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Abstract

Event Argument Extraction is a vital subtask of001
Event Extraction. Despite the achievements002
in existing methods, they can not fully use003
the event structure information and the rich004
semantics of the labels, which can provide005
richer external knowledge for extracting event006
arguments. To this end, we propose an effi-007
cient and end-to-end event argument extrac-008
tion model based on the Event Structure and009
Question Answering (ESQA-EAE): (1) we010
model a multi-relational graph of event on-011
tologies to get the structure-aware node rep-012
resentations; (2) we encode the questions and013
event mentions separately to avoid premature014
fusion of the two features. Experiments on the015
ACE20051 show that ESQA-EAE surpasses016
the baseline models, which further show that017
ESQA-EAE can use the structural information018
to improve the accuracy of event argument ex-019
traction.020

1 Introduction021

Event Argument Extraction (EAE) aims to identify022

the event arguments and classify their roles in the023

event mention, according to the given event type024

and trigger word. As in the sentence "Tugle was025

on trial for raping and killing a southwest Virginia026

grandmother.", the event type is Conflict.Attack027

triggered by the word "raping", EAE needs to ex-028

tract "Tugle" and "grandmother" as two arguments,029

and classify their roles into Attacker and Target030

respectively.031

Most of the existing methods regard EAE as an032

entity classification task (Chen et al., 2015; Nguyen033

et al., 2016; Liu et al., 2018; Sha et al., 2018;Wang034

et al., 2019; Ma et al., 2020; Xiangyu et al., 2021;035

Ahmad et al., 2021), a sequence labeling task (Ma036

et al., 2020; Yang et al., 2018; Chen et al., 2020a;037

Du and Cardie, 2020a), or or a joint learning task038

1https://catalog.ldc.upenn.edu/
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Figure 1: Event Type Structures of Conflict.Attack and
Life.Injure. The event types and argument roles are
defined in ACE2005, where argument roles Instrument,
Time and Place are in both two event type structures.

(Nguyen and Nguyen, 2019; Wadden et al., 2019; 039

Lin et al., 2020). Recently, some studies model it as 040

a Machine Reading Comprehension (MRC) / Ques- 041

tion Answering (QA) task(Yang et al., 2019; Du 042

and Cardie, 2020b; Liu et al., 2020; Li et al., 2020; 043

Chen et al., 2020b; Zhou et al., 2021; Zhang et al., 044

2020), which can solve the shortcomings in the pre- 045

vious methods well. Yet, there are still weaknesses 046

in the existing methods: (1) The existing methods 047

cannot make full use of the complex relations be- 048

tween events and argument roles; (2) MRC / QA 049

methods need to design the questions carefully; (3) 050

MRC / QA methods encode the questions and the 051

contexts jointly, fusing the information of the two 052

prematurely. 053

For tackling the weaknesses, we propose an ef- 054

ficient and end-to-end event argument extraction 055

model based on the Event Structure and Question 056

Answering (ESQA-EAE). For weaknesses (1), we 057

assume that there are complex relations between 058

event types and argument roles, which can be used 059

as external knowledge for EAE. Huang et al. (2018) 060

pointed out that Event Ontology can be represented 061

by structure, which defines each event type and a 062

set of argument roles and the relation between them. 063

As shown in Fig. 1, we found that there are com- 064

mon roles in different event type structures, which 065

implies certain information. To better utilize this in- 066

formation, we model the event type structures as a 067

1

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06


multi-relational graph to obtain the structure-aware068

node representations for event argument QA.069

For weakness (2), we assume that what works in070

a question are the keywords, and the other words in071

the well-designed query will introduce noise and072

cause unnecessary encoding costs. For weakness073

(3), we assume that fully understanding the ques-074

tion and context is the key to answering correct075

answers, while jointly encoding causes attention076

distraction. Thus, ESQA-EAE encodes the ques-077

tion and event mention separately, and then the078

fusion features are used for predicting answers.079

Note that in ESQA-EAE, only the event types080

and the argument roles are used to construct ques-081

tions, simplifying the question design. Besides,082

ESQA-EAE makes it possible to extract multiple083

argument answers simultaneously to overcome the084

multi-arguments problem.085

In general, the contributions of this paper are:086

• We model a multi-relational graph ESRG087

for the complex relations in event type structures,088

which is used as external knowledge for event ar-089

gument QA.090

• We propose a model ESRG-EAE that encodes091

the questions and event mentions separately and092

make use of the features learned from ESRG as093

questions for event argument extraction.094

• Experiment results show that our proposed095

model outperforms the baseline models.096

2 Related Works097

2.1 Event Argument Extraction098

The existing event argument extraction studies can099

be divided into the following categories.100

2.1.1 Entity Classification task101

Most researchers model EAE as an entity classi-102

fication task, that is, classify the corresponding103

argument roles for the candidate argument entities.104

Chen et al. (2015) introduce dynamic multi-pooling105

layer to reserve more crucial information. Nguyen106

et al. (2016) use RNN and memory matrices. Liu107

et al. (2018) make use of semantic arcs and graph108

attention convolution. Sha et al. (2018) introduces109

syntactic dependency bridge into RNN. Wang et al.110

(2019) proposes "superordinate concept" and use111

the concept hierarchy for EAE. Ma et al. (2020) in-112

troduce a Syntax-Attending Transformer. Xiangyu113

et al. (2021) propose a novel Bi-directional Entity-114

level Recurrent Decoder. Ahmad et al. (2021) pro-115

poses Graph Attention Transformer Encoder that116

it takes into account the syntactic structure and 117

distances. 118

2.1.2 Joint Method 119

The error propagation problem between Named 120

Entity Recognition(NER) and EAE has prompted 121

scholars to study joint methods of the two tasks. 122

One is to model EAE as a sequence labeling 123

task(Ma et al., 2020; Yang et al., 2018; Chen 124

et al., 2020a; Du and Cardie, 2020a), that is, 125

classify a BIO label2 for each word, and obtain 126

one optimal extraction in combination with Condi- 127

tional Random Field(CRF) and Viterbi Algorithm, 128

therefore the NER is not required. Another ap- 129

proach is to jointly learn the NER and EAE in one 130

model(Nguyen and Nguyen, 2019; Wadden et al., 131

2019; Lin et al., 2020), for alleviating the error 132

propagation problem. 133

2.1.3 Machine Reading Comprehension / 134

Question Answering 135

Recently, some studies model the EAE as a Ma- 136

chine Reading Comprehension(MRC) / Question 137

Answering(QA) task. The model needs to under- 138

stand the context(i.e., event mention) and answer 139

the questions related to argument roles, in which 140

the answers are the event arguments. Yang et al. 141

(2019) use BERT(Devlin et al., 2019) as the feature 142

extractor and extract arguments based on roles. Du 143

and Cardie (2020b) and Zhang et al. (2020) gener- 144

ate questions for each role. Liu et al. (2020) use 145

templates and unsupervised style transfer model to 146

construct questions. Li et al. (2020) models EAE as 147

multi-turns QA task. Chen et al. (2020b) requires 148

the model to fill the extraction templates. Zhou et al. 149

(2021) proposes a semi-supervised EAE approach 150

via Dual Question Answering. 151

2.2 Graph 152

Graph can easily model complex relations, which 153

has attracted many researchers(Kipf and Welling, 154

2017; Veličković et al., 2018; Schlichtkrull et al., 155

2018; Wang et al., 2020; He et al., 2020; Fu et al., 156

2019; Zeng et al., 2020). Some of EAE researches 157

also make use of Graph information, Liu et al. 158

(2018) uses graph attention convolution to aggre- 159

gate the syntactic information. Wadden et al. (2019) 160

does information extraction using dynamically con- 161

structed span graphs. Ahmad et al. (2021) intro- 162

2"B-":the begining of an argument, "I-": inside of an argu-
ment, "O": not a part of an argument.
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Figure 2: Model architecture of ESQA-EAE

duces the syntactic distances in the syntactic struc-163

ture into Transformer.164

3 Methodology165

3.1 task setup166

Consider an event mention sentence EM =167

{w1, .., wtri, .., wn} with n tokens, wtri is the168

trigger of the event type event_typet, where169

event_typet belongs to a fixed set of pre-defined170

event types. Given wtri and event_typet, EAE171

aims to identify all argument spans from EM and172

classify the role r for each argument, where r be-173

longs to a fixed set of pre-defined roles for the174

event_typet. An extracted argument can be ex-175

pressed as [s, e, r], where s / e is the index of the176

start / end token of the argument in the EM .177

Fig.2 presents our model architecture, which will178

be explained in detail in the following subsections.179

3.2 Event Structure Relation Graph (ESRG)180

We assume that there are complex relations be-181

tween event types and argument roles. To capture182

these features, we use event ontologies to model a183

multi-relational graph and encode the graph using184

Attention Mechanism to obtain the structure-aware185

node representations.186

3.2.1 Graph building187

We connect event type structures and expand188

the relational connections, and model as a multi-189

relational undirected graph, denoted as Event190

Structure Relation Graph (ESRG) G = {V, E ,R},191

V is composed of event type nodes and argu- 192

ment roles nodes3, E is the set of edges, R = 193

{r1, r2, r3} is the set of three relations types, where 194

(νi, rk, νj) ∈ E . 195

Fig.3 shows an ESRG with only two event types: 196

Life.Die and Conflict.Attack. There are three types 197

of relations in an ESRG: 198

• Event Type-Event Type, that is, any two event 199

type nodes are connected to capture the correlation 200

and dependency between the events. 201

• Event Type-Argument Role, the event type 202

node and its corresponding set of argument role 203

nodes are connected to capture the structural infor- 204

mation within the event type structure. 205

• Argument Role-Argument Role, any two role 206

nodes are connected to capture the similarities and 207

correlations between the roles. 208

We explicitly model the complex relations into 209

an ESRG, update the features of nodes so that each 210

node aggregates the features of the neighbors prop- 211

agated from three kinds of relations to obtain the 212

structured-aware node representations. 213

3.2.2 Node feature initialization 214

We use BERT (Devlin et al., 2019) as the feature 215

extractor for initializing each node’s feature, each 216

node νi should be processed into a standard BERT- 217

style format "[CLS]νi[SEP ]"4 as input, then we 218

take the output of the [CLS] of the last hidden layer 219

3We have conducted experiments to distinguish these two
types of nodes, which did not significantly affect the results.

4[CLS] and [SEP ] are two special tokens in BERT.
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Figure 3: Event Structure Relation Graph for only two
event types. Conflict.Attack and Life.Injure are two
event type nodes, and the rest are all argument role
nodes. There are three type of edges between nodes.

as the initial feature ei of the node νi:220

ei = BERT[CLS]([CLS]νi[SEP ]) (1)221

Therefore we get the initial feature matrix of all222

nodes E = {e1, ..., em} ∈ Rd∗m, where d is the223

dimension of the BERT’s last hidden layer and m224

is the number of nodes.225

3.2.3 Relational Graph Attention Network226

(RGAT)227

Inspired by RGCN (Schlichtkrull et al., 2018) and228

R-GAT (Wang et al., 2020), we adopt Attention229

Mechanism into RGCN to learn the Event Structure230

Relation Graph.231

Specifically, in the L-th RGAT layer, we first cal-232

culate the correlation score sLij of any two different233

nodes νi and νj , the scoring function we adopted234

is proposed by (Luong et al., 2015):235

sLij = score(eLi , e
L
j ) (2)236

score(eLi , e
L
j ) = σ(WL

s [e
L
i ||eLj ]) (3)237

where WL
s is learnable weight matrix, σ(·) is the238

activation function, "||" denotes the concatenation,239

and e0i = ei. Then, the relational adjacency matrix240

is used as the attention mask to calculate the atten-241

tion weight αL
r,ij between nodes νi and νj under242

specific relation r ∈ R:243

αL
r,ij =

exp(sLij)∑
k∈Nr

i

exp(sLik)
(j ∈ N r

i ) (4)244

where N r
i is the neighbor set of node νi under245

relation r ∈ R. The attention weight is used to246

aggregate the features of neighbors, thus the fea-247

ture update for node νi at L-th RGAT layer can be248

formulated as: 249

eL+1
i = σ(

∑
r∈R

∑
j∈Nr

i

1

cri
αL
r,ijW

L
r e

L
j + αL

iiW
L
0 e

L
i )

(5) 250

where cri is a normalization constant, WL
r and WL

0 251

are learnable weight matrices. 252

Through the learning of L layers RGAT, we 253

obtain the structure-aware node representations, 254

Ẽ = {ẽ1, ...ẽm} ∈ Rd∗m. In Section 3.3.2, we 255

will explain how to construct questions for EAE 256

based on the features of the nodes. 257

3.3 Event Argument Extraction based on 258

Question Answering 259

We assume that: (1) what really works in the ques- 260

tion are the keywords; (2) fully understanding the 261

question and context is the key to answering cor- 262

rect answers. Therefore, we propose a Question 263

Answering method that encodes the questions and 264

event mentions separately, and the fusion features 265

of them are used for predicting answers. 266

3.3.1 Event Mention Encoding 267

Same as Section 3.2.2, we employ BERT(Devlin 268

et al., 2019) to encode the EM . Firstly convert the 269

EM into the input format of BERT, then take the 270

output of BERT’s last hidden layer as the initial 271

representation of the event mention HEM : 272

HEM = BERT ([CLS]EM [SEP ])

= BERT ([CLS]w1, .., wtri, .., wn[SEP ])

(6)
273

where HEM ∈ Rd∗N , N is the length of the BERT 274

input. Besides, we introduce two embeddings to 275

jointly construct event mention representation for 276

EAE: 277

• Trigger Position Embedding, Etri : EAE 278

depends on the event type determined by the trigger 279

word, so the model needs to know which is the trig- 280

ger word (Yang et al., 2019). Thus, we introduce 281

a learnable embedding to every token indicating 282

whether it is the trigger word or not, named Trigger 283

Position Embedding. 284

• Start Position Embedding, Estart : When 285

predicting the end of argument spans, we introduce 286

the learnable Start Position Embedding to every 287

token indicating whether it is a start of an argument 288

or not, flowing information from the start predictor 289

to the end predictor. 290

So, the event mention representation for pre- 291

dicting the start of answers HEM
s is composed of 292
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HEM and Etri, while HEM
e for predicting the end293

of answers is composed of HEM , Etri and Estart:294

295

HEM
s = σ(Ws[H

EM ||Etri] + bs)

HEM
e = σ(We[H

EM ||Etri||Estart] + be)
(7)296

where HEM
s , HEM

e ∈ Rd∗N , Ws, bs, We and be297

are learnable parameters.298

3.3.2 Question Constructing299

The question we designed only needs two elements:300

event type and argument role, and utilize the fea-301

tures of the nodes obtained in Section 3.2 to con-302

struct the question representation:303

Q = {q1, q2}
= {êevent_type, êrole}

(8)304

where êevent_type and êrole are representations of305

the event type and the argument role, fused by the306

initial feature in Section 3.2.2 and the updated fea-307

ture in Section 3.2.3 of the corresponding node:308

309

êθ =Fusion(eθ, ẽθ)

θ ∈ {event_type, role}
(9)310

where Fusion(·) is the feature fusion function,311

which can be summation, averaging or concate-312

nation, Q ∈ Rd∗2. Thus, êθ is a rich semantic313

representation that integrates the semantics of the314

label itself and the relational structure information,315

which is crucial to answering questions correctly.316

3.3.3 Flow Attention317

To combine the features of the question and the con-318

text, we follow (Zhou et al., 2021) and (Seo et al.,319

2016) to use Flow Attention to generate question-320

aware context representation:321

HFA
ξ = FlowAtt(HEM

ξ , Q) (ξ ∈ {s, e}) (10)322

where FlowAtt(·) is the Flow Attention func-323

tion. It takes the event mention representation and324

question representation as input, and outputs the325

question-aware event mention representation we326

wanted.327

Flow attention calculates the attention between328

question and event mention from two directions:329

from event mention to question (EM2Q) and from330

question to event mention (Q2EM). Firstly, the331

similarity matrix of event mention and question is 332

calculated: 333

SAξ =δ(HEM
ξ , Q)

=MLP ([HEM
ξ ||Q||(HEM

ξ ◦Q)])

(ξ ∈ {s, e})
(11) 334

where MLP (·) is a Multilayer Perceptron, "◦" de- 335

notes element-wise multiplication, SAξ,ij indicates 336

the similarity between the i-th token in the EM 337

and the jth element in Q while predicting start / 338

end. Then it use SAξ to calculate attention from 339

two directions. 340

EM2Q Indicates the most relevant question 341

element (event type or argument role) to each event 342

mention token. First calculates the EM2Q attention 343

score ηξ,ij , and then aggregate the features from 344

EM to Q according to ηξ,ij to produce the feature 345

vector hEM2Q
ξ : 346

ηξ,ij =
exp(SAξ,ij)∑|Q|
k=1 exp(SAξ,ik)

hEM2Q
ξ,i =

∑
j

ηξ,ijqj

(ξ ∈ {s, e})

(12) 347

where qj indicates the jth feature vector of Q. 348

Therefore, we get the EM2Q event mention rep- 349

resentation HEM2Q
ξ = {hEM2Q

ξ,1 , ..., hEM2Q
ξ,N } ∈ 350

Rd∗N (ξ ∈ {s, e}). 351

Q2EM Indicates which event mention tokens 352

have the closest similarity to one of the question 353

elements, which are very important for answering. 354

First calculates the Q2EM attention score µξ,ij , and 355

then aggregate the features to produce hQ2EM
ξ : 356

µξ,i =
exp(max(SAξ,i:))∑N

k=1 exp(max(SAξ,k:))

hQ2EM
ξ =

∑
i

µξ,ih
EM
ξ,i

(ξ ∈ {s, e})

(13) 357

where SAk: denotes the i-th row elements of SA, 358

hEM
ξ,i is the i-th feature vector of HEM

ξ (ξ ∈ 359

{s, e}). Therefore, hQ2EM
ξ is the weighted sum 360

of the most important features in the event men- 361

tion about the question, and it is tiled N times to 362

form the Q2EM event mention representation, that 363

is HQ2EM
ξ ∈ Rd∗N (ξ ∈ {s, e}). 364
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Finally, HEM2Q
ξ and HQ2EM

ξ are combined to-365

gether to yield HFA
ξ ∈ R4d∗N as output:366

HFA
ξ =β(HEM

ξ , HEM2Q
ξ , HQ2EM

ξ )

=[HEM
ξ ||HEM2Q

ξ ||(HEM
ξ ◦HEM2Q

ξ )

||(HEM
ξ ◦HQ2EM

ξ )]

(ξ ∈ {s, e})
(14)

367

3.3.4 Self Attention368

To further integrate the features of event mention369

and question, we add a Self Attention Layer af-370

ter the Flow Attention Layer to obtain the event371

mention representation for predicting answer spans.372

373

HSA
ξ = Attention(HFA

ξ , HFA
ξ , HFA

ξ )

(ξ ∈ {s, e})
(15)374

Where Attention(·) is the attention function, we375

implement it with reference to (Vaswani et al.,376

2017) and (Bahdanau et al., 2015).377

Attention(Q,K, V )

= softmax(W T
a tanh(WqQ+WkK))V

(16)378

where Wa, Uq and Wk are learnable parameters.379

3.3.5 Prediction380

Instead of using two N-classifiers to predict the381

start and end of an answer, which can not solve the382

multi-answers problem, we adopt N 2-classifiers to383

predict the probability of whether each token in the384

event mention is the start / end of an answer.385

start_prob = sigmoid(WspH
FA
s + bsp) (17)386

end_prob = sigmoid(WepH
FA
e + bep) (18)387

where Wsp, bsp, Wep and bep are learnable parame-388

ters.389

Finally, we run the Answer Span Matching Al-390

gorithm (ASMA) to obtain all the extracted answer391

spans as event arguments. Specifically, ASMA first392

finds the index s that is inside the event mention393

and start_prob[s] ≥ start_threshold as a start394

of an answer. Next to find the index e that nearest395

s, inside the event mention and end_prob[e] ≥396

end_threshold, as the end. Add the answer397

[s, e, event_type, role] to the answer_list, and398

repeat the above steps until the appropriate start399

index cannot be found.400

3.4 Loss Function 401

We adopt Binary Cross-Entropy for calculating the 402

loss between the predicted result and ground truth. 403

The final loss Loss is the sum of the start token 404

loss Losss and the end token loss Losse: 405

Loss = Losss + Losse (19) 406

Losss = BCE(start_prob, start_label) (20) 407

Losse = BCE(end_prob, end_label) (21) 408

4 Experiments 409

4.1 Experimental Setup 410

Dataset and Evaluation We conduct experi- 411

ments on the dataset ACE2005 (Walker et al., 412

2006), which annotated 33 event subtypes and 413

35 argument roles. For a fair comparison with 414

other methods, we use the same data split and pre- 415

processing step as in the prior works (Wadden et al., 416

2019; Du and Cardie, 2020b), retaining 33 event 417

subtypes and 22 roles. 418

We also adopt the same criteria they used: (1)An 419

event argument is correctly identified if the start 420

and end offset and the event type match those of 421

any of the arguments labeled (AI); (2)It is correctly 422

classified if the argument role is also correct (RC). 423

The criteria mentioned above are evaluated using 424

Precision (P), Recall (R), and F1 score (F1). 425

4.2 Experiment Details 426

We utilize BERT-Base as the feature extractor, 427

which has 12 layers, 768 hidden units, and 12 at- 428

tention heads. AdamW is used as the optimizer 429

with the learning rate is 5e-5, and the weight decay 430

is 0.01. The embedding size of Trigger Position 431

Embedding and Start Position Embedding is 50. 432

We use 2-layer RGAT to update the features of the 433

nodes in ESRG. In ASMA, we limit the max length 434

of an answer span to 5. 435

4.3 Baseline Models 436

We compare our model with: (1) dbRNN (Sha 437

et al., 2018) leverages the dependency information; 438

(2) Joint3EE (Nguyen and Nguyen, 2019) pro- 439

poses a model to perform predictions for entities 440

and events jointly; (3) DyGIE++ (Wadden et al., 441

2019), a framework that models the spans and cap- 442

tures within-sentence and cross-sentence context; 443

(4) GAIL-ELMo (Zhang et al., 2019), an ELMo- 444

based inverse reinforcement learning method using 445

a generative adversarial network(GAN) for entity 446

and event extraction; (5) EEQA (Du and Cardie, 447
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Model
Argument Identification(AI) Role Classification(RC)

P R F1 P R F1

dbRNN - - 57.20 - - 50.10
Joint3EE 59.90 59.80 59.90 52.10 52.10 52.10
DyGIE++ - - 55.40 - - 52.50

GAIL-ELMo 63.60 48.70 55.10 61.60 45.70 52.40
EEQA 58.90 52.80 55.29 56.77 50.24 53.31

(Ma et al., 2020) 58.40 56.90 57.60 56.00 54.80 55.30
ESQA-EAE 53.51 62.15 57.51 51.72 60.07 55.58

Table 1: Overall Result on ACE2005

Model
Argument Identification Argument Role Classification

P R F1 P R F1

EEQA 58.90 52.80 55.29 56.77 50.24 53.31
ESQA-EAE 53.51 62.15 57.51 51.72 60.07 55.58
w/o ESRG 51.61 64.06 57.16 48.39 60.07 53.60

Table 2: Results of Ablation Study

2020b) formulates event extraction as a QA task;448

(6) Ma et al. (2020) introduces a syntax-attending449

Transformer for event argument extraction.450

4.4 Overall Result451

Table 1 shows the comparison between ESQA-452

EAE and baseline models5. We observed that: (1)453

ESQA-EAE achieves the best Recall and F1 score454

on RC; (2) ESQA-EAE can make up for the gap455

in event detection, which shows that ESQA-EAE456

is less sensitive to the results of event detection457

and focuses more on the event argument extraction458

itself; (3) ESQA-EAE only takes event types and459

argument roles as questions, and the result shows460

that ESQA-EAE is significantly better than EEQA,461

which confirms our hypothesis: what really works462

in the question are the keywords and fully under-463

standing is the key to answering correct answers.464

4.5 Ablation Study465

To better understand the effectiveness of the Event466

Structure Relation Graph we proposed, we ablate467

the ESRG. We (w/o ESRG) only construct the ques-468

tions based on the initial features. The results are469

5Although event detection is not the focus of our work, for
a fair comparison with other methods, we adopt an event de-
tection QA same as EEQA(Du and Cardie, 2020b) to generate
the event detection results to test the effect of ESQA-EAE.
In our experiment, the trigger classification F1 score is 71.03.
Note that this result will directly affect the performance of
EAE.

shown in Table 2: (1) All indices on RC of the 470

ablation model are significantly decreased, which 471

proves our hypothesis: there are complex relations 472

in the event structure, which can provide richer ex- 473

ternal knowledge for extracting event arguments. 474

(2) In addition, the ablation model can still exceed 475

the performance of EEQA. This observation proves 476

another hypothesis: fully understanding the seman- 477

tics of questions and contexts is the key to answer- 478

ing correct answers, and separate encoding can 479

avoid premature integration of the features of ques- 480

tions and contexts. 481

4.6 Complex Data Scenarios 482

To further explore the performance of our proposed 483

model in complex data scenarios, we build differ- 484

ent subsets of the test set according to the special 485

scenario for testing: 486

• Multi-Arguments / Multi-Answers (MA) 487

We construct a subset of data with more than two 488

event arguments in an argument role. One sample 489

is identified by the event mention, event type, and 490

role. The constructed subset contains 54 samples. 491

We only report the F1 score on RC under the golden 492

triggers. 493

• No-Arguments / No-Answers (NA) We con- 494

struct a subset of data with no event argument in 495

an event. One sample is identified by the event 496

mention and the event type. The constructed subset 497

contains 91 samples. Since there are no golden 498
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Model
Data Scenarios

Multi-Arguments(MA)
(F1 on RC)

No-Arguments(NA)
(wrong answers count)

Multi-Events(ME)
(F1 on RC)

EEQA† 65.55 65 67.23
ESQA-EAE 76.79 33 72.13

Table 3: Results on different data scenarios

arguments for calculating PRF value, we report the499

number of extracted answers, which are all wrong.500

• Multi-Events (ME) We construct a subset501

of data with multiple events in an event mention.502

Each event may fit the previously mentioned data503

scenario, making it more complex than the scenar-504

ios mentioned above. An event mention identifies505

one sample, and the subset contains 99 samples.506

We report the F1 score on RC under the golden507

triggers.508

We compare our model with EEQA†6, our model509

is consistent with the one reported in Section 4.4.510

As shown in table 3, ESQA-EAE outperforms511

EEQA† in all scenarios: (1) In the MA scenario,512

ESQA-EAE surpasses the F1 score of EEQA† sig-513

nificantly. EEQA transforms multi-answer extrac-514

tion into multiple rounds of QA with different stan-515

dard answers during training, while at test time,516

the model has to predict multiple answers, which517

confuses the model. In contrast, ESQA-EAE ex-518

tracts multiple answers simultaneously in one turn519

QA, keeping consistent during training and testing.520

(2) In the NA scenario, the number of incorrect521

answers extracted by ESQA-EAE is significantly522

less than EEQA†. This observation indicates that523

ESQA-EAE can better capture the global informa-524

tion via fully knowing the context itself for judging525

whether there is an argument / answer (similar to526

the global feature in OneIE (Lin et al., 2020)). (3)527

ESQA-EAE achieves a better F1 score in the ME528

scenario. By modeling the event structure, ESQA-529

EAE takes the complex relations to guide the EAE.530

Besides, ESQA-EAE independently extracts the531

semantic representation of the event mention to532

avoid fusing information of querys in advance, We533

argue that this strategy is closer to human reading,534

i.e., the semantics of the context itself should not535

change due to the questions.536

6EEQA† is obtained by re-implementing EEQA(Du and
Cardie, 2020b) using the best question generation strategy, the
best F1 score we got is 64.43.

5 Conclusion 537

We propose an efficient and end-to-end event ar- 538

gument extraction model ESQA-EAE, which uti- 539

lizes the structure information to guide the event 540

argument question answering. ESQA-EAE simpli- 541

fies the previous QA methods and achieves better 542

scores. The limitations on few-shot learning and 543

document-level extraction will be our future works. 544
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