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Abstract: Human drivers focus only on a handful of agents at any one time. On
the other hand, autonomous driving systems process complex scenes with numer-
ous agents, regardless of whether they are pedestrians on a crosswalk or vehicles
parked on the side of the road. While attention mechanisms offer an implicit way
to reduce the input to the elements that affect decisions, existing attention mech-
anisms for capturing agent interactions are quadratic, and generally computation-
ally expensive. We propose RDAR, a strategy to learn per-agent relevance — how
much each agent influences the behavior of the controlled vehicle — by identify-
ing which agents can be excluded from the input to a pre-trained behavior model.
We formulate the masking procedure as a Markov Decision Process where the
action consists of a binary mask indicating agent selection. We evaluate RDAR
on a large-scale driving dataset, and demonstrate its ability to learn an accurate
numerical measure of relevance by achieving comparable driving performance, in
terms of overall progress, safety and performance, while processing significantly
fewer agents compared to a state-of-the-art behavior model.
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1 Introduction

Humans, when driving, do not pay equal attention to all agents around them (e.g., other vehicles,
pedestrians). Transfomer-based attention models offer the promise of attending only to relevant
components of the input, but existing attention models are typically quadratic in the size of the input
space. Driving models encounter hundreds of input tokens, leading to substantial computational
complexity and latency [1, 2, 3].

In autonomous driving, there is a tension between the limited available compute resources and the
desire to take advantage of scaling laws, large models, and test-time compute. Having access to
numerical per-agent relevance scores would not only improve the interpretability of large driving
models, but also allow compute resources to be prioritized for the features that are most impor-
tant. In fact, when agents and other scene elements are represented explicitly as tokens, reasoning
about interactions between these tokens (typically through self-attention or graph neural network
operations) is quadratic and difficult to reduce using low-rank or other approximations that work
well for long-sequence data. Reducing the number of tokens under consideration provides quadratic
improvements in FLOPs used.

In this work, we introduce RDAR (Reward-Driven Agent Relevance), through which we quantify
agent relevance through a learned approach. The basic intuition is that if an agent is not relevant
towards the driving decisions of the controlled vehicle, then its absence would not change the con-
trolled vehicle’s driving behavior significantly. Thus, we quantify per-agent relevance by learning
which agents can be masked out from the controlled vehicle’s planner input while maintaining a
good driving behavior. We formulate agent selection as a reinforcement learning (RL) problem



Figure 1: Example visualizations showing agent relevance assigned by our method. The top-k
relevant agents are labeled with a colored dot hovering over them. As shown by the scale in the
bottom left of each image, red corresponds to higher relevance and light blue corresponds to lower
relevance. a) attending to cyclist while turning left, b) attending to pedestrian during stop. The
controlled vehicle is in black.

where an action is a binary mask indicating which agents to include in the driving policy input, and
which not to. The RDAR scoring policy is trained in the loop with a frozen, pre-trained driving
policy and a simulator. At each time step, based on the relevance scores, an agent mask is fed to
the driving policy, making the controlled vehicle blind to the lower score agents. As it will be clear
from the following sections, this is not a binary classification problem over agents due to the under-
lying system dynamics (e.g., not observing an agent now could lead to a collision later) and to the
unavailability of ground truth labels. Some examples of relevance (color-coded) computed by our
method are shown in Fig. 1. Our main contributions are:

* A novel reinforcement learning formulation for agent relevance estimation;
* A sampling-based mechanism for agent selection that enables efficient training and inference;

* A comprehensive evaluation showing that we can maintain driving performance while processing
only a handful of surrounding agents.

2 Related Work

Learning object ranking is a long-standing problem in deep learning and typically requires human-
labeled data [4, 5, 6]. In fields such autonomous driving, a manual ranking process can be not
straightforward, and require large amounts of labeled data. Input attribution [7] is a family of post-
hoc analysis methods attempting to pinpoint which parts of the input are most responsible for a
prediction. Attribution methods mostly focus on leave-one-out (LOO) approaches [8], where chunks
of the input are individually removed, or masked, and are correlated with changes in model outputs.

Ranking agents in a driving scene based on their relevance is useful for both offline and online
applications. Current autonomous driving systems quantify the relevance of surrounding agents
either through fast, heuristic-based modules (e.g., based on euclidean distance), or learned models
trained through supervised learning. Some approaches have been proposed for the supervision of
these models, and they predominantly focus on LOO strategies coming from the attribution literature
for agent prioritization [9], selective prediction [10], or offline introspection [11]. While these LOO
approaches provide insights into individual agent contributions, they have some limitations. First of
all, a change in driving behavior, captured by a shift in predicted action, represents a different driving
behavior, but not necessarily a worse one. Second, these methods require multiple forward passes
through a model (a planner in this case). Third, they do not capture the temporal dependencies
caused by system dynamics. In this work, we propose a reward-driven method trained through
reinforcement learning to estimate agent relevance.

RDAR computes per-agent relevance through just one forward pass, and is reward-driven instead
of supervised through ground truth labels. Reinforcement learning (RL) approaches have shown
promising results in autonomous driving applications [12], and are being integrated in production
and deployed in real-world systems. Several works have shown large scale urban driving through
the use of both RL and human-collected real world driving data [1, 13, 14]. In this work we build
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Figure 2: Example driving scenarios highlighting agent relevance. In a), the pedestrian crossing in
front of the controlled vehicle is highly relevant, while the one behind is not. In b), the bike just
went through the intersection and is not relevant anymore, while the car inching into the intersection
is highly relevant.

upon an existing learned behavior model, and train a scoring policy with closed-loop RL through a
novel formulation for agent selection.

3 Problem Setup

We wish to learn a policy 77(5z assigning a relevance score to each agent in the driving scene based on
its influence on the driving behavior of the controlled vehicle (6 denotes learnable parameters). We
assume a pre-trained driving policy 7" mapping scene information to driving actions is available.
We also assume that, associated with the policy 77, there is a reward function r encoding some
notion of good driving behavior. The RDAR scoring policy 7/ is trained in closed loop with the
(frozen) driving policy 7 and a driving simulator.

Formally defining a notion of agent relevance is not straightforward. However, human drivers have
a good intuitive concept of such notion, which allows them to pay selective attention to surrounding
agents. With reference to Fig. 2a, a pedestrian crossing in front of the controlled vehicle is a highly
relevant agent, because its presence means that the controlled vehicle must come to a stop and
yield instead of driving through a crosswalk. At the same time, the pedestrian crossing behind the
driver has low relevance. Similar considerations are true for the intersection scenario of Fig. 2b.
The vehicle inching into the intersection has high relevance, because its presence means that the
controlled vehicle must stop and yield. Instead, the cyclist who just passed through the intersection
should not affect the controlled vehicle behavior. Therefore, we can say that an agent is relevant
if hypothetically removing it from a driving scenario would cause the controlled vehicle to have a
different behavior.

Markov Decision Process formulation Following the above intuition, we formulate the agent
relevance estimation problem as a Markov Decision Process (MDP). The policy 72t outputs per-
agent relevance scores, which can be interpreted as logits of a categorical distribution. If agent i is
sampled from this relevance distribution, it gets processed by the driving policy 7, otherwise it
is masked out and ignored by 7. Given a hyperparameter k € N, an action is then a subset of k&
surrounding agents, or a k-sample, to be processed by . Our goal is thus to learn wéz such that
the return is maximized in expectation. Inaccurate relevance scores would make the driving policy
blind to important agents in the scene, leading to low reward behaviors (e.g., collisions). The MDP
setup for this process is defined by a standard tuple (S, A, r, P, uo), where:

» S is the state space, including the controlled vehicle state, surrounding agent states (expressed in
the controlled vehicle reference frame), road network and route information (see Fig. 3c);

« A = {0,1}" is the action space, consisting of binary masks of size N (number of agents) indi-
cating which agents to include in the planning input. The logits of the action distribution are the
relevance scores (details in the following sections);
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Figure 3: a) Block diagram of the system at training time. b) Block diagram of the system at

deployment time. ¢) RDAR model structure.

* ris the reward function encoding good driving behavior. This is ideally the same reward or scoring
function accompanying 72;

* P is the transition probability function associated to the environment. Note that the environment,
from the perspective of the reinforcement learning agent 7, consists of 7 and the actual driving
environment altogether (see Fig. 3a);

* Lo is the initial state distribution.

The nature of the actions space makes this problem similar to a contextual multi-armed bandit
(CMAB) [15], with the subtle difference that in this case the action changes the context, which
in CMABs is assumed to be independent of the action.

Agent Selection Mechanism At each time step ¢, the RDAR policy 7/* outputs a vector of per-
agent relevance scores ¢; = [¢1, ¢2,...,¢n]. At deployment time, the top-k scoring agents are
selected, while at training time, agents are randomly sampled to encourage exploration. For sam-
pling, the scores are converted to a categorical distribution p; = [p1, ps, ..., pn] over the binary
agent selection action space through a softmax, where

N
> j=1 exp(¢;)
Drawing one sample from this distribution corresponds to selecting one agent. If we draw exactly
one sample, the probability of agent ¢ being selected is p;. We can thus get a k-sample by drawing
k samples sequentially, without replacement, by renormalizing the probabilities at each step. We
denote an agent k-sample as

a=(ay,ag,...,ar), a; € {1,...., N}, )
where each component a; is the integer index corresponding to the selected agent. Note that this

notation and an /N-dimensional binary vector are equivalent. Then, the probability of selecting an
ordered sample of agents without replacement is

k
DPa,
Play,...,a5) = [ —=+— 3)
11— Ej:1 Da;

where the denominators are the renormalization terms. Note that although we describe the sam-
pling process as sequential, the Gumbel top-k trick enables efficient, single-step sampling without
replacement [16, 17]. The trick consists of perturbing the distribution p; with a Gumbel distribution,

and greedily selecting the top-k elements:

(a1,...,ar) = arg top-k {p; —log(—1logU)}, U ~ Uniform(0,1) 4)



By applying the logarithm to (3), we can compute the log-likelihood of the k-sample:

k k i—1
logP(al,...,ak):Zlogpai—Zlog(l—Zpaj). (5)
i=1 i=1 j=1

Since the scores are the output of our model 7%, (5) is exactly what we need for policy gradient
updates in an RL framework. Once a k-sample is picked, only those k agents are processed by the
driving policy 7. The action output by the driving policy is then applied to the simulator, and the
overall state is updated. The simulator also produces the reward signal r; for RDAR. The process is
then repeated.

Reinforcement learning framework We train the policy using an off-policy actor—critic frame-
work with V-trace corrections [18]. The loss function combines four components:

L= Epolicy + )\cﬁcritic + )\eﬁentropy + As Esmoolhing- (6)

The four components are respectively policy gradient loss, critic loss, entropy regularization loss,
and action smoothing loss. Their exact expressions are:

Lootcy =~ [pe log nfi(ar | 1) Ay™<] 9
r 2
Laie = B [ (Volse) = V")’ ®)
TN
»Cenlropy =E; |- Z’fré{(l | St) log W?(Z | St)‘| s €))
L i=1
TN
Lismootn = E¢ Z ||7Té%(l I St) - 775(7' | 3t—1)|2‘| ’ (10
Li=1
where p; = % are clipped importance weights, a; is the agent k-sample at time step ¢ as

in (2). The A} and V,*** terms are computed following [18]. The log-likelihood term in (7) is
computed as in (5). The entropy and smoothing loss components, are calculated on the logits directly
and do not depend on the k-sample a;. The entropy component favors uniformity in the relevance
scores, and therefore encourages exploration. The action smoothing component encourages the
scores corresponding to the same agent to be consistent across time. It is possible that fewer than NV
agents are physically present in a scene at a given time, in which case the loss terms corresponding
to non-existing agents are masked. Finally, A., A., A5 are hyperparameters weighing the loss terms,
selected empirically.

4 Implementation

Architecture The RDAR model architecture consists of three main components. An encoder
module processes the full scene context (controlled vehicle state, surrounding agent states, road
and route information) and computes embeddings. There are two heads: a scoring head, mapping
embeddings to agent relevance scores, and a value head, approximating the value function. Note that
the value function for the relevance scoring policy has a different meaning than the value function
for the driving policy, since the expectation is over all possible k-samples rather than all possible
driving actions. The three options for the scoring head make use of embedding of varying depth
from the encoder. The first option (Fig. 4a) just uses the features from the agent projection layer. In
this case, only agent state information is fed to the scoring head. The second option (Fig. 4b) uses
the embeddings output by the agent encoder module. In this case, the embeddings also encode agent
interactions. The third option (Fig. 4c) uses the output from the scene encoder, and reprojects it back
to the agent level through a transformer block. In this case, all information from the driving scene
is used to compute agent relevance. The value head is kept the same for the three architectures, and
uses all available information.
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Figure 4: Different model architectures tested. Left: the scoring head consumes directly agent
features projected through a linear layer. Middle: the scoring head consumes the output of the agent
encoder, a transformer block cross attending among agents. Right: the scoring head consumes full
scene information encoded into a latent embedding from the scene encoder, and attending back to
agent tokens.

Training details The training-time agent sampling procedure described in Section 3 is done
through the Gumbel top-k trick [17], natively used, for instance, in the JAX’s implementation of
the categorical distribution [19]. Also at training time, the number k& of agents sampled is random-
ized to make sure the model learns actual relevance scores and not only to differentiate between
top-k and non top-k agents. We uniformly sample a different value & per driving scenario. To
achieve scale, we use a distributed, asynchronous reinforcement learning infrastructure similar to
IMPALA [18]. We found these hyperparameter values to give the best performances: learning rate
2-107%, A\c = 0.1, A\c = 0.2, Ay = 0.05. No sampling happens at deployment time, and the top-k
agents are selected greedily (analogous to selecting the argmax action in standard RL).

5 Experimental Setup

Datasets We train and evaluate our approach on large-scale proprietary datasets consisting of ten-
second long scenarios of real world, diverse urban driving. The training dataset contains around two
million scenarios, while the evaluation dataset contains twelve thousand.

Metrics To quantitatively evaluate our method, we use standard driving metrics which we compute
on the 12k scenario evaluation set. In these evaluations, the candidate relevance scoring policies and
baselines are used in closed-loop as filters, with the driving policy 7 processing only a subset k&
of all the agents present at any one time. At evaluation, we select the top-k scoring agents greedily
(analogously to selecting an action through argmax in standard RL). We use the following metrics:

1. Collisions [%]: percentage of scenarios in which a collision occurs (lower is better);
Traffic light [%]: percentage of scenarios in which a traffic light is violated (lower is better);
Stop line [%]: percentage of scenarios in which a stop line is skipped (lower is better);

Off-road [%]: percentage of scenarios in which the vehicle drives off-road (lower is better);

oA LD

Comfort: metric combining four motion aspects — forward/backward acceleration, turning accel-
eration, and how suddenly or abruptly these accelerations change. These are weighted, averaged,
then converted to a 0-1 score where 1 means smooth driving and 0 means jerky, uncomfortable
motion (higher is better).

6. Progress ratio: relative progress along the route with respect to the ground truth human log;

7. Complexity: computation required by the scoring method as a function of the number /V of agents
in a scene.

Baselines We compare RDAR to other scoring strategies. The evaluation is done in closed-loop,

using these strategies to pick the top-k agents to be processed by 72:

* Closest-k selection: Select the k closest agents to the controlled vehicle — equivalent to agents’
relevance scores being inversely proportional to their distance to the controlled vehicle;
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Figure 5: Metrics of best RDAR model and baselines against number k of selected agents in closed-
loop. All the closed-loop metrics for RDAR are close to the full policy baseline, supporting the
claim that we are able to learn true agent relevance. In this case, the RDAR model is the version
processing full scene information (see Fig. 4c).

* Random-£ selection: Randomly select k agents from the scene — equivalent to agents’ relevance
scores being drawn uniformly at random;

* Attribution-based scoring: scores obtained via input attribution [11]. At each time step, the
procedure is as follows: the pre-trained driving policy 7” is evaluated N + 1 times (one with
full scene information and one with each individual agent omitted in turn). For each agent, the
Jensen—Shannon divergence between the action from its masked-out pass and the nominal full-
scene pass is computed.

The overall performance of these baselines when varying & is shown in Fig. 5. When £ = N no

agents are masked out from the driving policy.

6 Results

Quantitative results The three different architectures proposed in Fig. 4 show comparable per-
formances, and the model using full scene information leads to the least collisions. We report plots
showing the trends of the reference metrics when varying the value & in Fig. 5. We can see that
RDAR has comparable performances to the attribution method, and requires only a fraction of the
computation time. RDAR is also able to drive with a fraction of percent performance regressions
compared to the nominal, full policy, while processing an order of magnitude fewer agents. Table 1
shows the actual numbers relative to the £ = 10 case. It is interesting to see that the random scoring
policy outperforms all the others in when it comes to rules of traffic (off-road, traffic lights, stop
lines). This comes, as expected, at the cost of much higher collision rates. Scores computed using
only agent features (Fig. 4a) or attending to the control vehicle state (Fig. 4b), which achieves good
closed-loop driving, requires fewer FLOPs compared to using full scene information (Fig. 4c). On
the other hand, full scene information enables enhanced awareness and lower collisions.
Qualitative results We also report some visualizations from the same closed-loop evaluation roll-
outs (Fig. 6). The scenes represented are challenging, cluttered driving scenes in which incorrect
relevance quantification would lead to wrong masking and bad behaviors. The top-%k agents have a
colored dot hovering over them, which is color-coded based on the actual score. These examples
are from our best full-scene scoring policy. We can see that the agent importance assigned by our
model is aligned with human intuition.

7 Discussion and Conclusions

Our model provides insights into which agents influence driving decisions, enabling better under-
standing of planner behaviors. It can also inform how to allocate costly computation in a principled
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RDAR, Agent features (Fig. 4a) 0.94 0.71 097 044 057 1.06 O(1)
RDAR, Agent encoder (Fig. 4b) 0.89  0.70 0.89 043 0.57 1.06 O(1)
RDAR, Full scene (Fig. 4c) 0.77 0.79 0.92 0.46 0.60 1.05 0(1)
Closest-k 134 0.7 090 046  0.59 1.07  O(1)
Random-k 12.5 0.46 038 0.10 0.39 1.17  O(1)
Attribution 0.75 0.74 0.96 0.47 0.58 1.05 O(N)
Baseline (no filter) 0.68 0.75 1.02 0.50 0.61 1.07 -

Table 1: Closed-loop metrics of different methods with £ = 10 agents. Using only agent features
or reasoning about agent interactions leads to good closed-loop driving performance, and requires
fewer FLOPs compared to full scene, which on the other hand achieves lower collision rate.
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Figure 6: Example visualizations showing agent relevance assigned by our method. The top-k
relevant agents are labeled with a colored dot hovering over them. As shown by the scale in the
bottom left of each image, red corresponds to higher relevance and light blue corresponds to lower

relevance. The controlled vehicle is in black. Agent importance seems to be aligned with human
intuition.

way—for example, running joint trajectory prediction or computing vision embeddings only for the
most relevant agents.

This work opens several interesting directions. First, similar relevance-scoring methods could be
applied to other components of the driving scene, such as road information. A challenge here is the
potential for distribution shifts when masking inputs; in our case such effects are mild, since driving
scenarios remain in-distribution regardless of the number or position of agents, but investigating
mitigation strategies is important. Second, the scoring policy’s action space could be expanded
beyond masking. Instead of excluding agents, the prioritization module could be trained to trigger
targeted computation on selected agents, such as expensive vision embeddings, so that enhanced
representations directly translate into downstream gains like improved driving rewards.

We introduced a reinforcement learning approach to estimate agent relevance in driving scenarios.
By formulating relevance scoring as an agent-masking MDP, we enable end-to-end training of a
scoring policy with a driving policy in the loop. Our method avoids costly post-hoc attribution
and repeated forward passes, making it well suited for real-time autonomy stacks. In closed-loop
evaluation, we show that comparable driving performance can be achieved while processing an
order of magnitude fewer agents, highlighting the benefits of our approach in terms of behavior
model introspection and dynamic compute allocation.
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