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Abstract

High gradient variance presents a significant ob-
stacle to efficient post-training of large language
models (LLMs) on memory-constrained devices.
Existing practical strategies—such as reducing
batch sizes or adopting gradient accumulation
(GA)—suffer from an inherent trade-off: smaller
batches exacerbate convergence issues due to in-
creased gradient noise, while GA substantially pro-
longs training time owing to its sequential pro-
cessing. In this work, we reveal that the Expo-
nential Moving Average (EMA) in momentum-
based optimizers exponentially discounts histori-
cal gradients, thereby limiting their effectiveness
in stabilizing parameter updates, especially dur-
ing post-training when parameter drift is minimal.
Motivated by this, we propose integrating the core
idea of GA directly into momentum updates via a
novel Periodical Moving Average (PMA) mecha-
nism, which structures training into fixed periods
and replaces EMA with a uniform moving aver-
age within each period. We instantiate PMA within
AdamW and Lion, resulting in the AdamW-PMA
and Lion-PMA optimizers. Theoretical analysis
establishes that AdamW-PMA matches the con-
vergence guarantees of standard Adam. Extensive
empirical evaluation on supervised fine-tuning and
direct preference optimization tasks demonstrates
that PMA-based methods achieve approximately
2× faster training compared to GA, while yield-
ing consistently better performance on downstream
evaluations.
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1 INTRODUCTION

Scaling large language models (LLMs) has consistently pro-
pelled advances in model capability and generalization [Rad-
ford et al., 2019, Kaplan et al., 2020, Brown et al., 2020,
Hoffmann et al., 2022, Zhang et al., 2022, Touvron et al.,
2023a,b, Achiam et al., 2023, Bi et al., 2024]. Modern post-
training stages—including supervised fine-tuning (SFT)
and reinforcement learning from human feedback [Ope-
nAI, 2024]—exert substantial computational and memory
burdens, typically necessitating powerful multi-GPU clus-
ters [Lee and Sengupta, 2022]. However, scaling intensifies
GPU memory constraints, presenting major challenges for
training or adaptation on memory-limited devices.

Practical strategies for training LLMs under memory con-
straints are hampered by efficiency limitations. Simple batch
size reduction increases gradient variance, significantly
slowing convergence. Alternatively, gradient accumulation
(GA) alleviates memory bottlenecks by splitting a large
batch into multiple smaller updates, accumulating gradients
over several micro-batches before a single parameter up-
date. While GA emulates large-batch training, it transforms
parallel computation into sequential updates, substantially
elongating training time.

In this work, we introduce the Periodical Moving Average
(PMA), a novel momentum update scheme tailored to accel-
erate post-training of LLMs on memory-limited hardware
by addressing both variance and computational overhead.

Existing approaches involve a fundamental trade-off: GA
cannot interleave parameter updates within accumulation pe-
riods without losing memory efficiency, while small-batch
training suffers from high variance and unstable parameter
updates. Our central insight is that, during post-training,
LLM parameters evolve gradually due to low learning rates,
leading to consecutive gradients with highly similar expec-
tations. This motivates rethinking the exponential moving
average (EMA): while EMA discounts historical gradients
exponentially and thus rapidly forgets useful information, a
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(a) AdamW vs. AdamW-PMA
on SFT.

(b) Lion vs. Lion-PMA on
SFT.

(c) AdamW vs. AdamW-PMA
on DPO.

(d) Lion vs. Lion-PMA on
DPO.

Figure 1: Optimizers with PMA achieve approximately 2× speedup compared to EMA-based optimizers. (1a, 1b) show SFT
validation loss on Phi-2 2.7B with Alpaca; (1c, 1d) show DPO validation loss on Phi-2 2.7B with HH-RLHF.

properly designed moving average can better utilize recent
history for stabilization.

PMA partitions training into discrete periods of K steps each.
Within each period, it replaces EMA with a simple moving
average in the momentum update, uniformly weighting re-
cent gradients to reduce variance. Between periods, it resets
to standard EMA, thus preserving rapid convergence and
optimizer stability. This hybrid mechanism achieves a favor-
able trade-off between memory efficiency and convergence
speed.

A notable challenge with PMA is trajectory deviation,
wherein uniform averaging within a period may cause pa-
rameter updates to diverge from the ideal optimization path,
due to lack of access to the true gradient expectation. To
mitigate this, we employ a periodic learning rate decay:
the learning rate linearly decreases within each period and
resets at period boundaries, ensuring that parameter updates
remain stable and aligned with the underlying optimization
trajectory.

We instantiate PMA within AdamW [Loshchilov and Hut-
ter, 2017] and Lion [Chen et al., 2023], resulting in
AdamW-PMA and Lion-PMA, respectively. We thoroughly
evaluate these variants across SFT and Direct Preference Op-
timization (DPO) [Rafailov et al., 2023] tasks on a range of
models, including GPT-2 [Brown et al., 2020], Phi-2 [Java-
heripi et al., 2023], Qwen1.5 [Team, 2024a], Qwen2 [Yang
et al., 2024], and Llama2 [Touvron et al., 2023b]. Our ex-
periments show that AdamW-PMA and Lion-PMA achieve
approximately 2× speedup over traditional EMA-based opti-
mizers, while attaining better downstream task performance.
We further provide theoretical analysis of the learning rate
strategy and regret bound, establishing that AdamW-PMA
retains the convergence guarantees of Adam.

Our key contributions are:

• We propose Periodical Moving Average (PMA), a
momentum update mechanism that accelerates large-
batch emulation for LLM post-training on memory-
limited devices. When applied to AdamW and Lion

(AdamW-PMA and Lion-PMA), our method stabilizes
training and reduces training time and data require-
ments, without incurring extra per-step memory or
computation.

• We provide comprehensive empirical validation across
models ranging from 0.1B to 7B parameters and for
both SFT and DPO settings. PMA-based optimizers
realize up to 2× speedup over GA, consistently outper-
forming baselines in downstream evaluation 1.

• We theoretically analyze the convergence of
AdamW-PMA, highlighting the effectiveness of the
dynamic learning rate strategy and establishing regret
guarantees on par with standard Adam.

2 PRELIMINARIES

2.1 BACKGROUND: FIRST-ORDER
OPTIMIZATION

Adam [Kingma and Ba, 2014, Reddi et al., 2019] and
AdamW [Loshchilov and Hutter, 2017] are among the most
widely used optimizers for large language model (LLM)
training, integrating adaptive learning rates and momentum-
based techniques. Given an objective function f : Rd → R,
at iteration t, let the stochastic gradient be gt = ∇f(xt).
Adam maintains exponential moving averages of the first
and second moments: mt = β1mt−1 + (1 − β1)gt and
vt = β2vt−1 + (1 − β2)g

2
t , where β1 and β2 are hyper-

parameters, and all operations are element-wise. A small
constant ϵ > 0 is typically added to vt for numerical sta-
bility. To correct the bias introduced at initialization, the
moment estimates are debiased: m̂t = mt/(1 − βt

1) and
v̂t = vt/(1− βt

2). Since historical gradients receive expo-
nentially decaying weights, these averages are referred to
as exponentially weighted moving averages (EMAs). The

1Implementation available at https://github.com/
liuyumou/periodical-moving-average.git

https://github.com/liuyumou/periodical-moving-average.git
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parameter update is then

xt+1 ← xt − γ
m̂t√
v̂t + ϵ

, (1)

where γ is the learning rate. All operations are performed
element-wise. AdamW decouples weight decay from the
gradient update. More recently, Lion [Chen et al., 2023] has
been proposed, which relies solely on the first moment and
updates parameters using EMA.

Despite their effectiveness, Adam-based methods encounter
difficulties in high-variance settings, particularly under
memory constraints. Training LLMs is intrinsically a high-
variance optimization problem [McCandlish et al., 2018].
To mitigate variance, practitioners commonly increase the
batch size using high-performance clusters [Touvron et al.,
2023a]. Conversely, reducing batch size further amplifies
the stochasticity of gradient estimates, slowing convergence
and degrading optimization, especially in memory-limited
environments [Yuan et al., 2016, Bottou et al., 2018, Kunst-
ner et al., 2023, Fu et al., 2023].

2.2 THEORETICAL SOLUTION: VARIANCE
REDUCTION IN SGD

Here we review representative approaches for reduc-
ing gradient variance in stochastic optimization [Bottou
et al., 2018], alongside their limitations. Variance reduc-
tion techniques typically reuse historical information to
construct lower-variance gradient estimates. For instance,
SVRG [Johnson and Zhang, 2013] maintains a snapshot
parameter θk (with k < t) and leverages it for gradient
correction. The iterate averaging method [Polyak, 1991]
averages the iterates across steps to yield a final estimate.
Recent advances such as SARAH [Nguyen et al., 2017]
and STORM [Cutkosky and Orabona, 2019] adopt recursive
update rules that avoid explicit storage of past gradients.

However, these variance reduction methods exhibit practical
deficiencies in the LLM context. Approaches like SAGA
incur prohibitive memory costs by requiring storage of a gra-
dient for every data sample, with memory usage scaling with
dataset size. Iterate averaging demands storing all historical
parameter vectors, incurring memory overhead proportional
to the number of steps. SVRG relies on large-batch compu-
tations at each snapshot, increasing memory requirements.
Although SARAH and STORM mitigate storage needs by
not retaining past gradients explicitly, they require multiple
backpropagation passes per parameter update, which sub-
stantially increases computational cost during LLM training.

2.3 PRACTICAL SOLUTION: GRADIENT
ACCUMULATION

To address high gradient variance under memory constraints,
gradient accumulation (GA)2 provides a straightforward
solution. GA divides a large batch into K smaller micro-
batches processed sequentially, accumulating gradients com-
puted on each without exceeding the device memory limit.
After accumulating gradients over the K micro-batches, the
optimizer averages them to approximate the gradient over
the full batch and performs a parameter update. Notably, the
gradient accumulated via GA is mathematically equivalent
to that obtained from a large batch.

Despite its statistical soundness, GA presents substantial
practical drawbacks, primarily in terms of increased wall-
clock time. That is, GA achieves memory efficiency by
trading off parallelism for serial computation: on resource-
limited devices, each parameter update requires K succes-
sive forward and backward passes, leading to lower compu-
tational efficiency than if the large batch could be processed
in parallel. Recent variants such as Pham et al. [2023] fur-
ther reduce memory usage in GA, but do not alleviate the
increased training time on memory-constrained hardware.

2.4 THE DILEMMA

The discussions in Section 2.2 and Section 2.3 reveal a
fundamental dilemma between theoretically grounded and
practically feasible approaches for high-variance optimiza-
tion under GPU memory constraints. On the one hand,
state-of-the-art variance reduction methods frequently incur
prohibitive memory costs, rendering them unsuitable for
resource-limited environments. On the other hand, practical
strategies either converge slowly due to elevated gradient
variance or require substantially increased training time,
as in the case of the sequential computations inherent to
gradient accumulation (GA). Crucially, this dilemma stems
from the persistence of high variance in stochastic gradi-
ents. Therefore, there is a pressing need for novel methods
that can reduce the variance of parameter updates without
incurring additional memory or computational overhead.

3 METHODOLOGY: PERIODICAL
MOVING AVERAGE

To address the dilemma identified in Section 2.4, we propose
PMA as an enhancement of the exponential moving average
(EMA) process to more effectively reduce gradient variance.
Section 3.1 presents the high-level design and intuition un-

2While memory-efficient optimizers such as those proposed
in [Shazeer and Stern, 2018, Luo et al., 2023, Zhao et al., 2024,
Zhang et al., 2024] are also viable, we argue that GA remains more
practical for our scenario. Detailed discussion appears in § 6.



derlying PMA, including its connections and distinctions to
existing work. Section 3.2 provides detailed implementa-
tion, with an emphasis on dynamics of β and learning rate
scheduling, while Section 3.3 describes the integration of
PMA with AdamW and Lion.

3.1 HIGH-LEVEL IDEA

Mimicking GA in Momentum Updates. At a high level,
PMA simulates the variance reduction of gradient accumu-
lation (GA) within momentum-based optimizers. Unlike
standard EMA, which exponentially discounts past gradi-
ents, our method maintains uniform weighting for recent
gradients within fixed periods. By partitioning training iter-
ations into periods and employing a vanilla moving average
for momentum updates within each period, PMA mimics the
effect of GA, providing moment estimates of lower vari-
ance analogous to those obtained by EMA-based optimizers
using GA (§3.2.1).

From Pure Accumulation to Progressive Updates.
Whereas standard GA does not update parameters until the
end of each accumulation period, PMA interleaves updates
within each period. Specifically, PMA alternates between
steps with large and small learning rates: we designate the
former as large update steps, typically at the culmination
of a period, and the latter as small update steps. Each large
update step, taken after K small update steps, emulates the
behavior of EMA-based optimizers with GA, while the inter-
vening small update steps facilitate faster convergence. By
judiciously choosing a reduced learning rate for these small
steps, we seek to accelerate optimization without destabiliz-
ing the variance reduction effect (§3.2.2).

3.2 DETAILED DESIGN

We now describe the update rules governing the first moment
(momentum) as an illustrative example.

3.2.1 Momentum Update: Dynamics of β

Unlike conventional EMA, where β is fixed, PMA employs
a dynamically adjusting β to achieve a uniform moving av-
erage within each accumulation period.3 Uniform weighting
requires systematically decaying β during each period so
that each historical gradient within the period contributes
equally.

We describe momentum updates for both the large and small
update steps. See Fig. 2a for a visualization.

3Here, β denotes the weight of the previous momentum; 1−β
is the weight of the current gradient. For clarity, we retain the
notation β throughout.

(a) Dynamic β (K = 8, β =
0.9)

(b) Learning rate schedule
(K = 8, γ = 1)

Figure 2: Illustrations of dynamic β and learning rate
scheduling.

Large Update Step: Low Gradient Weight for Variance
Control. At the first small update step following a large
update step (τ = 0), the momentum update is

mt ← β1mt−1 + (1− β1)
gt
K

,

where K denotes the accumulation length. Unlike EMA,
here the current gradient is scaled down by 1/K and, after
the update, the first and second momenta are scaled by K.
This design both reduces the variance of the momentum
estimates and, after K steps, ensures the accumulated gradi-
ents receive equal weighting, consistent with the behavior
of GA.

Small Update Steps: Uniform Moving Average via Dy-
namic Weights. For subsequent small steps within the
period (τ = 1, . . . ,K − 1), the momentum is updated as

mt ←
τ

τ + 1
mt−1 +

1− β1

τ + 1
gt.

This procedure, in essence, replaces the EMA with a vanilla
moving average, ensuring that the gradients from each small
step contribute equally in mt,K−1. Notably, in mt,K−1,
mt−1,K−1 receives weight 1 − β1, and each gt,τ (for all
τ ) is weighted by 1−β1

K , conforming with the GA weighting
scheme.

3.2.2 Learning Rate Schedule

Complementing the momentum update, we design a learn-
ing rate schedule that distinguishes between small and large
update steps. Specifically, small update steps employ a lin-
early decaying learning rate rather than a fixed schedule.
As shown in Fig. 2b, this mitigates the risk of excessive
parameter advancement that could undermine the variance
reduction effect intended by GA-mimicking. For step τ , the
effective learning rate is given by

ητ =
η

τ + 1
,



Algorithm 1: AdamW with Periodical Moving Average
(AdamW-PMA)
Input: Learning rate γ; coefficients (β1, β2);

Initial params θ0; objective f(θ);
Epsilon ϵ; weight decay λ;
Period length K (# microsteps per period)

Data: m0 ← 0, v0 ← 0

1 for t = 1, 2, . . . do
2 gt ← ∇θft(θt−1);
3 τ ← t mod K;
4 if τ = 0 and t > 0 then // Large update step

every K iterations
5 γt ← γ;
6 mt ← β1mt−1 + (1− β1)

gt
K
// Divide by K

for stability

7 vt ← β2vt−1 + (1− β2)
g2t
K

;
8 else
9 γt ← γ/

√
K // Small update: reduced

LR

10 mt ← τ
τ+1

mt−1 +
1−β1
τ+1

gt // Moving

average update

11 vt ← τ
τ+1

vt−1 +
1−β2
τ+1

g2t ;

// Debiasing (adjust for
initialization bias)

12 m̂t ← mt/(1− β
t//K
1 );

13 v̂t ← vt/(1− β
t//K
2 );

// Apply weight decay
14 θ̄t ← (1− γtλ)θt−1;

// Update parameter

15 θt ← θ̄t − γtm̂t/(
√
v̂t + ϵ);

16 if τ = 0 and t > 0 then // Rescale after
large update step

17 m̂t ← Km̂t;
18 v̂t ← Kv̂t;

19 return θt

where η is the base learning rate. Such linear decay ensures
that later small steps cause less drift from the virtual GA
reference point, preserving the intended statistical behavior.

3.3 CASE STUDY

3.3.1 From AdamW to AdamW-PMA

To obtain AdamW-PMA, we substitute the EMA used in
AdamW’s first and second moment estimators with the peri-
odical moving average scheme detailed above. The pseudo-
code is provided in Algorithm 1. Both momenta are scaled
at large update steps, while at small steps, the learning rate
is effectively scaled by 1/

√
K, owing to the combination of

momentum and learning rate scaling. All remaining compo-
nents of AdamW remain unchanged.

3.3.2 From Lion to Lion-PMA

A similar modification applies to Lion. The vanilla mov-
ing average with dynamic scheduling replaces the EMA
rule. Because Lion lacks a second moment estimate, the
small step learning rate is decayed by 1/K, not 1/

√
K as in

AdamW. This aligns with the rescaled momentum at large
update steps, ensuring a linearly decreasing learning rate as
described above. All other Lion components are retained
unchanged. Pseudocode for Lion-PMA is presented in Ap-
pendix A.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical guarantees for
AdamW-PMA, demonstrating that it achieves a convergence
rate comparable to Adam, with similar resource overhead.

4.1 CONVERGENCE ANALYSIS

We analyze the convergence properties of AdamW-PMA un-
der the same assumptions as Kingma and Ba [2014]. As a
performance metric, we consider the regret:

Rτ (T ) =

T∑
t=1

[f(xt,τ )− f(x∗)] , (2)

where τ denotes the index of the small update steps. This
quantity measures the cumulative sub-optimality of the iter-
ates xt,τ compared to the global optimum x∗ over T periods.

For the analysis, we modify the notational convention so
that the index τ of the small update steps ranges from 1
to K. The large update step, corresponding to τ = K,
transitions from xt,K to xt+1,1; the remaining cases τ ∈
[K − 1] correspond to the small update steps. We define
gt,τ = ∇f(xt,τ ), with gt,τ,i denoting its ith component.

Theorem 1. Suppose the objective f is convex, with
∥∇f(x)∥2 ≤ G and ∥∇f(x)∥∞ ≤ G∞ for all x. As-
sume that, for any (t1, τ1), (t2, τ2) ∈ [T ] × [K], the pa-
rameter differences satisfy ∥xt1,τ1 − xt2,τ2∥2 ≤ D and
∥xt1,τ1 − xt2,τ2∥∞ ≤ D∞. Further suppose the hyper-
parameters satisfy

√
1−β2

1−β1
≤ 1. Then, for any T ≥ 1,

AdamW-PMA achieves:

RK(T ) ≤
√
KD2

2γ(1− β1)

d∑
i=1

√
T v̂T,K,i

+
(1 + γ)K3/2G∞

2(1− β1)

d∑
i=1

∥g1:KT,i∥2

+
D2
∞G∞(K − 1)

2(1− β1)
.

(3)

The proof of Theorem 1 is provided in Appendix C. This
result establishes that AdamW-PMA attains a regret bound



of O(
√
T ), matching the order obtained for Adam [Kingma

and Ba, 2014], and confirming its convergence guarantee in
the convex setting.

Additionally, Theorem 1 reveals that, for fixed T , the cu-
mulative regret increases as K (the number of small steps)
increases. This reflects a fundamental trade-off: larger K
can result in faster initial convergence, but overly large K
may cause the update trajectory to deviate from that of
Adam, potentially leading to larger regret in the long term.

4.2 RESOURCE OVERHEAD ANALYSIS

We now discuss the computational and memory overhead of
AdamW-PMA. Since AdamW-PMA is based on AdamW, we
focus on a comparison with AdamW employing gradient
accumulation.

AdamW-PMA does not incur any additional memory over-
head compared to AdamW or AdamW with gradient accu-
mulation. The memory required by AdamW-PMA consists
of the storage for model parameters, gradients, and the run-
ning estimates of the first and second moments—identical
to Adam and AdamW. When the same micro-batch size is
used, the memory footprint of AdamW-PMA and AdamW
with GA are equivalent.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Tasks. We evaluate AdamW-PMA and Lion-PMA on lan-
guage modeling tasks, specifically supervised fine-tuning
(SFT) and direct preference optimization (DPO) [Rafailov
et al., 2023]. Additional experiments, including pre-training
and learning rate scheduler ablation, are presented in Ap-
pendix E due to space constraints. Table 1 summarizes the
experimental settings.

Dataset Model Results
Alpaca Phi-2-2.7B Tab. 2
DuReader_Robust Llama2-7B-base Fig. 8

HH-RLHF-harmless

Phi2-2.7B Fig. 3,5,6
Qwen1.5-0.5B Fig. 6
Qwen2-0.5B Fig. 4
GPT2-medium Fig. 7

Table 1: Summary of Settings.

Baselines. We compare AdamW-PMA and Lion-PMA to
AdamW and Lion, respectively. For each optimizer with
period length K and batch size B, we denote the settings
as AdamW-PMA-K and AdamW-K (similarly for Lion).
AdamW-K refers to AdamW with K-step gradient accumu-
lation, resulting in effective batch size KB. All optimizers

within each comparison group share identical hyperparame-
ters. For the AdamW-PMA and Lion-PMA groups, we set
lr = 2e−6 and betas to (0.9, 0.95) and (0.95, 0.98), respec-
tively, following Chen et al. [2023].

Implementation. Experiments are conducted on a server
equipped with 8× NVIDIA A40 GPUs (each with 48GB
memory). We use the Swift framework [Team, 2024b] and
PyTorch [Paszke et al., 2019]. SFT experiments use K = 8,
B = 32; DPO tasks use K = 16, B = 16.

Metrics. For SFT, we report validation loss and model
performance on the MMLU benchmark [Hendrycks et al.,
2020]. For DPO, we report validation loss and classification
accuracy (distinguishing accepted from rejected responses).
For classification, we regard a prediction as correct if the
model assigns higher probability to the accepted response.

Methodology of Comparison. To compare optimizer effi-
ciency, we adopt two metrics: (1) data efficiency, measured
by the amount of training data processed to reach a target
metric value, accounting for batch size differences; and (2)
FLOPs, representing the computation required to reach a
target metric value and reflecting training speed.

5.2 SUPERVISED FINE-TUNING

Algorithm Val Loss MMLU(Zero-Shot)
Hums. STEM Social Other Avg.

AdamW-4 0.9212 15.4 28.3 26.7 24.3 24.4
AdamW-8 0.9408 19.2 22.8 26.7 25.0 23.3
AdamW-PMA-4 0.9352 16.9 22.8 25.0 22.7 21.9
AdamW-PMA-8 0.9078 16.2 28.3 30.1 35.0 27.7
Lion-4 0.9227 13.1 23.3 24.2 25.7 21.8
Lion-8 0.9486 20.8 22.2 24.2 25.0 23.0
Lion-PMA-4 0.9136 13.1 23.3 24.2 25.7 21.8
Lion-PMA-8 0.9373 17.7 22.2 22.5 26.4 22.3

Table 2: Comparison of the validation loss and the perfor-
mance after one epoch training on zero-shot MMLU for
various algorithms. With limited space, we only demon-
strate four representative categories.

Table 2 shows that AdamW-PMA and Lion-PMA improve
SFT performance compared to their baseline counterparts.
For validation loss, AdamW-PMA-8 achieves the best result
among AdamW variants, while Lion-PMA-4 is best in the
Lion family.

For MMLU zero-shot tasks, PMA variants outperform their
EMA counterparts in all categories except Humanities, at-
tributable to input length limitations on Phi-2. PMA-based
optimizers consistently achieve higher average scores; e.g.,
AdamW-PMA-8 obtains an average of 27.7, outperforming
AdamW.



(a) Validation accuracy on
flops (K = 8)

(b) Validation accuracy on
flops (K = 16)

(c) Validation accuracy on
number of samples (K=8)

(d) Validation accuracy on
number of samples (K=16)

Figure 3: The accuracy of classifying the accepted and rejected responses on the validation dataset for DPO task. Compared
to AdamW and Lion, AdamW-PMA and Lion-PMA exhibit faster convergence rates and higher accuracy.

Figure 4: Validation loss of training
more epochs on DPO task.

Figure 5: Runtime to achieve the
same loss on DPO task..

Figure 6: The speedup factor of
AdamW-PMA compared to AdamW
under different K.

5.3 DIRECT PREFERENCE OPTIMIZATION

PMA improves accuracy and reduces overfitting. Fig-
ure 3 compares the validation accuracy across flops and
training samples for K = 8 and K = 16. AdamW is con-
sistently the slowest and least accurate, while PMA-based
optimizers yield marked improvements in both convergence
speed and final accuracy. With larger K, AdamW-PMA
achieves convergence speeds that surpass AdamW and ri-
val Lion, while Lion-PMA delivers the strongest overall
performance.

Figure 4 presents validation loss across multiple epochs for
Qwen2-0.5B on DPO. PMA-based optimizers sustain lower
validation loss and are less prone to overfitting compared to
EMA-based counterparts.

PMA reduces runtime. Figure 5 demonstrates that PMA-
based optimizers reach a given loss target in less wall-clock
time than EMA-based optimizers. Furthermore, PMA can
utilize remaining data to achieve even higher accuracy once
that target is met.

PMA is sensitive to K. We study the effect of K on
speedup in DPO experiments with both Phi-2 and Qwen1.5
models (see Fig. 6). For small K, PMA approximates stan-
dard AdamW, and variance reduction is minimal. For exces-
sively large K, aggressive learning rate reduction can dimin-

ish acceleration. In practice, an intermediate K achieves the
best trade-off between speed and stability.

5.4 ADDITIONAL PROPERTIES

PMA reduces update variance. We measure update vari-
ance using GPT-2 medium on the Alpaca dataset with
K = 16, comparing algorithms with identical configura-
tions. Following [Ash et al., 2019, Mirzasoleiman et al.,
2020, Killamsetty et al., 2021], we use the last layer gradient
as a proxy for model gradient variance. Figure 7 demon-
strates that PMA yields consistently lower update variance
for the same loss and over training time, compared to EMA.

PMA scales to large models. On Llama2-7B trained with
SFT on DuReader_Robust [Tang et al., 2020], AdamW-
PMA consistently achieves lower validation loss than
AdamW throughout training (see Fig. 8), demonstrating
effectiveness at scale.

PMA incurs minimal extra per-step overhead. Al-
though PMA introduces more frequent updates and slightly
more communication in distributed settings, per-iteration
time increases are modest: on a 7B model, AdamW-PMA is
only about 2% slower per iteration than AdamW.



(a) Variance vs Training loss (b) Variance vs Time

Figure 7: Comparison of the magnitude in variance w.r.t the training loss and time.

Figure 8: Validation loss of SFT on Llama2-7B.AdamW-
PMA consistently attains a much lower loss than AdamW.

6 RELATED WORK

First-Order Adaptive Optimizers. First-order adaptive
methods form the backbone of modern deep learning opti-
mization. Algorithms such as AdaGrad [Duchi et al., 2011]
adapt learning rates for each parameter based on historical
gradient information, assigning larger updates to infrequent
features. RMSProp [Hinton et al., 2012] extends AdaGrad
by maintaining an exponential moving average of squared
gradients. Adam [Kingma and Ba, 2014], which further
introduces an EMA of the first moment, and its variant
with decoupled weight decay, AdamW [Loshchilov and
Hutter, 2017], are now the predominant optimizers for large-
scale neural networks, especially Transformers [Vaswani
et al., 2017]. Numerous subsequent methods build on this
foundation, including variants such as AdaFactor [Shazeer
and Stern, 2018], Adam with Nesterov momentum [Dozat,
2016], Adabelief [Zhuang et al., 2020], Adan [Xie et al.,
2022], Lion [Chen et al., 2023], and GrAMS [Cao et al.,
2024]. Despite their effectiveness, these algorithms often
incur high memory costs due to storing additional first and
second moment estimates, posing significant challenges for
training large models on memory-limited devices.

Memory-Efficient Optimizers. To address memory bot-
tlenecks, several optimizers have been proposed. AdaFac-
tor [Shazeer and Stern, 2018] approximates the second-
moment matrix using row and column factors. LOMO [Lv
et al., 2023] streamlines the update and gradient com-
putation to reduce transient storage. CAME [Luo et al.,
2023] employs residual-based adaptive updating, and Ga-
Lore [Zhao et al., 2024] applies low-rank gradient projec-
tions to save memory. Adam-mini [Zhang et al., 2024] fur-
ther trims learning rate-related state in Adam. However,
most of these methods entail a trade-off, sacrificing conver-
gence rates or providing only moderate memory reduction
(e.g., CAME saves 12.1% over Adam per Luo et al. [2023]),
which remains inadequate for training LLMs under stringent
memory constraints. Thus, techniques like gradient accu-
mulation (GA) remain indispensable in memory-limited set-
tings, further motivating acceleration of these approaches.

Variance Reduction. Variance reduction techniques in
SGD are essential for accelerating convergence. Among
these, dynamic sampling, gradient aggregation, and iterate
averaging have received particular attention [Bottou et al.,
2018]. SVRG [Johnson and Zhang, 2013] and SAGA [De-
fazio et al., 2014] leverage historical gradient or parameter
states to construct lower-variance stochastic gradient esti-
mators, albeit at increased memory or computational costs.
Iterate averaging [Polyak, 1991] returns the average of pa-
rameters across SGD iterates; Nesterov’s accelerated tech-
niques [Nesterov, 2013] further establish O(1/t) conver-
gence for such schemes. However, the practical application
of these methods to LLMs is limited by their overhead in
storage or per-iteration computation.

7 CONCLUSION

We tackled the challenge of high-variance stochastic opti-
mization for post-training large language models (LLMs) on
GPU-memory-constrained devices. Our analysis revealed
that the slow convergence of existing momentum-based opti-



mizers is largely attributable to the EMA scheme, which in-
adequately exploits information from historical gradients to
stabilize parameter updates. To remedy this, we introduced
PMA, a novel momentum update framework that partitions
training into periods and applies a moving average within
each period. We integrated PMA into AdamW and Lion to
obtain AdamW-PMA and Lion-PMA, respectively. Exten-
sive experiments on SFT and DPO tasks across various
models demonstrate that PMA yields at least a 2× speedup
in training and consistently improves downstream task per-
formance.

LIMITATIONS

While PMA offers substantial training acceleration, it
can incur increased communication overhead in multi-
GPU settings, particularly for large K. Specifically, since
AdamW-PMA performs K times as many parameter update
communications as AdamW with GA, its communication
cost can scale linearly with K. In addition, we have not
yet evaluated PMA in large-scale distributed experiments;
further investigation in such settings is warranted.
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A EXTRA PSEUDO-CODE

Algorithm 2: Lion-PMA
1 for t = 1→ . . . do
2 gt ← ∇θft(θt−1);
3 τ ← t%K;
4 if τ = 0 and t > 0 then
5 γt ← γ;
6 ut ← β1mt−1 + (1− β1)gt/K;
7 ut ← sign(ut);

8 else
9 γt ← γ/K;

10 ut ← τ
τ+1mt +

1−β1
τ+1 gt;

11 ut ← sign(ut);

12 mt ← τ
τ+1vt +

1−β2
τ+1 g2

t ;

13 θ̂t ← (1− γtλ)θt−1;
14 θt = θ̂t − γtut;
15 if τ = 0 and t > 0 then
16 m̂t ← Km̂t;

17 return θt;

Algorithm 2 presents the pseudo-code of Lion-PMA. Lines 4-8 illustrate the large update steps, while lines 9-13 demonstrate
the small update steps. We incorporate Lion-PMA as an adaptation of AdamW-PMA to AdamW. The main difference
between the adaptation of AdamW and Lion lies in the implementation of the learning rate strategy. In Lion-PMA, we
decay the learning rate by 1/K at the small update steps instead of 1/

√
K in AdamW-PMA.

B ADDITIONAL THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis on the convergence property of AdamW-PMA. Specifically, we focus on the
convergence properties concerning the number of large update steps. This focus is due to the time cost between two large
steps being approximately equal to the time between two updates of Adam with GA. During the analysis, we slightly modify
the notations for ease of analysis. Unlike Algorithm 1, where the index of small update steps ranges from 0 to K − 1, in
the subsequent analysis, this index ranges from 1 to K. Specifically, when τ = K, the update step from xt,K to xt+1,1 is
considered a large update step for all t. For the other τ ∈ [K − 1], the subsequent update step is a small step.
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Firstly, we can show the average regret of AdamW-PMA converges based on Theorem 1,

Corollary 1. Assume that the optimization objective f is convex and has bounded gradients, ∥∇f(x)∥2 ≤ G, ∥∇f(x)∥∞ ≤
G∞, and the distance between any parameter generated by AdamW-PMA is bounded, ∥xt1,τ1 − xt2,τ2∥2 ≤ D, ∥xt1,τ1 −
xt2,τ2∥∞ ≤ D∞ for any t1, t2 ∈ [T ] and τ1, τ2 ∈ [K], and β1, β2 satisfy

√
1−β2

1−β1
≤ 1. AdamW-PMA achieves the following

regret guarantee, for all T ≥ 1.
RK(T )

T
= O

(
1√
T

)
.

Then, we provide the update size between two large update steps in general non-convex settings.

Theorem 2. Assume that the objective function f is L-smooth, the step size between two large update steps is bounded by

∥xt+1,1 − xt,1∥2 ≤
2

L

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2, (4)

where ζ̄ and a are constants, and ζ̄(2a)2t−2 ≥ ζ(2a)2t−2 + c
1−4a2 +K2, and a = β1(1−β1)√

β2(1−β2)
· 1√

K
.

Theorem 2 indicates that the distance between two large update steps is bounded and converges to 0. Despite having K
small updates with varying momentum averaging weights, the step sizes still converge rapidly , suggesting the validity of
setting the learning rate of the small steps to be γ/

√
K. Furthermore, the exponential term decreases with K, aligning with

the intuition that more small update steps lead to faster convergence.

C PROOF OF THEOREM 2

Before the analysis, we slightly modify the notations to simplify the analysis. The large step update takes the xt,K as input
and outputs xt+1,1. Then, AdamW-PMAuses small step update to obtain xt+1,2, . . . , xt+1,K . It is noteworthy that the indexes
of small step updates in Algorithm 1 range from 0 to K − 1, while in the following analysis, they will range from 1 to K.

Before the analysis, we start with some important lemmas. Firstly, we consider the size of small step updates between two
large step updates. To start with, we bound the size of every small step update using Lemma 1.

Lemma 1. When τ ≥ 2, ∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥ ≤ 1− β1√
1− β2

· 1√
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ − 1

)
. (5)

Proof. ∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥ =

∥∥∥∥∥∥
τ−1
τ mt,τ−1 +

1−β1

τ gt,τ−1√
τ−1
τ vt,τ−1 +

1−β2

τ g2t,τ−1

∥∥∥∥∥∥
≤ 1− β1√

1− β2
· 1√

τ
·

∥∥∥∥∥∥ mt,1 +
∑τ

σ=2 gt,σ√
vt,1 +

∑τ
σ=2 g

2
t,σ

∥∥∥∥∥∥
≤ 1− β1√

1− β2
· 1√

τ

 τ∑
σ=2

∥∥∥∥∥∥ gt,σ√
vt,1 +

∑τ
ρ=2 g

2
t,ρ

∥∥∥∥∥∥+
∥∥∥∥∥∥ mt,1√

vt,1 +
∑τ

σ=2 g
2
t,σ

∥∥∥∥∥∥


≤ 1− β1√
1− β2

· 1√
τ

∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ∑
σ=2

∥∥∥∥∥∥ gt,σ√
g2t,σ

∥∥∥∥∥∥


=
1− β1√
1− β2

· 1√
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ − 1

)

Then, we bound the squared size of the small step update.



Corollary 2. ∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 ≤ (1− β1)
2

1− β2
· 2
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + τ2

)
. (6)

Proof. Since (a+ b)2 = a2 + b2 + 2ab ≤ 2(a2 + b2),∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥ ≤ 1− β1√
1− β2

· 1√
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ − 1

)
≤ (1− β1)

2

1− β2
· 2
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + τ2

)
.

Then, we bound the sum of the squared size of small step updates between two large step updates.

Corollary 3.
τ−1∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 ≤ (1− β1)
2

1− β2

τ−2∑
σ=1

2

σ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + σ2

)
+

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 . (7)

Proof.
τ−1∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 =

τ−2∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 + ∥∥∥∥ mt,τ−1√
vt,τ−1

∥∥∥∥2

Corollary 2
≤

τ−2∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 + (1− β1)
2

1− β2
· 2

τ − 1
·

(∥∥∥∥ mt1√
vt,1

∥∥∥∥2 + (τ − 1)2

)

≤ (1− β1)
2

1− β2

τ−2∑
σ=1

2

σ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + σ2

)
+

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 .

After bounding the small steps between two large update steps, we consider the size of a large update step and K following
small steps. To start with, we assume that the update size of the first large step is bounded.

Assumption 1. Let a = β1(1−β1)√
β2(1−β2)

· 1√
K

and b = 1−β1√
1−β2

· 1√
K
·
(
1 + β1K√

β2

)
.

∥∥∥∥ m1,1√
v1,1

∥∥∥∥ ≤ b

1− a
+ α. (8)

Then, we make some assumptions on the weight of the momentum.

Assumption 2. For all t, √
1− βt

2

1− βt
1

≤ 1.

If we take β1 = 0.9, β2 = 0.99 as the default configuration of Adam, this assumption holds.

Then, we bound the size of a large update step.

Lemma 2. By tuning the hyper-parameters β1 and β2, let a ≤ 1/2. Then∥∥∥∥ mt,1√
vt,1

∥∥∥∥ ≤ ᾱ · at−1, (9)

where ᾱ > α is a constant to make ᾱ · at−1 ≥ α · at−1 + b
1−a +K.



Proof. ∥∥∥∥ mt,1√
vt,1

∥∥∥∥ =

∥∥∥∥∥∥ β1mt−1,K + 1−β1

K gt,1√
β2vt−1,K + 1−β2

K g2t,1

∥∥∥∥∥∥
≤

∥∥∥∥∥ β1mt−1,K√
β2vt−1,K

∥∥∥∥∥+ 1− β1√
1− β2

· 1√
K
·

∥∥∥∥∥∥ gt,1√
g2t,1

∥∥∥∥∥∥
=

∥∥∥∥∥ β1mt−1,K√
β2vt−1,K

∥∥∥∥∥+ 1− β1√
1− β2

· 1√
K

Lem. 1
≤

1− β1√
1− β2

· 1√
K

+
β1√
β2
· 1− β1√

1− β2
· 1√

K
·
(∥∥∥∥ mt−1,1√

vt−1,1

∥∥∥∥+K − 1

)
≤ β1(1− β1)√

β2(1− β2)
· 1√

K︸ ︷︷ ︸
:=a

·
∥∥∥∥ mt−1,1√

vt−1,1

∥∥∥∥+ 1− β1√
1− β2

· 1√
K
·
(
1 +

β1K√
β2

)
︸ ︷︷ ︸

:=b

Let xt =
∥∥∥ mt,1√

vt,1

∥∥∥, then

xt ≤ at−1
(
x1 −

b

1− a

)
+

b

1− a

Then, by Assumption 1 ∥∥∥∥ mt,1√
vt,τ

∥∥∥∥ ≤ α · at−1 + b

1− a
≤ ᾱ · at−1.

Similar to the above approach, we assume the bounded squared first large step and prove the bounded squared large steps.

Assumption 3. Let c = (1−β1)
2

1−β2
· 2
K

(
1 +

2β2
1K

2

β2
2

)
∥∥∥∥ m1,1√

vt,1

∥∥∥∥2 ≤ c

1− 4a2
+ ζ (10)

Corollary 4. ∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 ≤ ζ̄(2a)2t−2, (11)

where ζ̄ > ζ is a constant to make ζ̄(2a)2t−2 ≥ ζ(2a)2t−2 + c
1−4a2 +K2.

Proof. ∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 ≤ 2

∥∥∥∥∥ β1mt−1,K√
β2vt−1,K

∥∥∥∥∥
2

+
(1− β1)

2

1− β2
· 2
K

≤ (1− β1)
2

1− β2
· 2
K

+
4

K
· (1− β1)

2β2
1

(1− β2)β2
·

(∥∥∥∥ mt−1,1√
vt−1,1

∥∥∥∥2 +K2

)

= 4a2
∥∥∥∥ mt−1,1√

vt−1,1

∥∥∥∥2 + c.

Then, ∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 ≤ (2a)2t−2

(∥∥∥∥ m1,1√
v1,1

∥∥∥∥2 − c

1− 4a2

)
+

c

1− 4a2

≤ ζ(2a)2t−2 +
c

1− 4a2

≤ ζ̄(2a)2t−2.



Before proving Theorem 2, we need more assumptions on the objective function and the initial point. First, we assume that
f has Lipschitz continuous gradient.

Assumption 4 (L-smoothness). A function f : Rd → R is differentiable and for any x1, x2 ∈ Rd,

∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥,

where L is a constant.

Now, by putting everything together, we are ready to prove Theorem 2.

Proof of Theorem 2. Let T = L
2 ∥xt+1,1 − xt∥2. At the beginning, we assume that the AdamW-PMA does not employ the

bias correction shown in Line 12-13 in Algorithm 1.

T =
L

2
∥xt+1,1 − xt.1∥2

≤ L

2

K−1∑
τ=1

∥xt,τ+1 − xt,τ∥2 +
L

2
∥xt+1,1 − xt,K∥2

=
L

2

K−1∑
τ=1

∥∥∥∥∥ γ√
K

m̂t,τ√
v̂t,τ

∥∥∥∥∥
2

+
L

2

∥∥∥∥∥γ · m̂t,K√
v̂t,K

∥∥∥∥∥
2

=
γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L
√
K

2

∥∥∥∥ mt,K√
vt,K

∥∥∥∥2 .
T ≤ γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L
√
K

2

∥∥∥∥ mt,K√
vt,K

∥∥∥∥2

Corollary 2
≤

γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L

2

(1− β1)
2

1− β2
· 2√

K

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)

=
γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L√
K
· (1− β1)

2

1− β2
·

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)

Corollary 3
≤

γ2L

2
√
K

(1− β1)
2

1− β2

K−2∑
σ=1

2

σ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + σ2

)
+

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + γ2L√
K
· (1− β1)

2

1− β2
·

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)

≤ γ2L√
K

(1− β1)
2

1− β2

(
K ·

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)
+

(
1 +

γ2L√
K

(1− β1)
2

1− β2

)∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + γ2LK
3
2
(1− β1)

2

1− β2

=

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
·
∥∥∥∥ mt,1√

vt,1

∥∥∥∥2 + 2γ2LK
3
2
(1− β1)

2

1− β2

Corollary 4
≤

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2 + 2γ2LK

3
2
(1− β1)

2

1− β2

Larger ζ̄
≤

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2.

Thus,

∥xt+1,1 − xt,1∥2 ≤
2

L

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2.

Then, we consider the bias correction shown in Linw 12-13 in Algorithm 1. By the bias correction, the learning rate at time

step t can be viewed as γt =
√

1−βt
2

1−β1
γ ≤ γ by Assumption 2. Then, with the bias correction operation, this bound still holds.



D PROOF OF THEOREM 1

Before the analysis, we assume that the variable is bounded, as assumed in Kingma and Ba [2014].

Assumption 5. We assume that the distance between the variable and the optimal point is bounded during the optimization
process, such that ∥xt,τ − x∗∥2 ≤ D, ∥xi,j − xk,l∥∞ ≤ D∞.

Proof of Theorem 1. Since the objective function f is convex,

f(xt,K)− f(x∗) ≤ ⟨∇f(xt,K), xt,K − θ∗⟩ =
d∑

i=1

gt,K,i(xt,K,i − x∗i ).

Using the update method defined in Algorithm 1, we can get

xt+1,1,i = xt,K,i − γ
m̂t,K,i√
v̂t,K,i

= xt,K,i −
γ

1− βt
1

(
K − 1√
K
√
vt,K,i

mt,K−1,i +
1− β1√
K
√
vt,K,i

gt,K,i

)
.

(xt+1,1,i − x∗)2 = (xt,K,i − x∗i )
2 − 2γ

1− βt
1

(xt,K,i − x∗i )

(
K − 1√
K
√
vt,K,i

mt,K−1,i +
1− β1√
K
√
vt,K,i

gt,K,i

)

+ γ2K

(
mt,K,i√
vt,K,i

)2

.

Rearrange the equation above,

gt,K,i(xt,K,i − x∗i ) =
(1− βt

1)
√
K
√
vt,K,i

2γ(1− β1)

(
(xt+1,K,i − x∗i )

2 − (xt,K,i − x∗i )
2
)

+
K − 1

1− β1
mt,K−1,i(xt,K,i − x∗i ) +

(1− βt
1)γK

3
2
√
vt,K,i

2(1− β1)

(
mt,K,i√
vt,K,i

)2

≤
√
K
√
vt,K,i

2γ(1− β1)

(
(xt+1,K,i − x∗i )

2 − (xt,K,i − x∗i )
2
)

+
K − 1

1− β1
(xt,K,i − x∗i )

√
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(
mt,K−1,i√
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)
+

γK
3
2
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m2
t,K,i√
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√
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√
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2 − (xt,K,i − x∗i )
2
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2(1− β1)
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K − 1

2(1− β1)

m2
t,K−1,i√
vt,K−1,i

+
γK

3
2
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m2
t,K,i√
vt,K,i

.



Figure 9: Runtime to achieve the same loss on DPO task.
PMA can reduce the training time cost than EMA.

Figure 10: Validation loss of AdamW without learning
rate scheduler and AdamW with a PMA-like lr sched-
uler.
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√
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√
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∥g1:KT,i∥2 +
D2
∞G∞(K − 1)

2(1− β1)
.

E ADDITIONAL EXPERIMENTS

E.1 PRE-TRAINING

Although PMA is designed for post-training, we also evaluate its performance on pre-training task. Specifically, we train a
randomly-initialized nanoGPT model on WikiPedia dataset. Figure 9 shows the validation loss of AdamW-PMA and AdamW.
EMA-based AdamW achieves a lower validation loss than AdamW-PMA. This is because PMA, especially the small update
step, is designed for post-training tasks where the distance between the original and trained parameters is small. Large
distance of updates, such as pre-training, can make the update direction deviate too much from the direction of AdamW,
leading to a slow training.

E.2 ABLATION ON LEARNING RATE SCHEDULER

To evaluate how the learning rate scheduler introduced in Sec. 3.2.2, we conduct an experiment on Qwen2-0.5B, comparing
AdamW without a scheduler and with a PMA-like scheduler. The other settings are the same as the experiment in Fig. 4. We
evaluate the tuned model every 120 steps, and the statistics are shown in Fig. 10. The PMA-like scheduler slows down the



(a) AdamW-PMA v.s. AdamW
on flops

(b) AdamW-PMA v.s.
AdamW on number of
samples

(c) Lion-PMA v.s. Lion on
flops

(d) Lion-PMA v.s. Lion on
number of samples

Figure 11: From the perspectives of total flops and number of steps, AdamW-PMA and Lion-PMA achieved speedups of
1.8x and 1.4x respectively, compared to AdamW and Lion when K = 1.

(a) AdamW-PMA v.s. AdamW
on Flops

(b) AdamW-PMA v.s.
AdamW on Number of
Samples

(c) Lion-PMA v.s. Lion on
Flops

(d) Lion-PMA v.s. Lion on
Number of Samples

Figure 12: We evaluate the optimizers by comparing the total flops and number of samples needed to achieve the same
validation loss level. AdamW-PMA and Lion-PMA achieved approximately 12x and 2x speedup, respectively, relative to
AdamW and Lion.

training process if the other components of PMA are not applied. This result indicates the necessity of the joint design of
each component in AdamW-PMA.

E.3 SFT

The improvement in validation loss brought by PMA can be translated into a reduction of the number of steps or total
compute. In Figure 11, we evaluate the optimizers by comparing the number of steps or total flops needed to achieve the
same validation loss level, setting K to 4. As can be observed in Figure 12, AdamW-PMA and Lion-PMA achieve a 12x and
2x speedup compared with AdamW and Lion.

E.4 DPO

Figure 13 and Figure 14 illustrate the validation loss of the DPO task on Phi-2 and HH-RLHF-harmless dataset, using four
different optimizers. We compare the total flops and number of samples needed to achieve the same validation loss across
vanilla AdamW and AdamW-PMA, Lion and Lion-PMA. The corresponding accuracy graph for this experiment can be
found in Figure 3 of Section 5.3 in the main text.

E.5 HYPER-PARAMETER SENSITIVITY

We do experiments on DPO task with the Phi-2-2.7B model and Qwen1half-0.5B-chat model to explore the sensitivity of
the PMA method’s speedup factor with hyper-parameter K on AdamW. In experiment of Phi-2 model, we set K to be 8, 16,
32, 64 to explore the optimal K value. For Qwen1.5-0.5B model, the K is set to be 4, 8, 16, 32, which are relatively smaller



(a) AdamW-PMA v.s. AdamW
on flops

(b) AdamW-PMA v.s.
AdamW on number of
samples

(c) Lion-PMA v.s. Lion on
flops

(d) Lion-PMA v.s. Lion on
number of samples

Figure 13: Validation loss of the DPO task on Phi-2 and HH-RLHF-harmless dataset.

(a) AdamW-PMA v.s. AdamW
on flops

(b) AdamW-PMA v.s.
AdamW on number of
samples

(c) Lion-PMA v.s. Lion on
flops

(d) Lion-PMA v.s. Lion on
number of samples

Figure 14: We evaluate the optimizers by comparing the total flops and number of samples needed to achieve the same DPO
validation loss level, with K setting to be 16. AdamW-PMA and Lion-PMA achieved approximately 4x and 5x speedup,
respectively, relative to AdamW and Lion.

since the model is smaller. The results of experiments can be seen in Figure 15 and 16. This part is the supplement results of
Section 5.4 in the main text.



(a) (b) (c) (d)

Figure 15: The sensitivity of PMA’s speedup factor with hyper-parameter K on Phi-2 model using AdamW

(a) (b) (c)

Figure 16: The sensitivity of PMA’s speedup factor with hyper-parameter K on Qwenhalf1-0.5B model using AdamW
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