1) + Ea′∼πnew(·|St+1)

[
Qπold

ϱ (St+1, a
′)
] ∣∣∣St = s

]
=
∑1

k=0
γkEM,πnew [λϱ

πnew(St+k) +Rt+k| St = s] + γ2EM,πnew

[
Vπold
ϱ (St+2)

∣∣St = s
]

...

≤ EM,πnew

[∑∞

k=0
γk(λϱπnew(St+k) +Rt+k)

]
= Vπnew

ϱ (s).

14

Published as a conference paper at ICLR 2024

Hence, ∀s ∈ S, Vπold
ϱ (s) = Vπnew

ϱ (s) or πnew ≻ πold. If it is the former case, then ∀s ∈ S we have:

Vπnew
ϱ (s) = max

π∈Π

[
λϱπ(s) + Ea∼π(·|s)[Qπnew

ϱ (s, a)]
]

= max
π∈Π

[
λϱπ(s) + Ea∼π(·|s)

[
r(s, a) + γEs′∼p(·|s,a)[Vπnew

ϱ (s′)]
]]

= max
π∈Π

EM,π

[
λϱπ(St) +Rt + γVπnew

ϱ (St+1)
∣∣St = s

]
= max

π∈Π
EM,π

[∑∞

k=0
γk (λϱπ(St+k) +Rt+k)

∣∣∣St = s
]
.

It indicates that both πnew and πold are optimal. Therefore, πnew ≻ πold if πold is not optimal.

Theorem 1 (Regularised Policy Iteration). Given a finite stochastic policy space Π, regularised
policy iteration converges to an optimal policy over Π from any π0 ∈ Π.

Proof. Collecting Lemma 1 and Lemma 2 with the theoretical result of standard Q-value evaluation
(Sutton et al., 1999) and the condition that Π is finite, evidently the policy converges to optimal.

A.2 STOCHASTIC POLICY GRADIENT FOR BEHAVIOUR REGULARISATION

Our proof for Theorem 2 draws lessons from the proof of stochastic policy gradient (Sutton et al.,
1999) for basic ideas, and deterministic policy gradient (Silver et al., 2014) for dealing with con-
tinuous space. We alter the superscript between π and θ and sometimes drop the θ term in the
formulation of policy, such a denotation rule aims at emphasising whether the term requires gradient
w.r.t. θ or not, but all the terms are induced by the parametric model πθ(·|·).
We assume that the state space and action space are continuous, and the discounted regularisation
objective is considered. Furthermore, we assume the involved functions are continuous over the
space and have real number supremum whenever we exchange the orders of derivations and inte-
grals.

Theorem 2 (Policy-Regularisation Gradient, PRG). The gradient of a policy regularisation objective
Jθ
ϱ = EM,πθ [

∑∞
t=0 γ

tϱθ(St)] w.r.t. θ follows

∂Jθ
ϱ

∂θ
=

∫
S
dπ(s)

(
∂ϱθ(s)

∂θ
+

∫
A
Qπ

ϱ (s, a)
∂πθ(a|s)

∂θ
da

)
ds (6)

= E s∼dπ,
a∼π(·|s)

[
∂ϱθ(s)

∂θ
+Qπ

ϱ (s, a)
∂ lnπθ(a|s)

∂θ

]
.

Proof. According to the definition of the value functions of regularisation, we have

V π
ϱ (s) = ϱπ(s) + Ea∼π(·|s)[Q

π
ϱ (s, a)] = ϱπ(s) +

∫
A
π(a|s)Qπ

ϱ (s, a) da

and

Qπ
ϱ (s, a) = Es′∼p(·|s,a)[γV

π
ϱ (s′)] =

∫
S
γp(s′|s, a)V π

ϱ (s′) ds′.

15

Published as a conference paper at ICLR 2024

Then we derive the bootstrap equation of
∂V θ

ϱ (s)

∂θ
as follows:

∂V θ
ϱ (s)

∂θ
=

∂

∂θ

[
ϱθ(s) +

∫
A
πθ(a|s)Qθ

ϱ(s, a) da

]
=
∂ϱθ(s)

∂θ
+

∫
A

(
∂πθ(a|s)

∂θ
Qπ

ϱ (s, a) + π(a|s)
∂Qθ

ϱ(s, a)

∂θ

)
da

=
∂ϱθ(s)

∂θ
+

∫
A

∂πθ(a|s)
∂θ

Qπ
ϱ (s, a) da+

∫
A
π(a|s) ∂

∂θ

∫
S
γp(s′|s, a)V θ

ϱ (s
′) ds′ da

=
∂ϱθ(s)

∂θ
+

∫
A

∂πθ(a|s)
∂θ

Qπ
ϱ (s, a) da+

∫
S

(
γ

∫
A
π(a|s)p(s′|s, a) da

)
∂V θ

ϱ (s
′)

∂θ
ds′

=
∂ϱθ(s)

∂θ
+

∫
A

∂πθ(a|s)
∂θ

Qπ
ϱ (s, a) da+

∫
S
γP[s 1→ s′, π]

∂V θ
ϱ (s

′)

∂θ
ds′.

(10)

Note
∫
S
P[s t→u, π]

∫
S
P[u 1→ s′, π]f(s′) ds′ du =

∫
S
P[s t+1−→ s′, π]f(s′) ds′ is held for any t > 0

as the Markov property is satisfied by any MDP. So we can unroll the result of equation 10 as
follows:

∂V θ
ϱ (s)

∂θ
=

∞∑
t=0

∫
S
γtP[s t→ s′, π]

(
∂ϱθ(s′)

∂θ
+

∫
A

∂πθ(a|s′)
∂θ

Qπ
ϱ (s

′, a) da

)
ds′, (11)

where the item of t = 0 is an improper integral that represents
∂ϱθ(s)

∂θ
+

∫
A

∂πθ(a|s)
∂θ

Qπ
ϱ (s, a) da.

As Jθ
ϱ = EM,π

[∑∞

t=0
γtϱθ(St)

]
=

∫
S
p0(s)V

θ
ϱ (s) ds, together with equation 11 we have

∂Jθ
ϱ

∂θ
=

∂

∂θ

∫
S
p0(s)V

θ
ϱ (s) ds =

∫
S
p0(s)

∂V θ
ϱ (s)

∂θ
ds

=

∫
S
p0(s)

∞∑
t=0

(∫
S
γtP[s t→ s′, π]

(
∂ϱθ(s′)

∂θ
+

∫
A

∂πθ(a|s′)
∂θ

Qπ
ϱ (s

′, a) da

)
ds′
)

ds

=

∞∑
t=0

∫
S

∫
S
p0(s)γ

tP[s t→ s′, π]

(
∂ϱθ(s′)

∂θ
+

∫
A

∂πθ(a|s′)
∂θ

Qπ
ϱ (s

′, a) da

)
ds ds′

=

∫
S

(∞∑
t=0

∫
S
γtp0(s)P[s

t→ s′, π] ds

)(
∂ϱθ(s′)

∂θ
+

∫
A

∂πθ(a|s′)
∂θ

Qπ
ϱ (s

′, a) da

)
ds′

=

∫
S
dπ(s′)

(
∂ϱθ(s′)

∂θ
+

∫
A
Qπ

ϱ (s
′, a)

∂πθ(a|s′)
∂θ

da

)
ds′.

(12)

For the
∫
A
Qπ

ϱ (s
′, a)

∂πθ(a|s′)
∂θ

da term, we can apply the log-derivative trick as follows:

∫
A
Qπ

ϱ (s
′, a)

∂πθ(a|s′)
∂θ

da =

∫
A
Qπ

ϱ (s
′, a)π(a|s′)∂π

θ(a|s′)
π(a|s′)∂θ

da

=

∫
A
π(a|s′)Qπ

ϱ (s
′, a)

∂ lnπθ(a|s′)
∂θ

da

= Ea∼π(·|s′)

[
Qπ

ϱ (s
′, a)

∂ lnπθ(a|s′)
∂θ

]
.

(13)

Concluding equation 12 and equation 13, we get equation 6.

16

Published as a conference paper at ICLR 2024

B EXPLAINING ENTROPY REGULARISED RL WITH GENERAL POLICY
REGULARISATION THEOREMS

The soft policy iteration (Haarnoja et al., 2018b) improves a policy πold by

πnew(·|s) = argmin
π∈Π

DKL

(
π(·|s)

∥∥∥∥exp(Qπold
H (s, ·)/α)
Zπold(s)

)
.

This is a specific case of equation 5 with ϱπ(s) = H(π(·|s)) and λ = α, where H denotes the
entropy, since

argmin
π∈Π

DKL

(
π(·|s)

∥∥∥∥exp(Qπold
H (s, ·)/λ)
Zπold(s)

)
=argmin

π∈Π

[∫
A
π(a|s) log π(a|s)Zπold(s)

exp(Qπold
H (s, a)/λ)

da

]
=argmin

π∈Π

[∫
A
π(a|s) log π(a|s) da+

∫
A
π(a|s) log 1

exp(Qπold
H (s, a)/λ)

da+

∫
A
π(a|s) logZπold(s) da

]
=argmin

π∈Π

[
−H(π(·|s))− 1

λ

∫
A
π(a|s)Qπold

H (s, a) da

]
=argmax

π∈Π

[
λϱπ(s) + Ea∼π(·|s)[Qπold

H (s, a)]
]
.

At the same time, the gradient of actor loss of SAC, can be viewed as a weighted summation of
standard SPG and PRG in terms of entropy. The actor loss of SAC (Haarnoja et al., 2018b) is
written as

Jθ = Es∼D,a∼πθ(·|s)
[
α log(πθ(·|s))−QH(s, a)

]
.

We borrow idea from (Degris et al., 2012), consider a behavioural policyϖ so that s ∼ dϖ ≡ s ∼ D,
then we have

Jθ = Es∼D,a∼πθ(·|s)
[
α log(πθ(·|s))−QH(s, a)

]
= Es∼dϖ

[
−Hθ(s)−

∫
A
πθ(a|s)(Q(s, a) + λQH(s, a)) da

]
−∂Jθ
∂θ

= Es∼dϖ

[∫
A

∂πθ(a|s)
∂θ

Q(s, a) da

]
︸ ︷︷ ︸

Standard SPG

+λEs∼dϖ

[
∂ϱθ(s)

∂θ
+

∫
A

∂πθ(a|s)
∂θ

QH(s, a) da

]
︸ ︷︷ ︸

PRG for entropy

.

Similarly, by s ∼ dϖ ≡ s ∼ D, we can explain NCERL as optimising a weighted summation of
behavioural SPG and behavioural PRG.

C ADDITIONAL DETAILS

C.1 ASYNCHRONOUS OFF-POLICY TRAINING FRAMEWORK

We employ an evaluation pool to enable asynchronous evaluation. The pool contains a capacited
queue and multiple processes. Once a task is submitted, the pool assigns the task to a free process
if available, otherwise, the task will be stored in the queue temporarily. If the queue is full, the pool
will be blocked until any process is finished. Algorithm 1 describes our asynchronous framework.

17

Published as a conference paper at ICLR 2024

Algorithm 1 Main Procedure of the Asynchronous Off-Policy Training
Framework.
Require: Number of evaluation workers w, horizon of MDP h, update

interval itv
1: Create a multi-processing evaluation pool with w workers
2: credits← 0
3: repeat
4: Sample a no-reward trajectory z⃗ via the agent
5: Submit τ to the evaluation pool
6: T ← collect evaluated trajectories from the pool
7: Update D with T
8: credits← credits + |T |

itv

9: for u : 1→ min{⌊credits⌋, ⌈ 1.25wh
itv ⌉} do

10: B ← sample a batch from D
11: Update agent with B
12: credits← credits− 1
13: end for
14: until run out of interaction budget
15: Waiting for all remaining tasks finished
16: T ← collect all trajectories from the pool
17: Update D with T
18: for u : 1→ credits + |T |

itv do
19: B ← sample a batch from D
20: Update agent with B via the base algorithm
21: end for

The coefficient 1.25 in line 9 of Algorithm 1 is arbitrarily set. We just arbitrarily assign a number
slightly higher than 1, aiming to submit the simulation tasks uniformly, which reduces the suspends
of simulation workers. The coefficient should be larger than 1 so that the credits can be used up.

C.2 2-WASSERSTEIN DISTANCE

The 2-Wasserstein distance for a pair of probability distributions X and Y is defined as

ω(X,Y) =

(
inf

Z∈Z(X,Y)
E(x,y)∼Z

[
∥x− y∥2

]) 1
2

,

where Z is a joint distribution of X and Y and Z is the set of all joint distribution of X and Y .

In case both X and Y are Gaussian, the 2-Wasserstein distance can be expressed as follows.

ω2(N1,N2) = ∥µ1 − µ2∥22 +Trace
(
Σ1 +Σ2 − 2

(
Σ

1
2
2 Σ1Σ

1
2
2

) 1
2

)
,

whereN1,N2 are the two Gaussian distribution to be compared, µ1 and µ2 are the means ofN1,N2,
and Σ1,Σ2 are the covariance matrices of N1,N2, respectively.

D ADDITIONAL EXPERIMENT DETAILS

D.1 ONLINE LEVEL GENERATION TASKS

In our tasks, the state space is a dn-dimensional continuous vector space, where d is the dimension-
ality of the latent vector of the action decoder and n is the number of recently generated segments
considered in the reward function. A state is a concatenated vector of a fixed number of latent vec-
tors of recently generated segments. If there are not enough segments have been generated (< n)
to construct a state, zeros will be padded in the vacant entries. The action space is a d-dimensional
continuous vector space. An action is a latent vector which can be decoded into a level segment by
the decoder. The decoder is a trained GAN in this work.

The reward functions of the two tasks considered in this paper consist of several reward terms. Those
reward terms are described and formulated as follows.

18

Published as a conference paper at ICLR 2024

Playability The work of (Shu et al., 2021) and (Wang et al., 2022) use different formulation of
playability. We use the one of (Wang et al., 2022) as it is the most recent one. Formally, the
playability reward is

P(xt) =

{
0, if xt−1 ⊕ xt is playable,
−1, otherwise,

where ⊕ represents appending a level segment with another. The playability is judged by the
strongest game-playing agent in the Mario-AI-Framework benchmark (Karakovskiy & Togelius,
2012).

Fun The fun reward (Shu et al., 2021) uses four configuration parameters lb, ub, δ and n. Further-
more, a metric TPKL(·, ·) is used to measure the dissimilarity of levels. Formally, the fun reward
is

F(xt) =

−(D̄(xt)− lb)2, if D̄(xt) < lb,

−(D̄(xt)− ub)2, if D̄(xt) > ub,

0, otherwise,

where

D̄(xt) =
1

n+ 1

n∑
i=0

TPKL(xt,SW(xt, iδ)),

where SW(xt, iδ) represents the level segment extracted by sliding a window from xt backward
with a stride of iδ tiles.

Historical Deviation Historical deviation (Shu et al., 2021) uses two configuration parameters m
and n with m > n. Formally, the historical deviation reward is

H(xt) =
1

n
min
X

∑
x′∈X

TPKL(xt, x
′),

s.t. X ⊂ {xt−m, · · · , xt−1} ∧ |X| = n.

Level Novelty Level novelty (Wang et al., 2022) uses two configuration parameters g and n. Fur-
thermore, a metric TPJS(·, ·) is used to measure the dissimilarity of levels. Formally, the level
novelty reward function is

L(xt) =

∑n
i=1 AC

(
TPJS(xt, xt−i); g, ri)∑n

i=1 ri
,

in which ri = 1− i
n+1 and

AC(u; g, r) = min

{
r, 1− |u− g|

g

}
.

Gameplay Novelty Gameplay novelty (Wang et al., 2022) shares the same form with the level
novelty but replaces the TPJS metric with another metric DG(·, ·) evaluating the distance between
the simulated gameplay trace of two levels or level segments. Let gp(x) be simulated gameplay of
arbitrary level segment x, formulation of gameplay novelty is

G(xt) =

∑n
i=1 AC

(
DG(gp(xt), gp(xt−i))

)
; g, ri)∑n

i=1 ri
.

All the configuration parameters are set as suggested in the corresponding papers and are sum-
marised in Table 2.

The two tasks use weighted sums of their proposed reward terms as the final reward function. The
observation space varies over different tasks since different reward functions depend on different
numbers of latest level segments. Table 3 summarises the information of six tasks tested in this
paper.

19

Published as a conference paper at ICLR 2024

Table 2: Configuration parameters of the reward functions.

Indicator F H L G

Parameter lb ub δ n m n g n g n

Value 0.26 0.94 8 21 10 5 0.3 5 0.14 5

Table 3: Summary of the OLG tasks.

Task Reward Function Obsevation Space

MarioPuzzle Rt = 30F(xt) + 3H(xt) + 3P(xt) 10d = 200

MultiFacet Rt = L(xt) + G(xt) + P(xt) 5d = 100

D.2 HYPERPARAMETERS

The hyperparameters are listed in Table 4.

Using a discounted rate at 0.9 which is not close to 1 is counter-intuitive as it can induce a large
bias to the optimal policy in the average reward criterion being considered in OLG. However, we
consider the OLG tasks satisfying a perfectible property. In this case, using any γ > 0 does not
bias the optimal policy, so we can use a relatively small γ which reduces the variance of gradient
estimation. The next subsection details the assumed property.

D.3 PERFECTIBLE PROPERTY AND SETTING OF DISCOUNT FACTOR

Two criteria are typically considered in RL, namely the average reward criterion JA(π) =

limh→∞ EM,π

[
1
h

∑h−1
t=0 Rt

]
and the discounted reward criterion JD(π) = EM,π [

∑∞
t=0 γ

tRt],
where γ ∈ [0, 1] is the discount factor. In principle, the average reward criterion should be consid-
ered in OLG. However, we found that in some OLG tasks, relatively small γ (e.g., 0.9) ensures a
superior average reward despite that it may make JD badly approximate JA.

To explain the aforementioned phenomenon, we assume that the MDP of some OLG tasks permits
perfect policy after investigating the formulations of reward function in OLG (see Appendix D.1
for the reward functions). A perfect policy always gains the maximum reward. An MDP is said to
be perfectible if it permits perfect policy. Let Sπ be the set of all the states that possibly appear at
any time step given a policy π, and r∗ be the maximum value of reward r(s, a) over S × A, the
assumption is formalised as follows.
Assumption 1 (Perfectible MDP). For the MDP of OLG tasks considered in this work, there exists
a perfect policy π◦ that satisfies ∀s ∈ Sπ◦

, P[r(s, a) = r∗ | a ∼ π◦(·|s)] = 1.

Under Assumption 1, we have the following proposition.
Proposition 1. For a perfectible MDP, any optimal policy in terms of JA and any optimal policy in
terms of JD (with 0 < γ ≤ 1) are all perfect policies.

The proof of Proposition 1 is straightforward. If an optimal policy π∗ is not perfect, then there must
be ∃s ∈ Sπ◦

, V π◦
(s) > V π∗

(s), in terms of both JA and JD criteria. This is in contrast to that π∗

is optimal. Therefore, we can use a γ that is not close to 1 to optimise JA without bias of optimal
policy in perfectible MDP. Intuitively, smaller γ can reduce the variance, while larger γ is likely to
induce fewer local optima. One may need to set γ carefully to enable superior average return in
perfectible MDP.

D.4 PERFORMANCE CRITERIA

Let n = 500 and h = 25 be the number of levels generated by each generator for the test and the
number of segments in each level (h = 25 is used because this is slightly longer than the longest
level in the training level set of the GAN.), the performance criteria are described below.

20

Published as a conference paper at ICLR 2024

Table 4: Hyperparameter settings.

Hyperparameter Value

Optimiser (all networks and α) Adam Kingma & Ba (2015)
Learning rate (all networks and α) 3.0× 10−4

Hidden layer activation (all networks) ReLU
Number of hidden layers (all networks) 2

Size of hidden layer(all networks) 256

Batch size 256

Replay buffer size 5× 105

Target smoothing coefficient 0.02

Target entropy − dim(A) = −20

Discount factor 0.9

Number of evaluation workers 20

Size of waiting queue 25

Update interval (see Algorithm 1) 2

Cumulative Reward Cumulative reward for a generator is calculated as R =
∑h

t=1Rt for each
level, i.e., each MDP trajectory, then averaged over the 500 levels.

Diversity Score Diversity score of a generator is calculated as

D =
2

n(n− 1)

n∑
i=1

∑
j ̸=i

∆(xi, xj)

, where ∆(·, ·) indicates the Hamming distance, i.e., how many different tiles are there between the
two levels to be compared; and xi, xj indicate the ith one and the jth one in the n levels.

Geometric Mean G-Mean for a generator is calculated as G =
√
RD. It is suitable to combine R

and D even though they are in different scales. Because given any scaling coefficients sR > 0 and
sD > 0 to rescale the cumulative reward and diversity score, the ratio between any two generators’
G-mean values is constant since

G′
1

G′
2

=

√
sRR1sDD1√
sRR1sDD1

=

√
R1D1√
R1D1

=
G1

G2
,

where the subscripts 1 and 2 indicate the two generators being compared in terms of G-mean.

Average Ranking For the average ranking, we first rank the 60 generators (K = 12 algorithm
instances being compared× T = 5 independent trials) in terms of reward and diversity, respectively,
from the highest to the lowest. With kR and kD denoting the ranks of a generator in terms of
reward and diversity out of the KT generators, respectively, the average ranking of this generator is
calculated as A = 1

2 (kR + kD)/T .

E ADDITIONAL EXPERIMENT RESULTS

E.1 INFLUENCE OF HYPAREPARAMTERS

We add tables 5 and 6 to show the performance of each independent NCERL generator to better
analyse the training results, especially the effect of varying hyperparameters.

21

Published as a conference paper at ICLR 2024

Table 5: Reward and diversity of all NCERL generators trained on MarioPuzzle. Trials 1–5 indicate
the five independent training trials. In each row, the five trials are sorted according to the reward of
trained generators.

m λ
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Reward Diversity Reward Diversity Reward Diversity Reward Diversity Reward Diversity

2

0.0 59.21 769.8 58.28 743.1 56.26 1141 56.24 1206 51.54 1775
0.1 57.71 1213 56.79 1221 53.68 1481 50.24 1626 45.81 2144
0.2 55.11 1762 53.99 1588 52.53 1664 45.92 2017 27.21 1660
0.3 59.07 950.8 54.85 1580 52.62 2171 52.21 1366 27.31 1706
0.4 55.64 1450 54.96 1614 53.53 1676 50.94 1668 50.16 1980
0.5 54.25 1943 52.75 1952 52.39 1784 48.47 2344 27.68 1654

3

0.0 61.76 811.5 60.62 818.7 55.52 1184 54.31 1304 52.72 1479
0.1 58.15 1272 55.76 1380 54.70 1703 53.65 1513 47.91 1779
0.2 58.96 1242 56.82 1522 56.06 1412 55.19 1406 53.88 1792
0.3 56.79 1867 55.43 1548 53.31 1729 47.19 2026 32.10 1772
0.4 60.13 1288 55.85 1471 55.22 1681 54.37 1644 47.33 2025
0.5 55.63 1523 55.02 1424 53.90 1884 51.56 2298 42.95 2189

4

0.0 62.85 680.0 61.23 802.3 59.71 803.7 58.11 898.9 53.11 1642
0.1 58.53 1528 58.21 1340 56.83 1419 55.53 1631 55.22 1665
0.2 58.35 1270 56.73 1743 54.35 1675 53.61 1876 25.11 1562
0.3 58.67 1295 56.02 1769 55.99 1551 55.16 1931 49.61 2074
0.4 57.79 1400 57.75 1664 56.77 1612 56.36 1377 45.09 1984
0.5 57.76 1650 55.01 1739 53.62 2058 53.36 1920 53.05 2022

5

0.0 57.46 976.5 57.00 1240 55.80 1063 54.66 1593 51.29 1839
0.1 59.49 1133 58.69 1232 55.97 1794 52.74 1966 30.23 1723
0.2 57.15 1925 55.89 2057 54.80 1764 54.47 2015 46.59 1940
0.3 58.41 1351 58.20 1313 55.62 1702 54.66 1974 39.23 2098
0.4 58.73 1212 56.20 1808 54.50 1648 51.88 1946 51.63 1874
0.5 57.89 1434 53.99 2167 53.86 1954 52.76 2178 47.82 2102

According to the table, the generators with larger m seem to perform more stable since there are
more bad generators found in the group of m = 2. By increasing λ, the diversity is generally
improved while the reward is generally decreased. However, the change in performance is not
monotonic. The reason may be summed up as that the regularisation is not identical to the diversity
score and it also promotes the exploration, making the effect of λ not fully predictable. Reward
and diversity are generally conflicted, but there are examples that a generator performs better than
another in terms of both reward and diversity, i.e., dominate another. For example, Trial 2 of m =
2, λ = 0.5 dominates Trial 3 of m = 2, λ = 0.5. Some bad generators fail to gain good rewards
while their diversity scores are not superior either (e.g., Trial 5 of m = 2, λ = 0.2, Trial 5 of
m = 2, λ = 0.3, Trial 5 of m = 3, λ = 0.3). That means NCERL is not totally stable. Probably the
regularisation objective sometimes leads to some local optima during training.

22

Published as a conference paper at ICLR 2024

Table 6: Reward and diversity of all NCERL generators trained on MultiFacet. Trials 1–5 indicate
the five independent training trials. In each row, the five trials are sorted according to the reward of
trained generators.

m λ
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Reward Diversity Reward Diversity Reward Diversity Reward Diversity Reward Diversity

2

0.0 47.16 242.7 47.15 248.4 46.84 280.2 46.74 263.7 46.69 370.6
0.1 46.12 487.5 37.65 1031 35.11 1084 33.91 1147 28.23 1452
0.2 46.46 424.5 45.24 681.1 42.77 761.4 35.16 1120 28.16 1417
0.3 45.34 684.4 44.81 755.3 42.10 818.4 30.82 1296 29.48 1382
0.4 45.80 735.1 40.48 978.3 40.07 1043 32.23 1282 31.56 1329
0.5 38.65 1063 38.21 978.7 34.16 1172 29.73 1371 28.90 1396

3

0.0 47.42 201.7 46.88 246.8 45.67 543.9 44.85 666.7 35.79 1099
0.1 46.38 444.2 45.81 600.9 45.55 677.9 44.27 732.3 43.73 848.1
0.2 46.19 523.9 46.07 583.5 44.13 623.7 40.91 945.7 39.97 971.0
0.3 45.81 461.3 44.84 684.1 43.93 787.5 38.88 1035 29.41 1382
0.4 46.37 445.5 45.88 430.1 43.07 844.6 42.74 839.7 42.32 937.3
0.5 46.31 417.3 46.01 761.3 45.43 575.6 39.49 992.5 37.77 1108

4

0.0 47.11 245.2 46.16 461.7 45.82 481.6 45.44 505.2 44.60 613.4
0.1 46.08 558.2 46.02 589.8 45.97 624.8 45.95 649.3 45.85 595.4
0.2 46.14 609.7 45.87 543.8 45.76 610.0 40.87 926.5 38.46 1016
0.3 45.92 606.7 45.48 591.1 41.40 822.7 40.73 998.0 38.67 1016
0.4 46.70 420.5 45.84 648.3 44.05 739.1 43.85 704.7 41.18 927.7
0.5 43.42 789.2 43.03 900.4 32.09 1237 31.15 1290 29.84 1364

5

0.0 47.08 248.3 46.43 314.3 46.33 420.9 46.08 531.3 46.02 493.4
0.1 46.70 384.7 46.40 506.1 46.07 444.1 45.88 561.8 45.72 565.0
0.2 46.24 529.9 46.01 501.4 45.95 627.5 45.38 716.5 43.18 725.8
0.3 41.38 849.7 41.04 905.6 39.68 960.1 34.38 1180 32.87 1226
0.4 46.37 480.5 42.66 817.9 42.31 948.8 39.20 1037 33.77 1163
0.5 43.18 802.0 39.15 1018 36.94 1154 32.39 1276 27.21 1460

The observation of this table is similar to the Table 5, the generators with larger m seem to perform
more stable while λ is positively correlated to diversity but negatively correlated to reward. The
diversity of those generators is generally smaller than the ones trained on MarioPuzzle. That means
the reward function of MultiFacet may not allow super highly-diverse generators.

23

Published as a conference paper at ICLR 2024

E.2 INDIVIDUAL ACTOR SELECTION PROBABILITY

To see whether each of the sub-policy is used, we report the selection probability of each sub-policy
for two NCERL generators trained with λ = 0.5 and λ = 0.1, in Tables 7 and 8.

Table 7: Selection probability at each step in two stochastic generation trials with the same initial
state. An NCERL generator trained with λ = 0.5 andm = 5 on MarioPuzzle is picked to showcase.
Levels generated in these two trials are presented in Figure 4. Bold text indicates the sub-policy
of the corresponding row is selected at the corresponding time step. The probabilities smaller than
0.001 are notated as ≈ 0.

λ = 0.5 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12 t = 13 t = 14 t = 15

Run 1

β1 ≈ 0 .062 .084 .138 .094 .147 .147 .144 .171 .137 .179 .184 .208 .206 .209

β2 .357 .260 .242 .218 .238 .218 .222 .225 .205 .241 .209 .209 .188 .189 .190

β3 .239 .216 .225 .233 .247 .222 .233 .236 .211 .191 .200 .208 .195 .211 .195

β4 .404 .259 .254 .196 .237 .219 .205 .203 .201 .259 .211 .188 .196 .178 .197

β5 ≈ 0 .202 .195 .216 .184 .193 .194 .192 .212 .172 .201 .211 .212 .216 .208

Run 2

β1 ≈ 0 .035 .074 .159 .132 .149 .149 .140 .164 .169 .178 .198 .155 .120 .203

β2 .357 .272 .264 .212 .233 .219 .218 .226 .214 .203 .201 .192 .213 .259 .191

β3 .239 .192 .214 .218 .241 .228 .222 .231 .195 .212 .218 .200 .218 .218 .198

β4 .404 .285 .276 .210 .202 .209 .208 .204 .227 .209 .191 .199 .216 .278 .198

β5 ≈ 0 .216 .173 .202 .193 .196 .203 .199 .199 .207 .213 .211 .198 .125 .210

(a) Run 1

(b) Run 2

Figure 4: Generated levels of the two generation trials illustrated in Table 7.

Table 7 shows that the selection probability of the generator trained with λ = 0.5 is adjusted adap-
tively during the generation process, and all the sub-policies are used within the two generation
trials.

24

Published as a conference paper at ICLR 2024

Table 8: Selection probability at each step in two stochastic generation trials with the same initial
state. An NCERL generator trained with λ = 0.1 andm = 5 on MarioPuzzle is picked to showcase.
Levels generated in these two trials are presented in Figure 5. Bold text indicates the sub-policy
of the corresponding row is selected at the corresponding time step. The probabilities smaller than
0.001 are notated as ≈ 0.

λ = 0.1 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12 t = 13 t = 14 t = 15

Run 1

β1 1.00 .382 .531 .501 .609 .522 .483 .539 .560 .513 .610 .711 .661 .687 .522

β2 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 .009

β3 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 .003 ≈ 0 .016 .005 .003 ≈ 0 .035

β4 ≈ 0 .618 .469 .499 .391 .478 .517 .461 .437 .487 .370 .284 .336 .313 .420

β5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 .003 ≈ 0 ≈ 0 ≈ 0 .015

Run 2

β1 1.00 .435 .529 .502 .502 .450 .430 .534 .502 .470 .453 .350 .506 .474 .400

β2 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 .012 ≈ 0 ≈ 0 ≈ 0 .012

β3 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 .046 ≈ 0 .013 ≈ 0 .026

β4 ≈ 0 .565 .471 .498 .498 .550 .570 .466 .498 .530 .468 .650 .479 .526 .546

β5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 .021 ≈ 0 .002 ≈ 0 .016

(a) Run 1

(b) Run 2

Figure 5: Generated levels of the two generation trials illustrated in Table 8.

Table 8 shows that some of the selection probability is near zero. Sub-policies 2 and 3 are never
used within the two trials. This is because λ is small.

25

Published as a conference paper at ICLR 2024

E.3 GENERATED SAMPLES

The following pages show partial examples generated by several trained NCERL generators, with a
comparison to the examples generated by a standard SAC. Performance in terms of reward and diver-
sity is reported. Our anonymous code repository2 includes generated examples of all the generators
we trained in this work.

2https://anonymous.4open.science/r/NCERL-Diverse-PCG-4F25/

26

https://anonymous.4open.science/r/NCERL-Diverse-PCG-4F25/

Published as a conference paper at ICLR 2024

(a) Example levels generated by an NCERL generator trained with λ = 0.5,m = 5 on the MultiFacet task.
The reward and diversity scores of this generator are 36.9 and 1154, respectively.

(b) Example levels generated by a SAC generator trained on the MultiFacet task. The reward and diversity
scores of this generator are 46.7 and 256.1, respectively.

Figure 6: Example levels generated by an NCERL generator trained on MultiFacet with λ =
0.5,m = 5 and a SAC generator. SAC generated similar levels while NCERL generated diverse
levels.

27

Published as a conference paper at ICLR 2024

(a) Example levels generated by an NCERL generator trained with λ = 0.3,m = 5 on the MultiFacet task.
The reward and diversity scores of this generator are 39.7 and 960.1, respectively.

(b) Example levels generated by a SAC generator trained on the MultiFacet task. The reward and diversity
scores of this generator are 46.7 and 256.1, respectively.

Figure 7: Example levels generated by an NCERL generator trained on MultiFacet with λ =
0.3,m = 5 and a SAC generator.

28

Published as a conference paper at ICLR 2024

(a) Example levels generated by an NCERL generator trained with λ = 0.1,m = 5 on the MultiFacet task.
The reward and diversity scores of this generator are 45.9 and 561.8, respectively.

(b) Example levels generated by a SAC generator trained on the MultiFacet task. The reward and diversity
scores of this generator are 46.7 and 256.1, respectively.

Figure 8: Example levels generated by an NCERL generator trained on MultiFacet with λ =
0.1,m = 5 and a SAC generator.

29

Published as a conference paper at ICLR 2024

(a) Example levels generated by an NCERL generator trained with λ = 0.5,m = 5 on the MarioPuzzle task.
The reward and diversity scores of this generator are 47.8 and 2102, respectively.

(b) Example levels generated by a SAC generator trained on the MarioPuzzle task. The reward and diversity
scores of this generator are 57.4 and 656.8, respectively.

Figure 9: Example levels generated by an NCERL generator trained on MarioPuzzle with λ =
0.5,m = 5 and a SAC generator. SAC generated similar levels while NCERL generated diverse
levels.

30

Published as a conference paper at ICLR 2024

(a) Example levels generated by an NCERL generator trained with λ = 0.3,m = 5 on the MarioPuzzle task.
The reward and diversity scores of this generator are 54.7 and 1974, respectively.

(b) Example levels generated by a SAC generator trained on the MarioPuzzle task. The reward and diversity
scores of this generator are 57.4 and 656.8, respectively.

Figure 10: Example levels generated by an NCERL generator trained on MarioPuzzle with λ =
0.3,m = 5 and a SAC generator.

31

Published as a conference paper at ICLR 2024

(a) Example levels generated by an NCERL generator trained with λ = 0.1,m = 5 on the MarioPuzzle task.
The reward and diversity scores of this generator are 58.7 and 1232, respectively.

(b) Example levels generated by a SAC generator trained on the MarioPuzzle task. The reward and diversity
scores of this generator are 57.4 and 656.8, respectively.

Figure 11: Example levels generated by an NCERL generator trained on MarioPuzzle with λ =
0.1,m = 5 and a SAC generator.

32

	Introduction
	Background and Related Work
	Negatively Correlated Ensemble RL
	Multimodal Ensemble Policy
	Negative Correlation Regularisation for Diversity

	Policy Regularisation Theorems
	Regularised Policy Iteration
	Policy-Regularisation Gradient

	Implementing NCERL with Asynchronous Evaluation
	Implementing NCERL Agent
	Asynchronous Off-Policy Training Framework

	Experimental Studies
	Experiment Setting
	Results and Discussion

	Conclusion
	Proofs
	Behaviour Regularised Policy Iteration
	Stochastic Policy Gradient for Behaviour Regularisation

	Explaining Entropy Regularised RL with General Policy Regularisation Theorems
	Additional Details
	Asynchronous Off-Policy Training Framework
	2-Wasserstein Distance

	Additional Experiment Details
	Online Level Generation Tasks
	Hyperparameters
	Perfectible Property and Setting of Discount factor
	Performance criteria

	Additional Experiment Results
	Influence of Hypareparamters
	Individual Actor Selection Probability
	Generated samples

