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Abstract

Causal inference from observational data is crucial for many disciplines such as
medicine and economics. However, sharp bounds for causal effects under relax-
ations of the unconfoundedness assumption (causal sensitivity analysis) are subject
to ongoing research. So far, works with sharp bounds are restricted to fairly sim-
ple settings (e.g., a single binary treatment). In this paper, we propose a unified
framework for causal sensitivity analysis under unobserved confounding in various
settings. For this, we propose a flexible generalization of the marginal sensitivity
model (MSM) and then derive sharp bounds for a large class of causal effects.
This includes (conditional) average treatment effects, effects for mediation analysis
and path analysis, and distributional effects. Furthermore, our sensitivity model
is applicable to discrete, continuous, and time-varying treatments. It allows us
to interpret the partial identification problem under unobserved confounding as
a distribution shift in the latent confounders while evaluating the causal effect of
interest. In the special case of a single binary treatment, our bounds for (condi-
tional) average treatment effects coincide with recent optimality results for causal
sensitivity analysis. Finally, we propose a scalable algorithm to estimate our sharp
bounds from observational data.

1 Introduction

Causal effects are crucial for decision-making in many disciplines, such as marketing [71], medicine
[77], and economics [1]. For example, physicians need to know the treatment effects to personalize
medical care, and governments are interested in the causal effects of policies on infection rates during
a pandemic. In many such applications, randomized experiments are costly or infeasible, because of
which causal effects must be estimated from observational data [59].

Estimating causal effects from observational data may lead to bias due to the existence of confounders,
i.e., variables that affect both treatment and outcome [55]. A remedy is to observe all confounders and
thus to assume unconfoundedness (e.g., as in [16, 63, 64]). However, in many practical applications,
the assumption of unconfoundedness is violated. For example, electronic health records do not
capture a patient’s ethnic background, which is a known confounder in medicine [52]. In such cases,
the causal effect is not identified from observational data, and unbiased estimation is thus impossible
[27].

A popular way to perform causal inference in the presence of unobserved confounders is causal
sensitivity analysis. Causal sensitivity analysis aims to derive bounds on the causal effect of interest
under relaxations of the unconfoundedness assumption. Here, the strength of unobserved confounding
is typically controlled by some sensitivity parameter Γ, which also determines the tightness of the
bounds. In practice, one chooses Γ through domain knowledge [14, 33, 82] or data-driven heuristics
[29]. Then, one derives that the causal effect of interest lies in some informative region. For example,
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a suitable Γ may enable – despite unobserved confounding – to infer the sign of the treatment effect,
which is often sufficient for consequential decision-making [35].

A common model for causal sensitivity analysis is the marginal sensitivity model (MSM) [31, 35, 36,
67]. A benefit of the MSM is that it does not impose any kind of parametric assumptions on the data-
generating process. However, the standard MSM is only applicable in settings where the treatment is
a single binary variable. Different extensions have been proposed for continuous treatments [10, 32,
45] and for time-varying treatments and confounders [10]. However, these works are restricted to
specific settings, while a unified framework for causal sensitivity analysis is still missing.

Figure 1: Three examples of causal inference settings where
our GMSM and bounds are applicable. M1, M2 are medi-
ators, Y is the outcome, and X and A are (multiple) dis-
crete, continuous, or time-varying covariates and treatments.
Variables UW are unobserved confounders between A and
W ∈ {M1,M2, Y }.

Contributions:1 In this paper, we pro-
pose a generalized marginal sensitiv-
ity model (GMSM). Our GMSM pro-
vides a unified framework for causal
sensitivity analysis under unobserved
confounding in various settings with
multiple discrete, continuous, and
time-varying treatments. Crucially,
our GMSM includes existing models,
such as those in [67] and [32], as spe-
cial cases. As a result, our GMSM
enables a unified approach to deriv-
ing sharp bounds for a large class of
causal effects. To do so, we bound a distribution shift in the unobserved confounders while performing
an intervention on the treatments. As a result, we obtain sharp bounds for various causal effects,
including (conditional) average treatment effects but also effects for mediation analysis and path
analysis (see Fig. 1) and for distributional effects, which have not been studied under an MSM-type
sensitivity analysis previously. We also show that, for binary treatments, our bounds coincide with
recent optimality results for (conditional) average treatment effects under the MSM. Finally, we
propose a scalable algorithm to estimate our sharp bounds from observational data and perform
extensive computational experiments to show the validity of our bounds empirically.

2 Related work

In the following, we review related work on causal sensitivity analysis. For a more general review of
partial identification and treatment effect estimation under unconfoundedness, we refer to Appendix A.

Causal sensitivity analysis: Causal sensitivity analysis dates back to a study from 1959 showing
that unobserved confounders cannot explain away the causal effect of smoking on cancer [14].
This was formalized by introducing sensitivity models that yield bounds on the causal effect of
interest under some restriction on the amount of confounding. Previous works introduced a variety
of sensitivity models that make different assumptions about the data-generating process and the
confounding mechanism. Examples include sensitivity models based on parametric assumptions [30,
62], difference between potential outcome distributions [60, 70], and Rosenbaum’s sensitivity model
that uses randomization tests [61].

Marginal sensitivity model (MSM): The marginal sensitivity model (MSM) [67] is a common model
for sensitivity analysis aimed at settings with binary treatments. Many methods were proposed to
estimate bounds from observational data under the MSM. Examples of such methods include linear
fractional programs [82] and machine learning such as including kernel-based methods [35] and deep
neural networks [31]. Recently, Dorn et al. [18] and Jin et al. [33] showed that estimates from the
previous methods are too conservative bounds and, as a remedy, derived closed-form solutions for
sharp bounds under the MSM. This was also extended to semiparametric inference [19, 53]. However,
all previous methods are limited to binary treatments and (conditional) average treatment effects.

Different extensions for the MSM have been proposed. Jesson et al. [32], Bonvini et al. [10], and
Marmarelis et al. [45] developed extensions for continuous treatments. Furthermore, Bonvini et
al. [10] also extended the MSM to time-varying treatments and confounders. However, both works
are not applicable to settings beyond the estimation of (conditional) average treatment effects, such as

1Code is available at https://github.com/DennisFrauen/SharpCausalSensitivity.
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mediation analysis and path analysis or distributional effects. In contrast, we propose a generalized
marginal sensitivity model that is compatible with binary, continuous, and time-varying treatments
for a variety of causal effects.

Research gap: To the best of our knowledge, no existing causal sensitivity analysis based on the
MSM provides a unified framework for deriving bounds for binary, continuous, and time-varying
treatments. Furthermore, MSM-based causal sensitivity analysis is restricted to (conditional) average
treatment effects and is thus not applicable for complex settings such as effects for mediation analysis
and path analysis or distributional effects.

3 Generalized marginal sensitivity model (GMSM)

We first formally define a general setting for causal sensitivity analysis that includes mediation and
path analysis (Sec. 3.1 and Sec. 3.2). We then propose our generalized marginal sensitivity model
(GMSM) in Sec. 3.3 and compare it with existing sensitivity models from the literature.

Notation: We write random variables as capital letters X and their realizations in lowercase x.
Bold letters X or x represent (random) vectors. If X = (X1, . . . , Xℓ) is a sequence of random
variables of length ℓ, we denote X̄k = (X1, . . . , Xk) for 1 ≤ k ≤ ℓ. We denote probability
distributions over X as PX where required. The probability mass function for a discrete X is denoted
as P(x) = P(X = x). If X is continuous, P(x) is the probability density function. We denote P(·)
as the corresponding probability mass/density function not evaluated at a specific x. Similarly, we
write conditional probability mass functions/density functions as P(y | x) = P(Y = y | X = x)
and conditional expectations as E[Y | x] = E[Y | X = x] =

∫
y P(y | x) dy. We denote

P(y | do(X = x)) as the probability mass function/density function of Y after performing the
do-intervention do(X = x) [55]. Finally, we define XY = pa(Y ) ∩X, where pa(Y ) denotes the
parents of Y in a given causal graph.

3.1 Problem setup for generalized causal sensitivity analysis

We formalize causal sensitivity analysis based on Pearl’s structural causal model framework [55].

Definition 1. A structural causal model (SCM) M is a tuple
(
V,U,F ,PU

)
, where V =

(V1, . . . , Vk) are observed endogenous variables, U are unobserved exogenous variables determined
outside of the model, F = {fV1 , . . . , fVk

} is a set of functions so that each fVi maps a set of parents
pa(Vi) ⊆ V ∪U to Vi, and PU is a probability distribution on U.

Every SCM M induces unique directed graph2 GM on V ∪U by drawing a directed edge from V1

to V2 if V1 ∈ pa(V2) . In this paper, we assume that GM is acyclic, i.e., does not contain any directed
cycle. Then, M induces a unique joint probability distribution PV∪U on V ∪U. Furthermore, M
induces unique interventional distributions PV∪U

do(A=a) when performing the do-intervention do(A = a)

for some observed treatments A ⊆ V [4, 55].

We consider settings where we observe four distinct types of endogenous variables V =
{X,A, M̄ℓ, Y }: observed confounders X ∈ X ⊆ Rdx , treatments A ∈ A ⊆ Rda , discrete
mediators M̄ℓ = (M1, . . . ,Mℓ) with Mi ∈ N for 1 ≤ i ≤ ℓ, and an outcome Y ∈ R. In a medical
setting, X might be patient characteristics (gender, age, medical history, etc.), A a medical treatment,
M̄ℓ a change in diet, and Y a variable indicating a health outcome. Possible causal graphs are shown
in Fig. 1. We assume w.l.o.g. that (M1, . . . ,Mℓ) are ordered causally, i.e., M̄i−1 are parents of Mi

for each i ∈ {2, . . . , ℓ}. Given treatment interventions āℓ+1 = (a1, . . . ,aℓ+1), we are interested in
causal effects of the form

Q(x, āℓ+1,M) =
∑

m̄ℓ∈Nℓ

D
(
PY (· | x, m̄ℓ, do(A = aℓ+1)

) ℓ∏
i=1

P(mi | x, m̄i−1, do(A = ai)),

(1)
where D is some functional that maps the density PY (· | x,m, do(A = aℓ+1)) to a scalar value and
we sum over all possible realizations m̄ℓ of M̄ℓ. We are also interested in averaged causal effects

2Note that we consider graphs over both observed and unobserved variables. In the causal inference literature,
these are also called augmented causal graphs[9].
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∫
X Q(x, āℓ+1,M)P(x) dx or differences (Appendix D). The effect Q(x, āℓ+1,M) generalizes

many common effects across different causal inference settings.
Example 1 (CATE, ℓ = 0). If D = E[·] is the expectation functional, Eq. (1) reduces to
Q(x,a,M) = E [Y | x, do(A = a)]. When A is continuous, this is known as the conditional dose-
response function [7, 32]. For binary treatments A ∈ {0, 1}, the query Q(x, 1,M)−Q(x, 0,M) is
known as the conditional average treatment effect (CATE) [16, 78], and its averaged version as the
average treatment effect (ATE) [64, 69].
Example 2 (Mediation analysis, ℓ = 1). If D = E[·] and M̄1 = M is a single mediator, Eq. (1)
reduces to Q(x, ā1,M) =

∑
m E [Y | x,m, do(A = a2)] P(m | x, do(A = a1)). If A ∈ {0, 1} is

binary and the M–Y relationship is unconfounded, we obtain the following causal effects studied
in mediation analysis [56]: Q(x, (a1 = 0,a2 = 1),M) − Q(x, (a1 = 0,a2 = 0),M) is the
(conditional) natural direct effect (NDE), and Q(x, (a1 = 1,a2 = 0),M) − Q(x, (a1 = 0,a2 =
0),M) is the (conditional) natural indirect effect (NIE).

In general, Eq. (1) includes so-called path-specific effects if the relationship between mediators and
outcome is unconfounded [2, 15]. For example, by setting a1 = 1 and ak = 0 for all 2 ≤ k ≤ ℓ+ 1,
we obtain the indirect effect that is passed through the mediator sequence (M1, . . . ,Mℓ). Path-
specific effects are important in various applications, including algorithmic fairness, where the aim is
to mitigate effects through paths that are considered unfair [50, 51]. Furthermore, we can set D to a
quantile instead of using the mean in all the examples above. This results in distributional versions of
CATE, NDE, NIE, and path-specific effects. For example, if the outcome distribution is skewed or
contains outliers, practitioners might prefer the median or other quantiles over the mean due to their
robustness properties [17].

If all confounders between treatment and mediators and outcome were observed, we could (under
additional assumptions) identify the causal effect Q(x, āℓ+1,M) from the observational distribution
PV on V by replacing all do-operations with conditional probabilities according to the backdoor
criterion [55]. However, under unobserved confounding, identifiability is not possible because SCMs
M and M′ exist, which induce the same observational distribution PV, but which result in different
causal effects Q(x, āℓ+1,M) ̸= Q(x, āℓ+1,M′) [54, 74].

3.2 Causal sensitivity analysis

In the following, we formalize causal sensitivity analysis as maximizing/minimizing the causal effect
Q(x, āℓ+1,M) over all SCMs M that are compatible with a predefined sensitivity model. Similar
approaches have been used for partial identification with instrumental variables [40, 54] and testing
identifiability of counterfactuals [74, 75], where all SCMs are considered that are compatible with the
observational data. However, a sensitivity model must additionally restrict the joint distribution of
both observed and unobserved variables in order to allow for informative bounds on the causal effect.
Definition 2 (Sensitivity model). Let PV denote the distribution of the observed variables V =
(X,A, M̄ℓ, Y ). A sensitivity model S is a tuple (U,P), where U = (UW )W are unobserved
confounders between A and W ∈ {M1, . . . ,Mℓ, Y }, respectively (see Fig. 1) and a family P of joint
probability distributions on V ∪U, such that, for all P ∈ P , it holds that

∫
P(v,u) du = PV(v).

We denote the set of all SCMs M compatible with S (i.e., that respect the causal graph, induce a
distribution P ∈ P , and do not contain additional confounders) as C(S) (see Appendix E).

Our definition of sensitivity models excludes unobserved confounding between mediators and the
outcome. This ensures that the causal effect from Eq. (1) can be interpreted as a path-specific effect
[2, 56]. We refer to Sec. 6 for a detailed discussion.

Using the definitions above, we can define causal sensitivity analysis as the following partial identifi-
cation problem: we aim to obtain bounds Q−(x, āℓ+1,S) ≤ Q+(x, āℓ+1,S) so that

Q+(x, āℓ+1,S) = sup
M∈C(S)

Q(x, āℓ+1,M) and Q−(x, āℓ+1,S) = inf
M∈C(S)

Q(x, āℓ+1,M). (2)

Q+(x, āℓ+1,S) is the maximal causal effect that can be achieved by any SCM that is compat-
ible with the sensitivity mode S (and vice versa for Q−(x, āℓ+1,S)). Hence, if the sensitiv-
ity model is valid, i.e., contains the ground-truth distribution over observed variables and unob-
served confounders, we know that the ground-truth causal effect must be contained in the interval
[Q−(x, āℓ+1,S), Q+(x, āℓ+1,S)]. Bounds for average causal effects and effect differences follow
immediately (see Appendix D).
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3.3 Generalized marginal sensitivity model (GMSM)

We introduce now the GMSM. We begin by providing the general definition and then show that this
extends various marginal sensitivity models from existing literature.
Definition 3 (GMSM). The generalized marginal sensitivity model (GMSM) is a sensitivity model
(U,P), where P contains all P that satisfy the following sensitivity constraint: For each W ∈
{M1, . . . ,Mℓ, Y }, there exist bounds s−W (a,x) ≤ 1 ≤ s+W (a,x), so that, for all uW , x, and a

s−W (a,x) ≤ P(UW = uW | x,a)
P(UW = uW | x, do(A = a))

≤ s+W (a,x). (3)

The GMSM bounds the distribution shift in the unobserved confounders UW when performing the
intervention do(A = a) instead of conditioning on A = a. This is a restriction on the strength
of the effect the unobserved confounders UW can have on the treatment A. If UW has no effect
on A, Eq. (3) holds with s−W (a,x) = s+W (a,x) = 1. Hence, the further s−W (a,x) and s+W (a,x)
deviate from 1, the larger is the effect from UW on A that the GMSM allows for. We will often use a
weighted GMSM, which expresses the bounds in terms of a sensitivity parameter.
Definition 4 (Weighted GMSM). A weighted GMSM is a GMSM where s−W (a,x) and s+W (a,x) can
be written as s−W (a,x) = 1

(1−ΓW )qW (a,x)+ΓW
and s+W (a,x) = 1

(1−Γ−1
W )qW (a,x)+Γ−1

W

for a sensitivity

parameter ΓW ≥ 1 and a weight function qW (a,x) ∈ [0, 1] for all x and a.

In a weighted GMSM, the sensitivity parameter ΓW captures the overall restriction on the unobserved
confounding strength across individuals. If ΓW = 1, no unobserved confounding is allowed,
and unconfoundedness holds. For ΓW → ∞, the restriction is relaxed completely, and arbitrary
confounding strength is allowed. The weight function qW (a,x) ∈ [0, 1] offers several advantages.
It allows to further restrict confounding for individuals with treatments a and covariates x. As
qW (a,x) → 1, confounding is more strongly restricted until unconfoundedness is reached. This is
helpful in applications where prior knowledge about the confounding structure is available. As an
example, consider a medical setting where we want to estimate the effect of new drug treatments on
the risk of developing a certain disease, but we suspect that the data is confounded by the individual’s
genetic risk for the disease, which is not measured in the observational data. However, we also might
know that genetic risk for the disease is not relevant for a specific combination of age and gender.

Comparison with the MSM and its extensions: In the following, we show that the weighted
GMSM extends popular sensitivity models from the literature. Proofs are in Appendix C. Note that
existing sensitivity models do not consider settings with mediators (i.e., ℓ = 0), we thus can write
Γ = ΓY for the sensitivity parameter, q(a,x) = qY (a,x) for the weight function, and U = UY

for the unobserved confounders. For binary treatments A = A ∈ {0, 1}, the marginal sensitivity
model (MSM) [67] is defined via 1

Γ ≤ π(x)
1−π(x)

1−π(x,u)
π(x,u) ≤ Γ, where π(x) = P(A = 1 | x)

denotes the observed propensity score and π(x,u) = P(A = 1 | x,u) denotes the full propensity
score. For continuous treatments A, the continuous marginal sensitivity model (CMSM) [32] is
defined via 1

Γ ≤ P(a|x,u)
P(a|x) ≤ Γ. For longitudinal settings with time-varying observed confounders

X = (X1, . . . ,XT ), unobserved confounders U = (U1, . . . ,UT ), treatments A = (A1, . . . ,AT ),
we define the longitudinal marginal sensitivity model (LMSM) via 1

Γ ≤
∏T

t=1
P(at|x̄T ,ūt,āt−1)
P(at|x̄T ,āt−1)

≤ Γ.

Lemma 1. The MSM, CMSM and LMSM are special cases of the weighted GMSM by choosing the
weight functions q(a,x) = P(a | x) (MSM) and q(a,x) = 0 (CMSM, LMSM).

Lemma 1 provides a new interpretation of the MSM: If the probability P(a | x) is large, the
MSM restricts the confounding strength because most of the randomness in the treatment is already
explained by the observed confounders x. We can extend this approach to arbitrary discrete treatments
within the weighted GMSM framework. The CMSM and LMSM apply the same confounding
restriction for all a and x.

4 Bounding causal effects under the GMSM

In this section, we derive sharp bounds under our GMSM. We first quantify the maximal shift in
conditional distributions (Sec. 4.1). This allows us to derive an algorithm to compute explicit bounds
(Sec. 4.2). Finally, we show how these bounds can be estimated from finite data (Sec. 4.3).
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4.1 Shifting interventional distributions

In the following, we provide some intuition before stating the main result. Let us consider a
simple setting with treatment A, a single unobserved confounder UY = U ∈ R, outcome Y ,
and GMSM bounds s−Y (a) and s+Y (a) (see Fig. 2, left). Any SCM M that is compatible with
S describes the relationship between A, U , and Y via a functional assignment Y = fY (A, U).
For a fixed treatment a, we denote fY (a, ·) as fa. We are interested in the interventional density
P (y | do(A = a)) =

∫
P (y | a, u)P(u) du = fa#PU (y), where fa#PU denotes the push-forward

distribution induced by fa on PU . However, we only have access to the observational density
P (y | a) =

∫
P (y | a, u)P(u | a) du = fa#PU |a(y). Hence, for a fixed functional assignment fa,

we can quantify the discrepancy between P (y | do(A = a)) and P (y | a) via the distribution shift
between PU and PU |a.

Fig. 2 shows a toy example where PU |a is the uniform distribution on [0, 1], and the func-
tional assignment fa is the inverse standard normal CDF Φ−1, so that P (y | a) is the
standard normal probability density. We now want to “right-shift” the interventional den-
sity P (y | do(A = a)) as much as possible, so that F (y | a) ≫ F (y | do(A =
a)) for the CDFs. To achieve this, the distribution PU must put more probability mass
on the right-hand side of the unit interval [0, 1] as compared to PU |a (see Fig. 2, left).

Figure 2: Intuition for bounding interventional distributions
under our GMSM.

Then, the functional assignment will
also push more probability mass to the
right of P(y | do(A = a)) as com-
pared to P (y | a) (see Fig. 2, right).
However, the GMSM bounds the dis-
tribution shift between PU and PU |a

via 1/s+Y (a) ≤ P(u) ≤ 1/s−Y (a)
(Eq. (3) using that P(u) = P(u |
do(A = a)). Intuitively, the max-
imal possible right shift under the
GMSM should occur by choosing P(u) so that the bounds are attained, i.e., P(u) = 1(u ≤
c+Y )(1/s

+
Y ) + 1(u > c+Y )(1/s

−
Y ) for some c+Y that can be obtained via the normalization constraint∫

P(u) du = 1. The corresponding “right-shifted” interventional density P+ (y | do(A = a)) is
defined via the push-forward (see Fig. 2).

It turns out that the density P+ (y | do(A = a)) is the maximally right-shifted interventional distribu-
tion that can be obtained under any SCM that is compatible with the GMSM. Furthermore, the above
arguments can be generalized beyond the toy example from Fig. 2.
Theorem 1. Let S be a GMSM with bounds s−W = s−W (a,x) and s+W = s+W (a,x) for W ∈
{M1, . . . ,Mℓ, Y }. We define c+W =

(1−s−W )s+W
s+W−s

−
W

. If W ∈ R is continuous, we define the probability
density function

P+(w | x,mW ,a) =

{
(1/s+W )P(w | x,mW ,a), if F (w) ≤ c+W ,
(1/s−W )P(w | x,mW ,a), if F (w) > c+W ,

(4)

where F (·) is the CDF corresponding to P(· | x,mW ,a). If W ∈ N is discrete, we define the
probability mass function

P+(w | x,mW ,a) =

 (1/s+W )P(w | x,mW ,a), if F (w) < c+W ,
(1/s−W )P(w | x,mW ,a), if F (w − 1) > c+W ,
(1/s+W )

(
c+W − F (w − 1)

)
+ (1/s−W )

(
F (w)− c+W

)
, else.

(5)
Let F+(·) denote the conditional CDF corresponding to P+(· | x,mW ,a) and let F−(·) be the
conditional CDF of P−(· | x,mW ,a), which is defined by swapping signs (in cW and sW ). For any
SCM M, denote the CDF corresponding to PM(· | x,mW , do(A = a)) as FM(·). Then, for all w,

F+(w) ≤ inf
M∈C(S)

FM(w) and F−(w) ≥ sup
M∈C(S)

FM(w). (6)

Assume now that P(uW | x, do(A = a)) = P(uW | x). Then, the bounds are sharp (i.e., equality
holds in Eq. (6)) whenever A is discrete and it holds that 1/s+W ≥ P(a | x), or A is continuous.
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Proof. See Appendix B.

The result in Theorem 1 does not depend on the distribution or dimensionality of unobserved
confounders, and it does not depend on any specific SCM. As such, our sharp bounds are applicable
to a wide class of causal effects, without restricting assumptions on the confounding structure beyond
the sensitivity constraint of the GMSM.

In case S is a weighted GMSM with sensitivity parameters ΓW for all W ∈ {M1, . . . ,Mℓ, Y }, the
quantiles c+W and c−W are of the particular simple form c+W = ΓW /(1+ΓW ) and c−W = 1/(1+ΓW ).
Furthermore, the discrete sharpness condition simplifies to (1−Γ−1W )qW (a,x)+Γ−1W ≥ P(a | x). In
particular, the bounds are sharp whenever we choose a weighting function that satisfies qW (a,x) ≥
P(a | x). The assumption P(uW | x, do(A = a)) = P(uW | x) excludes the time-varying case
(LMSM). Deriving sharp bounds for the LMSM is an interesting direction for future research.

4.2 Bounding causal effects

We now leverage Theorem 1 to obtain explicit solutions for the partial identification problem from
Eq. (2) with monotone D (see Appendix B). This includes expectation and distributional effects.

Corollary 1 (Bounds without mediators). If ℓ = 0 and D is monotone, we obtain sharp bounds

Q+(x,a,S) ≤ D
(
PY
+(· | x,a)

)
and Q−(x,a,S) ≥ D

(
PY
−(· | x,a)

)
, (7)

and sharpness holds under the same conditions as in Theorem 1.

Proof. See Appendix B.

Algorithm 1: Causal sensitivity analysis with mediators
Input : Causal query Q(x, āℓ+1,M), GMSM S with s+W and s−W .
Output : Upper bound Q+(x, āℓ+1,S)
// Outcome bound

c+W ←
(1−s

−
W

)s
+
W

s
+
W

−s
−
W

for W ∈ {M1, . . . ,Mℓ, Y }

Q+
ℓ+1(m̄ℓ)← D

(
PY
+(· | x, m̄ℓ, aℓ+1)

)
for m̄ℓ ∈ supp(M̄ℓ)

// Adjusting for confounding in mediators
for i ∈ {ℓ, . . . , 1} do

for m̄i−1 ∈ supp(M̄i−1) do
π ← Permutation map in ascending order of(

Q+
i+1(m̄i−1, π(mi))

)
mi∈supp(Mi)

F̃ (mi)←
∑

m:π(m)≤mi
P(Mi = m | x, m̄i−1, ai)

P+(mi)←



(1/s+Mi
)P(mi | x, m̄i−1, ai),

if F̃ (π(mi)) < c+Mi
,

(1/s−Mi
)P(mi | x, m̄i−1, ai),

if F̃ (π(mi)− 1) > c+Mi
,

(1/s+Mi
)
(
c+Mi
− F̃ (π(mi)− 1)

)
+(1/s−Mi

)
(
F̃ (π(mi))− c+Mi

)
,

else.
Q+

i (m̄i−1)←
∑

mi
Q+

i+1(m̄i−1,mi) P+(mi)

end
end
Q+(x, āℓ+1,S)← Q+

1

If D is the expectation functional, A is bi-
nary, and Y is continuous, this coincides
with the optimality result from Dorn and
Guo [18]. Hence, Corollary 1 general-
izes the result from Dorn and Guo [18]
to distributional effects and arbitrary treat-
ments (e.g., categorical, continuous, or
time-varying). In their paper, Dorn and
Guo proved the sharpness of the bounds by
using the Neyman-Pearson Lemma. In con-
trast, we take the more principled approach
outlined in Sec. 4.1, which is applicable to
more general settings.

In the following, we consider settings with
mediators, i.e., we aim to derive bounds
for the causal effect in Eq. (1). The
idea is to first obtain outcome bounds
D
(
PY
+(· | x, m̄ℓ,aℓ+1)

)
conditioned on

all possible values m̄ℓ ∈ supp(M̄ℓ) in the
support of the mediators M̄ℓ. Without un-
observed confounding between treatments
and mediators, we can obtain the upper
bound Q+(x, āℓ+1,S) from Eq. (1) by re-
placing D

(
PY (· | x, m̄ℓ, do(A = aℓ+1)

)
with D

(
PY
+(· | x, m̄ℓ,aℓ+1)

)
. With unobserved confounding, we need to additionally take the

distribution shift in the mediators into account. To maximize the causal effect, the shifted mediator
distribution should put more probability mass on values m̄ℓ for which D

(
PY
+(· | x, m̄ℓ,aℓ+1)

)
is

large. Hence, we can apply the maximal right-shift from Theorem 1 to the mediator distributions in
Eq. (1), but where the values m̄ℓ are permuted to order D

(
PY
+(· | x, m̄ℓ,aℓ+1)

)
in ascending order.

We provide the details on our iterative procedure to compute the upper bound Q+(x, āℓ+1,S) in
Algorithm 1. The lower bound Q−(x, āℓ+1,S) can be computed analogously by swapping signs in
cW and sW .
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Corollary 2. Under the Assumptions of Theorem 1, Algorithm 1 returns the sharp bounds from
Eq. (2).

Proof. See Appendix B.

4.3 Empirical bounds via importance sampling

In practice, we only have access to an empirical distribution PV
n of sample size n instead of the full

observational distribution PV. We thus obtain estimates P̂(w | x,mW ,a) of the conditional density
or probability mass functions P(w | x,mW ,a) for all W ∈ {M1, . . . ,Mℓ, Y }. If W is discrete, this
reduces to a standard (multi-class) classification problem, and the estimated class probabilities can
be plugged into Algorithm 1. If W = Y is continuous, we can use arbitrary conditional density
estimators to obtain P̂(y | x, m̄ℓ,a). We propose an importance sampling approach to estimate
D
(
PY
+(· | x, m̄ℓ,a)

)
assuming that we can sample from from our estimated density P̂Y (· | x, m̄ℓ,a)

(see Appendix F for details and derivations). If D is the expectation functional, our estimator is

̂D
(
PY
+(· | x, m̄ℓ,a)

)
= 1

ŝ+Y k

∑⌊kc+Y ⌋
i=1 yi +

1
ŝ−Y k

∑k
i=⌊kc+Y ⌋+1 yi, where (yi)

k
i=1 ∼ P̂Y (· | x, m̄ℓ,a) is sorted. (8)

We also provide importance sampling estimators for distributional effects in Appendix F. We can also
obtain empirical confidence intervals by using the same bootstrap procedure as described in [32].

Implementation: We use feed-forward neural networks with softmax activation function to estimate
discrete probability mass functions. For densities, we use conditional normalizing flows [73] (neural
spline flows [21]), which are universal density approximators and allow for sampling. We perform
training using the Adam optimizer [41]. We also perform extensive hyperparameter tuning in our
experiments. Implementation and hyperparameter tuning details are in Appendix G.

5 Experiments

Baselines: Most existing methods focus on sensitivity analysis for binary treatments under the MSM
[18, 19, 31, 35, 53]. In this setting, our bounds coincide with existing optimality results [18]. For
mediation analysis, we are to the best of our knowledge the first to propose bounds for MSM-based
sensitivity analysis. This is why we refrain from benchmarking against baselines in our experiments
and only show the validity of our bounds.

Synthetic data: We perform extensive experiments using synthetic data from various causal inference
settings to evaluate the validity of our bounds. Synthetic data are commonly used to evaluate causal
inference methods as they ensure that the causal ground truth is available [6, 16, 76]. Here, we
generate six different synthetic datasets with n = 50, 000 samples in the following manner: We first
construct three SCMs with binary treatments for the causal graphs in Fig. 1, that is, (i) no mediators,
(ii) a single mediator M , and (iii) two mediators M1 and M2. We then construct three more SCMs
for settings (i)–(iii) with continuous treatments. Details are in Appendix H.
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Figure 3: Results for the binary treatment setting. Settings (i)–(iii) are
ordered from left to right. The top row shows the oracle sensitivity
parameter Γ∗W (depending on x), and the bottom row shows the bounds.

To demonstrate the validity
of our bounds, we aim to
show that they contain the
oracle causal effect when-
ever the sensitivity con-
straints are satisfied. We
evaluate two versions of
our GMSM: the MSM for
binary treatments and the
CMSM for continuous treat-
ments (see Sec. 3.3). Using
oracle knowledge from the
SCMs, we estimate the re-
spective density ratio from
Eq. (3) and obtain the oracle
sensitivity parameter Γ∗W
(details are in Appendix H).
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We thus demonstrate that our bounds contain the oracle causal effect whenever ΓW ≥ Γ∗W , i.e.,
whenever we choose sensitivity parameters ΓW at least as large as the oracle Γ∗W .

The results for binary treatments are shown in Fig. 3 and for continuous treatments in Fig. 4.
For binary treatments, we evaluate the causal effect Q(x, āℓ+1,M) for over x ∈ [−1, 1]
with three (arbitrary) treatment combinations corresponding to the three different settings:
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Figure 4: Results for continuous treatment setting. Settings (i)–(iii)
are ordered from left to right. The top row shows the oracle sensitivity
parameter Γ∗W (depending on x), and the bottom row shows the bounds.

(i) ā1 = 1, (ii) ā2 = (1, 0),
and (iii) ā3 = (1, 0, 0).
For continuous treatments,
we also use three (arbi-
trary) treatment combina-
tions: (i) ā1 = 0.6,
(ii) ā2 = (0.9, 0.5), and
(iii) ā3 = (0.2, 0.4, 0.5).
Results for additional treat-
ment combinations are in
Appendix J. Evidently, the
oracle causal effect is con-
tained within our bounds.
Hence, the results confirm
the validity of our bounds.

We also compare the
bounds from Jesson et al.

[32] with our sharp bounds under the CMSM and examine whether we can improve on these by using
a different weight function (Def. 4). For this purpose, we modify the SCM from setting (i) in the
continuous treatment setting so that there is no unobserved confounding for individuals with x > 0
(i.e., Γ∗Y = 0). Details are in Appendix H. Table 1 reports the bounds from Jesson et al., our bounds
under the CMSM, and our bounds under a weighted CMSM with weight function qY (x) = 1(x > 0).
The two main findings are: (i) Using the weight function, we can leverage prior knowledge about the
confounding structure to obtain even tighter bounds. (ii) Our bounds are much faster to compute
(using 5, 000 samples). The latter is because we derived closed-form solutions for our bounds, while
the method proposed by Jesson et al. is an approximation that uses grid search.

Table 1: Experiment with weighted CMSM
```````````Bounds

Metric/ ΓY Interval length Coverage Time (sec.)

1.2 1.5 2 1.2 1.5 2

Jesson et al.[32] (CMSM) 0.33± 0.00 0.74± 0.01 1.27± 0.01 1 1 1 137.48± 2.02
Our bounds (CMSM) 0.33± 0.00 0.74± 0.01 1.25± 0.01 1 1 1 0.39± 0.02
Our bounds (weighted CMSM) 0.17 ± 0.01 0.37 ± 0.02 0.63 ± 0.03 0.6 1 1 0.42± 0.05

Reported: Average ± standard deviation over 5 random seeds (best in bold).

Real-world data: We demonstrate our bounds using an example with real-world data. We consider a
setting from the COVID-19 pandemic where mobility (captured through telephone movement) was
monitored to obtain a leading predictor of case growth [57]. Details regarding the data (publicly
available) and our analysis are in Appendix I. Here, mobility is the mediator, case growth is the
outcome, and stay-home order (ban of gatherings with more than 5 people) is the treatment. We
are interested in the natural directed effect (NDE, see Example 2) of a stay-home order on the case
growth. We suspect that unobserved confounders between treatment and mediator might exist (e.g.,
adherence, etc. of the population). Hence we perform a causal sensitivity analysis where we vary
ΓM and plot the bounds in Fig. 5. We observe that the estimated effect under unconfoundedness
(ΓM = 1) is negative, i.e., the stay-home order decreases case growth. For ΓM > 1, we obtain
bounds around this estimand. For ΓM < 6 the bounds are negative, which means that under moderate
unobserved confounding, it seems likely that the NDE is nonzero, in line with prior evidence [57].

6 Discussion

Assumptions: As common in the causal inference literature, our results rely on assumptions on the
data-generating process that must be justified by domain knowledge. Our main assumption is that we
exclude confounders between mediators and the outcome in our analysis (see Def. 2). The reason

9



for this assumption is that it allows us to interpret the causal query from Eq. (1) as a path-specific
effect. Path-specific effects are defined as so-called nested counterfactuals that lie in the third layer of
Pearl’s causal hierarchy [55] Using the assumption from Theorem 1, they can be reduced to the query
from Eq. (1), which lies in layer 2 of Pearl’s hierarchy, i.e., only depends on interventions [15]. Our
sensitivity analysis then bridges the gap from layer 2 to layer 1 (observational data). Approaches for
relaxing this assumption, e.g., by combining our results with a sensitivity analysis from layer 3 to
layer 2, are left for future work.
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Figure 5: Estimated upper/lower bound
for the NDE on real-world data. Re-
ported: mean and standard deviation
over 10 runs.

Sensitivity parameter and weighting function: Both
the sensitivity parameter ΓW and the weighting function
q(a,x) incorporate domain knowledge about the unob-
served confounding and need to be chosen by the practi-
tioner accordingly.

The sensitivity parameter ΓW controls the strength of un-
observed confounding. In practice, one typically chooses
Γ by domain knowledge or data-driven heuristics [35, 28].
One approach is to obtain the smallest Γ so that the cor-
responding partially identified interval includes 0. Then,
Γ can be interpreted as a level of “causal uncertainty”,
quantifying the smallest violation of unconfoundedness
that would explain away the causal effect [31, 33].

The weight function q(a,x) offers additional opportunities
to incorporate domain knowledge about the confounding

structure to obtain tighter bounds. Consider an observational study on the effect of smoking on cancer
risk, confounded by certain unobserved genes. For example, it may be known that genes that act as
unobserved confounders do not affect the cancer risk for a certain population with certain covariates
x, which allows us to set q(a,x) = 1. Note that we can always set q(a,x) = P(a | x) (discrete
treatments) or q(a,x) = 0 (continuous treatments) if no domain knowledge is available, leading to
established sensitivity models from the literature. For example, practitioners may use our bounds for
the MSM in a mediation analysis setting without ever explicitly using the GMSM formulation via a
weighting function.

Other sensitivity models: In this paper, we provide bounds for MSM-type sensitivity models.
Recently, other types of sensitivity models have been proposed in the literature, which may provide
less conservative bounds in situations where the data-generating process does not follow an MSM.
Examples include f -sensitivity models [34], L2-sensitivity models [81], curvature sensitivity models
[48] and the δ-MSM [45]. Extending our results to these sensitivity models may be another possible
direction for future work.

Efficient estimation: Our main results (Theorem 1, Corollary 1, 2) are identifiability results, i.e.,
hold in the limit of infinite data. We did not provide results on efficient estimation. Therefore, future
work may consider extending our approach to incorporate semiparametric efficiency theory [37].

Conclusion: We proposed a flexible generalization of the MSM and derived sharp bounds for a
variety of different causal inference settings and data types (e.g., continuous, categorical). Our work
provides practitioners with a unified framework for causal sensitivity analysis. This enables reliable
causal inferences from observational data in the presence of unobserved confounders, thus promoting
safe decision-making.

10



Acknowledgments

SF acknowledges funding from the Swiss National Science Foundation (SNSF) via Grant 186932.

References
[1] Joshua D. Angrist. “Lifetime earnings and the vietnam era draft lotter: Evidence from social

security administrative records”. In: The American Economic Review 80.3 (1990), pp. 313–336.
[2] Chen Avin, Ilya Shpitser, and Judea Pearl. “Identifiability of path-specific effects”. In: IJCAI.

2005.
[3] Vahid Balazadeh, Vasilis Syrgkanis, and Rahul G. Krishnan. “Partial identification of treatment

effects with implicit generative models”. In: NeurIPS. 2022.
[4] Elias Bareinboim et al. “On Pearl’s hierarchy and the foundations of causal inference”. In:

Probabilistic and Causal Inference: The Works of Judea Pearl (2022), pp. 507–556.
[5] Andrew Bennett, Nathan Kallus, and Tobias Schnabel. “Deep generalized method of moments

for instrumental variable analysis”. In: NeurIPS. 2019.
[6] Jeroen Berrevoets et al. “To Impute or not to Impute? Missing data in treatment effect estima-

tion”. In: AISTATS. 2023.
[7] Ioana Bica, James Jordon, and Mihaela van der Schaar. “Estimating the effects of continuous-

valued interventions using generative adversarial networks”. In: NeurIPS. 2020.
[8] Ioana Bica et al. “Estimating counterfactual treatment outcomes over time through adversarially

balanced representations”. In: ICLR. 2020.
[9] Stephan Bongers et al. “Foundations of structural causal models with cycles and latent vari-

ables”. In: The Annals of Statistics 49.5 (2021), pp. 2885–2915.
[10] Matteo Bonvini et al. “Sensitivity analysis for marginal structural models”. In: arXiv preprint

arXiv:2210.04681 (2022).
[11] Kan Chen, Bingkai Wang, and Dylan S. Small. “A differential effect approach to partial

identification of treatment effects”. In: arXiv preprint arXiv:2303.06332 (2023).
[12] Victor Chernozhukov, Ivan Fernández-Val, and Blaise Melly. “Inference on counterfactual

distributions”. In: Econometrica 81.6 (2013), pp. 2205–2268.
[13] Victor Chernozhukov et al. “Double/debiased machine learning for treatment and structural

parameters”. In: The Econometrics Journal 21.1 (2018), pp. C1–C68.
[14] James Cornfield et al. “Smoking and lung cancer: Recent evidence and a discussion of some

questions”. In: Journal of the National Cancer Institute 22.1 (1959), pp. 173–203.
[15] Juan D. Correa, Sanghack Lee, and Elias Bareinboim. “Nested counterfactual identification

from arbitrary surrogate experiments”. In: NeurIPS. 2021.
[16] Alicia Curth and Mihaela van der Schaar. “Nonparametric estimation of heterogeneous treat-

ment effects: From theory to learning algorithms”. In: AISTATS. 2021.
[17] David L. Donoho and Peter J. Huber. “The notion of breakdown point”. In: A Festschrift for

Erich L. Lehmann (1983), pp. 157–184.
[18] Jacob Dorn and Kevin Guo. “Sharp sensitivity analysis for inverse propensity weighting via

quantile balancing”. In: Journal of the American Statistical Association (2022).
[19] Jacob Dorn, Kevin Guo, and Nathan Kallus. “Doubly-valid/ doubly-sharp sensitivity analysis

for causal inference with unmeasured confounding”. In: arXiv preprint arXiv:2112.11449
(2022).

[20] Guilherme Duarte et al. “An automated approach to causal inference in discrete settings”. In:
Journal of the American Statistical Association (2023).

[21] Conor Durkan et al. “Neural spline flows”. In: NeurIPS. 2019.
[22] Helmut Farbmacher et al. “Causal mediation analysis with double machine learning”. In: The

Econometrics Journal 25.2 (2022), pp. 277–300.
[23] Dennis Frauen and Stefan Feuerriegel. “Estimating individual treatment effects under unob-

served confounding using binary instruments”. In: ICLR. 2023.
[24] Dennis Frauen et al. “Estimating average causal effects from patient trajectories”. In: AAAI.

2023.

11



[25] Florian Gunsilius. “A path-sampling method to partially identify causal effects in instrumental
variable models”. In: arXiv preprint arXiv:1910.09502 (2020).

[26] Wenshuo Guo et al. “Partial identification with noisy covariates: A robust optimization ap-
proach”. In: CLeaR. 2022.

[27] Jason Hartford et al. “Deep IV: A flexible approach for counterfactual prediction”. In: ICML.
2017.

[28] Tobias Hatt, Daniel Tschernutter, and Stefan Feuerriegel. “Generalizing off-policy learning
under sample selection bias”. In: UAI. 2022.

[29] Jesse Y. Hsu and Dylan S. Small. “Calibrating sensitivity analyses to observed covariates in
observational studies”. In: Biometrics 69.4 (2013), pp. 803–811.

[30] Guido W. Imbens. “Sensitivity to exogeneity assumptions in program evaluation”. In: American
Economic Review 93.2 (2003), pp. 128–132.

[31] Andrew Jesson et al. “Quantifying ignorance in individual-level causal-effect estimates under
hidden confounding”. In: ICML. 2021.

[32] Andrew Jesson et al. “Scalable sensitivity and uncertainty analysis for causal-effect estimates
of continuous-valued interventions”. In: NeurIPS. 2022.

[33] Ying Jin, Zhimei Ren, and Emmanuel J. Candès. “Sensitivity analysis of individual treatment
effects: A robust conformal inference approach”. In: Proceedings of the National Academy of
Sciences (PNAS) 120.6 (2023).

[34] Ying Jin, Zhimei Ren, and Zhengyuan Zhou. “Sensitivity analysis under the f -sensitivity
models: A distributional robustness perspective”. In: arXiv preprint arXiv:2203.04373 (2022).

[35] Nathan Kallus, Xiaojie Mao, and Angela Zhou. “Interval estimation of individual-level causal
effects under unobserved confounding”. In: AISTATS. 2019.

[36] Nathan Kallus and Angela Zhou. “Confounding-robust policy improvement”. In: NeurIPS.
2018.

[37] Edward H. Kennedy. “Semiparametric doubly robust targeted double machine learning: A
review”. In: arXiv preprint (2022).

[38] Edward H. Kennedy. “Towards optimal doubly robust estimation of heterogeneous causal
effects”. In: arXiv preprint (2022).

[39] Edward H. Kennedy, Sivaraman Balakrishnan, and Larry Wasserman. “Semiparametric coun-
terfactual density estimation”. In: Biometrika (2023).

[40] Niki Kilbertus, Matt J. Kusner, and Ricardo Silva. “A class of algorithms for general instru-
mental variable models”. In: NeurIPS. 2020.

[41] Diederik P. Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: ICLR.
2015.

[42] Sören R. Künzel et al. “Metalearners for estimating heterogeneous treatment effects using
machine learning”. In: Proceedings of the National Academy of Sciences (PNAS) 116.10
(2019), pp. 4156–4165.

[43] Bryan Lim, Ahmed M. Alaa, and Mihaela van der Schaar. “Forecasting treatment responses
over time using recurrent marginal structural networks”. In: NeurIPS. 2018.

[44] Charles F. Manski. “Nonparametric bounds on treatment effects”. In: The American Economic
Review 80.2 (1990), pp. 319–323.

[45] Myrl G. Marmarelis et al. “Partial identification of dose responses with hidden confounders”.
In: UAI. 2023.

[46] Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. “Causal transformer for estimat-
ing counterfactual outcomes”. In: ICML. 2022.

[47] Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. “Normalizing flows for interven-
tional density estimation”. In: ICML. 2023.

[48] Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. “Partial counterfactual identifica-
tion of continuous outcomes with a curvature sensitivity model”. In: NeurIPS. 2023.

[49] Krikamol Muandet et al. “Counterfactual mean embeddings”. In: Journal of Machine Learning
Research 22 (2021), pp. 1–71.

[50] Razieh Nabi, Daniel Malinsky, and Ilya Shpitser. “Learning optimal fair policies”. In: ICML.
2019.

[51] Razieh Nabi and Ilya Shpitser. “Fair inference on outcomes”. In: AAAI. 2018.

12



[52] Ziad Obermeyer et al. “Dissecting racial bias in an algorithm used to manage the health of
populations”. In: Science 366.6404 (2019), pp. 447–453.

[53] Miruna Oprescu et al. “B-learner: Quasi-oracle bounds on heterogeneous causal effects under
hidden confounding”. In: ICML. 2023.

[54] Kirtan Padh et al. “Stochastic causal programming for bounding treatment effects”. In: CLeaR.
2023.

[55] Judea Pearl. Causality. New York City: Cambridge University Press, 2009.
[56] Judea Pearl. “Interpretation and identification of causal mediation”. In: Psychological methods

19.4 (2014), pp. 459–481.
[57] Joel Persson, Jurriaan F. Parie, and Stefan Feuerriegel. “Monitoring the COVID-19 epidemic

with nationwide telecommunication data”. In: Proceedings of the National Academy of Sciences
of the United States of America 118.26 (2021).

[58] Danilo Jimenez Rezende and Shakir Mohamed. “Variational inference with normalizing flows”.
In: ICML. 2015.

[59] James M. Robins, Miguel A. Hernán, and Babette Brumback. “Marginal structural models and
causal inference in epidemiology”. In: Epidemiology 11.5 (2000), pp. 550–560.

[60] James M. Robins, Andrea Rotnitzky, and Daniel o. Scharfstein. “Sensitivity analysis for
selection bias an unmeasured confounding in missing data and causal inference models”. In:
Statistical Models in Epidemiology, the Environment, and Clinical Trials 116 (2000), pp. 1–94.

[61] Paul R. Rosenbaum. “Sensitivity analysis for certain permutation inferences in matched
observational studies”. In: Biometrika 74.1 (1987), pp. 13–26.

[62] Paul R. Rosenbaum and Donald B. Rubin. “Assessing sensitivity to an unobserved binary
covariate in an observational Study with binary outcome”. In: Journal of the Royal Statistical
Society: Series B 45.2 (1983), pp. 212–218.

[63] Uri Shalit, Fredrik D. Johansson, and David Sontag. “Estimating individual treatment effect:
Generalization bounds and algorithms”. In: ICML. 2017.

[64] Claudia Shi, David M. Blei, and Victor Veitch. “Adapting neural networks for the estimation
of treatment effects”. In: NeurIPS. 2019.

[65] Rahul Singh, Maneesh Sahani, and Arthur Gretton. “Kernel instrumental variable regression”.
In: NeurIPS. 2019.

[66] Vasilis Syrgkanis et al. “Machine learning estimation of heterogeneous treatment effects with
instruments”. In: NeurIPS. 2019.

[67] Zhiqiang Tan. “A distributional approach for causal inference using propensity scores”. In:
Journal of the American Statistical Association 101.476 (2006), pp. 1619–1637.

[68] Eric J. Tchetgen Tchetgen and Ilya Shpitser. “Semiparametric theory for causal mediation
analysis: Efficiency bounds, multiple robustness, and sensitivity analysis”. In: Annals of
Statistics 40.3 (2012), pp. 1816–1845.

[69] Mark J. van der Laan and Donald B. Rubin. “Targeted maximum likelihood learning”. In: The
International Journal of Biostatistics 2.1 (2006).

[70] Stijn Vansteelandt et al. “Ignorance and uncertainty regions as inferential tools in a sensitivity
analysis”. In: Statistica Sinica 16 (2006), pp. 953–979.

[71] Hal R. Varian. “Causal inference in economics and marketing”. In: Proceedings of the National
Academy of Sciences (PNAS) 113.27 (2016), pp. 7310–7315.

[72] Stefan Wager and Susan Athey. “Estimation and inference of heterogeneous treatment effects
using random forests”. In: Journal of the American Statistical Association 113.523 (2018),
pp. 1228–1242.

[73] Christina Winkler et al. “Learning likelihoods with conditional normalizing flows”. In: arXiv
preprint arXiv:1912.00042 (2019).

[74] Kevin Xia, Yushu Pan, and Elias Bareinboim. “Neural causal models for counterfactual
identification and estimation”. In: ICLR. 2023.

[75] Kevin Xia et al. “The causal-neural connection: Expressiveness, learnability, and inference”.
In: NeurIPS. 2021.

[76] Liyuan Xu et al. “Learning deep features in instrumental variable regression”. In: ICLR. 2021.
[77] Azam M. Yazdani and Eric Boerwinkle. “Causal inference in the age of decision medicine”.

In: Journal of Data Mining in Genomics & Proteomics 6.1 (2015).

13



[78] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. “GANITE: Estimation of individu-
alized treatment effects using generative adversarial nets”. In: ICLR. 2018.

[79] Marco Zaffalon, Alessandro Antonucci, and Rafael Cabañas. “Structural causal models are
(solvable by) credal networks”. In: International Conference on Probabilistic Graphical
Models 2020. 2020.

[80] Junzhe Zhang, Jin Tian, and Elias Bareinboim. “Partial counterfactual identificatiton from
observational and experimental data”. In: ICML. 2022.

[81] Yao Zhang and Qingyuan Zhao. “Bounds and semiparametric inference in L∞ and L2 sensi-
tivity analysis for observational studies”. In: arXiv preprint arXiv:2211.04697 (2022).

[82] Qingyuan Zhao, Dylan S. Small, and Bhaswar B. Bhattacharya. “Sensitivity analysis for
inverse probability weighting estimators via the percentile bootstrap”. In: Journal of the Royal
Statistical Society: Series B 81.4 (2019), pp. 735–761.

14



A Extended related work

A.1 Partial identification under unobserved confounding

There are various works for partial identification (i.e., bounding causal effects) under unobserved
confounding that do not impose sensitivity models. In the following, we discuss the difference
between this literature stream, which we call causal partial identification (CPA), to causal sensitivity
analysis (CSA).

The main difference between CSA and CPA is that CSA imposes sensitivity models, that is, as-
sumptions on the strength of unobserved confounding, which is controlled by a sensitivity parameter
Γ. Methods for CPA do not impose sensitivity constraints but instead impose other assumptions.
In practice, CSA can be used to test the robustness of causal effect estimates to violations of the
unconfoundedness assumption (by varying Γ), while CPA may be applicable in situations where no
domain knowledge about the confounding strength is available.

Approaches for CPA can be roughly described by two categories that describe the type of assumptions
that are imposed to derive informative bounds.

1. Additional variables: In order to achieve informative bounds without restricting the strength
of unobserved confounding, some works impose assumptions on the data-generating process
by postulating the existence of additional variables. One example is instrumental variables
(IVs), i.e., variables, which only have a direct effect on treatment variables but not on
outcomes. Under certain assumptions, IVs render bounds for causal effects informative
without assumptions on the underlying confounding structure [3, 25, 40, 54]. Other examples
include leaky mediation [3, 54], differential effects [11], noisy proxy settings [26].

2. Discrete SCMs: Another stream of literature derives informative bounds in discrete SCMs.
Examples include [20, 75, 79, 80].

Comparison with our bounds: None of the methods above is applicable in the causal inference
settings we consider (e.g., continuous treatments or outcomes, no IVs available, etc.). In contrast,
a well-known CPA result in our setting is the so-called no-assumptions bound [44] that leverages
discrete treatments. In the following, we consider the standard setting for CATE estimation without
mediators (ℓ = 0) and a binary treatment A ∈ {0, 1}. We show that we obtain the no-assumptions
bound with our sensitivity analysis for the query E[Y | x, do(A = a)] for Γ → ∞, i.e. when lifting
the sensitivity constraint. Let [p1, p2] denote the support of the conditional density P(y | x, a) with
c.d.f. F . Using the MSM we obtain

Q+(x, a,S) =
∫ F−1( Γ

1+Γ )

p1

y
(
(1− Γ−1)P(a | x) + Γ−1

)
P(y | x, a) dy (9)

+

∫ p2

F−1( Γ
1+Γ )

y ((1− Γ)P(a | x) + Γ)P(y | x, a) dy (10)

−−−−→
Γ→∞

P(a | x)E[Y | x, a] + (1− P(a | x)) p2, (11)

which corresponds to the result in [44]. The result for the lower bound Q−(x, a,S) follows analo-
gously.

A.2 Estimation of causal effects under unconfoundedness

Under certain additional assumptions, unconfoundedness makes it possible to point-identify causal
effects from the observational data, so that the causal inference problem reduces to a purely statistical
estimation problem. Various methods for estimating point-identified causal effects under unconfound-
edness have been proposed that make use of machine learning and/or (semiparametric) statistical
theory. Examples include methods for conditional average treatment effects [13, 16, 38, 42, 63, 72,
78], average treatment effects [24, 64, 69], instrumental variables [5, 23, 27, 65, 66, 76], time-varying
data [8, 43, 46], mediation analysis [68, 22], and distributional effects [12, 39, 47, 49]. Note that all
the methods above are biased if the unconfoundedness assumption is violated, which outlines the
need for our causal sensitivity analysis.
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B Proofs of the GMSM bounds

B.1 Proof of Theorem 1

Proof. We give the proof for continuous W ∈ R (see Eq. (4) in the main paper). The derivation
for discrete W ∈ N (see Eq. (5) in the main paper) follows with the same arguments and the
normalization constraint

∑
w P+(w | x,mW ,a) = 1. We first show the inequality

F+(w) ≤ inf
M∈C(S)

FM(w) (12)

and then provide sharpness results by showing

F+(w) ≥ inf
M∈C(S)

FM(w) (13)

under the sharpness conditions of Theorem 1. The result for F−(w) follows analogously.

Validity of the bounds (≤): We provide a proof by contradiction. To do so, we assume that there
exists an SCM M ∈ C(S) and w ∈ R so that

F+(w) > FM(w). (14)

By the definition of F+(w), there must exist a set W1 ⊆ R≤F−1(c+W ), so that

P+(w1 | x,mW ,a) > P(w1 | x,mW , do(A = a)) for all w1 ∈ W1, (15)

or a set W2 ⊆ R>F−1(c+W ), so that

P+(w2 | x,mW ,a) < P(w2 | x,mW , do(A = a)) for all w2 ∈ W2, (16)

as otherwise P(w | x,mW , do(A = a)) would not integrate to 1. Let W = f(X,MW ,A,UW ) be
the functional assignment of M and let U1 = f−1x,mW ,a (W1) ⊆ Rd and U2 = f−1x,mW ,a (W2) ⊆ Rd

denote the preimages of W1 and W2 under fx,mW ,a in the confounding space.

We can again write P+(w | x,mW ,a) as a push forward

P+(w | x,mW ,a) = fx,mW ,a#P
UW |x,a
+ (w) (17)

for some density P+(uW | x,a) on the confounding space. By the definition of P+(w | x,mW ,a)
and Eq. (28), we obtain

P+(u1 | x,a) = 1

s+W
P(u1 | x,a) and P+(u2 | x,a) = 1

s−W
P(u2 | x,a) (18)

for all u1 ∈ U1 and u2 ∈ U2. Due to the definition of U1 and U2, it follows that there exist u1 ∈ U1

and u2 ∈ U2, so that
P(u1 | x,a)

P(u1 | x, do(A = a))
>

P(u1 | x,a)
P+(u1 | x,a)

= s+W (19)

and
P(u1 | x,a)

P(u1 | x, do(A = a))
<

P(u1 | x,a)
P+(u1 | x,a)

= s−W . (20)

Both Eq. (19) and Eq. (20) are contradictions to the GMSM constraint Eq. (3) of the main paper.
Hence, M /∈ C(S).
Sharpness of the bounds (≥): We show that under the sharpness conditions from Theorem 1, there
exists an SCM M ∈ C(S) with induced interventional density P+(w | x,mW ,a) for all w. The
construction of M is similar to that of our motivational toy example in Sec. 4.1 of the main paper.
We first define an (interventional) probability density for the unobserved confounder UW ∈ Rd given
X via

P(uW | x, do(A = a)) = 1(0 ≤ u
(1)
W ≤ c+W ) (1/s+W ) + 1(1 ≥ u

(1)
W > c+W ) (1/s−W ), (21)

where u
(1)
W denotes the first coordinate of uW . P(uW | x,mW ) is a properly normalized density

with support [0, 1]d because∫
P(uW | x, do(A = a)) duW =

c+W
s+W

+
1− c+W
s−W

=
1− s−W
s+W − s−W

+
s+W − 1

s+W − s−W
= 1, (22)
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where we used the definition of c+W =
(1−s−W )s+W
s+W−s

−
W

.

We now define the probability density for the unobserved confounder UW ∈ Rd given X, MW , and
treatments A as the uniform density on [0, 1]d, i.e.,

P(uW | x,a) = 1(0 ≤ uW ≤ 1), (23)

where the indicator function is defined coordinate-wise.

We now need to show that there always exists an SCM M which induces the densities in Eq. (21)
and Eq. (22) and that satisfies the sensitivity constraints. For this purpose, we use the assumptions to
write the interventional density for discrete A as

P(uW | x, do(A = a))) = P(uW | x) = P(a | x) + (1− P(a | x))P(uW | x,A ̸= a). (24)

Hence, our definitions for P(uW | x, do(A)) and P(uW | x,a) are valid whenever

0 ≤ P(uW | x,A ̸= a) =
P(uW | x, do(A = a))− P(a | x)

1− P(a | x)
, (25)

which follows from the sharpness condition 1/s+W ≥ P(a | x). Sharpness for continuous A follows
because we can approximate A with a sequence of discrete treatments (An)n and it holds that
P(an | x) −−−−→

n→∞
0 (as long as P(a | x) is non-degenerate). Finally, it holds that

s−W ≤ P(UW = uW | x,a)
P(UW = uW | x, do(A = a))

≤ s+W for all uW ∈ [0, 1]p, (26)

so that M respects the sensitivity constraint of the GMSM S.

Let now P(w | x,mW ,a) denote the observational density of W given X, MW , and A with
corresponding cumulative distribution function (CDF) given by F (w). To complete our construction
of M, we define functional assignment W = fW (X,MW ,A,UW ) via the inverse CDF

fW (x,mW ,a,uW ) = F−1
(
u
(1)
W

)
. (27)

By denoting fW (x,mW ,a, ·) as fx,mW ,a, we can write the observational distribution under M as
the push forward

fx,mW ,a#P
UW |x,a(w) = P(w | x,mW ,a) (28)

due to Eq. (22) and Eq. (27). Note that we used here that UW is not a parent of MW (see Fig. 1).
Hence, M ∈ C(S) is compatible with the sensitivity model S. Furthermore, the induced interven-
tional distribution can be written as the push-forward

fx,mW ,a#P
UW |x,do(A=a)(w) = P+(w | x,mW ,a) (29)

because of Eq. (21).

B.2 Proof of Corollary 1

Here, we formally restate Corollary 1 for monotone functionals. For two probability densities P(y)
and P′(y), we denote P ≤ P′ if F ≥ F ′ holds almost surely for the corresponding CDFs.

Definition 5. A functional D is called monotone if D(P(·)) ≤ D(P′(·)) whenever P ≤ P′.

Intuitively, a monotone functional increases if applied on a distribution that is further right-shifted.
Note that both the expectation functional D(P(·)) =

∫
yP(y) dy and the quantile functionals

D(P(·)) = F−1(α) for α ∈ [0, 1] are monotone.

Corollary 3 (Restatement). If M = ∅ and D is monotone, we obtain sharp bounds

Q+(x,a,S) = D
(
PY
+(· | x,a)

)
and Q−(x,a,S) = D

(
PY
−(· | x,a)

)
. (30)

Proof. Follows directly from Theorem 1 for W = Y .
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B.3 Proof of Corollary 2

Proof. We derive Algorithm 1 for Q+(x, āℓ+1,S). The case for Q−(x, āℓ+1,S) follows analogously.

Recall that we want to maximize the causal effect

Q(x, ā,M) =
∑
m

D
(
PY (· | x,m, do(A = aℓ+1)

) ℓ∏
i=1

P(mi | x, m̄i−1, do(A = ai)), (31)

over all possible SCMs M ∈ C(S) that are compatible with the GMSM S. By using the assump-
tion (no unobserved confounding between mediators and outcome), we can write Q(x, ā,M) in
terms of functional assignments fW

x,mW ,a defined via W = fW (X,MW ,A,UW ) and induced
(interventional) distributions PUW |x in the following way:

Q(x, āℓ+1,M) =
∑
m

D
(
fY
x,m̄ℓ,aℓ+1#

PUY |x(·)
) ℓ∏

i=1

fMi
x,m̄i−1,ai#

PUMi
|x(mi). (32)

Hence, the optimization problem reduces to maximizing Eq. (32) over all functional assignments
fW
x,mW ,a and distributions PUW |x that are compatible with S. Note that the terms in the product do

not depend on each other or the term in the sum. Thus, by rearranging the suprema and products, we
can equivalently perform the following iterative procedure: First, we initialize

Q+
ℓ+1(x, m̄ℓ, āℓ+1,S) = sup

M∈C(S)
D
(
fY
x,m̄ℓ,aℓ+1#

PUY |x(·)
)

(33)

and then define

Q+
i (x, m̄i−1, āℓ+1,S) = sup

M∈C(S)

∑
mi

Q+
i+1(x, m̄i−1,mi, āℓ+1))

(
fMi
x,m̄i−1,ai#

PUY |x(mi)
)

(34)

for all i ∈ {ℓ, . . . , 1}, which results in the sharp upper bound

Q+(x, āℓ+1,S) = Q+
1 (x, āℓ+1,S). (35)

For Eq. (33) and monotone D, we can directly apply Theorem 1 and obtain

Q+
ℓ+1(x, m̄ℓ, āℓ+1,S) = D

(
PY
+(· | x, m̄ℓ,aℓ+1)

)
. (36)

For Eq. (34), we need to find an induced distribution fMi
x,m̄i−1,ai#

PUY |x on Mi that is compatible

with S and puts most probability mass on mi where Q+
i+1(x, m̄i−1,mi, āℓ+1)) is large. Hence, we

can apply the discrete version of Theorem 1 with W = π(Mi), where π : supp(Mi) → supp(Mi) is
a permutation map so that

(
Q+

i+1(x, m̄i−1, π(mi)), āℓ+1

)
mi∈supp(Mi)

is ordered in ascending order.
The corresponding update step is shown in Algorithm 1.
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C Special cases of the GMSM

In this section, we prove Lemma 1, i.e., we show that all sensitivity models introduced in Sec. 3.3 of
the main paper are special cases of our (weighted) GMSM. Recall that we consider settings without
mediators (i.e., ℓ = 0), and write Γ = ΓY for the sensitivity parameter, q(a,x) = qY (a,x) for the
weight function, and U = UY for the unobserved confounders. In this case, the weighted GMSM is
defined via the confounding restriction

1

(1− Γ) q(a,x) + Γ
≤ P(U = u | x,a)

P(U = u | x, do(A = a))
≤ 1

(1− Γ−1) q(a,x) + Γ−1
. (37)

C.1 Marginal sensitivity model (MSM):

The MSM [67] for binary treatment A = A ∈ {0, 1} is defined via

1

Γ
≤ π(x)

1− π(x)

1− π(x,u)

π(x,u)
≤ Γ, (38)

where π(x) = P(A = 1 | x) denotes the observed propensity score and π(x,u) = P(A = 1 | x,u)
denotes the full propensity score. By rearranging the terms, we obtain

1

(1− Γ)P(a | x) + Γ
≤ P(a | x,u)

P(a | x)
≤ 1

(1− Γ−1)P(a | x) + Γ−1
(39)

for a ∈ {0, 1}. Furthermore, by Bayes’ theorem, it follows that

P(a | x,u)
P(a | x)

=
P(u | x, a)P(a | x)
P(u | x)P(a | x)

=
P(u | x, a)
P(u | x)

=
P(u | x, a)

P(u | x, do(A = a))
, (40)

which implies that the MSM is a weighted GMSM with weight function q(a,x) = P(a | x).
Comparison to the MSM definition using potential outcomes: Some papers define the MSM in
terms of potential outcomes (Y1, Y0) instead of unobserved confounders U [31, 67]. Here, Ya denotes
the potential outcome under the treatment intervention do(A = a). In the following, we show that
this is equivalent to the definition we use in our paper.

Lemma 2. The following two statements are equivalent:

1. There exists an unobserved confounder U that satisfies Y1, Y0 ⊥ A | X,U so that it holds
that s− ≤ P(u|x,a)

P(u|x) ≤ s+.

2. It holds that s− ≤ P(Y1,Y0|x,a)
P(Y1,Y0|x) ≤ s+.

Proof. The second statement follows directly from the first one by defining U = (Y1, Y0). For the
other direction, we proceed via proof by contradiction. Assume there exists a pair (Y1, Y0) that
violates the second statement, say w.l.o.g. P(Y1,Y0|x,a)

P(Y1,Y0|x) > s+. We can use the independence condition
from the first statement to write

P(Y1, Y0 | x, a) =
∫

P(Y1, Y0 | x,u, a)P(u | x, a) du =

∫
P(Y1, Y0 | x,u)P(u | x, a) du (41)

Furthermore, we have that

P(Y1, Y0 | x) =
∫

P(y1, y0 | x,u)P(u | x) du. (42)

It follows that

s+ <

∫
P(Y1, Y0 | x,u)P(u | x, a) du∫
P(Y1, Y0 | x,u)P(u | x) du

. (43)

Hence, there exists a u such that s+ < P(Y1,Y0|x,u)P(u|x,a)
P(Y1,Y0|x,u)P(u|x) = P(u|x,a)

P(u|x) , which is a contradiction to
the sensitivity constraint of the first statement.
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C.2 Continuous marginal sensitivity model (CMSM):

For continuous treatments A ∈ Rd, the continuous marginal sensitivity model (CMSM) [32] is
defined via

1

Γ
≤ P(a | x,u)

P(a | x)
≤ Γ. (44)

With the same arguments as in Eq. (40), it follows that the CMSM is a weighted GMSM with weight
function q(a,x) = 0.

C.3 Longitudinal marginal sensitivity model (LMSM):

For longitudinal settings with time-varying observed confounders X = X̄T = (X1, . . . ,XT ),
unobserved confounders U = ŪT = (U1, . . . ,UT ), treatments A = ĀT = (A1, . . . ,AT ), we
define the longitudinal marginal sensitivity model (LMSM) via

1

Γ
≤

T∏
t=1

P(at | x̄T , ūt, āt−1)

P(at | x̄T , āt−1)
≤ Γ. (45)

It holds that

P(ūT | x̄T , āT ) =

∏T
t=1 P(ūt | x̄T , āt)∏T−1
t=1 P(ūt | x̄T , āt)

=

T∏
t=1

P(ūt | x̄T , āt)

P(ūt−1 | x̄T , āt−1)
(46)

(∗)
=

(
T∏

t=1

P(at | x̄T , ūt, āt−1)

P(at | x̄T , āt−1)

)(
T∏

t=1

P(ūt | x̄T , āt−1)

P(ūt−1 | x̄T , āt−1)

)
(47)

=

(
T∏

t=1

P(at | x̄T , ūt, āt−1)

P(at | x̄T , āt−1)

)(
T∏

t=1

P(ut | x̄T , āt−1, ūt−1)

)
(48)

=

(
T∏

t=1

P(at | x̄T , ūt, āt−1)

P(at | x̄T , āt−1)

)
P(ūT | x̄T , do(ĀT = āT )), (49)

where (∗) follows by applying Bayes’ theorem on P(ūt | x̄T , āt). Hence, the LMSM is a weighted
GMSM with weight function q(āT , x̄T ) = 0. Note that we can also define LMSMs with different
weight functions via

1

(1− Γ)q(āT , x̄T ) + Γ
≤

T∏
t=1

P(at | x̄T , ūt, āt−1)

P(at | x̄T , āt−1)
≤ 1

(1− Γ−1)q(āT , x̄T ) + Γ−1
. (50)
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D Bounds for average causal effects and differences

Here, we show that we can use our sharp bounds to obtain sharp bounds for causal effect averages
and differences. We state the results for the upper bound

Q+(x, āℓ+1,S) = sup
M∈C(S)

Q(x, āℓ+1,M). (51)

All definitions and bounds for the lower bound Q−(x, āℓ+1,S) can be obtained by swapping the
signs.

We are interested in the sharp upper bound for the average causal effect

Q+
avg(āℓ+1,S) = sup

M∈C(S)

∫
X
Q(x, āℓ+1,M) dx (52)

and the sharp upper bound for the causal effect difference

Q+
diff

(
x, ā

(1)
ℓ+1, ā

(2)
ℓ+1,S

)
= sup
M∈C(S)

(
Q
(
x, ā

(1)
ℓ+1,M

)
−Q

(
x, ā

(2)
ℓ+1,M

))
. (53)

Lemma 3. We can compute Q+
avg(āℓ+1,S) and Q+

diff

(
x, ā

(1)
ℓ+1, ā

(2)
ℓ+1,S

)
from our sharp bounds

Q+(x, āℓ+1,S) and Q−(x, āℓ+1,S) via

Q+
avg(āℓ+1,S) =

∫
X
Q+(x, āℓ+1,S) dx (54)

and
Q+

diff

(
x, ā

(1)
ℓ+1, ā

(2)
ℓ+1,S

)
= Q+(x, ā

(1)
ℓ+1,S)−Q−(x, ā

(2)
ℓ+1,S). (55)

Proof. The result for Q+
avg(āℓ+1,S) follows directly from interchanging the supremum and integral.

For Q+
diff

(
x, ā

(1)
ℓ+1, ā

(2)
ℓ+1,S

)
, we note that

Q+
diff

(
x, ā

(1)
ℓ+1, ā

(2)
ℓ+1,S

)
≤ sup
M1∈C(S)

Q(x, ā
(1)
ℓ+1,M1)− inf

M2∈C(S)
Q(x, ā

(2)
ℓ+1,M2) (56)

= Q+(x, ā
(1)
ℓ+1,S)−Q−(x, ā

(2)
ℓ+1,S). (57)

To show the equality in Eq. (56), we show that, for each pair of SCMs M1,M2 ∈ C(S), we can find
an SCM M ∈ C(S) such that

Q(x, ā
(1)
ℓ+1,M1)−Q(x, ā

(2)
ℓ+1,M2) = Q(x, ā

(1)
ℓ+1,M)−Q(x, ā

(2)
ℓ+1,M). (58)

We can assume w.l.o.g. that all M ∈ C(S) induce the same distributions PUW |x on the confound-
ing space. We denote the functional assignments of M1 and M2 as fW

M1
(x,mW ,a,uW ) and

fW
M2

(x,mW ,a,uW ). We can now define a functional assignment fW
M(x,mW ,a,uW ) for M so

that
fW
M(·, ·,a(1), ·) = fW

M1
(·, ·,a(1), ·) and fW

M(·, ·,a(2), ·) = fW
M2

(·, ·,a(2), ·), (59)
which implies Eq. (58).
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E Compatibility of SCMs with sensitivity models

Here, we provide details regarding our class C(S) of SCMs that are compatible with a sensitivity
model S from Def. 2.
Definition 6 (Compatibility). Let PV denote the distribution of the observed variables V =
(X,A, M̄ℓ, Y ) and let S be a sensitivity model with unobserved confounders U and a family
of joint distributions P . Let M be an SCM with observed variables VM = V and unobserved
variables UM ⊇ U that contain the unobserved confounders U from the sensitivity model but also
potential exogenous noise. Then, M is compatible with S, if the following three conditions are
satisfied:

1. Graph compatibility: the induced causal graph GM by M on V ∪U must coincide with
our assumed causal structure (see Sec. 3.1).

2. Latent unconfoundedness: P(w | x,mW , do(A = a)) =
∫
P(w | x,uW ,mW ,a)P(uW |

x,mW ) duW for all x ∈ X , mW ∈ supp(MW ), a ∈ A, and W ∈ {M1, . . . ,Mℓ, Y }.

3. Sensitivity constraints: PV∪U
M ∈ P , where PV∪U

M denotes the distribution on V∪U induced
by M.

In Definition 6, the latent unconfoundedness condition ensures that all interventional densities
P(w | x,mW , do(A = a)) are point-identified under access to the unobserved confounders. In
particular, this ensures that the SCM M can not contain additional unobserved confounders (e.g.,
between mediators and outcome). Similar assumptions are standard in the causal sensitivity literature
[18].
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F Importance sampling estimators for finite sample bounds

In this section, we derive estimators for the outcome bound D
(
PY
+(· | x, m̄ℓ,a)

)
for continuous

Y ∈ R. We assume that we have already obtained an estimator P̂Y (· | x, m̄ℓ,a) of the observational
distribution PY (· | x, m̄ℓ,a), and that we are able to sample (yi)

k
i=1 ∼ P̂Y (· | x, m̄ℓ,a) (see

Appendix G for implementation details). Note that the outcome bound D
(
PY
+(· | x, m̄ℓ,a)

)
depends

on the shifted distribution PY
+(· | x, m̄ℓ,a) and not on the observational distribution PY (· | x, m̄ℓ,a).

Hence, we use an importance sampling approach to derive our estimators, which we outline in the
following for the expectation functional and distributional effects. We denote the CDFs corresponding
to PY

+(· | x, m̄ℓ,a) and PY (· | x, m̄ℓ,a) by FPY |x,m̄ℓ,a

+

and FPY |x,m̄ℓ,a , respectively.

Expectation functional: For the expectation functional, we can rewrite the outcome bound as
D
(
PY
+(· | x, m̄ℓ,a)

)
= E

Y∼PY |x,m̄ℓ,a

+

[Y ] (60)

= EY∼PY |x,m̄ℓ,a

[
Y
PY
+(Y | x, m̄ℓ,a)

PY (Y | x, m̄ℓ,a)

]
(61)

= EY∼PY |x,m̄ℓ,a

[
Y

s+Y
1

(
Y ≤ F−1PY |x,m̄ℓ,a

(c+Y )
)
+

Y

s−Y
1

(
Y > F−1PY |x,m̄ℓ,a

(c+Y )
)]

(62)

to obtain the consistent estimator

̂D
(
PY
+(· | x, m̄ℓ,a)

)
=

1

k

⌊kc+Y ⌋∑
i=1

yi

ŝ+Y
+

1

k

k∑
i=⌊kc+Y ⌋+1

yi

ŝ−Y
, (63)

where (yi)
k
i=1 ∼ P̂Y (· | x, m̄ℓ,a) are sampled from the estimated observational distribution. This

corresponds to Eq. (8) in the main paper.

Computational complexity: Given trained models and a sample (yi)
k
i=1 ∼ P̂Y (· | x, m̄ℓ,a),

our estimator from Eq. (63) has a complexity of O(k) as it only involves summing and quantile
computation. To set this in relation to existing work, Algorithm 1 of Jesson et al. [32] has a complexity
of O(kn), where n is a number of grid search points. This is demonstrated in Table 1, where we
choose k = n = 5000.

Distributional effects: We now derive estimators for distributional effects, i.e., for quantile function-
als D of the form

D
(
PY
+(· | x, m̄ℓ,a)

)
= F−1

PY |x,m̄ℓ,a

+

(α) (64)

with α ∈ (0, 1). We again use an importance sampling approach and rewrite

FPY |x,m̄ℓ,a

+

(y) = E
Y∼PY |x,m̄ℓ,a

+

[1(Y ≤ y)] (65)

= EY∼PY |x,m̄ℓ,a

[
1(Y ≤ y)

PY
+(Y | x, m̄ℓ,a)

PY (Y | x, m̄ℓ,a)

]
(66)

= EY∼PY |x,m̄ℓ,a

1
(
Y ≤ min{y, F−1PY |x,m̄ℓ,a

(c+Y )}
)

s+Y
+
1

(
F−1PY |x,m̄ℓ,a

(c+Y ) < Y ≤ y
)

s−Y

 .

(67)

Hence, we can sample (yi)
k
i=1 ∼ P̂Y (· | x, m̄ℓ,a) and obtain the consistent estimator

̂D
(
PY
+(· | x, m̄ℓ,a)

)
= min

F̂
P
Y |x,m̄ℓ,a
+

(yi)≥α
yi, (68)

where

F̂PY |x,m̄ℓ,a

+

(y) =
1

k

⌊kc+Y ⌋∑
i=1

1(yi ≤ y)

ŝ+Y
+

1

k

k∑
i=⌊kc+Y ⌋+1

1(yi ≤ y)

ŝ−Y
. (69)
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G Implementation and hyperparameter tuning details

All our experimental settings feature a continuous outcome Y ∈ R and (optionally) discrete mediators
Mi ∈ N. Hence, we need to estimate the conditional outcome density PY (· | x,m,a) and conditional
probability mass functions PMi(· | x, m̄i−1,a) in order to estimate our bounds with Eq. (63), Eq. (68),
and Algorithm 1 from the main paper.

Conditional outcome density: We use conditional normalizing flows (CNFs) [73] for estimating the
conditional density PY (· | x, m̄ℓ,a). Normalizing flows (NFs) model a distribution PY of a target
variable Y by transforming a simple base distribution PU (e.g., standard normal) of a latent variable
U through an invertible transformation Y = fθ(U), where θ denotes learnable parameters [58]. In
order to estimate the conditional density PY (· | x, m̄ℓ,a), we leverage CNFs, that is, we define the
parameters θ as an output of a hyper network θ = gη(x, m̄ℓ,a) with learnable parameters η. Given a
sample {xi, m̄ℓ,i,ai, yi}ni=1, we learn η by maximizing the log-likelihood

ℓ(η) =

n∑
i=1

log
(
fgη(xi,m̄ℓ,i,ai)#

PU (yi)
)

(70)

(∗)
=

n∑
i=1

log
(
PU
(
f−1gη(xi,m̄ℓ,i,ai)

(yi)
))

+ log

(∣∣∣∣ ddy f−1gη(xi,m̄ℓ,i,ai)
(yi)

∣∣∣∣) , (71)

where fgη(xi,m̄ℓ,i,ai)#
PU (yi) denotes the (push-forward) density induced by fgη(xi,m̄ℓ,i,ai) on R

and (∗) follows from the change-of-variables theorem for invertible transformations.

In our implementation, we use neural spline flows. That is, we model the invertible transformation fθ
via a spline flow as described in [21]. We use a feed-forward neural network for the hypernetwork
gη(x, m̄ℓ,a) with 2 hidden layers, ReLU activation functions, and linear output. We set the latent
distribution PU to a standard normal distribution N (0, 1). For training, we use the Adam optimizer
[41].

Conditional probability mass functions: The estimation of the conditional probability mass function
PMi(· | x, m̄i−1,a) is a standard (multi-class) classification problem. We use feed-forward neural
networks with 3 hidden layers, ReLU activation functions, and softmax output. For training, we
minimize the standard cross-entropy loss by using the Adam optimizer [41]. We use the same
approach to estimate the propensity scores PA(· | x) for discrete treatments A.

Hyperparameter tuning:

We perform hyperparameter tuning for our experiments on synthetic data using grid search on a
validation set. The tunable parameters and search ranges are shown in Table 2. For reproducibility
purposes, we report the selected hyperparameters as .yaml files.3

Table 2: Hyperparameter tuning details.
MODEL TUNABLE PARAMETERS SEARCH RANGE

CNFs Epochs 50
Batch size 32, 64, 128
Learning rate 0.0005, 0.001, 0.005
Hidden layer size (hyper network) 5, 10, 20, 30
Number of spline bins 2, 4, 8

Feed forward neural networks Epochs 30
Batch size 32, 64, 128
Learning rate 0.0005, 0.001, 0.005
Hidden layer size 5, 10, 20, 30
Dropout probability 0, 0.1

3Code is available in the supplementary materials and at https://github.com/DennisFrauen/SharpCausalSensitivity.
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H Experiments using synthetic data

Here we provide details regarding our experiments using synthetic data. This includes data generation,
obtaining oracle sensitivity parameters, and details regarding experimental evaluation.

Overall data-generating process: We first describe the overall data-generating process which we
use as a basis to generate data for all settings (i)-(iii) and binary/continuous treatments. We construct
an SCM following the causal graph in Fig. 1 (right) from the main paper. We have an observed
confounder X ∈ R, a (binary or continuous) treatment A, two binary mediators M1 and M2, and
a continuous outcome Y ∈ R. Furthermore, we consider three unobserved confounders: (i) UM1

confounding the A-M1 relationship, (ii) UM2
confounding the A–M2 relationship, and (iii) UY

confounding the A–Y relationship. Our data-generating process is inspired by synthetic experiments
from previous works on causal sensitivity analysis [31, 35]. We start the data-generating process by
sampling

X ∼ Uniform[−1, 1], and UM1
, UM2

, UY
(i.i.d)∼ Bernoulli(p = 0.5) (72)

Depending on the setting, we either generate binary treatments A ∈ {0, 1} via

A ∼ Bernoulli(sigmoid(3x + γM1uM1 + γM2uM2 + γYuY)) (73)

or continuous treatments A ∈ (0, 1) via

A ∼ Beta(α, β) with α = β = 2+x+γM1(uM1 −0.5)+γM2(uM2 −0.5)+γY (uY −0.5), (74)

where γM1
, γM2

, and γY are parameters controlling the strength of unobserved confounding. We
then generate the mediators and outcome via functional assignments

M1 = fM1
(X,A,UM1

, ϵM1
), M2 = fM2

(X,A,M1, UM2
, ϵM2

) (75)

and
Y = fY (X,A,M1,M2UY , ϵY ), (76)

where ϵM1
, ϵM2

, ϵY ∼ N (0, 1) are standard normal distributed noise variables. The functional
assignments are defined as

fM1
(x, a, uM1

, ϵM1
) = 1 {a sin(x) + (1− a) sin(4x) + ρM1

((uM1
− 0.5) + ϵM1

) > 0} (77)

for M1,

fM2
(x, a,m1uM2

, ϵM2
) =1{am1 sin(x) + (1− a)m1 sin(4x) (78)

− a (1−m1) sin(x)− (1− a) (1−m1) sin(4x) (79)
+ ρM2

((uM2
− 0.5) + ϵM2

) > 0} (80)

for M2, and

fY (x, a,m1,m2, uY , ϵY ) =am1 m2 sin(x) + (1− a)m1 m2 sin(4x) (81)
+ am1 (1−m2) sin(8x) + (1− a)m1 (1−m2) sin(x) (82)
− a (1−m1)m2 sin(x)− (1− a) (1−m1)m2 sin(4x) (83)
− a (1−m1) (1−m2) sin(8x) (84)
− (1− a) (1−m1) (1−m2) sin(x) (85)
+ ρY ((uY − 0.5) + ϵY ) (86)

for Y , where ρM1
, ρM2

, and ρY are parameters that control the noise level.

Settings (i)-(iii): We define the settings (i)-(iii) in Sec. 5 via specific values of the confounding
parameters γM1 , γM2 , and γY , and the noise parameters ρM1 , ρM2 , and ρY (see Table 3). Note that
the settings are defined to mimic the causal graphs in Fig. 1 from the main paper. For example, the
only unobserved confounder in setting (i) is UY , which means that we can ignore the mediators and
use our data to evaluate our bounds for settings without mediators.
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Table 3: Definition of settings (i)-(iii).
γM1 γM2 γY ρM1 ρM2 ρY

Setting (i), binary A 0 0 1.5 0.2 0.2 2
Setting (i), continuous A 0 0 1.5 0.2 0.2 1
Setting (ii) 1.5 0 1.5 1 0.2 1
Setting (iii) 1.5 1.5 1.5 0.2 0.2 1

Obtaining Γ∗W : We provide details regarding our approach to obtain oracle sensitivity parameters
Γ∗W for all W ∈ {M1,M2, Y }. By sampling from our previously defined SCM, we can obtain Monte
Carlo estimates of the GMSM density ratio

r(uW , x, a) =
P(uW | x, a)
P(uW | x, a)

(∗)
=

P(a | x, uW )

P(a | x)
(87)

for all uW ∈ {0, 1}, a, and x, where (∗) follows from Bayes’ theorem. We then define

r+W (x, a) = max
uW∈{0,1}

r(uW , x, a) and r−W (x, a) = min
uW∈{0,1}

r(uW , x, a). (88)

For binary treatment settings, we define parameters Γ+
W = Γ+

W (x, a) and Γ−W = Γ−W (x, a) that attain
the density ratio bounds in the MSM from Eq. (39), i.e.

r+W (x, a) =
1

(1− Γ+
W

−1
)P(a | x) + Γ+

W

−1 and r−W (x, a) =
1

(1− Γ−W )P(a | x) + Γ−W
. (89)

For continuous treatment settings, we define Γ+
W and Γ−W as the sensitivity parameters that attain the

density ratio bounds in the CMSM from Eq. (44), i.e.

r+W (x, a) = Γ+
W andr−W (x, a) =

1

Γ−W
. (90)

Finally, we define Γ∗W as the parameter corresponding to the maximum possible violation of uncon-
foundedness, i.e.,

Γ∗W = max{Γ+
W ,Γ−W } (91)

By definition of Γ∗W , our bounds should contain the oracle causal effect whenever we choose
sensitivity parameters ΓW ≥ Γ∗W for all W ∈ {M1,M2, Y }.

Weighted GMSM experiment (Table 1): For our experiment in Table 1, we modify the treatment
assignment from Eq. (74) in setting (i) to

A ∼ Beta(α, β) (92)

with

α = β = 2 + x+ 1(x < 0) (γM1
(uM1

− 0.5) + γM2
(uM2

− 0.5) + γY (uY − 0.5)) . (93)

Hence, unobserved confounding only affects individuals with x < 0. We then compare our bounds
under the CMSM with our bounds under a weighted CMSM (Def. 4) with weight function qY (x) =
1(x > 0).

We also provide results for the bounds from Jesson et al. [32] under the CMSM. We implemented
the grid search algorithm from Jesson et al. [32] and used 5, 000 samples for the search space. For a
fair comparison, we also used 5, 000 samples for our importance sampling estimators. Note that the
method from Jesson et al. [32] requires estimation of both the conditional outcome density PY (· | x,a)
and the conditional expectation E[Y | x,a]. For PY (· | x,a), we use the same (normalizing flow-
based) estimator as for our bounds. For E[Y | x,a], we train a separate feed-forward neural network
with linear output activation for continuous outcomes. Implementation and hyperparameter tuning
are done the same way as described in Appendix G for the feed-forward neural networks.
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I Experiment using real-world data

Data: We consider a setting from the COVID-19 pandemic where mobility in Switzerland (captured
through telephone movement) was monitored to obtain a leading predictor of case growth. In total,
∼ 1, 5 billion trips were monitored from 10 February through 26 April 2020. All data are recorded
across 26 different states (cantons). For our analysis, we use an aggregated, de-identified, and
pre-processed version of the data provided by Persson, Parie, and Feuerriegel [57]. The preprocessed
data is publically available at https://github.com/jopersson/covid19-mobility/blob/main/Data. The
code for our analysis is available at https://github.com/DennisFrauen/SharpCausalSensitivity.

We consider a binary treatment A in the form of a stay-at-home order, which bans gatherings with
more than 5 people. We encode mobility as a single binary mediator M , which is 1 if the total number
of trips on a specific day is larger than the median number of trips during the entire time horizon,
and 0 otherwise. Our outcome is the 10-day-ahead case growth. We include the following observed
variables as confounders X: the canton code (swiss member state at a subnational level), the canton
population, and whether the weekday is a Monday or not. After removing the first 10 recorded days
for each canton (due to spillover effects from other countries) and rows with missing values, we
obtain a dataset with n = 3276 observations.

Analysis: We perform a causal sensitivity analysis for the natural directed effect (NDE) of the
stay-at-home order A on the case growth Y . That is, we are interested in the part of the causal effect
of A on Y that is not explained by the path via M (i.e., through the change in mobility). The NDE in
an SCM M is defined as

NDE(M) =

∫
Q(x, (a1 = 0, a2 = 1),M)−Q(x, (a1 = 0, a2 = 0),M) dx. (94)

Fig. 5 (main paper) shows causal sensitivity analysis for violations of the unconfoundedness between
treatment A and mediator M . Hence, we consider a GMSM for binary treatments with sensitivity
parameters ΓM and ΓY = 0. For each ΓM , we estimate our bounds for the expectation functional
and the treatment combinations ā = (0, 1) and ā = (0, 0). We then obtain bounds for the NDE as
described in Appendix D.
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J Additional experimental results

Here, we provide additional experimental results on synthetic data that extend the results from Sec. 5
in the main paper. We provide (i) results for additional treatment combinations and (ii) results for
distributional effects. We follow the same experimental setup described in Sec. 5 (main paper) and
Appendix. H.

J.1 Additional treatment combinations

Results for additional treatment combinations are shown in Fig. 6 (binary treatment settings) and
Fig. 7 (continuous treatment settings). The results are similar to those in Sec. 5 in the main paper and
empirically confirm the validity of our bounds. Hence, our results remain valid independently of the
choice of treatment combination.
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Figure 6: Results for additional treatments in the binary treatment setting. From left to right is shown:
setting (ii) with ā = (0, 1), setting (iii) with ā = (0, 1, 0), and setting (iii) with ā = (0, 0, 1). The
top row shows the oracle sensitivity parameter Γ∗W (depending on x), and the bottom row shows the
bounds.

J.2 Distributional effects

We also provide results for distributional effects, that is, we choose the α-quantile functional
D
(
PY
+(· | x, m̄ℓ,a)

)
= F−1

PY |x,m̄ℓ,a

+

(α). Here, we consider three quantiles with α = 0.7, α = 0.5

(median), and α = 0.3. We use our importance sampling estimator derived in Appendix. F (Eq. (68))
to estimate our bounds. The results are shown in Fig. 8 (binary treatment) and Fig. 9 (continuous
treatment) for settings (i)-(iii) from Fig. 1 in the main paper. Again, our bounds cover the underlying
oracle effect in regions where the chosen sensitivity parameters ΓW are larger than the oracle sensi-
tivity parameters Γ∗W . This also confirms empirically the validity of our bounds for distributional
effects.

J.3 Semi-synthetic data

We provide additional results for the semi-synthetic IHDP data with unobserved confounding from
Jesson et al. [31]. Here, we demonstrate the effectiveness of our bounds for distributional effects
for decision-making. We follow Jesson et al. [31] and evaluate our bounds by measuring the
error rate of associated deferral policies, which defer a prespecified fraction of test samples with
the largest uncertainty to an expert. We mimic a high-stakes decision-making problem where
a wrong decision to prescribe treatment is much worse than a wrong decision not to prescribe
treatment. To do so, we measure performance with a weighted error rate, that penalizes wrong
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Figure 7: Results for additional treatments in the continuous treatment setting. From left to right
is shown: setting (i) with ā = 0.9, setting (ii) with ā = (0.2, 0.4), and setting (iii) with ā =
(0.4, 0.5, 0.3). The top row shows the oracle sensitivity parameter Γ∗W (depending on x), and the
bottom row shows the bounds.

treatment decisions twenty times heavier than wrong decisions not to treat. We then compare three
different deferral policies: (i) the (standard) policy based on the expectation which treats whenever
E[Y |X = x, A = 1] > E[Y |X = x, A = 0], (ii) a more conservative quantile policy that treats
whenever Qq[Y |X = x, A = 1] > Q1−q[Y |X = x, A = 0] with q = 0.4 (Qq denotes the q-quantile
of P(Y |X = x, A = i)), and (iii) the same quantile policy with q = 0.2. Note that our bounds for
policy (i) coincide with sharp bounds for binary CATE from the literature [18]. As done in [31], we
report means and standard deviations of 400 random initializations of the IHDP data. The results
(Fig. 10) show that the conservative quantile policies improve over the expectation policy.
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Figure 8: Results for distributional effects in the binary treatment setting using the same treatments as
in Fig. 3 (main paper). Settings (i)–(iii) are ordered from left to right. The top row shows the oracle
sensitivity parameter Γ∗W (depending on x). Rows 2, 3, and 4 show the bounds for the α-quantiles of
the interventional distribution with α = 0.7, α = 0.5, and α = 0.3.
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Figure 9: Results for distributional effects in the continuous treatment setting using the same
treatments as in Fig. 4 (main paper). Settings (i)–(iii) are ordered from left to right. The top row
shows the oracle sensitivity parameter Γ∗W (depending on x). Rows 2, 3, and 4 show the bounds for
the α-quantiles of the interventional distribution with α = 0.7, α = 0.5, and α = 0.3.
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Figure 10: results for the semi-synthetic IHDP data with unobserved confounding from Jesson
et al. [31].
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