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Abstract

Time series anomaly detection is a task that determines whether an unseen signal is1

normal or abnormal, and it is a crucial function in various real-world applications.2

Typical approach is to learn normal data representation using generative models,3

like Generative Adversarial Network (GAN), to discriminate between normal and4

abnormal signals. Recently, a few studies actively adopt transformer to model5

time series data, but there is no transformer-based GAN framework for time6

series anomaly detection. As a pioneer work, we propose a new transformer-7

based GAN framework, called AnoFormer, and its effective training strategy for8

better representation learning. Specifically, we improve the detection ability of9

our model by introducing two-step masking strategies. The first step is Random10

masking: we design a random mask pool to hide parts of the signal randomly. This11

allows our model to learn the representation of normal data. The second step is12

Exclusive and Entropy-based Re-masking: we propose a novel refinement step13

to provide feedback to accurately model the exclusive and uncertain parts in the14

first step. We empirically demonstrate the effectiveness of re-masking step that15

our model generates more normal-like signals robustly. Extensive experiments on16

various datasets show that AnoFormer significantly outperforms the state-of-the-art17

methods in time series anomaly detection.18

1 Introduction19

Time series anomaly detection is a crucial technology to prevent potential risks and financial losses20

in a variety of areas, such as detecting anomalies on sensor data of large-scale plants [1], ECG21

monitoring [2], and the network traffic analysis [3]. To deal with this task, from the classic methods22

[4, 5, 6] to the recent deep learning-based methods [2, 7, 8, 9, 10, 11, 12, 13], many studies have23

focused on unsupervised learning methods due to the lack of labeled anomalies and highly nonlinear24

temporal dependencies.25

One of major deep learning-based approaches is a reconstruction-based method. It typically uses an26

autoencoder (AE) or Generative Adversarial Network (GAN) to learn the representation of normal27

data and to reconstruct a normal-like signal from an input always. As a backbone network, the28

existing studies widely utilize CNN (Convolutional Neural Networks) [2] or RNN (Recurrent Neural29

Networks) [8, 9, 10]. More recently, there have been attempts to apply transformer [14] to time30

series anomaly detection, and it shows remarkable performances [11]. In this work, we also adopt31

transformer to embed time series representation, but design an adversarial framework for anomaly32

detection.33

If we devise GAN using a transformer encoder, we expect that the model learns normal time series34

data and eventually generates real normal-like signals. However, there is a major issue. Unlike the35

AE structure, a pure transformer encoder-based generator does not have a compressed latent space,36
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i.e., it makes the model find the trivial solution, just copying an input and pasting to the output for the37

reconstruction. Therefore, we need a new training method for the generator to learn the distribution38

of normal time series data. To address this issue, we introduce a novel two-step masking strategy.39

From this approach, the next question is where to mask an input signal to detect anomalies effectively.40

Understandably, in order to make the normal-like output, the best masking positions are abnormal41

points in the input signal. It is a challenging to mask the abnormal areas selectively because we do42

not know where the abnormal parts are in advance.43

In this paper, we propose AnoFormer, which is a novel transformer-based GAN utilizing a pure44

transformer encoder only. To learn data representation effectively, we adopt a masking strategy. We45

first train transformer-based GAN with random masking (Step 1) for representation learning of the46

normal time series data. While filling the randomly masked parts of the input at Step 1, the model47

learns the distribution of normal data effectively. In Step 1 alone, all parts of the input signal cannot48

be considered, and this randomness is a big problem in anomaly detection. Therefore, we solve this49

problem by re-masking the exclusive parts of Step 1. Also, to find the best masking positions, we50

calculate entropy from the attention maps of transformer blocks and re-mask the parts with high51

entropy that is likely to be abnormal points with high uncertainty. This exclusive and entropy-based52

re-masking (Step 2) provides feedback for better representation learning, eventually improving the53

anomaly detection performance. We experimentally prove that the proposed two-step masking is54

essential for AnoFormer to solve anomaly detection problem successfully.55

Our contributions can be summarized as follows:56

• We propose a simple yet effective transformer-based GAN framework having a generator57

and a discriminator for unsupervised time series anomaly detection, called AnoFormer.58

Moreover, we present pre-processing and embedding methods for our framework to deal59

with time series data effectively.60

• We introduce a new two-step masking method to encode the distribution of normal time61

series data. A newly proposed entropy-based re-masking helps our model to provide62

the feedback to the uncertain parts based on entropy. From the extensive ablations, we63

empirically verify that our two-step masking makes our model robust and successfully64

embed the representation of normal time series data.65

• AnoFormer achieves new state-of-the-art results with significant improvements on various66

unsupervised time series anomaly detection datasets: NeurIPS-TS, MIT-BIH, 2D-gesture,67

and Power-demand.68

2 Related Work69

Generative models using transformer have been proposed and applied to diverse domains, e.g.,70

computer vision [15, 16, 17, 18], natural language processing [19, 20], and sequence modeling71

[21, 22]. In particular, these models are used to solve various tasks in the image domain, such72

as scene generation [15, 16, 23], saliency prediction [18], semantic segmentation [24], and sketch73

synthesis [25]. Moreover, transformer is presented to solve graph-to-sequence transduction task74

using graph neural network [26], text generation task [27], and time series forecasting task with75

the modified self-attention mechanism [28]. We also utilize transformer to construct a generative76

framework, i.e., having both a generator and a discriminator. In this framework, we propose an77

appropriate embedding method and loss form to effectively solve the anomaly detection problems.78

Many studies have used masking to the transformer architecture for effective representation learning.79

Including BERT [29], which proposes the Masked Language Model (MLM) technique to pretrain80

the language representation, many studies also adopt the masking methods, like [30] for action81

recognition, [30] for text classification task, [31] for text log anomaly detection, [32, 33] for visual82

representation learning. In [34], the CNN-based model learns the semantic context features by using83

a multi-scale mask across the whole image with different scales for anomaly detection in image84

domain. We also use masking in our transformer-based GAN for time series anomaly detection, but85

unlike the above studies, we propose the two-step masking strategy for training and test to provide86

feedback that boosts the model to generate the uncertain parts successfully.87
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Figure 1: Overview of the proposed AnoFormer. For simplicity, this figure shows the univariate case. In Step
1 (random masking), a pre-processed input X̃ is masked with a randomly selected mask from a predefined
mask pool. After passing the masked input X̃

1
m to the generator, X̂1 is generated as the output by passing

through embedding, transformer encoder, and inverse embedding layers. In Step 2 (exclusive and entropy-based
re-masking), based on the entropy calculated from attention maps of all layers in Step 1, X̃ is re-masked and
X̂2 is generated again from the generator. Final output X̂ is constructed via the combination of the masked
parts of Step 1 and Step 2. With an aid of a critic, the generator is able to generate more normal-like signals.
Here, Ladv is the adversarial loss, including Lg

adv and Lc
adv . Note that the critic is used only for the train time.

3 AnoFormer88

In this section, we propose AnoFormer for unsupervised time series anomaly detection. We first89

define the target task including an algorithm procedure briefly in Section 3.1. We then describe how90

to construct a transformer-based GAN framework based on a transformer encoder in Section 3.2.91

Next, we introduce two different masking steps for our model to encode time series data effectively92

in Section 3.3. Finally, we present the whole training scheme of AnoFormer in Section 3.4. Figure 193

shows the overall architecture of AnoFormer.94

3.1 Problem Definition95

Let X = {x1,x2, · · · ,xT } ∈ RT×n be an input signal of T lengths, where xt =96 {
x1
t ,x

2
t , · · · ,xn

t

}
∈ Rn at time step t is a vector of dimension n. Since it is easier to get nor-97

mal time series data compared to abnormal ones, we train a generator G and a discriminator D using98

only normal data without any label in an unsupervised manner. After training, for each unseen signal99

X , which can be normal or abnormal, the generator G generates a normal-like signal X̂ . From the100

generated signal, we can determine whether the observed signal X is normal or not based on the101

reconstruction errors between the given signal X and the generated signal X̂ .102

3.2 Transformer-based GAN for Time Series Data103

Pre-Processing. To deal with an input signal for a transformer encoder, we need a pre-processing104

step that makes the input signal discrete tokens. To this end, we normalize each time series input105

X between -1 and 1 by using the min-max scaling. Then, we quantize the normalized real value106

within a specific range [0,K), where the integer K is a hyperparameter controlling the quantization107

resolution, and use the corresponding integer value as a token. Let X̃ ∈ RT×n be the pre-processed108

signal. We set K = 400 for all the experiments, in which the pre-processed signal X̃ looks almost109

like the input X . In total of K tokens (quantization levels), we add a [MASK] token to utilize it for110

both training and test. To sum up, the input signal X is pre-processed to be X̃ by applying scaling111

and quantization sequentially.112

Embedding. An embedding step embeds discrete tokens into the embedding vectors. Here we use113

a token embedding layer to map each token to the corresponding entry in an embedding weight114

W e ∈ R(K+1)×d. We denote z′ ∈ RT×d as the output token embedding, where d is an embedding115
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dimension. We add a sinusoidal positional embedding p′ to the token embedding z′ to allow the116

model to attend relative positions as follows:117

z = z′ + p′. (1)

Transformer Encoder. A transformer encoder uses the embedding z ∈ RT×d as the input, and118

outputs ẑ ∈ RT×d. Each block of the transformer encoder contains a multi-head self-attention layer119

and a feed-forward network, followed by a residual connection and a layer normalization. Through120

the self-attention mechanism, it is possible to attend the relevant information of each time step at121

once, while multiple attention heads can consider different periodicities in time series data [35].122

Inverse Embedding. We need to invert the output ẑ into the original form of time series, X̂ ∈ RT×n.123

To this end, we introduce an inverse embedding layer to our model. We calculate the cosine similarity124

between the output embedding ẑ and the embedding weight W e taken from the token embedding125

layer, and apply the softmax operation as follows:126

p̂ = softmax

 ẑ ·W e⊤

∥ẑ∥
∥∥∥W e⊤

∥∥∥
 . (2)

From the above equation, we obtain the probability distribution p̂ ∈ RT×K , where p̂t,k means the127

probability that k will be selected in the range of [0,K) except the [MASK] token at the position t.128

We then extract an index x̂t of the maximum probability for each time step t ∈ [1, 2, · · · , T ], using129

the soft-argmax operation as follows:130

x̂t = soft-argmax(p̂t) =
∑K−1

i=0
eβp̂t,i∑K−1

j=0 eβp̂t,j
i,

where β is a sufficiently large value, such as 1000. Then, the indices in all time steps are concatenated131

to reconstruct the quantized output X̂ as follows:132

X̂ = {x̂1, x̂2, · · · , x̂T } . (3)

Transformer-based GAN Framework. To enhance the generation quality of X̂ , we design an133

adversarial framework using transformer encoders. Following the notation of WGAN-GP [36], from134

now on we use the term critic C instead of the discriminator D. Same as the generator G, we135

construct the critic C using the transformer encoder, but in the critic C, a [CLS] token is added in136

front of the input tokens for classification. After passing through the transformer encoder, the linear137

classifier outputs the critic score using only the [CLS] token. While classifying the real input X̃ and138

the fake output X̂ , the critic C guides the generator G to reconstruct more normal-like signal X̂ . As139

a result, our model can distinguish X̃ whether it is normal or abnormal according to the difference140

between the input signal X̃ and the reconstructed signal X̂ from the generator G at test time.141

3.3 Two-Step Masking for Time Series Encoding142

In the previous section, we introduce the transformer-based GAN framework for time series data.143

However, we empirically find that the representation learning of the proposed transformer-based144

GAN is not possible because the generator G just copies the input as the output always. Inspired by145

recent studies [35, 32, 33] that effectively learn the representation through masking in transformer,146

we propose two different masking steps during training and test time: 1) random masking and 2)147

exclusive and entropy-based re-masking. We experimentally demonstrate that the proposed two-step148

masking is essential for our framework to learn the distribution of normal time series data successfully.149

In the following content, we describe how to mask the input effectively in each step with details.150

Step 1: Random Masking. As the first step, we partially hide the input signal X̃ using a randomly151

selected mask from a mask pool. To construct the mask pool, we design a single mask in which the152

mask and the non-mask sections alternately appear. We then generate multiple masks by applying153

sliding window to the single mask, and group them as the mask pool. The composition of the mask154

pool depends on a length lm of a single mask section, a ratio rm of all mask parts, and a stride sm for155

the sliding window. The number of masks nm in the predefined mask pool is determined as follows:156

nm = 2×
⌈
lm
sm

⌉
. (4)
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Using the above equation, we generate the enough number of masks in the pool to cover all sections157

of the signal. During the train and test time, the mask is randomly selected in the predefined mask158

pool per each signal, and the generator G reconstructs X̂1 from the masked input X̃
1

m.159

Step 2: Exclusive and Entropy-based Re-Masking. After X̂1 is generated from Step 1, we again160

mask the exclusive parts that are not covered in Step 1 for our model to consider all parts of the161

input. To avoid the error accumulation, here we re-mask the input X̃ , instead of the first output X̂1.162

In addition, we provide feedback to our model by re-masking the parts that the model considers163

uncertain during Step 1. To this end, we get an attention map from each layer of the generator as164

follows:165

Al,h = softmax

(
QhKhT

√
d

)
,

Al =
1

H

H∑
h=1

Al,h,

where l ∈ [1, 2, · · · , L] and Al is the attention map in the l-th layer, calculated by the average of all166

attention maps for individual heads, Al,h. This layer-wise attention map determines how much a167

specific time step focuses on the other parts of the input per signal. In this context, the uniformly168

distributed attention means that the model does not know which connections are valuable [37], i.e.,169

the prediction is uncertain. To quantify the uncertainty, we calculate an entropy HX̂1
of the masked170

input X̂1 as follows:171

H(t) = − 1

L

L∑
l=1

T∑
j=1

Al
t,j logA

l
t,j ,

HX̂1
= {H(1), H(2), · · · , H(T )}.

To provide feedback on the high entropy parts, we re-mask 50% of the parts already masked in Step172

1. Then the generator G re-generates the second output X̂2 from the masked signal X̃2. Finally,173

we combine the masked parts generated from Step 1 and the ones from Step 2 to construct the final174

output X̂ . If there are overlapped parts between Step 1 and Step 2, the parts of Step 2 are used. From175

this re-masking step, we experimentally prove that our model becomes robust to unexplored and176

uncertain parts within a fixed model size. We also use the same random masking and re-masking177

strategies at test time.178

3.4 Training AnoFormer179

To train AnoFormer, we apply the cross-entropy loss to reconstruct the same input X̃ from the final180

output X̂ as follows:181

Lrec = −
T∑

i=1

K∑
j=1

X̃i,j · log
(
p̂i,j

)
, (5)

where X̃i,j denotes the one-hot label vector from the input and p̂i,j denotes the probability distribu-182

tion of the final output X̂ . Using X̂ from the generator G during two-step masking, the critic C tries183

to minimize the following loss function:184

X ′ = ϵX̃ + (1− ϵ)X̂, (6)

LC,adv =
(
E
[
C
(
X̂
)]

− E
[
C
(
X̃
)])

+ λEX′∼PX′

[
(
∥∥∇X′C

(
X ′)∥∥

2
− 1)2

]
, (7)

where ϵ is randomly chosen between zero and one. The first term measures the Wasserstein distance185

and the second term is the gradient penalty, where X ′ is a random sample from PX′ to enforce the186

Lipschitz constraint. The coefficient is a harmonic parameter to balance the Wasserstein distance and187

the gradient penalty, where we use the value of 10. The loss function of the generator G is as follows:188

189

Lg
adv = −E

[
C
(
X̂
)]

, (8)
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Table 1: Quantitative comparisons in four datasets. For all of the metrics, a higher value indicates a better
performance.

Metric
Base
Architecture

Method
NeurIPS-TS

MIT-BIH 2D-gesture Power-demand
Global Contextual Shapelet Seasonal Trend Average

AUROC

CNN BeatGAN 0.9753 0.6128 0.7398 0.9742 1.0000 0.8372 0.9475 0.7256 0.5796
RNN TadGAN 1.0000 0.4285 0.9834 0.9744 0.9327 0.9726 0.8256 0.5294 0.8438

RAE-ensemble 0.5226 0.9348 0.9244 0.9625 0.7246 0.8138 - 0.7808 0.6587
RAMED 0.5265 0.9325 0.9084 0.9628 0.7259 0.8112 - 0.7839 0.6787

Transformer Anomaly Transformer 0.9931 0.6224 0.7407 0.9332 0.9976 0.8400 0.8108 0.7868 0.7739
AnoFormer (Ours) 1.0000 0.9758 0.9900 0.9985 0.9985 0.9911 0.9552 0.8407 0.8667

AUPRC

CNN BeatGAN 0.9855 0.7051 0.6817 0.9748 1.0000 0.9634 0.9143 0.4952 0.1228
RNN TadGAN 1.0000 0.3603 0.9565 0.9754 0.8731 0.9806 0.4621 0.4367 0.3098

RAE-ensemble 0.0453 0.8297 0.8159 0.9191 0.1378 0.5496 - 0.5287 0.1400
RAMED 0.0443 0.8223 0.6873 0.9109 0.1291 0.5188 - 0.5331 0.1627

Transformer Anomaly Transformer 0.9959 0.6957 0.6630 0.9364 0.9978 0.9639 0.5603 0.5607 0.4967
AnoFormer (Ours) 1.0000 0.9854 0.9901 0.9985 0.9987 0.9982 0.9187 0.6142 0.5584

F1 score

CNN BeatGAN 0.9345 0.7348 0.6136 0.9487 1.0000 0.9008 0.8015 0.4941 0.2266
RNN TadGAN 1.0000 0.3590 0.9331 0.9844 0.8170 0.9380 0.5289 0.4138 0.5714

RAE-ensemble 0.0853 0.8343 0.7750 0.9181 0.3889 0.6003 - 0.5511 0.2678
RAMED 0.0838 0.8272 0.6203 0.8782 0.4040 0.5627 - 0.5633 0.2934

Transformer Anomaly Transformer 0.9751 0.7358 0.6115 0.8730 0.9958 0.9014 0.5446 0.6486 0.6053
AnoFormer (Ours) 1.0000 0.9400 0.9696 0.9913 0.9974 0.9798 0.8410 0.6667 0.6226

which makes the critic C not be able to classify the generated X̂ . To sum up, the proposed AnoFormer190

is trained via the following loss functions for the generator G and the critic C:191

LG = λrecLrec + λadvLg
adv, (9)

LC = Lc
adv, (10)

where we set λrec and λadv as 1.192

4 Experiments193

Datasets. We evaluated AnoFormer on four real-world benchmarks: 1) MIT-BIH 1 contains 48 ECG194

records of test subjects from Beth Israel Hospital, 2) 2D-gesture contains time series of X and Y195

coordinates of an actor’s right hand, 3) Power-demand is a dataset measuring the power comsumption196

for the Dutch research facility, and 4) NeurIPS-TS 2 [38] is a synthetic dataset including five different197

time series anomaly scenarios as point-global, point-contextual, pattern-shapelet, pattern-seasonal,198

and pattern-trend. More details on each dataset are summarized in Appendix A.199

Baselines. We compared our model with various baselines, including CNN, RNN, and transformer-200

based reconstruction models. BeatGAN [2] and TadGAN [8] are CNN and LSTM-based GAN201

models, respectively. RAE-ensemble [9] is an ensemble of RNNs with sparse skip connections in202

autoencoder. RAMED [10] additionally uses the multiresolution decoding based on RAE-ensemble.203

Anomaly Transformer [11] develops the transformer architecture to utilize association information.204

Implementation Details. For both the generator G and the critic C, we utilized the basic transformer205

encoders with 9 and 6 layers for MIT-BIH, and 4 and 2 layers for other datasets, respectively. The206

embedding dimension and the number of heads are 128 and 8, respectively. The mask length lm is207

about 10% of the sequence length T , and the mask stride sm is about half of the mask length lm.208

We used Adam optimizer with initial learning rate, momentum β1, and β2 as 0.0001, 0.5, and 0.999,209

respectively. We implemented our model using PyTorch and trained on a NVIDIA RTX 3090 GPU.210

4.1 Quantitative Results211

Table 1 shows the anomaly detection performances of each baseline on three different real-world212

datasets (i.e., MIT-BIH, 2D-gesture, and Power-demand), and a synthetic dataset (i.e., NeurIPS-TS213

[38]). Overall, RNN or transformer-based models showed high performances except MIT-BIH. In214

MIT-BIH, BeatGAN showed the second-best performances among all the benchmarks. In case of215

the proposed AnoFormer, this model outperformed all the baselines in four different datasets. In216

1https://physionet.org/content/mitdb/1.0.0/
2https://github.com/datamllab/tods/tree/benchmark
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(a) (b) (c)

(d) (e) (f)

Figure 2: Output visualization in Point-Contextual (NeurIPS-TS) and MIT-BIH datasets. Left: visualization of
abnormal input and the normal-like output. Middle: reconstruction results of random masking (blue). Right:
reconstruction results of exclusive (green) and entropy-based (red) re-masking. Vest viewed in color.

particular, our model performed well on NeurIPS-TS containing five types of outliers, and it means217

AnoFormer is robust to the various types of outliers. AnoFormer achieved the state-of-the-art results218

from small datasets (e.g., 2D-gesture and Power-demand) with about 1,000 training sets to large219

datasets (e.g., NeurIPS-TS and MIT-BIH) with about tens of thousands of training sets, and from220

univariate to multivariate cases. The experimental results demonstrate that the proposed transformer-221

based GAN framework with the two-step masking strategy is effective to reconstruct normal time222

series data for anomaly detection.223

4.2 Qualitative Results224

Figure 2 shows the qualitative examples of AnoFormer. First column (Figure 2(a) and Figure 2(d))225

shows the abnormal examples of point-contextual of NeurIPS-TS and MIT-BIH datasets, respectively.226

The other columns show that the proposed rnadom masking and re-masking strategies actually provide227

feedback to our framework. For example, the incorrectly copied parts in Step 1 was refined by the228

entropy-based re-masking (please see the black circles in the figure). As shown in the figure, when the229

abnormal inputs were received, the model generated the normal-like outputs. Therefore, AnoFormer230

can detect the abnormal points through the difference between the input and the output.231

4.3 Ablation Study232

We conducted various ablation studies to analyze the effectiveness of the proposed transformer-233

based GAN framework and two-step masking. All of the ablation studies were performed on the234

Point-Contextual dataset of NeurIPS-TS, since it is the most difficult task to detect the anomalies235

out of the five types of outliers. Figure 2 shows an example of Point-Contextual dataset, which has236

the small glitches as the outliers. In Appendix B, we additionally examined the sensitivity of each237

hyperparameter newly adopted in our model.238

4.3.1 Transformer-based GAN Framework239

We first investigated the effectiveness of the transformer-based adversarial framework in our model.240

In this experiment, we used BeatGAN as a CNN-based baseline. Table 2 shows the ablation results241

when the generator and the critic use different backbone networks, such as CNN, and transformer. As242

shown in the table, the transformer-based generator showed higher performances on all of metrics243

with large margins than the CNN-based generator. Interestingly, we empirically found that there was244

no synergy when using CNN-based critic with the transformer-based generator. It means, it is not245

helpful for the transformer-based generator to construct the critic with an inappropriate baseline. On246

7



Table 2: Ablation study of the proposed transformer-based GAN.
Generator Critic AUROC AUPRC F1 score
CNN CNN 0.6128 0.7051 0.7348
Transformer - 0.9572 0.9735 0.9093
Transformer CNN 0.9510 0.9675 0.9026
Transformer Transformer 0.9758 0.9854 0.9400

Table 3: Ablation study of the proposed two-step masking.

Step 1 Step 2 AUROC AUPRC F1 score
- - 0.5000 0.3602 0.2386
Random - 0.8557 0.7959 0.7548
Mask pool - 0.9109 0.8651 0.8200
Mask pool Mask pool (50%) 0.9277 0.8590 0.7808
Mask pool Exclusive (50%) 0.9489 0.9622 0.9057
Mask pool Exclusive + Random (75%) 0.9709 0.9466 0.9004
Mask pool Exclusive + Anomaly score (75%) 0.9747 0.9533 0.9119
Mask pool Exclusive + Entropy (75%) 0.9758 0.9854 0.9400

the other hand, the transformer-based critic showed better performances than the baseline without247

the critic, which means it encourages the generated output to be close to the normal signal. From248

this result, we demonstrate that our transformer-based GAN framework trained with the proposed249

masking strategy is effective to reconstruct normal time series data for anomaly detection.250

4.3.2 Two-Step Masking251

As shown in Table 3, we investigated the effect of two-step masking in our model. The first row252

means a naive form of the transformer-based GAN without any masking. The result was 0.5 of253

AUROC, which means the naive transformer-based GAN cannot distinguish between normal and254

abnormal signals at all. To overcome this critical issue, we adopted various masking strategies. First,255

we investigated the masking for Step 1. Here, Random means a fully random masking without any256

predefined mask pool. Mask Pool means our predefined mask pool defined in Section 3.3. The results257

showed that regardless of the masking strategy, masking itself during training and test enabled the258

transformer-based GAN to effectively learn the distribution of normal time series data. Moreover, we259

confirmed that Mask Pool is much better than Random masking, because each mask in the mask pool260

definitely covers the different parts from each other, providing a complementary effect.261

Next, we conducted in-depth experiments to evaluate and compare different re-masking strategies in262

Step 2. Mask pool method in Step 1 can be also used for re-masking. Exclusive method re-masks the263

exclusive parts of the random mask selected in Step 1. From the results, we found that re-masking264

improved the detection ability of our model, and especially, exclusive masking strategy was really265

effective. This is because the model can consider the characteristic of whole signal during two-step266

masking. To provide more feedback to our model, we additionally re-masked the masked parts in267

Step 1. We experimented the following three cases: 1) Random method re-masks the signal randomly,268

2) Anomaly score method re-masks the parts with high anomaly scores, and 3) Entropy method269

re-masks the parts with high entropy values. The results showed that masking the uncertain parts270

provided the proper feedback to our model, resulting in the highest scores among all the baselines.271

Therefore, we confirmed that the entropy-based re-masking is more effective than the other additional272

masking methods.273

5 Discussion274

We further conducted analysis to demonstrate the effectiveness of the proposed two-step masking275

strategy. To confirm the importance of Step 2, we compared our method with the absence of Step 2.276

Here, we also used Point-Contextual dataset in NeurIPS-TS for analysis.277
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(a) (b) (c)

Figure 3: (a) AUROC and std of all masks in the predefined mask pool. (b) Analysis on the entropy-based
re-masking strategy (normal-case). (c) Analysis on the entropy-based re-masking strategy (abnormal-case).

The Effectiveness of Re-Masking. First, we investigated the validity of re-masking step. We reported278

the average AUROC and std for all masks in the predefined mask pool in Figure 3. In Step 1, there279

was a problem that the standard deviation (std) was too high because both training and test time280

had randomness in selecting the mask parts. By re-masking through Step 2, the randomness of the281

masked parts was eliminated and the std was significantly reduced. The performance of anomaly282

detection also increased with a large margin by referring to the entire signal.283

Analysis on Entropy-based Re-Masking. To understand the effectiveness of entropy-based re-284

masking intuitively, we visualized the relation between entropy and anomaly score in Figure 3(b) and285

Figure 3(c) for both cases of normal and abnormal. Since the entropy-based method re-masked the286

parts selected in Step 1, we measured the anomaly score only in the parts corresponding to Step 1. We287

found two meaningful insights through the analysis. First, the higher the entropy, the more incorrect288

signal the model generates. In training phase, the high anomaly score means that the model generates289

output incorrectly, because only normal data is used. From the result of Figure 3(b), the entropy was290

also high in the parts with high anomaly score, which means that the model did not generate signals291

well in the parts with high entropy during Step 1. This is because in the high entropy the attention is292

uniformly distributed and the meaningful connection is not learned. By re-masking these parts in Step293

2, anomaly score was significantly reduces, which means that the model reconstructed the normal294

data well in the training process. Second, the entropy-based masking improves the discriminative295

ability between normal and abnormal in test time. As shown in Figure 3(c), likewise in the case of296

normal, the higher the entropy, the higher the anomaly score in abnormal case. However, there was297

also a part with a high entropy and a low anomaly score. These parts mean that the model copied298

the abnormal input as it was without making it normal. It is possible to provide feedback in both299

cases with entropy-based re-masking. By re-masking the parts with high entropy, anomaly score was300

considerably increased, and it means the parts that were not well generated due to copying in Step 1301

were well re-generated. This makes it possible to further discriminate between normal and abnormal302

through anomaly score. In fact, a large anomaly score does not mean getting close to normal data. We303

used a NeurIPS-TS dataset to see if the output gets closer to normal data through re-masking. Since304

we synthesized abnormal datasets by injecting sporadic outliers in an additive manner, we could305

easily get the original normal version of the abnormal data. From this, we confirmed that the output306

was correctly getting closer to the original normal through Step 2. We further experimented about307

which layer’s entropy information should be used? From the results in Appendix C, we calculated308

entropy from all layers and averaged them.309

6 Conclusion310

In this paper, we introduce AnoFormer, a novel transformer-based GAN for time series anomaly311

detection. To learn time series data directly with our model, we propose pre-processing and embedding312

methods suitable for time series data. A new training scheme based on two-step masking enables313

AnoFormer to embed the representation of normal signals. Especially, the exclusive and entropy-314

based re-masking method significantly improves the anomaly detection performances on several315

benchmark datasets. From the extensive experiments, we empirically demonstrate that our model316

is really effective to solve time series anomaly detection. As future work, we plan to study novel317

techniques for shorter inference time, and deal with time series data longer than an hour or a day.318
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