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Abstract

Event Argument Extraction is a vital subtask of
Event Extraction. Despite the achievements
in existing methods, they can not fully use
the event structure information and the rich
semantics of the labels, which can provide
richer external knowledge for extracting event
arguments. To this end, we propose an effi-
cient and end-to-end event argument extrac-
tion model based on the Event Structure and
Question Answering (ESQA-EAE): (1) we
model a multi-relational graph of event on-
tologies to get the structure-aware node rep-
resentations; (2) we encode the questions and
event mentions separately to avoid premature
fusion of the two features. Experiments on the
ACE2005' show that ESQA-EAE surpasses
the baseline models, which further show that
ESQA-EAE can use the structural information
to improve the accuracy of event argument ex-
traction.

1 Introduction

Event Argument Extraction (EAE) aims to identify
the event arguments and classify their roles in the
event mention, according to the given event type
and trigger word. As in the sentence "Tugle was
on trial for raping and killing a southwest Virginia
grandmother.", the event type is Conflict.Attack
triggered by the word "raping", EAE needs to ex-
tract "Tugle" and "grandmother" as two arguments,
and classify their roles into Attacker and Target
respectively.

Most of the existing methods regard EAE as an
entity classification task (Chen et al., 2015; Nguyen
etal., 2016; Liu et al., 2018; Sha et al., 2018;Wang
et al., 2019; Ma et al., 2020; Xiangyu et al., 2021;
Ahmad et al., 2021), a sequence labeling task (Ma
et al., 2020; Yang et al., 2018; Chen et al., 2020a;
Du and Cardie, 2020a), or or a joint learning task
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Figure 1: Event Type Structures of Conflict.Attack and
Life.Injure. The event types and argument roles are
defined in ACE2005, where argument roles Instrument,
Time and Place are in both two event type structures.

(Nguyen and Nguyen, 2019; Wadden et al., 2019;
Lin et al., 2020). Recently, some studies model it as
a Machine Reading Comprehension (MRC) / Ques-
tion Answering (QA) task(Yang et al., 2019; Du
and Cardie, 2020b; Liu et al., 2020; Li et al., 2020;
Chen et al., 2020b; Zhou et al., 2021; Zhang et al.,
2020), which can solve the shortcomings in the pre-
vious methods well. Yet, there are still weaknesses
in the existing methods: (1) The existing methods
cannot make full use of the complex relations be-
tween events and argument roles; (2) MRC / QA
methods need to design the questions carefully; (3)
MRC / QA methods encode the questions and the
contexts jointly, fusing the information of the two
prematurely.

For tackling the weaknesses, we propose an ef-
ficient and end-to-end event argument extraction
model based on the Event Structure and Question
Answering (ESQA-EAE). For weaknesses (1), we
assume that there are complex relations between
event types and argument roles, which can be used
as external knowledge for EAE. Huang et al. (2018)
pointed out that Event Ontology can be represented
by structure, which defines each event type and a
set of argument roles and the relation between them.
As shown in Fig. 1, we found that there are com-
mon roles in different event type structures, which
implies certain information. To better utilize this in-
formation, we model the event type structures as a
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multi-relational graph to obtain the structure-aware
node representations for event argument QA.

For weakness (2), we assume that what works in
a question are the keywords, and the other words in
the well-designed query will introduce noise and
cause unnecessary encoding costs. For weakness
(3), we assume that fully understanding the ques-
tion and context is the key to answering correct
answers, while jointly encoding causes attention
distraction. Thus, ESQA-EAE encodes the ques-
tion and event mention separately, and then the
fusion features are used for predicting answers.
Note that in ESQA-EAE, only the event types
and the argument roles are used to construct ques-
tions, simplifying the question design. Besides,
ESQA-EAE makes it possible to extract multiple
argument answers simultaneously to overcome the
multi-arguments problem.

In general, the contributions of this paper are:

e We model a multi-relational graph ESRG
for the complex relations in event type structures,
which is used as external knowledge for event ar-
gument QA.

e We propose a model ESRG-EAE that encodes
the questions and event mentions separately and
make use of the features learned from ESRG as
questions for event argument extraction.

e Experiment results show that our proposed
model outperforms the baseline models.

2 Related Works

2.1 Event Argument Extraction

The existing event argument extraction studies can
be divided into the following categories.

2.1.1 Entity Classification task

Most researchers model EAE as an entity classi-
fication task, that is, classify the corresponding
argument roles for the candidate argument entities.
Chen et al. (2015) introduce dynamic multi-pooling
layer to reserve more crucial information. Nguyen
et al. (2016) use RNN and memory matrices. Liu
et al. (2018) make use of semantic arcs and graph
attention convolution. Sha et al. (2018) introduces
syntactic dependency bridge into RNN. Wang et al.
(2019) proposes "superordinate concept” and use
the concept hierarchy for EAE. Ma et al. (2020) in-
troduce a Syntax-Attending Transformer. Xiangyu
et al. (2021) propose a novel Bi-directional Entity-
level Recurrent Decoder. Ahmad et al. (2021) pro-
poses Graph Attention Transformer Encoder that

it takes into account the syntactic structure and
distances.

2.1.2 Joint Method

The error propagation problem between Named
Entity Recognition(NER) and EAE has prompted
scholars to study joint methods of the two tasks.
One is to model EAE as a sequence labeling
task(Ma et al., 2020; Yang et al., 2018; Chen
et al.,, 2020a; Du and Cardie, 2020a), that is,
classify a BIO label? for each word, and obtain
one optimal extraction in combination with Condi-
tional Random Field(CRF) and Viterbi Algorithm,
therefore the NER is not required. Another ap-
proach is to jointly learn the NER and EAE in one
model(Nguyen and Nguyen, 2019; Wadden et al.,
2019; Lin et al., 2020), for alleviating the error
propagation problem.

2.1.3 Machine Reading Comprehension /
Question Answering

Recently, some studies model the EAE as a Ma-
chine Reading Comprehension(MRC) / Question
Answering(QA) task. The model needs to under-
stand the context(i.e., event mention) and answer
the questions related to argument roles, in which
the answers are the event arguments. Yang et al.
(2019) use BERT(Devlin et al., 2019) as the feature
extractor and extract arguments based on roles. Du
and Cardie (2020b) and Zhang et al. (2020) gener-
ate questions for each role. Liu et al. (2020) use
templates and unsupervised style transfer model to
construct questions. Li et al. (2020) models EAE as
multi-turns QA task. Chen et al. (2020b) requires
the model to fill the extraction templates. Zhou et al.
(2021) proposes a semi-supervised EAE approach
via Dual Question Answering.

2.2 Graph

Graph can easily model complex relations, which
has attracted many researchers(Kipf and Welling,
2017; Velickovic et al., 2018; Schlichtkrull et al.,
2018; Wang et al., 2020; He et al., 2020; Fu et al.,
2019; Zeng et al., 2020). Some of EAE researches
also make use of Graph information, Liu et al.
(2018) uses graph attention convolution to aggre-
gate the syntactic information. Wadden et al. (2019)
does information extraction using dynamically con-
structed span graphs. Ahmad et al. (2021) intro-

2"B-":the begining of an argument, "I-": inside of an argu-
ment, "O": not a part of an argument.
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Figure 2: Model architecture of ESQA-EAE

duces the syntactic distances in the syntactic struc-
ture into Transformer.

3 Methodology
3.1 task setup

Consider an event mention sentence EM =
{wi, .., Weri, .., wp} with n tokens, wy; is the
trigger of the event type event_type;, where
event_type; belongs to a fixed set of pre-defined
event types. Given wy,; and event_type;, EAE
aims to identify all argument spans from £ M and
classify the role r for each argument, where r be-
longs to a fixed set of pre-defined roles for the
event_type;. An extracted argument can be ex-
pressed as [s, e, r|, where s / e is the index of the
start / end token of the argument in the M.

Fig.2 presents our model architecture, which will
be explained in detail in the following subsections.

3.2 Event Structure Relation Graph (ESRG)

We assume that there are complex relations be-
tween event types and argument roles. To capture
these features, we use event ontologies to model a
multi-relational graph and encode the graph using
Attention Mechanism to obtain the structure-aware
node representations.

3.2.1 Graph building

We connect event type structures and expand
the relational connections, and model as a multi-
relational undirected graph, denoted as Event
Structure Relation Graph (ESRG) G = {V, &, R},

V is composed of event type nodes and argu-
ment roles nodes>, £ is the set of edges, R =
{r1,r9, 3} is the set of three relations types, where
(I/Z', Tk, Vj) e€.

Fig.3 shows an ESRG with only two event types:
Life.Die and Conflict.Attack. There are three types
of relations in an ESRG:

¢ Event Type-Event Type, that is, any two event
type nodes are connected to capture the correlation
and dependency between the events.

e Event Type-Argument Role, the event type
node and its corresponding set of argument role
nodes are connected to capture the structural infor-
mation within the event type structure.

e Argument Role-Argument Role, any two role
nodes are connected to capture the similarities and
correlations between the roles.

We explicitly model the complex relations into
an ESRG, update the features of nodes so that each
node aggregates the features of the neighbors prop-
agated from three kinds of relations to obtain the
structured-aware node representations.

3.2.2 Node feature initialization

We use BERT (Devlin et al., 2019) as the feature
extractor for initializing each node’s feature, each
node v; should be processed into a standard BERT-
style format "[C'LS]v;[SEP]"* as input, then we
take the output of the [C'LS] of the last hidden layer

3We have conducted experiments to distinguish these two
types of nodes, which did not significantly affect the results.
*|CLS] and [SEP] are two special tokens in BERT.
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Figure 3: Event Structure Relation Graph for only two
event types. Conflict.Attack and Life.Injure are two
event type nodes, and the rest are all argument role
nodes. There are three type of edges between nodes.

as the initial feature e; of the node v;:
¢i = BERT(c15)([CLS|w[SEP]) (D)

Therefore we get the initial feature matrix of all
nodes £ = {e1,...,em} € R¥™ where d is the
dimension of the BERT’s last hidden layer and m
is the number of nodes.

3.2.3 Relational Graph Attention Network
(RGAT)

Inspired by RGCN (Schlichtkrull et al., 2018) and
R-GAT (Wang et al., 2020), we adopt Attention
Mechanism into RGCN to learn the Event Structure
Relation Graph.

Specifically, in the L-th RGAT layer, we first cal-
culate the correlation score siLj of any two different
nodes v; and v, the scoring function we adopted
is proposed by (Luong et al., 2015):

5{3- = SCOTG(@Z-L, e]L) 2)
score(ef, eJL) = O’(WSL[BZ-LHGJL]) 3)

where W7 is learnable weight matrix, o(-) is the
activation function, "||" denotes the concatenation,
and e? = ¢;. Then, the relational adjacency matrix
is used as the attention mask to calculate the atten-
tion weight afﬂ- ; between nodes v; and v; under
specific relation r € R:

L
L exp(sj;) RS
=W €N 4
aT’,’L] Z 6$p(SZLk) (] Z) ( )
keN;

where NNV is the neighbor set of node v; under
relation » € R. The attention weight is used to
aggregate the features of neighbors, thus the fea-
ture update for node v; at L-th RGAT layer can be

formulated as:

1
L+1 E E L L_L Lyx/L L
€; = O'( ga’l‘,ijW’/‘ ej + aiiWO €; )
reRjEN]
)

where c] is a normalization constant, WTL and WOL
are learnable weight matrices.

Through the learning of L layers RGAT, we
obtain the structure-aware node representations,
E = {é1,..6p} € R¥™" In Section 3.3.2, we
will explain how to construct questions for EAE
based on the features of the nodes.

3.3 Event Argument Extraction based on
Question Answering

We assume that: (1) what really works in the ques-
tion are the keywords; (2) fully understanding the
question and context is the key to answering cor-
rect answers. Therefore, we propose a Question
Answering method that encodes the questions and
event mentions separately, and the fusion features
of them are used for predicting answers.

3.3.1 Event Mention Encoding

Same as Section 3.2.2, we employ BERT(Devlin
et al., 2019) to encode the M. Firstly convert the
E M into the input format of BERT, then take the
output of BERT’s last hidden layer as the initial
representation of the event mention H

HEM — BERT([CLS|EM[SEP))
= BERT([CLS|wi, .., Wiyi, .., wn [SEP])
(0)

where HEM ¢ RN N is the length of the BERT
input. Besides, we introduce two embeddings to
jointly construct event mention representation for
EAE:

e Trigger Position Embedding, £/ : EAE
depends on the event type determined by the trigger
word, so the model needs to know which is the trig-
ger word (Yang et al., 2019). Thus, we introduce
a learnable embedding to every token indicating
whether it is the trigger word or not, named Trigger
Position Embedding.

o Start Position Embedding, £5/%"t : When
predicting the end of argument spans, we introduce
the learnable Start Position Embedding to every
token indicating whether it is a start of an argument
or not, flowing information from the start predictor
to the end predictor.

So, the event mention representation for pre-
dicting the start of answers HZM is composed of



HEM and B, while HEM for predicting the end
of answers is composed of HEM | Etri and Fstert

HEM — O_(WS[HEMHEtri] + bs)

s
HEM O‘(We [HEMHEtriHEstart] + be)

(7

where HEM HEM ¢ RSN W by, W, and b,
are learnable parameters.

3.3.2 Question Constructing

The question we designed only needs two elements:
event type and argument role, and utilize the fea-
tures of the nodes obtained in Section 3.2 to con-
struct the question representation:

Q= {q1, 2}

- {éevent_typea érole}

(®)

where €cpent_type and €, are representations of
the event type and the argument role, fused by the
initial feature in Section 3.2.2 and the updated fea-
ture in Section 3.2.3 of the corresponding node:

ég =Fusion(eg, ég) ©)
0 € {event_type,role}

where F'usion(-) is the feature fusion function,
which can be summation, averaging or concate-
nation, () € R%2 Thus, é is a rich semantic
representation that integrates the semantics of the
label itself and the relational structure information,
which is crucial to answering questions correctly.

3.3.3 Flow Attention

To combine the features of the question and the con-
text, we follow (Zhou et al., 2021) and (Seo et al.,
2016) to use Flow Attention to generate question-
aware context representation:

HEY = FlowAtt(HEM Q) (€ € {s,e}) (10)

where FlowAtt(-) is the Flow Attention func-
tion. It takes the event mention representation and
question representation as input, and outputs the
question-aware event mention representation we
wanted.

Flow attention calculates the attention between
question and event mention from two directions:
from event mention to question (EM2Q) and from
question to event mention (Q2EM). Firstly, the

similarity matrix of event mention and question is
calculated:

SA¢ =5(HM, Q)
=MLP([HFMQIHEM 0 Q) (1)
(£ € {se})

where M LP(-) is a Multilayer Perceptron, "o" de-
notes element-wise multiplication, S A¢ ;; indicates
the similarity between the i-th token in the EM
and the jth element in ) while predicting start /
end. Then it use SA¢ to calculate attention from
two directions.

EM2Q Indicates the most relevant question
element (event type or argument role) to each event
mention token. First calculates the EM2Q attention
score 7 ;;, and then aggregate the features from
EM to Q according to 7 ;; to produce the feature

vector hf M2Q.

M — exp(SAgij)
77/] -
S eap(SAe )

EM2Q
hey 20 =" neijg
j

(§ e {se})

(12)

where ¢; indicates the jth feature vector of ().
Therefore, we get the EM2Q event mention rep-

resentation HfMQQ = {h§¥2Q,-.-,h§%2Q} €

R&N (¢ € {s,e}).

Q2EM Indicates which event mention tokens
have the closest similarity to one of the question
elements, which are very important for answering.
First calculates the Q2EM attention score ¢ ;7, and

then aggregate the features to produce h?zEM:

B exp(max(SAg;))
>opey exp(maz(SAg k)
R = 3 meahél!

(Ee{s.e})

e

13)

where S Aj. denotes the i-th row elements of SA,
h?ZM is the ¢-th feature vector of HEM & €

{s,e}). Therefore, h?QEM is the weighted sum
of the most important features in the event men-
tion about the question, and it is tiled /V times to
form the Q2EM event mention representation, that

is HgQZEM € R&N (€ € {s,e}).



are combined to-

Finally, H**? and HZ*"M

gether to yield H g 4 € RN a5 output:
EM?2 EM?2
=M HSO | (HEM 0 HPMO)
2EM
I(HEM 0 HEEM)]
(€ € {s e})
(14)

3.3.4 Self Attention

To further integrate the features of event mention
and question, we add a Self Attention Layer af-
ter the Flow Attention Layer to obtain the event
mention representation for predicting answer spans.

HgA = Attention(HgA, HgA, HéFA)
(€ €{s,e})
Where Attention(-) is the attention function, we

implement it with reference to (Vaswani et al.,
2017) and (Bahdanau et al., 2015).

15)

Attention(Q, K, V)

T (16)
= softmax(W, tanh(W,Q + W;K))V

where W, U, and W), are learnable parameters.

3.3.5 Prediction

Instead of using two N-classifiers to predict the
start and end of an answer, which can not solve the
multi-answers problem, we adopt N 2-classifiers to
predict the probability of whether each token in the
event mention is the start / end of an answer.

start_prob = sigmoid(WsprA +bsp) (17)
end_prob = sigmoid(We, HF A 4+ b)) (18)

where Wy, bsp, Wep and b, are learnable parame-
ters.

Finally, we run the Answer Span Matching Al-
gorithm (ASMA) to obtain all the extracted answer
spans as event arguments. Specifically, ASMA first
finds the index s that is inside the event mention
and start_prob[s| > start_threshold as a start
of an answer. Next to find the index e that nearest
s, inside the event mention and end_proble] >
end_threshold, as the end. Add the answer
[s, e, event_type,role| to the answer_list, and
repeat the above steps until the appropriate start
index cannot be found.

3.4 Loss Function

We adopt Binary Cross-Entropy for calculating the
loss between the predicted result and ground truth.
The final loss Loss is the sum of the start token
loss Loss, and the end token loss Loss,:

(19)
Losss = BCE(start_prob, start_label) (20)
Loss. = BCE(end_prob, end_label)  (21)

Loss = Losss + Loss,

4 Experiments

4.1 Experimental Setup

Dataset and Evaluation We conduct experi-
ments on the dataset ACE2005 (Walker et al.,
2006), which annotated 33 event subtypes and
35 argument roles. For a fair comparison with
other methods, we use the same data split and pre-
processing step as in the prior works (Wadden et al.,
2019; Du and Cardie, 2020b), retaining 33 event
subtypes and 22 roles.

We also adopt the same criteria they used: (1)An
event argument is correctly identified if the start
and end offset and the event type match those of
any of the arguments labeled (AI); (2)It is correctly
classified if the argument role is also correct (RC).
The criteria mentioned above are evaluated using
Precision (P), Recall (R), and F1 score (F1).

4.2 Experiment Details

We utilize BERT-Base as the feature extractor,
which has 12 layers, 768 hidden units, and 12 at-
tention heads. AdamW is used as the optimizer
with the learning rate is 5e-5, and the weight decay
is 0.01. The embedding size of Trigger Position
Embedding and Start Position Embedding is 50.
We use 2-layer RGAT to update the features of the
nodes in ESRG. In ASMA, we limit the max length
of an answer span to 5.

4.3 Baseline Models

We compare our model with: (1) dbRNN (Sha
et al., 2018) leverages the dependency information;
(2) Joint3EE (Nguyen and Nguyen, 2019) pro-
poses a model to perform predictions for entities
and events jointly; (3) DyGIE++ (Wadden et al.,
2019), a framework that models the spans and cap-
tures within-sentence and cross-sentence context;
(4) GAIL-ELMo (Zhang et al., 2019), an ELMo-
based inverse reinforcement learning method using
a generative adversarial network(GAN) for entity
and event extraction; (5) EEQA (Du and Cardie,



Argument Identification(Al)

Role Classification(RC)

Model P R F1 P R FI
dbRNN - - 57.20 - - 50.10
Joint3EE 59.90 59.80 59.90 52.10 52.10 52.10
DyGIE++ - - 55.40 - - 52.50
GAIL-ELMo 63.60 48.70 55.10 61.60 45.70 52.40
EEQA 58.90 52.80 55.29 56.77 50.24 53.31
(Ma et al., 2020) 58.40 56.90 57.60 56.00 54.80 55.30
ESQA-EAE 53.51 62.15 57.51 51.72 60.07 55.58
Table 1: Overall Result on ACE2005
Model Argument Identification ~Argument Role Classification
© P R P R Fl

EEQA 5890 52.80 5529 56.77 50.24 53.31

ESQA-EAE 5351 62.15 5751 5172 60.07 55.58

w/o ESRG 51.61 64.06 57.16 48.39 60.07 53.60

Table 2: Results of Ablation Study

2020b) formulates event extraction as a QA task;
(6) Ma et al. (2020) introduces a syntax-attending
Transformer for event argument extraction.

4.4 Opverall Result

Table 1 shows the comparison between ESQA-
EAE and baseline models®. We observed that: (1)
ESQA-EAE achieves the best Recall and F1 score
on RC; (2) ESQA-EAE can make up for the gap
in event detection, which shows that ESQA-EAE
is less sensitive to the results of event detection
and focuses more on the event argument extraction
itself; (3) ESQA-EAE only takes event types and
argument roles as questions, and the result shows
that ESQA-EAE is significantly better than EEQA,
which confirms our hypothesis: what really works
in the question are the keywords and fully under-
standing is the key to answering correct answers.

4.5 Ablation Study

To better understand the effectiveness of the Event
Structure Relation Graph we proposed, we ablate
the ESRG. We (w/o ESRG) only construct the ques-
tions based on the initial features. The results are

3 Although event detection is not the focus of our work, for
a fair comparison with other methods, we adopt an event de-
tection QA same as EEQA(Du and Cardie, 2020b) to generate
the event detection results to test the effect of ESQA-EAE.
In our experiment, the trigger classification F1 score is 71.03.
Note that this result will directly affect the performance of
EAE.

shown in Table 2: (1) All indices on RC of the
ablation model are significantly decreased, which
proves our hypothesis: there are complex relations
in the event structure, which can provide richer ex-
ternal knowledge for extracting event arguments.
(2) In addition, the ablation model can still exceed
the performance of EEQA. This observation proves
another hypothesis: fully understanding the seman-
tics of questions and contexts is the key to answer-
ing correct answers, and separate encoding can
avoid premature integration of the features of ques-
tions and contexts.

4.6 Complex Data Scenarios

To further explore the performance of our proposed
model in complex data scenarios, we build differ-
ent subsets of the test set according to the special
scenario for testing:

e Multi-Arguments / Multi-Answers (MA)
We construct a subset of data with more than two
event arguments in an argument role. One sample
is identified by the event mention, event type, and
role. The constructed subset contains 54 samples.
We only report the F1 score on RC under the golden
triggers.

e No-Arguments / No-Answers (NA) We con-
struct a subset of data with no event argument in
an event. One sample is identified by the event
mention and the event type. The constructed subset
contains 91 samples. Since there are no golden



Data Scenarios

Model - Arguments(MA)  No-Arguments(NA)  Multi-Events(ME)
(F1 on RC) (wrong answers count) (F1 on RC)
EEQAT 65.55 65 67.23
ESQA-EAE 76.79 33 72.13

Table 3: Results on different data scenarios

arguments for calculating PRF value, we report the
number of extracted answers, which are all wrong.

e Multi-Events (ME) We construct a subset
of data with multiple events in an event mention.
Each event may fit the previously mentioned data
scenario, making it more complex than the scenar-
ios mentioned above. An event mention identifies
one sample, and the subset contains 99 samples.
We report the F1 score on RC under the golden
triggers.

We compare our model with EEQA 16, our model
is consistent with the one reported in Section 4.4.
As shown in table 3, ESQA-EAE outperforms
EEQAT in all scenarios: (1) In the MA scenario,
ESQA-EAE surpasses the F1 score of EEQAT sig-
nificantly. EEQA transforms multi-answer extrac-
tion into multiple rounds of QA with different stan-
dard answers during training, while at test time,
the model has to predict multiple answers, which
confuses the model. In contrast, ESQA-EAE ex-
tracts multiple answers simultaneously in one turn
QA, keeping consistent during training and testing.
(2) In the NA scenario, the number of incorrect
answers extracted by ESQA-EAE is significantly
less than EEQAT. This observation indicates that
ESQA-EAE can better capture the global informa-
tion via fully knowing the context itself for judging
whether there is an argument / answer (similar to
the global feature in OnelE (Lin et al., 2020)). (3)
ESQA-EAE achieves a better F1 score in the ME
scenario. By modeling the event structure, ESQA-
EAE takes the complex relations to guide the EAE.
Besides, ESQA-EAE independently extracts the
semantic representation of the event mention to
avoid fusing information of querys in advance, We
argue that this strategy is closer to human reading,
i.e., the semantics of the context itself should not
change due to the questions.

SEEQAT is obtained by re-implementing EEQA(Du and
Cardie, 2020b) using the best question generation strategy, the
best F1 score we got is 64.43.

5 Conclusion

We propose an efficient and end-to-end event ar-
gument extraction model ESQA-EAE, which uti-
lizes the structure information to guide the event
argument question answering. ESQA-EAE simpli-
fies the previous QA methods and achieves better
scores. The limitations on few-shot learning and
document-level extraction will be our future works.
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